1
|
Chapple SA, Skinner MM. A tooth crown morphology framework for interpreting the diversity of primate dentitions. Evol Anthropol 2023; 32:240-255. [PMID: 37486115 DOI: 10.1002/evan.21994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 03/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
Variation in tooth crown morphology plays a crucial role in species diagnoses, phylogenetic inference, and the reconstruction of the evolutionary history of the primate clade. While a growing number of studies have identified developmental mechanisms linked to tooth size and cusp patterning in mammalian crown morphology, it is unclear (1) to what degree these are applicable across primates and (2) which additional developmental mechanisms should be recognized as playing important roles in odontogenesis. From detailed observations of lower molar enamel-dentine junction morphology from taxa representing the major primate clades, we outline multiple phylogenetic and developmental components responsible for crown patterning, and formulate a tooth crown morphology framework for the holistic interpretation of primate crown morphology. We suggest that adopting this framework is crucial for the characterization of tooth morphology in studies of dental development, discrete trait analysis, and systematics.
Collapse
Affiliation(s)
- Simon A Chapple
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Matthew M Skinner
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
2
|
Hardin AM, Knigge RP, Duren DL, Williams-Blangero S, Subedi J, Mahaney MC, Sherwood RJ. Genetic influences on dentognathic morphology in the Jirel population of Nepal. Anat Rec (Hoboken) 2022; 305:2137-2157. [PMID: 34981668 PMCID: PMC9250551 DOI: 10.1002/ar.24857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Patterns of genetic variation and covariation impact the evolution of the craniofacial complex and contribute to clinically significant malocclusions in modern human populations. Previous quantitative genetic studies have estimated the heritabilities and genetic correlations of skeletal and dental traits in humans and nonhuman primates, but none have estimated these quantitative genetic parameters across the dentognathic complex. A large and powerful pedigree from the Jirel population of Nepal was leveraged to estimate heritabilities and genetic correlations in 62 maxillary and mandibular arch dimensions, incisor and canine lengths, and post-canine tooth crown areas (N ≥ 739). Quantitative genetic parameter estimation was performed using maximum likelihood-based variance decomposition. Residual heritability estimates were significant for all traits, ranging from 0.269 to 0.898. Genetic correlations were positive for all trait pairs. Principal components analyses of the phenotypic and genetic correlation matrices indicate an overall size effect across all measurements on the first principal component. Additional principal components demonstrate positive relationships between post-canine tooth crown areas and arch lengths and negative relationships between post-canine tooth crown areas and arch widths, and between arch lengths and arch widths. Based on these findings, morphological variation in the human dentognathic complex may be constrained by genetic relationships between dental dimensions and arch lengths, with weaker genetic correlations between these traits and arch widths allowing for variation in arch shape. The patterns identified are expected to have impacted the evolution of the dentognathic complex and its genetic architecture as well as the prevalence of dental crowding in modern human populations.
Collapse
Affiliation(s)
- Anna M. Hardin
- Biology Department, Western Oregon University
- Craniofacial Research Center, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine
- Department of Orthopaedic Surgery, University of Missouri School of Medicine
| | - Ryan P. Knigge
- Craniofacial Research Center, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine
- Department of Orthopaedic Surgery, University of Missouri School of Medicine
- Department of Integrative Biology and Physiology, University of Minnesota Medical School
| | - Dana L. Duren
- Craniofacial Research Center, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine
- Department of Orthopaedic Surgery, University of Missouri School of Medicine
| | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley
| | | | - Michael C. Mahaney
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley
| | - Richard J. Sherwood
- Craniofacial Research Center, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine
- Department of Orthopaedic Surgery, University of Missouri School of Medicine
| |
Collapse
|
3
|
Paul KS, Stojanowski CM, Hughes T, Brook AH, Townsend GC. Genetic Correlation, Pleiotropy, and Molar Morphology in a Longitudinal Sample of Australian Twins and Families. Genes (Basel) 2022; 13:genes13060996. [PMID: 35741762 PMCID: PMC9222655 DOI: 10.3390/genes13060996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/01/2023] Open
Abstract
This study aims to expand our understanding of the genetic architecture of crown morphology in the human diphyodont dentition. Here, we present bivariate genetic correlation estimates for deciduous and permanent molar traits and evaluate the patterns of pleiotropy within (e.g., m1–m2) and between (e.g., m2–M1) dentitions. Morphology was observed and scored from dental models representing participants of an Australian twin and family study (deciduous n = 290, permanent n = 339). Data collection followed Arizona State University Dental Anthropology System standards. Genetic correlation estimates were generated using maximum likelihood variance components analysis in SOLAR v.8.1.1. Approximately 23% of deciduous variance components models and 30% of permanent variance components models yielded significant genetic correlation estimates. By comparison, over half (56%) of deciduous–permanent homologues (e.g., m2 hypocone–M1 hypocone) were significantly genetically correlated. It is generally assumed that the deciduous and permanent molars represent members of a meristic molar field emerging from the primary dental lamina. However, stronger genetic integration among m2–M1/M2 homologues than among paired deciduous traits suggests the m2 represents the anterior-most member of a “true” molar field. The results indicate genetic factors act at distinct points throughout development to generate homologous molar form, starting with the m2, which is later replaced by a permanent premolariform crown.
