1
|
Decaup PH, Couture C, Garot E. Is the distribution of cortical bone in the mandibular corpus and symphysis linked to loading environment in modern humans? A systematic review. Arch Oral Biol 2023; 152:105718. [PMID: 37182318 DOI: 10.1016/j.archoralbio.2023.105718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE The human mandible is a unique bone with specific external and internal morphological characteristics, influenced by a complex and challenging loading environment. Mandibular cortical thickness distribution in cross-sections is reported to be related to facial divergence patterns, cultural and dietary habits and more generally, specific loading environment. This review hypothesises that a process of environmental mechanical sensitivity is involved in the distribution of cortical bone in the mandibular corpus and symphysis in modern humans, and that loading regimes can influence this distribution pattern. Based on a review of the recent literature, this study aims to answer the following question: "Is the distribution of cortical bone in the mandibular corpus and symphysis linked to the loading environment in modern humans?" DESIGN A systematic review was undertaken using the PubMed/Medline, Scopus and Cochrane Library databases for publications from 1984 to 2022 investigating the relationship between cortical bone distribution in the mandibular corpus and the loading environment. A subgroup meta-analysis was performed to determine the overall effect of facial divergence on cortical thickness. RESULTS From a total of 2791 studies, 20 fulfilled the inclusion criteria. The meta-analyses were performed in eight studies using a randomised model, finding a significant overall effect of facial divergence on cortical thickness in posterior areas of the mandible (p < 0.01). CONCLUSIONS Within the limitations of this review, specific loading regimes and their consequent variables (diet, culture, facial divergence) were linked to cortical thickness distribution. Sex was found to be unrelated to cortical thickness pattern.
Collapse
Affiliation(s)
- Pierre-Hadrien Decaup
- Université de Bordeaux, PACEA, UMR 5199, Pessac, France; Université de Bordeaux, UFR des Sciences Odontologiques, Bordeaux, France.
| | | | - Elsa Garot
- Université de Bordeaux, PACEA, UMR 5199, Pessac, France; Université de Bordeaux, UFR des Sciences Odontologiques, Bordeaux, France
| |
Collapse
|
2
|
Haravu PN, Abraha HM, Shang M, Iriarte-Diaz J, Taylor AB, Reid RR, Ross CF, Panagiotopoulou O. Macaca mulatta is a good model for human mandibular fixation research. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220438. [PMID: 36405636 PMCID: PMC9667141 DOI: 10.1098/rsos.220438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Biomechanical and clinical studies have yet to converge on the optimal fixation technique for angle fractures, one of the most common and controversial fractures in terms of fixation approach. Prior pre-clinical studies have used a variety of animal models and shown abnormal strain environments exacerbated by less rigid (single-plate) Champy fixation and chewing on the side opposite the fracture (contralateral chewing). However, morphological differences between species warrant further investigation to ensure that these findings are translational. Here we present the first study to use realistically loaded finite-element models to compare the biomechanical behaviour of human and macaque mandibles pre- and post-fracture and fixation. Our results reveal only small differences in deformation and strain regimes between human and macaque mandibles. In the human model, more rigid biplanar fixation better approximated physiologically healthy global bone strains and moments around the mandible, and also resulted in less interfragmentary strain than less rigid Champy fixation. Contralateral chewing exacerbated deviations in strain, moments and interfragmentary strain, especially under Champy fixation. Our pre- and post-fracture fixation findings are congruent with those from macaques, confirming that rhesus macaques are excellent animal models for biomedical research into mandibular fixation. Furthermore, these findings strengthen the case for rigid biplanar fixation over less rigid one-plate fixation in the treatment of isolated mandibular angle fractures.
Collapse
Affiliation(s)
- Pranav N. Haravu
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Centre, Chicago, IL, USA
| | - Hyab Mehari Abraha
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Michelle Shang
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Centre, Chicago, IL, USA
| | - Jose Iriarte-Diaz
- Department of Biology, The University of the South, Sewanee, TN, USA
| | | | - Russell R. Reid
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Centre, Chicago, IL, USA
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Olga Panagiotopoulou
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| |
Collapse
|
3
|
Rothweiler RM, Zankovic S, Brandenburg LS, Fuessinger MA, Gross C, Voss PJ, Metzger MC. Feasibility of Implant Strain Measurement for Assessing Mandible Bone Regeneration. MICROMACHINES 2022; 13:1602. [PMID: 36295956 PMCID: PMC9610677 DOI: 10.3390/mi13101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nonunion is one of the most dreaded complications after operative treatment of mandible fractures or after mandible reconstruction using vascularized and non-vascularized bone grafts. Often diagnosis is made at advanced stage of disease when pain or complications occur. Devices that monitor fracture healing and bone regeneration continuously are therefore urgently needed in the craniomaxillofacial area. One promising approach is the strain measurement of plates. An advanced prototype of an implantable strain measurement device was tested after fixation to a locking mandible reconstruction plate in multiple compression experiments to investigate the potential functionality of strain measurement in the mandibular region. Compression experiments show that strain measurement devices work well under experimental conditions in the mandibular angle and detect plate deformation in a reliable way. For monitoring in the mandibular body, the device used in its current configuration was not suitable. Implant strain measurement of reconstruction plates is a promising methodical approach for permanent monitoring of bone regeneration and fracture healing in the mandible. The method helps to avoid or detect complications at an early point in time after operative treatment.
Collapse
Affiliation(s)
- René Marcel Rothweiler
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sergej Zankovic
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany
| | - Leonard Simon Brandenburg
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marc-Anton Fuessinger
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Christian Gross
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Pit Jacob Voss
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marc-Christian Metzger
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
4
|
Hunter-Schreger Band configuration in human molars reveals more decussation in the lateral enamel of 'functional' cusps than 'guiding' cusps. Arch Oral Biol 2022; 142:105524. [PMID: 36029738 DOI: 10.1016/j.archoralbio.2022.105524] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Enamel prism decussation, which manifests as Hunter-Schreger Bands (HSB), is considered a mechanism to mitigate crack propagation. During the chewing cycle, the 'functional' cusps that are involved in Phase II crushing and grinding experience more complex patterns of stress than do those that 'guide' the molars into occlusion (Phase I). This study examines HSB configuration in the lateral enamel of human molars to identify potential differences between these cusps as predicted from their functional distinctions. DESIGN Measurements were recorded from scanning electron micrographs of sections through the mesial cusps of unworn permanent molars. For each section, HSB packing density and the relative thickness of decussated enamel were quantified in the cuspal and middle segments of lateral enamel over the guiding and functional cusps. RESULTS No clear trend from first to third molars in HSB configuration was found in either jaw. In maxillary molars, the functional cusp displays higher HSB packing density in the cuspal and middle segments, and relatively thicker decussated enamel in the cuspal segment than does the guiding cusp. In mandibular molars, the functional cusp displays higher HSB packing density in the middle segment than does the guiding cusp, but no difference in relative thickness was found between them. Enamel of mandibular molars shows weaker decussation than maxillary molars. CONCLUSIONS The results suggest that guiding cusps are intrinsically more susceptible to crack propagation than functional cusps in human permanent molars. Structural factors such as enamel decussation should be considered when interpreting enamel chipping patterns in dietary contexts.
