1
|
Chaimanee Y, Chavasseau O, Lazzari V, Soe AN, Sein C, Jaeger JJ. Early anthropoid primates: New data and new questions. Evol Anthropol 2024; 33:e22022. [PMID: 38270328 DOI: 10.1002/evan.22022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Although the evolutionary history of anthropoid primates (monkeys, apes, and humans) appears relatively well-documented, there is limited data available regarding their origins and early evolution. We review and discuss here the earliest records of anthropoid primates from Asia, Africa, and South America. New fossils provide strong support for the Asian origin of anthropoid primates. However, the earliest recorded anthropoids from Africa and South America are still subject to debate, and the early evolution and dispersal of platyrhines to South America remain unclear. Because of the rarity and incomplete nature of many stem anthropoid taxa, establishing the phylogenetic relationships among the earliest anthropoids remains challenging. Nonetheless, by examining evidence from anthropoids and other mammalian groups, we demonstrate that several dispersal events occurred between South Asia and Afro-Arabia during the middle Eocene to the early Oligocene. It is possible that a microplate situated in the middle of the Neotethys Ocean significantly reduced the distance of overseas dispersal.
Collapse
Affiliation(s)
- Yaowalak Chaimanee
- Laboratory PALEVOPRIM, UMR 7262 CNRS, University of Poitiers, Poitiers, France
| | - Olivier Chavasseau
- Laboratory PALEVOPRIM, UMR 7262 CNRS, University of Poitiers, Poitiers, France
| | - Vincent Lazzari
- Laboratory PALEVOPRIM, UMR 7262 CNRS, University of Poitiers, Poitiers, France
| | - Aung N Soe
- University of Distance Education, Mandalay, Myanmar
| | - Chit Sein
- University of Distance Education, Yangon, Myanmar
| | - Jean-Jacques Jaeger
- Laboratory PALEVOPRIM, UMR 7262 CNRS, University of Poitiers, Poitiers, France
| |
Collapse
|
2
|
Morse PE, Pampush JD, Kay RF. Dental topography of the Oligocene anthropoids Aegyptopithecus zeuxis and Apidium phiomense: Paleodietary insights from analysis of wear series. J Hum Evol 2023; 180:103387. [PMID: 37245335 DOI: 10.1016/j.jhevol.2023.103387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/30/2023]
Abstract
Fossil primate dietary inference is enhanced when ascertained through multiple, distinct proxies. Dental topography can be used to assess changes in occlusal morphology with macrowear, providing insight on tooth use and function across the lifespans of individuals. We measured convex Dirichlet normal energy-a dental topography metric reflecting occlusal sharpness of features such as cusps and crests-in macrowear series of the second mandibular molars of two African anthropoid taxa from ∼30 Ma (Aegyptopithecus zeuxis and Apidium phiomense). Wear was quantified via three proxies: occlusal dentine exposure, inverse relief index, and inverse occlusal relief. The same measurements were calculated on macrowear series of four extant platyrrhine taxa (Alouatta, Ateles, Plecturocebus, and Sapajus apella) to provide an analogical framework for dietary inference in the fossil taxa. We predicted that Ae. zeuxis and Ap. phiomense would show similar patterns in topographic change with wear to one another and to extant platyrrhine frugivores like Ateles and Plecturocebus. The fossil taxa have similar distributions of convex Dirichlet normal energy to one another, and high amounts of concave Dirichlet normal energy 'noise' in unworn molars-a pattern shared with extant hominids that may distort dietary interpretations. Inverse relief index was the most useful wear proxy for comparison among the taxa in this study which possess disparate enamel thicknesses. Contrary to expectations, Ae. zeuxis and Ap. phiomense both resemble S. apella in exhibiting an initial decline in convex Dirichlet normal energy followed by an increase at the latest stages of wear as measured by inverse relief index, lending support to previous suggestions that hard-object feeding played a role in their dietary ecology. Based on these results and previous analyses of molar shearing quotients, microwear, and enamel microstructure, we suggest that Ae. zeuxis had a pitheciine-like strategy of seed predation, whereas Ap. phiomense potentially consumed berry-like compound fruits with hard seeds.
Collapse
Affiliation(s)
- Paul E Morse
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.
| | - James D Pampush
- Department of Exercise Science, High Point University, High Point, NC 27260, USA; Department of Physician Assistant Studies, High Point University, High Point, NC 27260, USA
| | - Richard F Kay
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA; Division of Earth and Climate Sciences, Nicholas School, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Iwasaki SI, Yoshimura K, Asami T, Erdoğan S. Comparative morphology and physiology of the vocal production apparatus and the brain in the extant primates. Ann Anat 2022; 240:151887. [PMID: 35032565 DOI: 10.1016/j.aanat.2022.151887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 01/04/2023]
Abstract
Objective data mainly from the comparative anatomy of various organs related to human speech and language is considered to unearth clues about the mechanisms behind language development. The two organs of the larynx and hyoid bone are considered to have evolved towards suitable positions and forms in preparation for the occurrence of the large repertoire of vocalization necessary for human speech. However, some researchers have asserted that there is no significant difference of these organs between humans and non-human primates. Speech production is dependent on the voluntary control of the respiratory, laryngeal, and vocal tract musculature. Such control is fully present in humans but only partially so in non-human primates, which appear to be able to voluntarily control only supralaryngeal articulators. Both humans and non-human primates have direct cortical innervation of motor neurons controlling the supralaryngeal vocal tract but only human appear to have direct cortical innervation of motor neurons controlling the larynx. In this review, we investigate the comparative morphology and function of the wide range of components involved in vocal production, including the larynx, the hyoid bone, the tongue, and the vocal brain. We would like to emphasize the importance of the tongue in the primary development of human speech and language. It is now time to reconsider the possibility of the tongue playing a definitive role in the emergence of human speech.