Collapse
Affiliation(s)
- Kathleen S. Paul
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: ; Tel.: +1-479-718-1352
| | - Christopher M. Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA;
| | - Toby Hughes
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
| | - Alan H. Brook
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
- Barts and the London Dental Institute, Queen Mary University of London, London EC1M 6AX, UK
| | - Grant C. Townsend
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
| |
Collapse
|
4
|
Paul KS, Stojanowski CM, Hughes T, Brook A, Townsend GC. The genetic architecture of anterior tooth morphology in a longitudinal sample of Australian twins and families. Arch Oral Biol 2021; 129:105168. [PMID: 34174590 DOI: 10.1016/j.archoralbio.2021.105168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study presents a quantitative genetic analysis of human anterior dental morphology in a longitudinal sample of known genealogy. The primary aim of this work is to generate a suite of genetic correlations within and between deciduous and permanent characters to access patterns of integration across the diphyodont dental complex. DESIGN Data were recorded from casted tooth crowns representing participants of a long-term Australian twin and family study (deciduous n = 290, permanent n = 339). Morphological trait expression was observed and scored following Arizona State University Dental Anthropology System standards. Bivariate genetic correlations were estimated using maximum likelihood variance decomposition models in SOLAR v.8.1.1. RESULTS Genetic correlation estimates indicate high levels of integration between antimeres but low to moderate levels among traits within a tooth row. Only 9% of deciduous model comparisons were significant, while pleiotropy was indicated for one third of permanent trait pairs. Canine characters stood out as strongly integrated, especially in the deciduous dentition. For homologous characters across dentitions (e.g., deciduous i1 shoveling and permanent I1 shoveling), ∼70% of model comparisons yielded significant genetic correlations. CONCLUSIONS Patterns of genetic correlation suggest a morphological canine module that spans the primary and secondary dentition. Results also point to the existence of a genetic mechanism conserving morphology across the diphyodont dental complex, such that paired deciduous and permanent traits are more strongly integrated than characters within individual tooth rows/teeth.
Collapse
Affiliation(s)
- Kathleen S Paul
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, United States.
| | - Christopher M Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, United States
| | - Toby Hughes
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Alan Brook
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; Barts and the London Dental Institute, Queen Mary University of London, London, E1, UK
| | - Grant C Townsend
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Lawrence J, Stojanowski CM, Paul KS, Seidel AC, Guatelli-Steinberg D. Heterogeneous frailty and the expression of linear enamel hypoplasia in a genealogical population. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:638-651. [PMID: 33852741 DOI: 10.1002/ajpa.24288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Linear enamel hypoplasia (LEH) is a common skeletal marker of physiological stress (e.g., malnutrition or illness) that is studied within and across populations, without reference to familial risk. We examine LEH prevalence in a population with known genealogical relationships to determine the potential influence of genetic heritability and shared environment. METHODS LEH data of 239 individuals from a single population were recorded from the Ohio State University Menegaz-Bock collection dental casts. All individuals were of known age, sex, and genealogy. Narrow-sense heritability estimates were obtained for LEH presence and count data from all unworn, fully erupted teeth (excluding third molars) using SOLAR (v.8.1.1). Age, sex, and age-sex interaction were included as covariates. Models were re-run with a household effect variable. RESULTS LEH persists across generations in this study population with moderate, significant heritability estimates for presence in four teeth, and count in four teeth (three teeth were significant for both). When a household effect variable was added, no residual heritability remained for LEH count on any tooth. There was no significant household effect for three of the four teeth that had significant heritability estimates for LEH presence. Age was a significant covariate. Further analyses with birth year data revealed a secular trend toward less LEH. CONCLUSIONS This study provides evidence for familial risk of LEH (genetic and environmental) that has consequences for the broad use of this skeletal marker of stress. These results have repercussions for archaeological assemblages, or population health studies, where genetic relatives and household groups might be heavily represented.
