1
|
Zhou Y, Tian J, Han M, Lu J. The phylogenetic relationship and demographic history of rhesus macaques ( Macaca mulatta) in subtropical and temperate regions, China. Ecol Evol 2024; 14:e11429. [PMID: 38770128 PMCID: PMC11103769 DOI: 10.1002/ece3.11429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Pleistocene climatic oscillations exerted significant influences on the genetic structure and demography of rhesus macaque (Macaca mulatta) in eastern China. However, the evolutionary history of rhesus macaques in subtropical and temperate China remained unclear and/or controversial. Herein, we analyzed the autosomes, mitochondrial genomes, and Y-chromosomes from 84 individuals of Chinese rhesus macaque. The results revealed that (1) all individuals were clustered into pan-west and pan-east genetic groups, which exhibited Shaanxi Province as the northernmost region of western dispersal route of rhesus macaques in China; (2) in subtropical and temperate China, rhesus macaques were divided into four lineages (TH, DB, HS, and QL), and their divergence times corresponded to the Penultimate Glaciation (300-130 kya) and Last Glaciation (70-10 kya), respectively; (3) the individuals from Mt. Taihangshan (TH) are closely related to individuals from Mt. Dabashan (DB) in the autosomal tree, rather than individuals from Mt. Huangshan (HS) as indicated by the mitogenome tree, which supports the hypothesis that the ancestral rhesus macaques radiated into Mt. Taihangshan from Mt. Huangshan via Mt. Dabashan; and (4) the demographic scenario of the four lineages showed the ancestral rhesus macaques bottleneck and expansion corresponding to the suitable habitat reduction and expansion, which confirmed they had experienced northward recolonization and southward retreat events from Mt. Huangshan area via Northern China Plain to Northernmost China along with Pleistocene glacial cycles. This study provides a new insight into understanding how Pleistocene glaciation has influenced faunal diversity in subtropical and temperate China, especially for those exhibiting differential patterns of sex dispersal.
Collapse
Affiliation(s)
- Yanyan Zhou
- School of Life SciencesZhengzhou UniversityZhengzhouChina
- Institute of Biodiversity and EcologyZhengzhou UniversityZhengzhouChina
| | - Jundong Tian
- School of Life SciencesZhengzhou UniversityZhengzhouChina
- Institute of Biodiversity and EcologyZhengzhou UniversityZhengzhouChina
| | - Mengya Han
- School of Life SciencesZhengzhou UniversityZhengzhouChina
- Institute of Biodiversity and EcologyZhengzhou UniversityZhengzhouChina
| | - Jiqi Lu
- School of Life SciencesZhengzhou UniversityZhengzhouChina
- Institute of Biodiversity and EcologyZhengzhou UniversityZhengzhouChina
| |
Collapse
|
2
|
Zhou Y, Tian J, Jiang H, Han M, Wang Y, Lu J. Phylogeography and demographic history of macaques, fascicularis species group, in East Asia: Inferred from multiple genomic markers. Mol Phylogenet Evol 2024; 194:108042. [PMID: 38401812 DOI: 10.1016/j.ympev.2024.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Climate changes at larger scales have influenced dispersal and range shifts of many taxa in East Asia. The fascicularis species group of macaques is composed of four species and is widely distributed in Southeast and East Asia. However, its phylogeography and demographic histories are currently poorly understood. Herein, we assembled autosomal, mitogenome, and Y-chromosome data for 106 individuals, and combined them with 174 mtDNA dloop haplotypes of this species group, with particular focus on the demographic histories and dispersal routes of Macaca fuscata, M. cyclopis, and M. mulatta. The results showed: (1) three monophyletic clades for M. fuscata, M. cyclopis, and M. mulatta based on the multiple genomics analyses; (2) the disparate demographic trajectories of the three species after their split ∼1.0 Ma revealed that M. cyclopis and M. fuscata were derived from an ancestral M. mulatta population; (3) the speciation time of M. cyclopis was later than that of M. fuscata, and their divergence time occurred at the beginning of "Ryukyu Coral Sea Stage" (1.0-0.2 Ma) when the East China Sea land bridge was completely submerged by the sea level rose; and (4) the three parallel rivers (Nujiang, Lancangjiang, and Jinshajiang) of Southwestern China divided M. mulatta into Indian and Chinese genetic populations ∼200 kya. These results shed light on understanding not only the evolutionary history of the fascicularis species group but also the formation mechanism of faunal diversity in East Asia during the Pleistocene.