Collapse
Affiliation(s)
- Shin-Ichi Iwasaki
- Faculty of Health Science, Gunma PAZ University, Takasaki, Japan; The Nippon Dental University, Tokyo and Niigata, Japan
| | - Ken Yoshimura
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Tomoichiro Asami
- Faculty of Rehabilitation, Gunma Paz University, Takasaki, Japan
| | - Serkan Erdoğan
- Department of Anatomy, Faculty of Veterinary Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| |
Collapse
|
4
|
Sallam HM, Seiffert ER. Revision of Oligocene ‘Paraphiomys’ and an origin for crown Thryonomyoidea (Rodentia: Hystricognathi: Phiomorpha) near the Oligocene–Miocene boundary in Africa. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
‘Paraphiomys’ simonsi is a phiomorph rodent from the early Oligocene of Egypt (~29–30 Mya) that has historically been aligned with much younger (< ~20 Mya) Miocene species of the genera Paraphiomys and Neosciuromys. Here, we use Bayesian tip-dating analysis of a 109-character morphological matrix containing 57 living and extinct ctenohystricans to test these proposed placements for ‘Paraphiomys’ simonsi. Our analyses provide support for the exclusion of ‘Paraphiomys’ simonsi from both Paraphiomys and Neosciuromys and justify the establishment of a new genus (Monamys gen. nov.) for this stem thryonomyoid. These analyses also indicate that the divergence of the extant dassie rat Petromus from the extant cane rat Thryonomys (i.e. origin of crown Thryonomyoidea) occurred ~23.7 Mya, close to the Oligocene–Miocene boundary and in close agreement with recent molecular estimates for this split. Miocene Neosciuromys, Paraulacodus, Protohummus and the type species of Paraphiomys are identified as stem thryonomyids, whereas the Namibian species Apodecter stromeri, Tufamys woodi, ‘Paraphiomys’ australis and ‘Paraphiomys’ roessneri are identified for the first time as stem petromurids, raising the possibility of a long period of endemic petromurid evolution in south-west Africa. Comparison of molecular divergence estimates with our optimal tip-dated topology suggests that stem bathyergoids are most likely to have arisen from late Eocene and early Oligocene ‘phiomyids’.
Collapse
Affiliation(s)
- Hesham M Sallam
- Department of Geology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Erik R Seiffert
- Department of Integrative Anatomical Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Department of Mammalogy, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| |
Collapse
|
5
|
Comparative morphology of the primate tongue. Ann Anat 2019; 223:19-31. [DOI: 10.1016/j.aanat.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
6
|
Landová E, Bakhshaliyeva N, Janovcová M, Peléšková Š, Suleymanova M, Polák J, Guliev A, Frynta D. Association Between Fear and Beauty Evaluation of Snakes: Cross-Cultural Findings. Front Psychol 2018; 9:333. [PMID: 29615942 PMCID: PMC5865084 DOI: 10.3389/fpsyg.2018.00333] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
According to the fear module theory, humans are evolutionarily predisposed to perceive snakes as prioritized stimuli and exhibit a fast emotional and behavioral response toward them. In Europe, highly dangerous snake species are distributed almost exclusively in the Mediterranean and Caspian areas. While the risk of a snakebite is relatively low in Central Europe, Azerbaijan, on the other hand, has a high occurrence of the deadly venomous Levant viper (Macrovipera lebetina). We hypothesize that co-habitation with this dangerous snake has shaped the way in which humans evaluate snake species resembling it. For that purpose, we asked respondents from the Czech Republic and Azerbaijan to rank photographs depicting 36 snake species according to perceived fear and beauty. The results revealed a high cross-cultural agreement in both evaluations (fear r2 = 0.683, p < 0.0001; beauty: r2 = 0.816, p < 0.0001). Snakes species eliciting higher fear tend to be also perceived as more beautiful, yet people are able to clearly distinguish between these two dimensions. Deadly venomous snakes representing a serious risk are perceived as highly fearful. This is especially true for the vipers and allies (pit vipers) possessing a characteristic body shape with a distinct triangular head and thick body, which was found as the most fear evoking by respondents from both countries. Although the attitude toward snakes is more negative among the respondents from Azerbaijan, their fear evaluation is similar to the Czechs. For instance, despite co-habitation with the Levant viper, it was not rated by the Azerbaijanis as more fearful than other dangerous snakes. In conclusion, agreement in the evaluation of snake fear and beauty is cross-culturally high and relative fear attributed to selected snake species is not directly explainable by the current environmental and cultural differences. This may provide some support for the evolutionary hypothesis of preparedness to fear snakes.