Collapse
|
5
|
Smith AL, Robinson C, Taylor AB, Panagiotopoulou O, Davis J, Ward CV, Kimbel WH, Alemseged Z, Ross CF. Comparative biomechanics of the Pan and Macaca mandibles during mastication: finite element modelling of loading, deformation and strain regimes. Interface Focus 2021; 11:20210031. [PMID: 34938438 PMCID: PMC8361577 DOI: 10.1098/rsfs.2021.0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 10/17/2023] Open
Abstract
The mechanical behaviour of the mandibles of Pan and Macaca during mastication was compared using finite element modelling. Muscle forces were calculated using species-specific measures of physiological cross-sectional area and scaled using electromyographic estimates of muscle recruitment in Macaca. Loading regimes were compared using moments acting on the mandible and strain regimes were qualitatively compared using maps of principal, shear and axial strains. The enlarged and more vertically oriented temporalis and superficial masseter muscles of Pan result in larger sagittal and transverse bending moments on both working and balancing sides, and larger anteroposterior twisting moments on the working side. The mandible of Pan experiences higher principal strain magnitudes in the ramus and mandibular prominence, higher transverse shear strains in the top of the symphyseal region and working-side corpus, and a predominance of sagittal bending-related strains in the balancing-side mandible. This study lays the foundation for a broader comparative study of Hominidae mandibular mechanics in extant and fossil hominids using finite element modelling. Pan's larger and more vertical masseter and temporalis may make it a more suitable model for hominid mandibular biomechanics than Macaca.
Collapse
Affiliation(s)
- Amanda L. Smith
- Department of Anatomy, Pacific Northwest University of Health Sciences, 200 University Parkway, Yakima, WA 98901, USA
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Chris Robinson
- Department of Biological Sciences, Bronx Community College, Bronx, NY 10453, USA
| | | | - Olga Panagiotopoulou
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Julian Davis
- Department of Engineering, University of Southern Indiana, 8600 University Boulevard, Evansville, IN 47712, USA
| | - Carol V. Ward
- Department of Pathology and Anatomical Sciences, One Hospital Drive, University of Missouri, Columbia, MO 65212, USA
| | - William H. Kimbel
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287-4101, USA
| | - Zeresenay Alemseged
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Brassard C, Merlin M, Monchâtre-Leroy E, Guintard C, Barrat J, Garès H, Larralle A, Triquet R, Houssin C, Callou C, Cornette R, Herrel A. Masticatory system integration in a commensal canid: interrelationships between bones, muscles and bite force in the red fox. J Exp Biol 2021; 224:jeb.224394. [DOI: 10.1242/jeb.224394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
ABSTRACT
The jaw system in canids is essential for defence and prey acquisition. However, how it varies in wild species in comparison with domestic species remains poorly understood, yet is of interest in terms of understanding the impact of artificial selection. Here, we explored the variability and interrelationships between the upper and lower jaws, muscle architecture and bite force in the red fox (Vulpes vulpes). We performed dissections and used 3D geometric morphometric approaches to quantify jaw shape in 68 foxes. We used a static lever model and bite force estimates were compared with in vivo measurements of 10 silver foxes. Our results show strong relationships exist between cranial and mandible shape, and between cranial or mandible shape on the one hand and muscles or estimated bite force on the other hand, confirming the strong integration of the bony and muscular components of the jaw system. These strong relationships are strongly driven by size. The functional links between shape and estimated bite force are stronger for the mandible, which probably reflects its greater specialisation towards biting. We then compared our results with data previously obtained for dogs (Canis lupus familiaris) to investigate the effect of domestication. Foxes and dogs differ in skull shape and muscle physiological cross-sectional area (PCSA). They show a similar amount of morphological variation in muscle PCSA, but foxes show lower variation in cranial and mandible shape. Interestingly, the patterns of covariation are not stronger in foxes than in dogs, suggesting that domestication did not lead to a disruption of the functional links of the jaw system.
Collapse
Affiliation(s)
- Colline Brassard
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
- Archéozoologie, archéobotanique: sociétés, pratiques et environnements (AASPE), Muséum national d'Histoire naturelle, CNRS, CP55, 57 rue Cuvier, 75005 Paris, France
| | - Marilaine Merlin
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| | - Elodie Monchâtre-Leroy
- ANSES, Laboratoire de la rage et de la faune sauvage, Station expérimentale d'Atton, CS 40009, 54220 Malzéville, France
| | - Claude Guintard
- Laboratoire d'Anatomie comparée, Ecole Nationale Vétérinaire, de l'Agroalimentaire et de l'Alimentation, Nantes Atlantique – ONIRIS, Nantes Cedex 03, France
- GEROM, UPRES EA 4658, LABCOM ANR NEXTBONE, Faculté de santé de l'Université d'Angers, 49933 Angers Cedex, France
| | - Jacques Barrat
- ANSES, Laboratoire de la rage et de la faune sauvage, Station expérimentale d'Atton, CS 40009, 54220 Malzéville, France
| | - Hélène Garès
- Direction des Services Vétérinaires – D.D.C.S.P.P. de la Dordogne, 24000 Périgueux, France
| | | | - Raymond Triquet
- Université de Lille III, Domaine Universitaire du Pont de Bois BP 60149, Villeneuve d'ascq Cedex 59653, France
| | - Céline Houssin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum national d'Histoire naturelle, Sorbonne Université, Ecole Pratique des hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Cécile Callou
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum national d'Histoire naturelle, Sorbonne Université, Ecole Pratique des hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| |
Collapse
|
7
|
Brassard C, Merlin M, Guintard C, Monchâtre-Leroy E, Barrat J, Callou C, Cornette R, Herrel A. Interrelations Between the Cranium, the Mandible and Muscle Architecture in Modern Domestic Dogs. Evol Biol 2020. [DOI: 10.1007/s11692-020-09515-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Panagiotopoulou O, Iriarte-Diaz J, Mehari Abraha H, Taylor AB, Wilshin S, Dechow PC, Ross CF. Biomechanics of the mandible of Macaca mulatta during the power stroke of mastication: Loading, deformation, and strain regimes and the impact of food type. J Hum Evol 2020; 147:102865. [PMID: 32905895 PMCID: PMC7541691 DOI: 10.1016/j.jhevol.2020.102865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022]
Abstract
Mandible morphology has yet to yield definitive information on primate diet, probably because of poor understanding of mandibular loading and strain regimes, and overreliance on simple beam models of mandibular mechanics. We used a finite element model of a macaque mandible to test hypotheses about mandibular loading and strain regimes and relate variation in muscle activity during chewing on different foods to variation in strain regimes. The balancing-side corpus is loaded primarily by sagittal shear forces and sagittal bending moments. On the working side, sagittal bending moments, anteroposterior twisting moments, and lateral transverse bending moments all reach similar maxima below the bite point; sagittal shear is the dominant loading regime behind the bite point; and the corpus is twisted such that the mandibular base is inverted. In the symphyseal region, the predominant loading regimes are lateral transverse bending and negative twisting about a mediolateral axis. Compared with grape and dried fruit chewing, nut chewing is associated with larger sagittal and transverse bending moments acting on balancing- and working-side mandibles, larger sagittal shear on the working side, and larger twisting moments about vertical and transverse axes in the symphyseal region. Nut chewing is also associated with higher minimum principal strain magnitudes in the balancing-side posterior ramus; higher sagittal shear strain magnitudes in the working-side buccal alveolar process and the balancing-side oblique line, recessus mandibulae, and endocondylar ridge; and higher transverse shear strains in the symphyseal region, the balancing-side medial prominence, and the balancing-side endocondylar ridge. The largest food-related differences in maximum principal and transverse shear strain magnitudes are in the transverse tori and in the balancing-side medial prominence, extramolar sulcus, oblique line, and endocondylar ridge. Food effects on the strain regime are most salient in areas not traditionally investigated, suggesting that studies seeking dietary effects on mandible morphology might be looking in the wrong places.