Collapse
Affiliation(s)
- Yanyan Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Jundong Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Haijun Jiang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Mengya Han
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuwei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Jiqi Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Anzà S, Schneider D, Daniel R, Heistermann M, Sangmaneedet S, Ostner J, Schülke O. The long-term gut bacterial signature of a wild primate is associated with a timing effect of pre- and postnatal maternal glucocorticoid levels. MICROBIOME 2023; 11:165. [PMID: 37501202 PMCID: PMC10373267 DOI: 10.1186/s40168-023-01596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/11/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND During development, elevated levels of maternal glucocorticoids (GCs) can have detrimental effects on offspring morphology, cognition, and behavior as well as physiology and metabolism. Depending on the timing of exposure, such effects may vary in strength or even reverse in direction, may alleviate with age, or may concern more stable and long-term programming of phenotypic traits. Maternal effects on gut bacterial diversity, composition, and function, and the persistence of such effects into adulthood of long-lived model species in the natural habitats remain underexplored. RESULTS In a cross-sectional sample of infant, juvenile, and adult Assamese macaques, the timing of exposure to elevated maternal GCs during ontogeny was associated with the gut bacterial community of the offspring. Specifically, naturally varying maternal GC levels during early but not late gestation or lactation were associated with reduced bacterial richness. The overall effect of maternal GCs during early gestation on the gut bacterial composition and function exacerbated with offspring age and was 10 times stronger than the effect associated with exposure during late prenatal or postnatal periods. Instead, variation in maternal GCs during the late prenatal or postnatal period had less pronounced or less stable statistical effects and therefore a weaker effect on the entire bacterial community composition, particularly in adult individuals. Finally, higher early prenatal GCs were associated with an increase in the relative abundance of several potential pro-inflammatory bacteria and a decrease in the abundance of Bifidobacterium and other anti-inflammatory taxa, an effect that exacerbated with age. CONCLUSIONS In primates, the gut microbiota can be shaped by developmental effects with strong timing effects on plasticity and potentially detrimental consequences for adult health. Together with results on other macaque species, this study suggests potential detrimental developmental effects similar to rapid inflammaging, suggesting that prenatal exposure to high maternal GC concentrations is a common cause underlying both phenomena. Our findings await confirmation by metagenomic functional and causal analyses and by longitudinal studies of long-lived, ecologically flexible primates in their natural habitat, including developmental effects that originate before birth. Video Abstract.
Collapse
Affiliation(s)
- Simone Anzà
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany.
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Somboon Sangmaneedet
- Department of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Julia Ostner
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Oliver Schülke
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| |
Collapse
|
4
|
Li B, Zhang H, Huang K, He G, Guo S, Hou R, Zhang P, Wang H, Pan H, Fu H, Wu X, Jiang K, Pan R. Regional fauna-flora biodiversity and conservation strategy in China. iScience 2022; 25:104897. [PMID: 36039288 PMCID: PMC9418850 DOI: 10.1016/j.isci.2022.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/09/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Evolutionary and historical development and current profiles are essential to generating a tangible conservation strategy. It is also critical to distinguish the regions with vigorous potential growth from those meeting evolutionary development bottlenecks and those whose development has been severely devastated. We used two sizeable national data repositories of terrestrial fauna and flora of China to approach the issues. The results indicate that the Southwest and Coastal regions have the most significant terrestrial faunal-floral biodiversity (TFFB). Thus, they should be prioritized in conservation for great potential promotions. Although there has been remarkable evolutionary development, the Central region has been severely devastated. A solution is to uphold a balanced association between social-economic development and TFFB sustainability. As for the Northeast and the western Northwest, there is no need to invest heavily in conservation measures. This study sheds light on exploring more practical conservation strategies regionally, nationally, and globally to achieve pragmatic goals. Terrestrial faunal-floral biodiversity (TFFB) in China Regional variation assessment of TFFB in China China’s regional disparity in human impact and evolutionary development Regionalized conservation strategies in China