Collapse
Affiliation(s)
- Eva Landová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia.,Applied Neurosciences and Brain Imaging, National Institute of Mental Health, Klecany, Czechia
| | | | - Markéta Janovcová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia.,Applied Neurosciences and Brain Imaging, National Institute of Mental Health, Klecany, Czechia
| | - Šárka Peléšková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia.,Applied Neurosciences and Brain Imaging, National Institute of Mental Health, Klecany, Czechia
| | - Mesma Suleymanova
- Natural Historical Museum Named After Gasanbey Zardabi, Baku, Azerbaijan
| | - Jakub Polák
- Applied Neurosciences and Brain Imaging, National Institute of Mental Health, Klecany, Czechia.,Department of Psychology, Faculty of Arts, Charles University, Prague, Czechia
| | - Akif Guliev
- Biology Faculty, Baku State University, Baku, Azerbaijan
| | - Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia.,Applied Neurosciences and Brain Imaging, National Institute of Mental Health, Klecany, Czechia
| |
Collapse
|
7
|
Gao T, Yapuncich GS, Daubechies I, Mukherjee S, Boyer DM. Development and Assessment of Fully Automated and Globally Transitive Geometric Morphometric Methods, With Application to a Biological Comparative Dataset With High Interspecific Variation. Anat Rec (Hoboken) 2017; 301:636-658. [PMID: 29024541 DOI: 10.1002/ar.23700] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/15/2017] [Accepted: 08/07/2017] [Indexed: 11/05/2022]
Abstract
Automated geometric morphometric methods are promising tools for shape analysis in comparative biology, improving researchers' abilities to quantify variation extensively (by permitting more specimens to be analyzed) and intensively (by characterizing shapes with greater fidelity). Although use of these methods has increased, published automated methods have some notable limitations: pairwise correspondences are frequently inaccurate and pairwise mappings are not globally consistent (i.e., they lack transitivity across the full sample). Here, we reassess the accuracy of published automated methods-cPDist (Boyer et al. Proc Nat Acad Sci 108 () 18221-18226) and auto3Dgm (Boyer et al.: Anat Rec 298 () 249-276)-and evaluate several modifications to these methods. We show that a substantial percentage of alignments and pairwise maps between specimens of dissimilar geometries were inaccurate in the study of Boyer et al. (Proc Nat Acad Sci 108 () 18221-18226), despite a taxonomically partitioned variance structure of continuous Procrustes distances. We show these inaccuracies are remedied using a globally informed methodology within a collection of shapes, rather than relying on pairwise comparisons (c.f. Boyer et al.: Anat Rec 298 () 249-276). Unfortunately, while global information generally enhances maps between dissimilar objects, it can degrade the quality of correspondences between similar objects due to the accumulation of numerical error. We explore a number of approaches to mitigate this degradation, quantify their performance, and compare the generated pairwise maps (and the shape space characterized by these maps) to a "ground truth" obtained from landmarks manually collected by geometric morphometricians. Novel methods both improve the quality of the pairwise correspondences relative to cPDist and achieve a taxonomic distinctiveness comparable to auto3Dgm. Anat Rec, 301:636-658, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tingran Gao
- Department of Mathematics, Duke University, Durham, North Carolina
| | - Gabriel S Yapuncich
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | | | - Sayan Mukherjee
- Departments of Statistical Science, Mathematics, and Computer Science, Duke University, Durham, North Carolina
| | - Doug M Boyer
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| |
Collapse
|
8
|
Abstract
Anthropoid primates other than humans show a conspicuously disjunct geographic distribution today, inhabiting mostly tropical and subtropical parts of Asia, Africa, and Central and South America. During the latter part of the Eocene, early anthropoids showed a similarly disjunct distribution, although South America and Africa were both island continents then. Attempts to explain the historical biogeography of anthropoids as resulting from vicariance caused by tectonic rifting between South America and Africa conflict with both the chronology and the topology of anthropoid evolution. The only viable hypotheses that remain entail sweepstakes dispersal across marine barriers by early monkeys on natural rafts. Early anthropoids and certain Asian rodent clades seem to have been especially adept at accomplishing sweepstakes dispersal, particularly during the Eocene, although this process has classically been envisioned as highly random and extremely rare. This article identifies and discusses biological and geological factors that make sweepstakes dispersal by certain taxa at given times far less random than previously conceived.
Collapse
Affiliation(s)
- K. Christopher Beard
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
9
|
Soligo C, Smaers JB. Contextualising primate origins--an ecomorphological framework. J Anat 2016; 228:608-29. [PMID: 26830706 PMCID: PMC4804135 DOI: 10.1111/joa.12441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/15/2022] Open
Abstract
Ecomorphology - the characterisation of the adaptive relationship between an organism's morphology and its ecological role - has long been central to theories of the origin and early evolution of the primate order. This is exemplified by two of the most influential theories of primate origins: Matt Cartmill's Visual Predation Hypothesis, and Bob Sussman's Angiosperm Co-Evolution Hypothesis. However, the study of primate origins is constrained by the absence of data directly documenting the events under investigation, and has to rely instead on a fragmentary fossil record and the methodological assumptions inherent in phylogenetic comparative analyses of extant species. These constraints introduce particular challenges for inferring the ecomorphology of primate origins, as morphology and environmental context must first be inferred before the relationship between the two can be considered. Fossils can be integrated in comparative analyses and observations of extant model species and laboratory experiments of form-function relationships are critical for the functional interpretation of the morphology of extinct species. Recent developments have led to important advancements, including phylogenetic comparative methods based on more realistic models of evolution, and improved methods for the inference of clade divergence times, as well as an improved fossil record. This contribution will review current perspectives on the origin and early evolution of primates, paying particular attention to their phylogenetic (including cladistic relationships and character evolution) and environmental (including chronology, geography, and physical environments) contextualisation, before attempting an up-to-date ecomorphological synthesis of primate origins.
Collapse
Affiliation(s)
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
10
|
Ronca F, Raggi A. Structure-function relationships in mammalian histidine-proline-rich glycoprotein. Biochimie 2015; 118:207-20. [PMID: 26409900 DOI: 10.1016/j.biochi.2015.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/22/2015] [Indexed: 02/01/2023]
Abstract
Histidine-proline-rich glycoprotein (HPRG), or histidine-rich glycoprotein (HRG), is a serum protein that is synthesized in the liver and is actively internalised by different cells, including skeletal muscle. The multidomain arrangement of HPRG comprises two modules at the N-terminus that are homologous to cystatin but void of cysteine proteinase inhibitor function, and a second half consisting of a histidine-proline-rich region (HPRR) located between two proline-rich regions (PRR1 and PRR2), and a C-terminus domain. HPRG has been reported to bind various ligands and to modulate angiogenesis via the histidine residues of the HPRR. However, the secondary structure prediction of the HPRR reveals that more than 98% is disordered and the structural basis of the hypothesized functions remains unclear. Comparison of the PRR1 of several mammalian species indicates the presence of a conserved binding site that might coordinate the Zn(2+) ion with an amino acid arrangement compatible with the cysteine-containing site that has been identified experimentally for rabbit HPRG. This observation provides a structural basis to the function of HPRG as an intracellular zinc chaperone which has been suggested by the involvement of the protein in the maintenance of the quaternary structure of skeletal muscle AMP deaminase (AMPD). During Anthropoidea evolution, a change of the primary structure of the PRR1 Zn(2+) binding site took place, giving rise to the sequence M-S-C-S/L-S/R-C that resembles the MxCxxC motif characteristic of metal transporters and metallochaperones.