Collapse
Affiliation(s)
- Olga Panagiotopoulou
- Department of Anatomy & Developmental Biology, Monash Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia.
| | - Jose Iriarte-Diaz
- Department of Biology, University of the South, Sewanee, TN, 37383, USA
| | - Hyab Mehari Abraha
- Department of Anatomy & Developmental Biology, Monash Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| | | | - Simon Wilshin
- Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL97TA, UK
| | - Paul C Dechow
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
9
|
Bite Force Simulator: A Novel Technique to Simulate Craniofacial Strain In Vitro. J Craniofac Surg 2020; 31:838-842. [DOI: 10.1097/scs.0000000000006091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
|
11
|
Dental macrowear and cortical bone distribution of the Neanderthal mandible from Regourdou (Dordogne, Southwestern France). J Hum Evol 2019; 132:174-188. [PMID: 31203846 DOI: 10.1016/j.jhevol.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 01/10/2023]
Abstract
Tooth wear is an important feature for reconstructing diet, food processing and cultural habits of past human populations. In particular, occlusal wear facets can be extremely useful for detecting information about diet and non-masticatory behaviors. The aim of this study is to reconstruct the diet and cultural behavior of the Neanderthal specimen Regourdou 1 (Dordogne, Southern France) from the analysis of the macrowear pattern, using the occlusal fingerprint analysis method. In addition, we have also examined whether there is any association between the observed dental macrowear and mandibular bone distribution and root dentine thickness. The posterior dentition of Regourdou 1 is characterized by an asymmetric wear pattern, with the right side significantly more worn than the left. In contrast, the left lower P3 shows a more advanced wear than the right premolar, with unusual semicircular enamel wear facets. The results from occlusal fingerprint analysis of this unique pattern suggest tooth-tool uses for daily task activities. Moreover, the left buccal aspect of the mandibular cortical bone is thicker than its right counterpart, and the left P3 has a thicker radicular dentine layer than its antimere. These results show a certain degree of asymmetry in cortical bone topography and dentine tissue that could be associated with the observed dental macrowear pattern. The molar macrowear pattern also suggests that Regourdou 1 had a mixed diet typical of those populations living in temperate deciduous woodlands and Mediterranean habitats, including animal and plant foods. Although this study is limited to one Neanderthal individual, future analyses based on a larger sample may further assist us to better understand the existing relationship between mandibular architecture, occlusal wear and the masticatory apparatus in humans.
Collapse
|
12
|
Coşkun İ, Kaya B. Relationship between alveolar bone thickness, tooth root morphology, and sagittal skeletal pattern : A cone beam computed tomography study. J Orofac Orthop 2019; 80:144-158. [PMID: 30980091 DOI: 10.1007/s00056-019-00175-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/11/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE The goal of this work was to examine the relationship between sagittal facial pattern and thickness of alveolar bone in conjunction with root morphology of teeth by using cone beam computed tomography (CBCT). METHODS The study was carried out on the CBCT scans from 3 group of patients (n = 20 in each group). The first group involved skeletal class 1, the second group involved skeletal class 2, and the third group involved skeletal class 3 patients. In all, 14 permanent teeth and interdental regions in the maxilla and mandible were evaluated. Root length and root width were measured on each tooth. Buccal cortical bone thickness, cancellous bone thickness, and lingual cortical bone thicknesses were measured in each interdental region. Analysis of variance, Kruskall-Wallis H and Mann-Whitney U tests were used for statistical comparisons. RESULTS No significant difference was found between the groups for root length, root width, buccal cortical bone and lingual cortical bone thickness. A significant difference was observed between the groups for cancellous bone thickness as it was thicker in skeletal class 2 group. Cortical bone was thicker in the mandible compared to maxilla on both buccal and lingual sides and it was thicker in the posterior region compared to the anterior region on the buccal side. CONCLUSIONS Differences in cancellous bone thickness between different sagittal facial patterns and differences in cortical bone thickness between different alveolar regions should be taken into consideration when planning orthodontic tooth movements and anchorage mechanics.
Collapse
Affiliation(s)
- İpek Coşkun
- Orthodontist, Private Practice, İstanbul, Turkey
| | - Burçak Kaya
- Department of Orthodontics, Faculty of Dentistry, Baskent University, Ankara, Turkey.
- Dis Hekimligi Fakultesi, Ortodonti Anabilim Dali, Baskent Universitesi, 1. Cad No: 107, 06490, Bahcelievler-Ankara, Turkey.
| |
Collapse
|
13
|
Watson PJ, Fitton LC, Meloro C, Fagan MJ, Gröning F. Mechanical adaptation of trabecular bone morphology in the mammalian mandible. Sci Rep 2018; 8:7277. [PMID: 29740057 PMCID: PMC5940912 DOI: 10.1038/s41598-018-25597-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/10/2018] [Indexed: 11/17/2022] Open
Abstract
Alveolar bone, together with the underlying trabecular bone, fulfils an important role in providing structural support against masticatory forces. Diseases such as osteoporosis or periodontitis cause alveolar bone resorption which weakens this structural support and is a major cause of tooth loss. However, the functional relationship between alveolar bone remodelling within the molar region and masticatory forces is not well understood. This study investigated this relationship by comparing mammalian species with different diets and functional loading (Felis catus, Cercocebus atys, Homo sapiens, Sus scrofa, Oryctolagus cuniculus, Ovis aries). We performed histomorphometric analyses of trabecular bone morphology (bone volume fraction, trabecular thickness and trabecular spacing) and quantified the variation of bone and tooth root volumes along the tooth row. A principal component analysis and non-parametric MANOVA showed statistically significant differences in trabecular bone morphology between species with contrasting functional loading, but these differences were not seen in sub-adult specimens. Our results support a strong, but complex link between masticatory function and trabecular bone morphology. Further understanding of a potential functional relationship could aid the diagnosis and treatment of mandibular diseases causing alveolar bone resorption, and guide the design and evaluation of dental implants.