Collapse
|
5
|
Huang K, Zhang H, Wang C, Hou R, Zhang P, He G, Guo S, Tang S, Li B, Oxnard C, Pan R. Use of historical and contemporary distribution of mammals in China to inform conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1787-1796. [PMID: 34219272 DOI: 10.1111/cobi.13795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
A systematic understanding of dynamic animal extinction trajectories for different regions in a nation like China is critically important to developing practical conservation strategies. We explored historical and contemporary changes in terrestrial mammalian diversity to determine how diversity in each of the 5 regions in China has changed over time and to examine the conservation potential of these regions. We used records from databases on Pleistocene mammalian fossils and historical distribution records (1175-2020) for Primates (as a case study) to reconstruct evolutionary and historical distribution trajectories of the 11 orders of terrestrial mammals and to predict their prospective survival based on the national conservation strategy applied. The results indicated that since the Pleistocene, 4-5 mammalian orders have been lost in the northeast, 3 in central China, 2 along the coast, and 1 in the northwest. In the southwest, all 11 orders were maintained. Contemporarily, the coast and southwest had the highest and second-highest species densities. The southwest region and southeastern sections of the northwest region were the most historically and contemporarily diverse areas, which suggests that they should be the first priority for protected area (PA) designation. The central and coastal areas should be secondarily prioritized. In these 2 regions, conservation should focus on human coexistence with nature. Less attention should be paid to the PA in the northeast and western northwest because in these areas ecosystems are depauperate and the climate is harsh. Conservation in these areas should focus principally on avoiding further human encroachment on natural areas. Article impact statement: Historical and contemporary patterns of extinction can be a basis for mammalian conservation strategies.
Collapse
Affiliation(s)
- Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - He Zhang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | | | - Rong Hou
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Pei Zhang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Gang He
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Songtao Guo
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Shiyi Tang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- International Centre of Biodiversity and Primate Conservation Centre, Dali University, Dali, China
| | - Charles Oxnard
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ruliang Pan
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
- International Centre of Biodiversity and Primate Conservation Centre, Dali University, Dali, China
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Khanal L, Chalise MK, Fan PF, Kyes RC, Jiang XL. Multilocus phylogeny suggests a distinct species status for the Nepal population of Assam macaques ( Macaca assamensis): implications for evolution and conservation. Zool Res 2021; 42:3-13. [PMID: 33410309 PMCID: PMC7840459 DOI: 10.24272/j.issn.2095-8137.2020.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
Phylogenetic relationships within the sinica-group of macaques based on morphological, behavioral, and molecular characteristics have remained controversial. The Nepal population of Assam macaques ( Macaca assamensis) (NPAM), the westernmost population of the species, is morphologically distinct but has never been used in phylogenetic analyses. Here, the phylogenetic relationship of NPAM with other congeners was tested using multiple mitochondrial and Y-chromosomal loci. The divergence times and evolutionary genetic distances among macaques were also estimated. Results revealed two major mitochondrial DNA clades of macaques under the sinica-group: the first clade included M. thibetana, M. sinica, and eastern subspecies of Assam macaque ( M. assamensis assamensis); the second clade included M. radiata together with species from the eastern and central Himalaya, namely, M. leucogenys, M. munzala, and NPAM. Among the second-clade species, NPAM was the first to diverge from the other members of the clade around 1.9 million years ago. Our results revealed that NPAM is phylogenetically distinct from the eastern Assam macaques and closer to other species and hence may represent a separate species. Because of its phylogenetic distinctiveness, isolated distribution, and small population size, the Nepal population of sinica-group macaques warrants detailed taxonomic revision and high conservation priority.