Collapse
Affiliation(s)
- Francesca Ronca
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Antonio Raggi
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
11
|
Pozzi L, Hodgson JA, Burrell AS, Sterner KN, Raaum RL, Disotell TR. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 2014; 75:165-83. [PMID: 24583291 PMCID: PMC4059600 DOI: 10.1016/j.ympev.2014.02.023] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 01/23/2023]
Abstract
The origins and the divergence times of the most basal lineages within primates have been difficult to resolve mainly due to the incomplete sampling of early fossil taxa. The main source of contention is related to the discordance between molecular and fossil estimates: while there are no crown primate fossils older than 56Ma, most molecule-based estimates extend the origins of crown primates into the Cretaceous. Here we present a comprehensive mitogenomic study of primates. We assembled 87 mammalian mitochondrial genomes, including 62 primate species representing all the families of the order. We newly sequenced eleven mitochondrial genomes, including eight Old World monkeys and three strepsirrhines. Phylogenetic analyses support a strong topology, confirming the monophyly for all the major primate clades. In contrast to previous mitogenomic studies, the positions of tarsiers and colugos relative to strepsirrhines and anthropoids are well resolved. In order to improve our understanding of how fossil calibrations affect age estimates within primates, we explore the effect of seventeen fossil calibrations across primates and other mammalian groups and we select a subset of calibrations to date our mitogenomic tree. The divergence date estimates of the Strepsirrhine/Haplorhine split support an origin of crown primates in the Late Cretaceous, at around 74Ma. This result supports a short-fuse model of primate origins, whereby relatively little time passed between the origin of the order and the diversification of its major clades. It also suggests that the early primate fossil record is likely poorly sampled.
Collapse
Affiliation(s)
- Luca Pozzi
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States; Behavioral Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany.
| | - Jason A Hodgson
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States; Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Andrew S Burrell
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States.
| | - Kirstin N Sterner
- Department of Anthropology, University of Oregon, Eugene, OR, United States.
| | - Ryan L Raaum
- New York Consortium in Evolutionary Primatology, United States; Department of Anthropology, Lehman College & The Graduate Center, City University of New York, Bronx, NY, United States.
| | - Todd R Disotell
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States.
| |
Collapse
|
12
|
Abstract
The peculiar mammalian fauna that inhabited Afro-Arabia during the Paleogene first came to the attention of the scientific community in the early part of the twentieth century, when Andrews1 and Schlosser2 published their landmark descriptions of fossil mammals from the Fayum Depression in northern Egypt. Their studies revealed a highly endemic assemblage of land mammals that included the first known Paleogene records of hyraxes, proboscideans, and anthropoid primates, but which lacked ancestors of many iconic mammalian lineages that are found in Africa today, such as rhinos, zebras, bovids, giraffes, and cats. Over the course of the last century, the Afro-Arabian Paleogene has yielded fossil remains of several other endemic mammalian lineages,3 as well as a diversity of prosimian primates,4 but we are only just beginning to understand how the continent's faunal composition came to be, through ancient processes such as the movement of tectonic plates, changes in climate and sea level, and early phylogenetic splits among the major groups of placental mammals. These processes, in turn, made possible chance dispersal events that were critical in determining the competitive landscape--and, indeed, the survival--of our earliest anthropoid ancestors. Newly discovered fossils indicate that the persistence and later diversification of Anthropoidea was not an inevitable result of the clade's competitive isolation or adaptive superiority, as has often been assumed, but rather was as much due to the combined influences of serendipitous geographic conditions, global cooling, and competition with a group of distantly related extinct strepsirrhines with anthropoid-like adaptations known as adapiforms. Many of the important details of this story would not be known, and could never have been predicted, without the fossil evidence that has recently been unearthed by field paleontologists.
Collapse
Affiliation(s)
- Erik R Seiffert
- Department of Anatomical Sciences, Stony Brook University, USA.
| |
Collapse
|
13
|
Leakey M, Grossman A, Gutiérrez M, Fleagle JG. Faunal change in the Turkana Basin during the late Oligocene and Miocene. Evol Anthropol 2012; 20:238-53. [PMID: 22170693 DOI: 10.1002/evan.20338] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Faunal evolution over the last 65 million years of earth's history was dominated by mammalian radiations, but much of this era is poorly represented in Africa. Mammals first appeared early in the Mesozoic, living alongside dinosaurs for millions of years, but it was not until the extinction of dinosaurs 65 myr ago that the first major explosion of mammalian taxa took place. The Cenozoic (65 Ma to Recent) witnessed repeated and dynamic events involving the radiation, evolution, and extinction of mammalian faunas. Two of these events, each marking the extinction of one diverse fauna and subsequent establishment of another equally diverse fauna, both involving advanced catarrhine primates, are recorded in sites in the Turkana Basin, despite the poorly represented record of Cenozoic faunas elsewhere in sub-Saharan Africa. The first of these events occurred at the Oligocene-Miocene transition and the other at the Miocene-Pliocene transition.
Collapse
Affiliation(s)
- Meave Leakey
- Department of Anthropology, Stony Brook University, New York, USA.