Collapse
Affiliation(s)
- Peter J Watson
- Medical and Biological Engineering Research Group, School of Engineering and Computer Science, University of Hull, Hull, HU6 7RX, UK.
| | - Laura C Fitton
- Centre for Anatomical and Human Sciences, Department of Archaeology and Hull York Medical School, University of York, York, YO10 5DD, UK
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Michael J Fagan
- Medical and Biological Engineering Research Group, School of Engineering and Computer Science, University of Hull, Hull, HU6 7RX, UK
| | - Flora Gröning
- Arthritis and Musculoskeletal Medicine Research Programme, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
14
|
Franks EM, Holton NE, Scott JE, McAbee KR, Rink JT, Pax KC, Pasquinelly AC, Scollan JP, Eastman MM, Ravosa MJ. Betwixt and Between: Intracranial Perspective on Zygomatic Arch Plasticity and Function in Mammals. Anat Rec (Hoboken) 2017; 299:1646-1660. [PMID: 27870345 DOI: 10.1002/ar.23477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/04/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023]
Abstract
The zygomatic arch is morphologically complex, providing a key interface between the viscerocranium and neurocranium. It also serves as an attachment site for masticatory muscles, thereby linking it to the feeding apparatus. Though morphological variation related to differential loading is well known for many craniomandibular elements, the adaptive osteogenic response of the zygomatic arch remains to be investigated. Here, experimental data are presented that address the naturalistic influence of masticatory loading on the postweaning development of the zygoma and other cranial elements. Given the similarity of bone-strain levels among the zygoma and maxillomandibular elements, a rabbit and pig model were used to test the hypothesis that variation in cortical bone formation and biomineralization along the zygomatic arch and masticatory structures are linked to increased stresses. It was also hypothesized that neurocranial structures would be minimally affected by varying loads. Rabbits and pigs were raised for 48 weeks and 8 weeks, respectively. In both experimental models, CT analyses indicated that elevated masticatory loading did not induce differences in cortical bone thickness of the zygomatic arch, though biomineralization was positively affected. Hypotheses were supported regarding bone formation for maxillomandibular and neurocranial elements. Varying osteogenic responses in the arch suggests that skeletal adaptation, and corresponding variation in performance, may reside differentially at one level of bony architecture. Thus, it is possible that phenotypic diversity in the mammalian zygoma is due more singularly to natural selection (vs. plasticity). These findings underscore the complexity of the zygomatic arch and, more generally, determinants of skull form. Anat Rec, 299:1646-1660, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erin M Franks
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, Indiana
| | - Nathan E Holton
- Department of Orthodontics, The University of Iowa, Iowa City, Iowa.,Department of Anthropology, The University of Iowa, Iowa City, Iowa
| | - Jeremiah E Scott
- Department of Anthropology, Southern Illinois University, Carbondale, Illinois
| | - Kevin R McAbee
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, Indiana
| | - Jason T Rink
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, Indiana
| | - Kazune C Pax
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, Indiana
| | - Adam C Pasquinelly
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, Indiana
| | - Joseph P Scollan
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, Indiana
| | - Meghan M Eastman
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, Indiana
| | - Matthew J Ravosa
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, Indiana.,Department of Aerospace and Mechanical Engineering, The University of Notre Dame, Notre Dame, Indiana.,Department of Anthropology, The University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
15
|
Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. Intracranial and hierarchical perspective on dietary plasticity in mammals. ZOOLOGY 2017; 124:30-41. [PMID: 28867598 DOI: 10.1016/j.zool.2017.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 11/16/2022]
Abstract
The effect of dietary properties on craniofacial form has been the focus of numerous functional studies, with increasingly more work dedicated to the importance of phenotypic plasticity. As bone is a dynamic tissue, morphological variation related to differential loading is well established for many masticatory structures. However, the adaptive osteogenic response of several cranial sites across multiple levels of bony organization remains to be investigated. Here, rabbits were obtained at weaning and raised for 48 weeks until adulthood in order to address the naturalistic influence of altered loading on the long-term development of masticatory and non-masticatory elements. Longitudinal data from micro-computed tomography (μCT) scans were used to test the hypothesis that variation in cortical bone formation and biomineralization in masticatory structures is linked to increased stresses during oral processing of mechanically challenging foods. It was also hypothesized that similar parameters for neurocranial structures would be minimally affected by varying loads as this area is characterized by low strains during mastication and reduced hard-tissue mechanosensitivity. Hypotheses were supported regarding bone formation for maxillomandibular and neurocranial elements, though biomineralization trends of masticatory structures did not mirror macroscale findings. Varying osteogenic responses in masticatory elements suggest that physiological adaptation, and corresponding variation in skeletal performance, may reside differentially at one level of bony architecture, potentially affecting the accuracy of behavioral and in silico reconstructions. Together, these findings underscore the complexity of bone adaptation and highlight functional and developmental variation in determinants of skull form.
Collapse
Affiliation(s)
- Erin M Franks
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jeremiah E Scott
- Department of Anthropology, Southern Illinois University, 1000 Faner Drive, Carbondale, IL 62901, USA.
| | - Kevin R McAbee
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Joseph P Scollan
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Meghan M Eastman
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew J Ravosa
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Anthropology, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
16
|
Zanolli C, Dean MC, Assefa Y, Bayle P, Braga J, Condemi S, Endalamaw M, Engda Redae B, Macchiarelli R. Structural organization and tooth development in a Homo aff. erectus juvenile mandible from the Early Pleistocene site of Garba IV at Melka Kunture, Ethiopian highlands. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 162:533-549. [PMID: 27883188 DOI: 10.1002/ajpa.23135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/25/2016] [Accepted: 11/09/2016] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The immature partial mandible GAR IVE from the c. 1.7 Ma old Garba IV site at Melka Kunture (Upper Awash Basin, Ethiopia), the earliest human representative from a mountain-like environment, represents one of the oldest early Homo specimens bearing a mixed dentition. Following its first description (Condemi, ), we extended the analytical and comparative record of this specimen by providing unreported details about its inner morphology, tooth maturational pattern and age at death, crown size, and tooth tissue proportions. MATERIALS AND METHODS The new body of quantitative structural information and virtual imaging derives from a medical CT record performed in 2013. RESULTS Compared to the extant human condition and to some fossil representatives of comparable individual age, the GAR IVE mandible reveals absolutely and relatively thick cortical bone. Crown size of the permanent lateral incisor and the canine fit the estimates of H. erectus s.l., while the dm2 and the M1 more closely approach those of H. habilis-rudolfensis. Molar crown pulp volumes are lower than reported in other fossil specimens and in extant humans. The mineralization sequence of the permanent tooth elements is represented four times in our reference sample of extant immature individuals (N = 795). CONCLUSIONS The tooth developmental pattern displayed by the immature individual from Garba IV falls within the range of variation of extant human populations and is also comparable with that of other very young early fossil hominins. Taken together, the evidence presented here for mandibular morphology and dental development suggest GAR IVE is a robust 2.5- to 3.5-year old early Homo specimen.