Collapse
Affiliation(s)
- Julie Lawrence
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Christopher M Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Kathleen S Paul
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
| | - Andrew C Seidel
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | | |
Collapse
|
6
|
Comparing maxillary first molar crown shape using elliptical Fourier analysis in the Late Neolithic cave burials of Belgium. ANTHROPOLOGICAL REVIEW 2021. [DOI: 10.2478/anre-2021-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The Belgian Meuse karstic basin holds more than 200 Late Neolithic collective burials. Four of the largest include Hastière Caverne M, Hastière Trou Garçon C, Sclaigneaux and Bois Madame. The remains from these caves are commingled and fragmentary. However, in situ maxillary molars are well preserved permitting an investigation of molar crown shape within and across sites.
Crown outlines from the burials are compared using elliptical Fourier analysis to capture shape distinctions in the relatively numerous first maxillary molars (n = 27). Elliptical Fourier analysis is designed to compare deviations between each shape outline and an idealized ellipse, recorded as amplitudes of the harmonics which are reduced to principal components (PC) scores. We expect individuals from each site will be more similar to one another than to other internments in PC scores, and that the sites will be distributed along PC axes according to differences in chronology and geographic location.
Principal components analysis reveals that individuals tend to cluster together based on cave burial as well as time period. Geographic distance only differentiates the final/late Neolithic cave burials. The earliest of the sites, Hastière Caverne M, is distinctive and includes multiple outliers. Hastière Trou Garçon C from earlier in the Late Neolithic does not cluster with Hastière Caverne M as expected. Instead, this cave burial groups with Sclaigneaux, the most geographically distant site but chronologically the closest to Hastière Trou Garçon C. Although the limited sample sizes for each site must be considered, it appears that early farmers of the Belgian Meuse basin exhibited intricate human population dynamics which may have included small, semi-isolated groups early in the Late Neolithic and larger communities with greater contact toward the onset of the northern European Bronze Age.
Collapse
|
7
|
Paul KS, Stojanowski CM, Hughes TE, Brook AH, Townsend GC. Patterns of heritability across the human diphyodont dental complex: Crown morphology of Australian twins and families. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:447-461. [DOI: 10.1002/ajpa.24019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/31/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Kathleen S. Paul
- Department of Anthropology University of Arkansas Fayetteville Arkansas
| | - Christopher M. Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change Arizona State University Tempe Arizona
| | - Toby E. Hughes
- Adelaide Dental School University of Adelaide Adelaide South Australia
| | - Alan H. Brook
- Adelaide Dental School University of Adelaide Adelaide South Australia
- Institute of Dental Surgery Queen Mary University of London London UK
| | - Grant C. Townsend
- Adelaide Dental School University of Adelaide Adelaide South Australia
| |
Collapse
|
8
|
Stojanowski CM, Paul KS, Seidel AC, Duncan WN, Guatelli‐Steinberg D. Quantitative genetic analyses of postcanine morphological crown variation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:606-631. [DOI: 10.1002/ajpa.23778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/20/2018] [Accepted: 12/26/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Christopher M. Stojanowski
- Center for Bioarchaeological Research School of Human Evolution and Social Change, Arizona State University Tempe Arizona
| | - Kathleen S. Paul
- Center for Bioarchaeological Research School of Human Evolution and Social Change, Arizona State University Tempe Arizona
| | - Andrew C. Seidel
- Center for Bioarchaeological Research School of Human Evolution and Social Change, Arizona State University Tempe Arizona
| | - William N. Duncan
- Department of Sociology and Anthropology East Tennessee State University Johnson City Tennessee
| | | |
Collapse
|
9
|
Delgado MN, Pérez-Pérez A, Galbany J. Morphological variation and covariation in mandibular molars of platyrrhine primates. J Morphol 2018; 280:20-34. [PMID: 30556948 DOI: 10.1002/jmor.20907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 08/08/2018] [Accepted: 09/23/2018] [Indexed: 11/07/2022]
Abstract
Molars are highly integrated biological structures that have been used for inferring evolutionary relationships among taxa. However, parallel and convergent morphological traits can be affected by developmental and functional constraints. Here, we analyze molar shapes of platyrrhines in order to explore if platyrrhine molar diversity reflects homogeneous patterns of molar variation and covariation. We digitized 30 landmarks on mandibular first and second molars of 418 extant and 11 fossil platyrrhine specimens to determine the degree of integration of both molars when treated as a single module. We combined morphological and phylogenetic data to investigate the phylogenetic signal and to visualize the history of molar shape changes. All platyrrhine taxa show a common shape pattern suggesting that a relatively low degree of phenotypic variation is caused by convergent evolution, although molar shape carries significant phylogenetic signal. Atelidae and Pitheciidae show high levels of integration with low variation between the two molars, whereas the Cebinae/Saimiriinae, and especially Callitrichinae, show greater variation between molars and trend toward a modular organization. We hypothesize that biomechanical constraints of the masticatory apparatus, and the dietary profile of each taxon are the main factors that determine high covariation in molars. In contrast, low molar shape covariation may result from the fact that each molar exhibits a distinct ecological signal, as molars can be exposed to distinct occlusal loadings during food processing, suggesting that different selective pressures on molars can reduce overall molar integration.