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- José M. Gómez
- Departamento de Ecología, University of Granada, E-18071 Granada, Spain
| | - Miguel Verdú
- Department of Plant Ecology, Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), E-46113 Valencia, Spain
| |
Collapse
|
15
|
Genomic data reject the hypothesis of a prosimian primate clade. J Hum Evol 2011; 61:295-305. [DOI: 10.1016/j.jhevol.2011.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 04/04/2011] [Accepted: 04/05/2011] [Indexed: 01/06/2023]
|
16
|
Boyer DM, Seiffert ER, Simons EL. Astragalar morphology of Afradapis, a large adapiform primate from the earliest late Eocene of Egypt. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 143:383-402. [PMID: 20949610 DOI: 10.1002/ajpa.21328] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ∼37 million-year-old Birket Qarun Locality 2 (BQ-2), in the Birket Qarun Formation of Egypt's Fayum Depression, yields evidence for a diverse primate fauna, including the earliest known lorisiforms, parapithecoid anthropoids, and Afradapis longicristatus, a large folivorous adapiform. Phylogenetic analysis has placed Afradapis as a stem strepsirrhine within a clade of caenopithecine adapiforms, contradicting the recently popularized alternative hypothesis aligning adapiforms with haplorhines or anthropoids. We describe an astragalus from BQ-2 (DPC 21445C), attributable to Afradapis on the basis of size and relative abundance. The astragalus is remarkably similar to those of extant lorises, having a low body, no posterior shelf, a broad head and neck. It is like extant strepsirrhines more generally, in having a fibular facet that slopes gently away from the lateral tibial facet, and in having a groove for the tendon of flexor fibularis that is lateral to the tibial facet. Comparisons to a sample of euarchontan astragali show the new fossil to be most similar to those of adapines and lorisids. The astragali of other adapiforms are most similar to those of lemurs, but distinctly different from those of all anthropoids. Our measurements show that in extant strepsirrhines and adapiforms the fibular facet slopes away from the lateral tibial facet at a gradual angle (112-126°), in contrast to the anthropoid fibular facet, which forms a sharper angle (87-101°). Phylogenetic analyses incorporating new information from the astragalus continue to support strepsirrhine affinities for adapiforms under varying models of character evolution.
Collapse
Affiliation(s)
- Doug M Boyer
- Department of Anthropology and Archaeology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
| | | | | |
Collapse
|
17
|
Late middle Eocene epoch of Libya yields earliest known radiation of African anthropoids. Nature 2010; 467:1095-8. [PMID: 20981098 DOI: 10.1038/nature09425] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 08/16/2010] [Indexed: 11/09/2022]
Abstract
Reconstructing the early evolutionary history of anthropoid primates is hindered by a lack of consensus on both the timing and biogeography of anthropoid origins. Some prefer an ancient (Cretaceous) origin for anthropoids in Africa or some other Gondwanan landmass, whereas others advocate a more recent (early Cenozoic) origin for anthropoids in Asia, with subsequent dispersal of one or more early anthropoid taxa to Africa. The oldest undoubted African anthropoid primates described so far are three species of the parapithecid Biretia from the late middle Eocene Bir El Ater locality of Algeria and the late Eocene BQ-2 site in the Fayum region of northern Egypt. Here we report the discovery of the oldest known diverse assemblage of African anthropoids from the late middle Eocene Dur At-Talah escarpment in central Libya. The primate assemblage from Dur At-Talah includes diminutive species pertaining to three higher-level anthropoid clades (Afrotarsiidae, Parapithecidae and Oligopithecidae) as well as a small species of the early strepsirhine primate Karanisia. The high taxonomic diversity of anthropoids at Dur At-Talah indicates either a much longer interval of anthropoid evolution in Africa than is currently documented in the fossil record or the nearly synchronous colonization of Africa by multiple anthropoid clades at some time during the middle Eocene epoch.
Collapse
|
18
|
Wilkinson RD, Steiper ME, Soligo C, Martin RD, Yang Z, Tavaré S. Dating primate divergences through an integrated analysis of palaeontological and molecular data. Syst Biol 2010; 60:16-31. [PMID: 21051775 DOI: 10.1093/sysbio/syq054] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Estimation of divergence times is usually done using either the fossil record or sequence data from modern species. We provide an integrated analysis of palaeontological and molecular data to give estimates of primate divergence times that utilize both sources of information. The number of preserved primate species discovered in the fossil record, along with their geological age distribution, is combined with the number of extant primate species to provide initial estimates of the primate and anthropoid divergence times. This is done by using a stochastic forwards-modeling approach where speciation and fossil preservation and discovery are simulated forward in time. We use the posterior distribution from the fossil analysis as a prior distribution on node ages in a molecular analysis. Sequence data from two genomic regions (CFTR on human chromosome 7 and the CYP7A1 region on chromosome 8) from 15 primate species are used with the birth-death model implemented in mcmctree in PAML to infer the posterior distribution of the ages of 14 nodes in the primate tree. We find that these age estimates are older than previously reported dates for all but one of these nodes. To perform the inference, a new approximate Bayesian computation (ABC) algorithm is introduced, where the structure of the model can be exploited in an ABC-within-Gibbs algorithm to provide a more efficient analysis.
Collapse
Affiliation(s)
- Richard D Wilkinson
- School of Mathmatical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Williams BA, Kay RF, Christopher Kirk E, Ross CF. Darwinius masillae is a strepsirrhine—a reply to Franzen et al. (2009). J Hum Evol 2010; 59:567-73; discussion 574-9. [DOI: 10.1016/j.jhevol.2010.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 10/21/2009] [Accepted: 11/02/2009] [Indexed: 10/19/2022]
|
20
|
Abstract
Adaptive shifts associated with human origins are brought to light as we examine the human fossil record and study our own genome and that of our closest ape relatives. However, the more ancient roots of many human characteristics are revealed through the study of a broader array of living anthropoids and the increasingly dense fossil record of the earliest anthropoid radiations. Genomic data and fossils of early primates in Asia and Africa clarify relationships among the major clades of primates. Progress in comparative anatomy, genomics, and molecular biology point to key changes in sensory ecology and brain organization that ultimately set the stage for the emergence of the human lineage.