Collapse
Affiliation(s)
- Clément Zanolli
- Laboratoire AMIS, UMR 5288 CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - M Christopher Dean
- Department of Cell and Developmental Biology, University College, London, United Kingdom
| | - Yared Assefa
- Authority for Research and Conservation of Cultural Heritage (ARCCH), National Museum of Ethiopia, Addis Ababa, Ethiopia
| | - Priscilla Bayle
- Laboratoire PACEA, UMR 5199 CNRS, Université de Bordeaux, Bordeaux, France
| | - José Braga
- Laboratoire AMIS, UMR 5288 CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Silvana Condemi
- Laboratoire ADES, UMR 7268 CNRS, Université d'Aix-Marseille, Marseille, France
| | - Metasebia Endalamaw
- Authority for Research and Conservation of Cultural Heritage (ARCCH), National Museum of Ethiopia, Addis Ababa, Ethiopia
| | - Blade Engda Redae
- Authority for Research and Conservation of Cultural Heritage (ARCCH), National Museum of Ethiopia, Addis Ababa, Ethiopia
| | - Roberto Macchiarelli
- Laboratoire HNHP, UMR 7194 CNRS, Muséum national d'Histoire naturelle, Paris, France.,Unité de Formation Géosciences Université de Poitiers, Poitiers, France
| |
Collapse
|
17
|
Le KN, Marsik M, Daegling DJ, Duque A, McGraw WS. Spatial variation in mandibular bone elastic modulus and its effect on structural bending stiffness: A test case using the Taï Forest monkeys. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 162:516-532. [DOI: 10.1002/ajpa.23134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Kim N. Le
- Department of Anthropology; University of Florida, Gainesville, FL 32611
| | - Matthew Marsik
- Land Use and Environmental Change Institute, University of Florida, Gainesville, FL 32611
| | - David J. Daegling
- Department of Anthropology; University of Florida, Gainesville, FL 32611
| | - Ana Duque
- Department of Anthropology; University of Florida, Gainesville, FL 32611
| | | |
Collapse
|
18
|
Benazzi S, Nguyen HN, Kullmer O, Kupczik K. Dynamic Modelling of Tooth Deformation Using Occlusal Kinematics and Finite Element Analysis. PLoS One 2016; 11:e0152663. [PMID: 27031836 PMCID: PMC4816422 DOI: 10.1371/journal.pone.0152663] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/17/2016] [Indexed: 11/18/2022] Open
Abstract
Background Dental biomechanics based on finite element (FE) analysis is attracting enormous interest in dentistry, biology, anthropology and palaeontology. Nonetheless, several shortcomings in FE modeling exist, mainly due to unrealistic loading conditions. In this contribution we used kinematics information recorded in a virtual environment derived from occlusal contact detection between high resolution models of an upper and lower human first molar pair (M1 and M1, respectively) to run a non-linear dynamic FE crash colliding test. Methodology MicroCT image data of a modern human skull were segmented to reconstruct digital models of the antagonistic right M1 and M1 and the dental supporting structures. We used the Occlusal Fingerprint Analyser software to reconstruct the individual occlusal pathway trajectory during the power stroke of the chewing cycle, which was applied in a FE simulation to guide the M1 3D-path for the crash colliding test. Results FE analysis results showed that the stress pattern changes considerably during the power stroke, demonstrating that knowledge about chewing kinematics in conjunction with a morphologically detailed FE model is crucial for understanding tooth form and function under physiological conditions. Conclusions/Significance Results from such advanced dynamic approaches will be applicable to evaluate and avoid mechanical failure in prosthodontics/endodontic treatments, and to test material behavior for modern tooth restoration in dentistry. This approach will also allow us to improve our knowledge in chewing-related biomechanics for functional diagnosis and therapy, and it will help paleoanthropologists to illuminate dental adaptive processes and morphological modifications in human evolution.
Collapse
Affiliation(s)
- Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Huynh Nhu Nguyen
- Department of Biomaterials, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
| | - Ottmar Kullmer
- Department of Palaeoanthropology and Messel Research, Senckenberg Research Institute, Frankfurt am Main, Germany
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
19
|
Abstract
Feeding is the set of behaviors whereby organisms acquire and process the energy required for survival and reproduction. Thus, feeding system morphology is presumably subject to selection to maintain or improve feeding performance. Relationships among feeding system morphology, feeding behavior, and diet not only explain the morphological diversity of extant primates, but can also be used to reconstruct feeding behavior and diet in fossil taxa. Dental morphology has long been known to reflect aspects of feeding behavior and diet but strong relationships of craniomandibular morphology to feeding behavior and diet have yet to be defined.
Collapse
|
20
|
Simons WF, De Smit M, Duyck J, Coucke W, Quirynen M. The proportion of cancellous bone as predictive factor for early marginal bone loss around implants in the posterior part of the mandible. Clin Oral Implants Res 2014; 26:1051-9. [DOI: 10.1111/clr.12398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Willem-Frederik Simons
- Department of Oral Health Sciences; KU Leuven; University Hospitals Leuven; Leuven Belgium
| | - Menke De Smit
- Department of Oral Health Sciences; KU Leuven; University Hospitals Leuven; Leuven Belgium
| | - Joke Duyck
- Department of Oral Health Sciences; KU Leuven; University Hospitals Leuven; Leuven Belgium
| | - Wim Coucke
- Department of Clinical Biology; Scientific Institute of Public Health; Brussels Belgium
| | - Marc Quirynen
- Department of Oral Health Sciences; KU Leuven; University Hospitals Leuven; Leuven Belgium
| |
Collapse
|
21
|
Daegling DJ, Granatosky MC, McGraw WS. Ontogeny of material stiffness heterogeneity in the macaque mandibular corpus. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 153:297-304. [PMID: 24282152 DOI: 10.1002/ajpa.22432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 11/10/2022]
Abstract
Evidence is accumulating that bone material stiffness increases during ontogeny, and the role of elastic modulus in conditioning attributes of strength and toughness is therefore a focus of ongoing investigation. Developmental changes in structural properties of the primate mandible have been documented, but comparatively little is known about changes in material heterogeneity and their impact on biomechanical behavior. We examine a cross-sectional sample of Macaca fascicularis (N = 14) to investigate a series of hypotheses that collectively evaluate whether the patterning of material stiffness (elastic modulus) heterogeneity in the mandible differs among juvenile, subadult and adult individuals. Because differences in age-related activity patterns are known to influence bone stiffness and strength, these data are potentially useful for understanding the relationship between feeding behavior on the one hand and material and structural properties of the mandible on the other. Elastic modulus is shown to be spatially dependent regardless of age, with this dependence being explicable primarily by differences in alveolar versus basal cortical bone. Elastic modulus does not differ consistently between buccal and lingual cortical plates, despite likely differences in the biomechanical milieu of these regions. Since we found only weak support for the hypothesis that the spatial patterning of heterogeneity becomes more predictable with age, accumulated load history may not account for regional differences in bone material properties in mature individuals with respect to the mandibular corpus.
Collapse
Affiliation(s)
- David J Daegling
- Department of Anthropology, 1112 Turlington Hall, University of Florida, Gainesville, FL, 32611
| | | | | |
Collapse
|
22
|
Horner KA, Behrents RG, Kim KB, Buschang PH. Cortical bone and ridge thickness of hyperdivergent and hypodivergent adults. Am J Orthod Dentofacial Orthop 2012; 142:170-8. [PMID: 22858325 DOI: 10.1016/j.ajodo.2012.03.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 03/01/2012] [Accepted: 03/01/2012] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The purpose of this study was to assess differences in dentoalvolar cortical bone thickness between hyperdivergent and hypodivergent young adults. METHODS Pretreatment cone-beam computed tomography images of 57 patients, including 30 hypodivergent subjects (22 women, 8 men) and 27 hyperdivergent subjects (20 women, 7 men), were analyzed. The data were imported into imaging software (version 10.5; Dolphin Imaging Systems, Chatsworth, Calif); standardized orientations were used to measure buccal and lingual cortical bone thicknesses at 16 interradicular sites of the maxilla and the mandible. Total alveolar ridge thickness and medullary space thickness were measured at the same sites. RESULTS T tests showed significant (P <0.05) group differences, with hypodivergent subjects having significantly thicker buccal cortices. The lingual cortex of the maxilla was also significantly thicker in the hypodivergent than in the hyperdivergent subjects. Alveolar ridge thickness was significantly greater at all sites of the hypodivergent mandible and at the anterior 2 sites of the hypodivergent maxilla. Medullary thickness was significantly greater only in the hypodivergent mandibles between the first molars and the second premolars, and between the first and second premolars. Buccal cortical bone was significantly thicker than lingual cortical bone in the mandible; lingual bone was significantly thicker in the maxilla. CONCLUSIONS Cortical bone tends to be thicker in hypodivergent than in hyperdivergent subjects. This explains the concomitant differences in alveolar ridge thickness. Medullary space thickness is largely unaffected by facial divergence.