Collapse
Affiliation(s)
- Laxman Khanal
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu 44613, Nepal
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China. E-mail:
| | - Mukesh Kumar Chalise
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu 44613, Nepal
- Nepal Biodiversity Research Society (NEBORS), Lalitpur 23513, Nepal
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Randall C Kyes
- Department of Psychology, Global Health, and Anthropology, Center for Global Field Study, and Washington National Primate Research Center, University of Washington, Seattle 98195, USA
| | - Xue-Long Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China. E-mail:
| |
Collapse
|
7
|
Li B, He G, Guo S, Hou R, Huang K, Zhang P, Zhang H, Pan R, Chapman CA. Macaques in China: Evolutionary dispersion and subsequent development. Am J Primatol 2020; 82:e23142. [PMID: 32452078 PMCID: PMC7378941 DOI: 10.1002/ajp.23142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 11/29/2022]
Abstract
Depicting a taxonomic group's evolutionary trajectory as a function of changes in the geographical landscape and its historical distribution is critical for constructing informed conservation strategies. Based on fossil sites from the Pliocene to the Holocene, and historical records since 1175 AD, we established macaques’ dispersal pathways into and through China. These routes include internal pathways starting from the southeast corner of the Qinghai‐Tibet Plateau and Mts. Hengduan in western China, and the routes through the estuaries of the three major rivers (Yangtze, Yellow, and Pearl). Our results indicate that macaques used the three rivers and avoided the higher elevation of the plateaus to promote their radiation. They occupied the whole mainland and islands in the Pleistocene and experienced shrunken distribution in the Holocene due to climate changes and human‐induced activities. A prominent China‐wide reduction occurred between 1817 and 1917; and a remarkable retraction from central China happened between 1918 and 2018 following further eco‐social development and human expansion in central China, particularly since the second half of the last century. Starting in 1175 there was a restriction of range to higher altitudes, so that macaques have contracted their range to the west, and the Qinghai‐Tibet Plateau and Mts. Hengduan have become an important sanctuary. We predict that if the current climate and human‐induced changes are not reversed by decisive conservation actions, macaques in east and central China will likely be extinct in the near future. Major waterways used by the primates to disperse and radiate in China Primate evolution and dispersion in East Asia from the Pliocene to the Early Holocene Historically shrunk macaque distribution in China
Collapse
Affiliation(s)
- Baoguo Li
- Shaanxi Key Laboratory for Animal ConservationCollege of Life Sciences, Northwest UniversityXi'anChina
- International Centre of Biodiversity and Primate Conservation CentreDali UniversityDaliChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| | - Gang He
- Shaanxi Key Laboratory for Animal ConservationCollege of Life Sciences, Northwest UniversityXi'anChina
| | - Songtao Guo
- Shaanxi Key Laboratory for Animal ConservationCollege of Life Sciences, Northwest UniversityXi'anChina
| | - Rong Hou
- Shaanxi Key Laboratory for Animal ConservationCollege of Life Sciences, Northwest UniversityXi'anChina
- International Centre of Biodiversity and Primate Conservation CentreDali UniversityDaliChina
- Department of AnthropologyMcGill UniversityMontrealQuebecCanada
| | - Kang Huang
- Shaanxi Key Laboratory for Animal ConservationCollege of Life Sciences, Northwest UniversityXi'anChina
| | - Pei Zhang
- Shaanxi Key Laboratory for Animal ConservationCollege of Life Sciences, Northwest UniversityXi'anChina
| | - He Zhang
- Shaanxi Key Laboratory for Animal ConservationCollege of Life Sciences, Northwest UniversityXi'anChina
| | - Ruliang Pan
- Shaanxi Key Laboratory for Animal ConservationCollege of Life Sciences, Northwest UniversityXi'anChina
- International Centre of Biodiversity and Primate Conservation CentreDali UniversityDaliChina
- School of Human Sciences, The University of Western AustraliaPerthWestern AustraliaAustralia
| | - Colin A. Chapman
- Shaanxi Key Laboratory for Animal ConservationCollege of Life Sciences, Northwest UniversityXi'anChina
- International Centre of Biodiversity and Primate Conservation CentreDali UniversityDaliChina
- Department of AnthropologyMcGill UniversityMontrealQuebecCanada
- Department of AnthropologyCenter for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonWashington DC
- School of Life Sciences, University of KwaZulu‐NatalScottsvillePietermaritzburgSouth Africa
| |
Collapse
|