Collapse
|
21
|
Heads M. Evolution and biogeography of primates: a new model based on molecular phylogenetics, vicariance and plate tectonics. ZOOL SCR 2010. [DOI: 10.1111/j.1463-6409.2009.00411.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Rodrigues HG, Marivaux L, Vianey-Liaud M. Phylogeny and systematic revision of Eocene Cricetidae (Rodentia, Mammalia) from Central and East Asia: on the origin of cricetid rodents. J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.2009.00542.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Steiper ME, Young NM. Timing primate evolution: Lessons from the discordance between molecular and paleontological estimates. Evol Anthropol 2008. [DOI: 10.1002/evan.20177] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Bajpai S, Kay RF, Williams BA, Das DP, Kapur VV, Tiwari BN. The oldest Asian record of Anthropoidea. Proc Natl Acad Sci U S A 2008; 105:11093-8. [PMID: 18685095 PMCID: PMC2516236 DOI: 10.1073/pnas.0804159105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Indexed: 11/18/2022] Open
Abstract
Undisputed anthropoids appear in the fossil record of Africa and Asia by the middle Eocene, about 45 Ma. Here, we report the discovery of an early Eocene eosimiid anthropoid primate from India, named Anthrasimias, that extends the Asian fossil record of anthropoids by 9-10 million years. A phylogenetic analysis of 75 taxa and 343 characters of the skull, postcranium, and dentition of Anthrasimias and living and fossil primates indicates the basal placement of Anthrasimias among eosimiids, confirms the anthropoid status of Eosimiidae, and suggests that crown haplorhines (tarsiers and monkeys) are the sister clade of Omomyoidea of the Eocene, not nested within an omomyoid clade. Co-occurence of Anthropoidea, Omomyoidea, and Adapoidea makes it evident that peninsular India was an important center for the diversification of primates of modern aspect (euprimates) in the early Eocene. Adaptive reconstructions indicate that early anthropoids were mouse-lemur-sized ( approximately 75 grams) and consumed a mixed diet of fruit and insects. Eosimiids bear little adaptive resemblance to later Eocene-early Oligocene African Anthropoidea.
Collapse
Affiliation(s)
- Sunil Bajpai
- *Department of Earth Sciences, Indian Institute of Technology, Roorkee 247 667, India
| | - Richard F. Kay
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708
| | - Blythe A. Williams
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708
| | - Debasis P. Das
- *Department of Earth Sciences, Indian Institute of Technology, Roorkee 247 667, India
| | | | - B. N. Tiwari
- Wadia Institute of Himalayan Geology, Dehradun, 248001, India
| |
Collapse
|
25
|
Abstract
In 1992 the Japanese macaque was the first species for which the homology of the entire karyotype was established by cross-species chromosome painting. Today, there are chromosome painting data on more than 50 species of primates. Although chromosome painting is a rapid and economical method for tracking translocations, it has limited utility for revealing intrachromosomal rearrangements. Fortunately, the use of BAC-FISH in the last few years has allowed remarkable progress in determining marker order along primate chromosomes and there are now marker order data on an array of primate species for a good number of chromosomes. These data reveal inversions, but also show that centromeres of many orthologous chromosomes are embedded in different genomic contexts. Even if the mechanisms of neocentromere formation and progression are just beginning to be understood, it is clear that these phenomena had a significant impact on shaping the primate genome and are fundamental to our understanding of genome evolution. In this report we complete and integrate the dataset of BAC-FISH marker order for human syntenies 1, 2, 4, 5, 8, 12, 17, 18, 19, 21, 22 and the X. These results allowed us to develop hypotheses about the content, marker order and centromere position in ancestral karyotypes at five major branching points on the primate evolutionary tree: ancestral primate, ancestral anthropoid, ancestral platyrrhine, ancestral catarrhine and ancestral hominoid. Current models suggest that between-species structural rearrangements are often intimately related to speciation. Comparative primate cytogenetics has become an important tool for elucidating the phylogeny and the taxonomy of primates. It has become increasingly apparent that molecular cytogenetic data in the future can be fruitfully combined with whole-genome assemblies to advance our understanding of primate genome evolution as well as the mechanisms and processes that have led to the origin of the human genome.
Collapse
|
26
|
Rosenberger AL, Pagano AS. Frontal fusion: collapse of another anthropoid synapomorphy. Anat Rec (Hoboken) 2008; 291:308-17. [PMID: 18231970 DOI: 10.1002/ar.20647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We test the hypothesis that the fused interfrontal suture of anthropoids is a uniquely distinguishing feature and a derived characteristic indicative of their monophyletic origin. Our survey of nonanthropoid primates and several archontan families indicates frontal fusion is widespread. It is most variable (fused, open or partially fused) inter- and intra-specifically among strepsirhines. The frontal bone is more commonly fused in living lemuroids and indrioids than among lorisoids. It appears to be fused regularly among Eocene adapids. Among nonanthropoid haplorhines, the interfrontal is fused in Tarsius, even in neonates and invariably in adults, probably also in all fossil tarsiiforms preserving the frontal bone, and in the late Eocene protoanthropoid Rooneyia. The plesiadapiform pattern remains uncertain, but fusion is ubiquitous among living tree shrews, colugos and bats. Distributional evidence implies that interfrontal fusion was present in the last common ancestor (LCA) of haplorhine primates and possibly in the LCA of euprimates as well. Anthropoids, therefore, cannot be defined cladistically by interfrontal fusion, not out of concern for homoplasy but because it is probably a primitive feature inherited from other taxa related to anthropoids. Fusion of the large anthropoid frontal bone, which was extended anteriorly to roof the orbits and expanded laterally in connection with a wide forebrain in the LCA of anthropoids and protoanthropoids, may have been preadaptive to the evolution of the postorbital septum. The zygomatico-frontal suture of the septum may provide an alternative mechanism for dissipating the calvarial strains of mastication formerly taken up by an open interfrontal suture.