Collapse
|
23
|
Gröning F, Fagan M, O'higgins P. Comparing the Distribution of Strains with the Distribution of Bone Tissue in a Human Mandible: A Finite Element Study. Anat Rec (Hoboken) 2012; 296:9-18. [DOI: 10.1002/ar.22597] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/06/2012] [Indexed: 11/12/2022]
|
24
|
Benazzi S, Kullmer O, Grosse IR, Weber GW. Brief communication: Comparing loading scenarios in lower first molar supporting bone structure using 3D finite element analysis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 147:128-34. [DOI: 10.1002/ajpa.21607] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/31/2011] [Indexed: 11/09/2022]
|
25
|
Hogg RT, Ravosa MJ, Ryan TM, Vinyard CJ. The functional morphology of the anterior masticatory apparatus in tree-gouging marmosets (cebidae, primates). J Morphol 2011; 272:833-49. [DOI: 10.1002/jmor.10951] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 12/15/2010] [Accepted: 02/08/2011] [Indexed: 11/08/2022]
|
26
|
Cray J, Cooper GM, Mooney MP, Siegel MI. Timing of ectocranial suture activity in Gorilla gorilla as related to cranial volume and dental eruption. J Anat 2011; 218:471-9. [PMID: 21385182 DOI: 10.1111/j.1469-7580.2011.01358.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Research has shown that Pan and Homo have similar ectocranial suture synostosis patterns and a similar suture ontogeny (relative timing of suture fusion during the species ontogeny). This ontogeny includes patency during and after neurocranial expansion with a delayed bony response associated with adaptation to biomechanical forces generated by mastication. Here we investigate these relationships for Gorilla by examining the association among ectocranial suture morphology, cranial volume (as a proxy for neurocranial expansion) and dental development (as a proxy for the length of time that it has been masticating hard foods and exerting such strains on the cranial vault) in a large sample of Gorilla gorilla skulls. Two-hundred and fifty-five Gorilla gorilla skulls were examined for ectocranial suture closure status, cranial volume and dental eruption. Regression models were calculated for cranial volumes by suture activity, and Kendall's tau (a non-parametric measure of association) was calculated for dental eruption status by suture activity. Results suggest that, as reported for Pan and Homo, neurocranial expansion precedes suture synostosis activity. Here, Gorilla was shown to have a strong relationship between dental development and suture activity (synostosis). These data are suggestive of suture fusion extending further into ontogeny than brain expansion, similar to Homo and Pan. This finding allows for the possibility that masticatory forces influence ectocranial suture morphology.
Collapse
Affiliation(s)
- James Cray
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
27
|
Spatial patterning of bone stiffness variation in the colobine alveolar process. Arch Oral Biol 2011; 56:220-30. [DOI: 10.1016/j.archoralbio.2010.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/24/2010] [Accepted: 10/05/2010] [Indexed: 11/19/2022]
|
28
|
Chattah NLT, Kupczik K, Shahar R, Hublin JJ, Weiner S. Structure-function relations of primate lower incisors: a study of the deformation of Macaca mulatta dentition using electronic speckle pattern interferometry (ESPI). J Anat 2011; 218:87-95. [PMID: 20408905 PMCID: PMC3039783 DOI: 10.1111/j.1469-7580.2010.01234.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2010] [Indexed: 11/30/2022] Open
Abstract
Teeth adopt a variety of different morphologies, each of which is presumably optimized for performing specific functions during feeding. It is generally agreed that the enamel cap is a crucial element in controlling the mechanical behavior of mammalian teeth under load. Incisors are particularly interesting in terms of structure-function relations, as their role in feeding is that of the 'first bite'. However, little is known how incisor cap morphology is related to tooth deformation. In the present paper we examine the mechanical behavior of mandibular central incisors in the cercopithecine primate Macaca mulatta under loads similar to those encountered during ingestion. We map three-dimensional displacements on the labial surface of the crown as it is compressed, using electronic speckle pattern interferometry (ESPI), an optical metrology method. In addition, micro-computed tomography is used to obtain data regarding the morphology of the enamel cap, which in the M. mulatta lower incisors exhibits missing or very little enamel on the lingual face. The results showed that although compressed along a longitudinal axis, deformation in the incisors mostly occurred in the lingual direction and orthogonal to the direction of the applied load. Both isolated, embedded teeth and teeth in the mandible showed considerable lingual deformation. Incisor deformation in the mandible was generally greater, reflecting the additional freedom of movement enabled by the supporting structures. We show that the association with adjacent teeth in the arch is significant for the behavior of the tooth under load. Finally, loading two teeth simultaneously in the mandible showed that they work as one functional unit. We suggest that these results demonstrate the importance of enamel cap morphology in directing deformation behavior; an ability stemming from the stiffness of the enamel cap overlying the more pliable dentin.
Collapse
|
29
|
O'Higgins P, Cobb SN, Fitton LC, Gröning F, Phillips R, Liu J, Fagan MJ. Combining geometric morphometrics and functional simulation: an emerging toolkit for virtual functional analyses. J Anat 2010; 218:3-15. [PMID: 20880075 DOI: 10.1111/j.1469-7580.2010.01301.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The development of virtual methods for anatomical reconstruction and functional simulation of skeletal structures offers great promise in evolutionary and ontogenetic investigations of form-function relationships. Key developments reviewed here include geometric morphometric methods for the analysis and visualization of variations in form (size and shape), finite element methods for the prediction of mechanical performance of skeletal structures under load and multibody dynamics methods for the simulation and prediction of musculoskeletal function. These techniques are all used in studies of form and function in biology, but only recently have they been combined in novel ways to facilitate biomechanical modelling that takes account of variations in form, can statistically compare performance, and relate performance to form and its covariates. Here we provide several examples that illustrate how these approaches can be combined and we highlight areas that require further investigation and development before we can claim a mature theory and toolkit for a statistical biomechanical framework that unites these methods.
Collapse
Affiliation(s)
- Paul O'Higgins
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of York, York, UK.
| | | | | | | | | | | | | |
Collapse
|
30
|
Römer P, Weingärtner J, Proff P, Roldán JC, Reicheneder C. Profiling type I collagen gene expression in growing mandibular structures. Ann Anat 2010; 192:96-100. [PMID: 20149607 DOI: 10.1016/j.aanat.2009.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 11/21/2009] [Accepted: 12/04/2009] [Indexed: 11/19/2022]
Abstract
We conducted a temporal gene expression analysis with type I collagen in the coronoid process, alveolar process and mandibular angle of the rat. We observed gene expression cross-sectionally across different important physiological time points in the rat postnatal life in order to observe in which developmental stage mandibular development mainly occur. This study indicates prominent type I collagen expression at day 10 postpartum in the mandibular ramus and at day 21 in the alveolar process. These findings correspond well with previously obtained data from proliferation studies in facial bone suggesting that craniofacial growth in the rat occurs mainly between days 10 and 21.