Collapse
Affiliation(s)
- Alfred L Rosenberger
- Department of Anthropology and Archaeology, Brooklyn College, CUNY, Brooklyn, NY 10016-4309, USA
| | | |
Collapse
|
27
|
Ankel-Simons F, Rasmussen DT. Diurnality, nocturnality, and the evolution of primate visual systems. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; Suppl 47:100-17. [PMID: 19003895 DOI: 10.1002/ajpa.20957] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much of the recent research on the evolution of primate visual systems has assumed that a minimum number of shifts have occurred in circadian activity patterns over the course of primate evolution. The evolutionary origins of key higher taxonomic groups have been interpreted by some researchers as a consequence of a rare shift from nocturnality to diurnality (e.g., Anthropoidea) or from diurnality to nocturnality (e.g., Tarsiidae). Interpreting the evolution of primate visual systems with an ecological approach without parsimony constraints suggests that the evolutionary transitions in activity pattern are more common than what would be allowed by parsimony models, and that such transitions are probably less important in the origin of higher level taxa. The analysis of 17 communities of primates distributed widely around the world and through geological time shows that primate communities consistently contain both nocturnal and diurnal forms, regardless of the taxonomic sources of the communities. This suggests that primates in a community will adapt their circadian pattern to fill empty diurnal or nocturnal niches. Several evolutionary transitions from one pattern to the other within narrow taxonomic groups are solidly documented, and these cases probably represent a small fraction of such transitions throughout the Cenozoic. One or more switches have been documented among platyrrhine monkeys, Malagasy prosimians, Eocene omomyids, Eocene adapoids, and early African anthropoids, with inconclusive but suggestive data within tarsiids. The interpretation of living and extinct primates as fitting into one of two diarhythmic categories is itself problematic, because many extant primates show significant behavioral activity both nocturnally and diurnally. Parsimony models routinely interpret ancestral primates to have been nocturnal, but analyses of morphological and genetic data indicate that they may have been diurnal, or that early primate radiations were likely to have generated both nocturnal and diurnal forms, especially given the unusual annual light regimes faced by Early Tertiary primates living outside today's latitudinal tropics. We review the essential morphology and physiology of the primate visual system to look for features that might constrain evolutionary switches, and we find that the pattern of variation within and among primate groups in eye size, corneal size, retinal morphology, and opsin distribution are all consistent with the idea that there is considerable evolutionary flexibility in the visual system. These results suggest that primate lineages may evolve from diurnal to nocturnal, and vice versa, more readily and more rapidly than has been suggested by the use of strict parsimony models. This has implications for interpreting the fossil record and reconstructing key evolutionary events in primate evolution.
Collapse
Affiliation(s)
- F Ankel-Simons
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27705, USA.
| | | |
Collapse
|
28
|
Martin RD, Soligo C, Tavaré S. Primate Origins: Implications of a Cretaceous Ancestry. Folia Primatol (Basel) 2007; 78:277-96. [PMID: 17855783 DOI: 10.1159/000105145] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has long been accepted that the adaptive radiation of modern placental mammals, like that of modern birds, did not begin until after the Cretaceous/Tertiary (K/T) boundary 65 million years (Ma) ago, following the extinction of the dinosaurs. The first undoubted fossil relatives of modern primates appear in the record 55 Ma ago. However, in agreement with evidence from molecular phylogenies calibrated with dates from denser parts of the fossil record, a statistical analysis of the primate record allowing for major gaps now indicates a Cretaceous origin of euprimates 80-90 Ma ago. If this interpretation is correct, primates overlapped with dinosaurs by some 20 Ma prior to the K/T boundary, and the initial radiation of primates was probably truncated as part of the major extinction event that occurred at the end of the Cretaceous. Following a review of evidence for an early origin of primates, implications of this are discussed with respect to the likely ancestral condition for primates, including a southern continental area of origin and moderately large body size. The known early Tertiary primates are re-interpreted as northern continental offshoots of a 'second wave' of primate evolution.
Collapse
Affiliation(s)
- Robert D Martin
- Anthropology Department, Field Museum of Natural History, Chicago, Ill., USA
| | | | | |
Collapse
|
29
|
Dumas F, Stanyon R, Sineo L, Stone G, Bigoni F. Phylogenomics of species from four genera of New World monkeys by flow sorting and reciprocal chromosome painting. BMC Evol Biol 2007; 7 Suppl 2:S11. [PMID: 17767727 PMCID: PMC1963484 DOI: 10.1186/1471-2148-7-s2-s11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background The taxonomic and phylogenetic relationships of New World monkeys (Platyrrhini) are difficult to distinguish on the basis of morphology and because diagnostic fossils are rare. Recently, molecular data have led to a radical revision of the traditional taxonomy and phylogeny of these primates. Here we examine new hypotheses of platyrrhine evolutionary relationships by reciprocal chromosome painting after chromosome flow sorting of species belonging to four genera of platyrrhines included in the Cebidae family: Callithrix argentata (silvered-marmoset), Cebuella pygmaea (pygmy marmoset), Callimico goeldii (Goeldi's marmoset) and Saimiri sciureus (squirrel monkey). This is the first report of reciprocal painting in marmosets. Results The paints made from chromosome flow sorting of the four platyrrhine monkeys provided from 42 to 45 hybridization signals on human metaphases. The reciprocal painting of monkey probes on human chromosomes revealed that 21 breakpoints are common to all four studied species. There are only three additional breakpoints. A breakpoint on human chromosome 13 was found in Callithrix argentata, Cebuella pygmaea and Callimico goeldii, but not in Saimiri sciureus. There are two additional breakpoints on human chromosome 5: one is specific to squirrel monkeys, and the other to Goeldi's marmoset. Conclusion The reciprocal painting results support the molecular genomic assemblage of Cebidae. We demonstrated that the five chromosome associations previously hypothesized to phylogenetically link tamarins and marmosets are homologous and represent derived chromosome rearrangements. Four of these derived homologous associations tightly nest Callimico goeldii with marmosets. One derived association 2/15 may place squirrel monkeys within the Cebidae assemblage. An apparently common breakpoint on chromosome 5q33 found in both Saimiri and Aotus nancymae could be evidence of a phylogenetic link between these species. Comparison with previous reports shows that many syntenic associations found in platyrrhines have the same breakpoints and are homologous, derived rearrangements showing that the New World monkeys are a closely related group of species. Our data support the hypothesis that the ancestral karyotype of the Platyrrhini has a diploid number of 2n = 54 and is almost identical to that found today in capuchin monkeys; congruent with a basal position of the Cebidae among platyrrhine families.