Collapse
Affiliation(s)
- P Römer
- Department of Orthodontics, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | | | | | | | | |
Collapse
|
31
|
Williams SH, Vinyard CJ, Wall CE, Hylander WL. Mandibular corpus bone strain in goats and alpacas: implications for understanding the biomechanics of mandibular form in selenodont artiodactyls. J Anat 2009; 214:65-78. [PMID: 19166474 DOI: 10.1111/j.1469-7580.2008.01008.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The goal of this study is to clarify the functional and biomechanical relationship between jaw morphology and in vivo masticatory loading in selenodont artiodactyls. We compare in vivo strains from the mandibular corpus of goats and alpacas to predicted strain patterns derived from biomechanical models for mandibular corpus loading during mastication. Peak shear strains in both species average 600-700 microepsilon on the working side and approximately 450 microepsilon on the balancing side. Maximum principal tension in goats and alpacas is directed at approximately 30 degrees dorsocaudally relative to the long axis of the corpus on the working side and approximately perpendicular to the long axis on the balancing side. Strain patterns in both species indicate primarily torsion of the working-side corpus about the long axis and parasagittal bending and/or lateral transverse bending of the balancing-side corpus. Interpretation of the strain patterns is consistent with comparative biomechanical analyses of jaw morphology suggesting that in goats, the balancing-side mandibular corpus is parasagittally bent whereas in alpacas it experiences lateral transverse bending. However, in light of higher working-side corpus strains, biomechanical explanations of mandibular form also need to consider that torsion influences relative corpus size and shape. Furthermore, the complex combination of loads that occur along the selenodont artiodactyl mandibular corpus during the power stroke has two implications. First, added clarification of these loading patterns requires in vivo approaches for elucidating biomechanical links between mandibular corpus morphology and masticatory loading. Second, morphometric approaches may be limited in their ability to accurately infer masticatory loading regimes of selenodont artiodactyl jaws.
Collapse
Affiliation(s)
- Susan H Williams
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA.
| | | | | | | |
Collapse
|
32
|
Fukase H, Suwa G. Growth-related changes in prehistoric Jomon and modern Japanese mandibles with emphasis on cortical bone distribution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; 136:441-54. [PMID: 18383159 DOI: 10.1002/ajpa.20828] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cortical bone distribution of the anthropoid mandibular symphysis has been addressed in relation to mechanical stress generated by mastication. To examine whether or not bone mass and distribution patterns of the human mandibular symphysis could be interpreted as an example of functional adaptation, we compared the skeletal growth series of two populations, prehistoric Jomon, considered to represent a "robust" mandibular morphology associated with a presumed heavier masticatory load, and modern Japanese. Results showed that the adult Jomon symphysis possessed significantly greater bone mass and thicker cortical bone compared to the modern Japanese condition. However, the second moments of area did not differ significantly between the two, indicating comparable rigidity against bending. Furthermore, the Jomon mandibles of the infant to juvenile stages exhibited most of the adult characteristics, in both bone mass/distribution of the symphysis and in mandibular corpus/ramus morphologies. The present study also demonstrated the presence of a growth pattern of symphyseal cortical thickness, common to both the Jomon and the modern Japanese series. In both populations, subsequent to deciduous molar occlusion, cortical bone tends to be thickest at the inferolingual symphysis, at the location where the highest tensile stresses presumably occur during mastication. These findings suggest that the "robust" characteristics of the Jomon mandible are initially manifested early in development, and that the effect of mechanical stimulus to bone mass formation in the human symphysis is largely confined to a regulatory role during growth modeling.
Collapse
Affiliation(s)
- Hitoshi Fukase
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
33
|
Huja SS, Beck FM. Bone remodeling in maxilla, mandible, and femur of young dogs. Anat Rec (Hoboken) 2008; 291:1-5. [PMID: 18085627 DOI: 10.1002/ar.20619] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone remodeling in the jaw is essential for metabolic needs, mechanical demands and for growth of the skeleton. Currently, there is no information on remodeling in the jaw of young dogs. Four approximately 5-month-old male dogs were given a pair of calcein bone labels. After killing, bone sections were obtained from the maxilla, mandible, and femur. The jaw specimens were obtained from regions associated with erupting permanent teeth. Undecalcified specimens were prepared for examination by histomorphometric methods to evaluate mineral apposition rate (microm/d), mineralizing surface/bone surface (%), and bone formation rate (BFR, %/yr) in the bone supporting erupting teeth and in the femurs. Only intracortical secondary osteonal remodeling units were measured. There were significant (P < 0.05) differences in the BFR for the three sites examined, with the highest BFR (72%/yr) being in the femur. The mandible had a BFR twofold greater than the maxilla (51%/yr vs. 25.5%/yr). The rate of turnover in the jaw and femur of young dogs is distinct from a similar comparison between the jaw and appendicular skeleton of adult ( approximately 1 yr old) dogs. Although BFR decreases with age in the femur, it remains elevated in the jaws.
Collapse
Affiliation(s)
- Sarandeep S Huja
- Section of Orthodontics, College of Dentistry, The Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
34
|
Meta IF, Fernandez SA, Gulati P, Huja SS. Adaptations in the mandible and appendicular skeleton of high and low bone density inbred mice. Calcif Tissue Int 2007; 81:107-13. [PMID: 17557123 DOI: 10.1007/s00223-007-9029-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/07/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
The appendicular skeletons of high [C3H/HeJ (C3H)] and low [C57BL/6J (B6)] density inbred mice have been shown to differ in morphology, mechanical properties, and cellular activity. The focus of the current study was to (1) characterize the mandibular bone formation rate (BFR/BS), bone mass, indentation modulus (IM), and hardness of C3H and B6 mice and (2) investigate the relationship of the mechanical properties in three skeletal sites: mandible, femur, and tibia. Specimens from 17-week-old female C3H and B6 (n = 15/group) mice were obtained. Mandibular bone mass was estimated from the lateral-view area (LVA) and transverse cross sections. BFR/BS was measured in the mandibular section distal to the third molar. In addition, bone blocks from the distal surface of the third molar and the femoral and tibial midshaft were obtained for mechanical testing. BFR/BS, cortical area, and LVA were greater (P < 0.001) in C3H mandibles. IM was approximately 2 GPa higher in the C3H mandible (P > 0.05), femur (P < 0.001), and tibia (P < 0.01). Mandibular IM was lower (P < 0.05) than the femoral and tibial IM within each inbred mouse. IM was not significant between C3H and B6 mandibles. However, the magnitude of the difference ( approximately 12%) in the mandible was similar to the difference in the appendicular skeleton. This mandibular bone phenotype is similar to that observed in the appendicular skeleton of these distinct inbred mice.
Collapse
Affiliation(s)
- Isaac F Meta
- Section of Oral Biology, College of Dentistry, The Ohio State University, 3188 Postel Hall, 305 W. 12th Avenue, Columbus, OH, 43210, USA
| | | | | | | |
Collapse
|
35
|
Huja SS, Fernandez SA, Hill KJ, Li Y. Remodeling dynamics in the alveolar process in skeletally mature dogs. ACTA ACUST UNITED AC 2007; 288:1243-9. [PMID: 17075846 PMCID: PMC2612758 DOI: 10.1002/ar.a.20396] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bone turnover rates can be altered by metabolic and mechanical demands. Due to the difference in the pattern of loading, we hypothesized that there are differences in bone remodeling rates between the maxillary and mandibular alveolar processes. Furthermore, in a canine model, the alveolar process of teeth that lack contact (e.g., second premolars) would have a different turnover rate than bone supporting teeth with functional contact (e.g., first molars). Six skeletally mature male dogs were given a pair of calcein labels. After sacrifice, specimens representing the anterior and posterior locations of both jaws were prepared for examination by histomorphometric methods to evaluate the bone volume/total volume (BV/TV; %), bone volume (mm2), mineral apposition rate (MAR; microm/day), and bone formation rate (BFR; %/year) in the alveolar process. There were no significant differences (P>0.05) in the BV/TV within the jaws. The bone volume within the alveolar process of the mandible was 2.8-fold greater than in the maxilla. The MAR was not significantly different between the jaws and anteroposterior locations. However, the BFR was significantly (P<0.0001) greater in the mandible than in the maxilla. The anterior location had higher (P=0.002) remodeling than the posterior location in the maxilla but not in the mandible. While there was a greater bone mass and increased remodeling in the mandible, no remodeling gradient in the coronal-apical direction was apparent in the alveolar process. Bone adaptation probably involves a complex interplay of bone turnover, mass, and architecture.
Collapse
Affiliation(s)
- Sarandeep S Huja
- Section of Orthodontics, College of Dentistry, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
36
|
Daegling DJ. Morphometric estimation of torsional stiffness and strength in primate mandibles. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2007; 132:261-6. [PMID: 17133432 DOI: 10.1002/ajpa.20508] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In comparative studies of masticatory function and mandibular biomechanics, the mediolateral dimension of the postcanine corpus (corpus breadth) is commonly utilized as a measure of torsional stiffness from which relative torsional strength is inferred. The use of this dimension entails certain assumptions about corpus shape and cortical bone distribution that are invalid. When corpus breadth is related to an appropriate, empirically supported measure of torsional strength, it is revealed that this dimension has limited utility for inference of biomechanical competence under torsion. The use of linear dimensions to infer structural adaptations to specific loading regimes is problematic given that bone tissue is not optimally deployed to minimize strain levels arising from isolated loads. For the inference of the masticatory biomechanical environment, the more reasonable approach is to consider overall size of the corpus (i.e., cross-sectional area) for inference of intra- and inter-specific differences in masticatory forces.
Collapse
Affiliation(s)
- David J Daegling
- Department of Anthropology, University of Florida, Gainesville, FL 32611-7305, USA.
| |
Collapse
|
37
|
FUKASE HITOSHI. Functional significance of bone distribution in the human mandibular symphysis. ANTHROPOL SCI 2007. [DOI: 10.1537/ase.060329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- HITOSHI FUKASE
- Department of Biological Science, Graduate School of Science, The University of Tokyo
| |
Collapse
|
38
|
Ichim I, Kieser JA, Swain MV. Functional significance of strain distribution in the human mandible under masticatory load: numerical predictions. Arch Oral Biol 2006; 52:465-73. [PMID: 17137552 DOI: 10.1016/j.archoralbio.2006.10.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 10/20/2006] [Accepted: 10/21/2006] [Indexed: 11/28/2022]
Abstract
A common feature of studies of mandibular morphology is the assumption that there is some functional relation between the form of the lower jaw and masticatory stress. It was noted that the local variation in cortical bone thickness in the mandibular corpus appears to be stereotypical among anthropoids. This occurs at sections under the molars, where the lingual cortical plate is thinner than buccal one. In this study we investigate and contrast the strain pattern along buccal and lingual surfaces of the mandibular corpus during mastication using a numerical model of a human mandible. We show that strain distribution differs in alveolar and mid-corpus segments of the mandible and that the latter develops an alternate pattern between the buccal and lingual aspects of the working and balancing sides of the jaw. We then relate the magnitude of these strains to Frost's mechanostat. Our results suggest that the cortical asymmetry of the human mandible is in fact not related to strain patterns generated during mastication.
Collapse
Affiliation(s)
- I Ichim
- Department of Oral Sciences, Otago University, Walsh Building, 310 Great King Street, Dunedin 9001, New Zealand.
| | | | | |
Collapse
|
39
|
Cross-sectional Bone Distribution in the Mandibles of Gouging and Non-gouging Platyrrhini. INT J PRIMATOL 2006. [DOI: 10.1007/s10764-006-9083-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Mahoney P. Microwear and morphology: Functional relationships between human dental microwear and the mandible. J Hum Evol 2006; 50:452-9. [PMID: 16406108 DOI: 10.1016/j.jhevol.2005.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 09/21/2005] [Accepted: 11/10/2005] [Indexed: 11/28/2022]
Abstract
Microscopic pits and scratches form on teeth during chewing, but the extent to which their formation is influenced by mandibular morphology is unknown. Digitized micrographs of the base of facet nine of the first, second, and third mandibular molar were used to record microwear features from an archaeological sample of modern humans recovered from Semna South in northern Sudan (n=38; 100 BC to AD 350). Microwear patterns of the molar row are correlated with mandibular corpus width and depth, and with mandibular length. Variations in shear and compression at the base of facet nine during chewing were inferred. It may be that some correlations between microwear and mandibular morphology are predictable, reflecting similar aspects of masticatory loading, though the full extent of the relationship remains to be resolved.
Collapse
Affiliation(s)
- Patrick Mahoney
- Institute of Human Origins, Arizona State University, P.O. Box 874101, Tempe, Arizona, AZ 85287, USA.
| |
Collapse
|
41
|
Abstract
It is often stated that the skull is optimally designed for resisting feeding forces, where optimality is defined as maximum strength with minimum material. Running counter to this hypothesis are bone strain gradients--variation in bone strain magnitudes across the skull--which in the primate skull have been hypothesized to suggest that different parts of the skull are optimized for different functions. In this paper strain gradients in the skulls of four genera of primates, Sus, and Alligator were documented and compared. Strain gradients were pervasive in all taxa sampled. Patterns of strain gradients showed inter-taxon differences, but strains in the mandible and zygomatic arch were always higher than those in the circumorbital and neurocranial regions. Strain magnitudes in Alligator were twice as high as those in mammals. Strain gradients were also positively allometric; i. e., larger primates show steeper gradients (larger differences) between the mandible and circumorbital region than smaller primates. Different strain magnitudes in different areas of the same animal are hypothesized to reflect optimization to different criteria. It is therefore hardly surprising that the skull, in which numerous functional systems are found, exhibits very steep gradients. Inter-specific differences in strain magnitudes at similar sites also suggest inter-specific differences in optimality criteria. The higher strain magnitudes in the Alligator skull suggest that the Alligator skull may be designed to experience extremely high strains less frequently whereas the primate skull may be designed to resist lower strains more frequently.
Collapse
Affiliation(s)
- Callum F Ross
- Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|