Collapse
Affiliation(s)
- Francesca Dumas
- Dipartimento di Biologia animale (DBA) Università degli Studi di Palermo, via Archirafi 18. Palermo, Italy
| | - Roscoe Stanyon
- Dipartimento di Biologia Animale e Genetica, Laboratori di Antropologia, Via del Proconsolo 12, 50122 Firenze, Italy
| | - Luca Sineo
- Dipartimento di Biologia animale (DBA) Università degli Studi di Palermo, via Archirafi 18. Palermo, Italy
| | - Gary Stone
- Comparative Molecular Cytogenetics Core, National Cancer Institute, Frederick Maryland, USA
| | - Francesca Bigoni
- Dipartimento di Biologia Animale e Genetica, Laboratori di Antropologia, Via del Proconsolo 12, 50122 Firenze, Italy
| |
Collapse
|
30
|
Neill D. Cortical evolution and human behaviour. Brain Res Bull 2007; 74:191-205. [PMID: 17720540 DOI: 10.1016/j.brainresbull.2007.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 06/06/2007] [Accepted: 06/12/2007] [Indexed: 11/20/2022]
Abstract
All mammals have complex behaviours but these are generally stereotyped in nature and lack the flexibility of human behaviour. Can the flexibility of human behaviour be understood as an evolutionary extension of previous behaviours or is it a departure? Theories pertaining to this question have a long history including, now refuted, theories on neoteny. This paper, using an evolutionary developmental biology approach, outlines some existing theories and suggests some novel ideas. Previous trends during brain evolution are determined by outlining the phylogeny and ontogeny of the six layered mammalian isocortex with particular reference to the primate lineage. These evolutionary trends are extrapolated to hominids to postulate the effect of increasingly large brains. The palaeoanthropological literature is cited to debate the nature and time course of behavioural change during hominid evolution. In particular, when was truly flexible behaviour first evident, and did it occur gradually or suddenly? The proposed isocortical and behavioural changes during hominid evolution are then equated to determine if modern human behaviour can be seen as part of a continuum. It is concluded that a continuation of previous trends in isocortical evolution maybe inadequate to explain human behavioural flexibility. Several possible departures from previous trends that would be compatible with increased behavioural flexibility are suggested. These mainly relate to evolutionary changes in the later stages of isocortical development and in particular during the activity-dependant phase when cortico-cortical connections are refined.
Collapse
Affiliation(s)
- David Neill
- Department of Psychiatry, School of Neurology, Neurobiology and Psychiatry, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
31
|
Jeffery N, Davies K, Köckenberger W, Williams S. Craniofacial growth in fetal Tarsius bancanus: brains, eyes and nasal septa. J Anat 2007; 210:703-22. [PMID: 17451471 PMCID: PMC2375756 DOI: 10.1111/j.1469-7580.2007.00725.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2007] [Indexed: 11/27/2022] Open
Abstract
The tarsier skull has been of particular interest in studies of primate taxonomy and functional morphology for several decades. Despite this, there remains no comprehensive data on how the tarsier skull develops, especially in relation to the soft-tissues of the head. Here we have documented for the first time fetal development of the skull and brain as well as the nasal septum and eyes in T. bancanus. We have also tested for the possible influence of these tissues in shaping skull architecture. Nineteen post-mortem specimens were imaged using high-resolution magnetic resonance imaging and magnetic resonance microscopy. Landmarks and volume data were collected and analysed. Findings demonstrated massive increases of brain size and eye size as well as flattening of the midline cranial base, facial projection and orbital margin frontation. Little evidence was found to support the notion that growth of the brain or nasal septum physically drives the observed changes of the skull. However, increases in the size of the eyes relative to skull size were associated with orbital margin frontation. With the possible exception of the results for eye size, the findings indicate that rather than forcing change the soft-tissues form a framework that physically constrains the morphogenetic template of the skeletal elements. This suggests, for example, that the degree of cranial base angulation seen in adulthood is not directly determined by brain expansion bending the basicranium, but by brain enlargement limiting the extent of cranial base flattening (retroflexion) in the fetus.
Collapse
Affiliation(s)
- Nathan Jeffery
- Division of Human Anatomy & Cell Biology, School of Biomedical Sciences, University of Liverpool, UK.
| | | | | | | |
Collapse
|
32
|
Steiper ME, Young NM. Primate molecular divergence dates. Mol Phylogenet Evol 2006; 41:384-94. [PMID: 16815047 DOI: 10.1016/j.ympev.2006.05.021] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/11/2006] [Accepted: 05/19/2006] [Indexed: 11/22/2022]
Abstract
With genomic data, alignments can be assembled that greatly increase the number of informative sites for analysis of molecular divergence dates. Here, we present an estimate of the molecular divergence dates for all of the major primate groups. These date estimates are based on a Bayesian analysis of approximately 59.8 kbp of genomic data from 13 primates and 6 mammalian outgroups, using a range of paleontologically supported calibration estimates. Results support a Cretaceous last common ancestor of extant primates (approximately 77 mya), an Eocene divergence between platyrrhine and catarrhine primates (approximately 43 mya), an Oligocene origin of apes and Old World monkeys (approximately 31 mya), and an early Miocene (approximately 18 mya) divergence of Asian and African great apes. These dates are examined in the context of other molecular clock studies.
Collapse
Affiliation(s)
- Michael E Steiper
- Department of Anthropology, Hunter College of the City University of New York, 695 Park Avenue, NY 10021, USA.
| | | |
Collapse
|