Collapse
Affiliation(s)
- Mónica Nova Delgado
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Alejandro Pérez-Pérez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Jordi Galbany
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain.,Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Stojanowski CM, Paul KS, Seidel AC, Duncan WN, Guatelli‐Steinberg D. Heritability and genetic integration of anterior tooth crown variants in the South Carolina Gullah. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:124-143. [DOI: 10.1002/ajpa.23612] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Christopher M. Stojanowski
- Center for Bioarchaeological ResearchSchool of Human Evolution and Social Change, Arizona State UniversityTempe Arizona 85287
| | - Kathleen S. Paul
- Center for Bioarchaeological ResearchSchool of Human Evolution and Social Change, Arizona State UniversityTempe Arizona 85287
| | - Andrew C. Seidel
- Center for Bioarchaeological ResearchSchool of Human Evolution and Social Change, Arizona State UniversityTempe Arizona 85287
| | - William N. Duncan
- Department of Sociology and AnthropologyEast Tennessee State UniversityJohnson City Tennessee 37614
| | | |
Collapse
|
11
|
Ortiz A, Bailey SE, Schwartz GT, Hublin JJ, Skinner MM. Evo-devo models of tooth development and the origin of hominoid molar diversity. SCIENCE ADVANCES 2018; 4:eaar2334. [PMID: 29651459 PMCID: PMC5895448 DOI: 10.1126/sciadv.aar2334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
The detailed anatomical features that characterize fossil hominin molars figure prominently in the reconstruction of their taxonomy, phylogeny, and paleobiology. Despite the prominence of molar form in human origins research, the underlying developmental mechanisms generating the diversity of tooth crown features remain poorly understood. A model of tooth morphogenesis-the patterning cascade model (PCM)-provides a developmental framework to explore how and why the varying molar morphologies arose throughout human evolution. We generated virtual maps of the inner enamel epithelium-an indelibly preserved record of enamel knot arrangement-in 17 living and fossil hominoid species to investigate whether the PCM explains the expression of all major accessory cusps. We found that most of the variation and evolutionary changes in hominoid molar morphology followed the general developmental rule shared by all mammals, outlined by the PCM. Our results have implications for the accurate interpretation of molar crown configuration in hominoid systematics.
Collapse
Affiliation(s)
- Alejandra Ortiz
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Shara E. Bailey
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY 10003, USA
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Gary T. Schwartz
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Matthew M. Skinner
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK
| |
Collapse
|
12
|
Guatelli-Steinberg D. Dental anthropology in the AJPA: Its roots and heights. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:879-892. [PMID: 29574842 DOI: 10.1002/ajpa.23352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 11/06/2022]
|
13
|
Williams FL, Lane KM, Anderson WG. Comparison of maxillary first molar occlusal outlines of Neandertals from the Meuse River Basin of Belgium using elliptical Fourier analysis. ANTHROPOLOGICAL REVIEW 2017. [DOI: 10.1515/anre-2017-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Several Neandertals derive from the karstic caves of the Meuse river tributaries of Belgium, including Engis 2, Scladina 4A-4 and Spy 1. These may form a group that is distinct in maxillary first molar occlusal outlines compared to La Quina 5 from Southwest France. Alternatively, chronological differences may separate individuals given that Scladina 4A-4 from MIS 5 is older than the others from MIS 3. Neolithic samples (n = 42) from Belgium (Maurenne Caverne de la Cave, Hastière Caverne M, Hastière Trou Garçon, Sclaigneaux and Bois Madame) dated to 4.6–3.9 kyr provide a context for the Neandertals. Dental casts were prepared from dental impressions of the original maxillary molars. Crown and occlusal areas as well as mesiodistal lengths were measured by calibrated Motic 3.0 microscope cameras. Occlusal outlines of the casts were captured through photostereomicroscopy and non-landmark smooth tracing methods. Occlusal outlines were processed using elliptical Fourier analysis within SHAPE v1.3 which reduced amplitudes of the harmonics into principal components (PC) axes. The first two PC axes group the Neandertals, although Scladina 4A-4 falls nearly outside the convex hull for the Neolithic sample. Neandertals are imperfectly separated from the Neolithic sample on PC3 and PC4, and completely distinct on PC5 and PC6. Scladina 4A-4 differs from the other Neandertals on most PC axes. Chronology may best explain the separation of Scladina 4A-4 from the more recent fossils, and particularly Spy 1 and La Quina 5 which are the most similar in maxillary first molar occlusal outline shape.
Collapse
|
14
|
Heritability and genetic integration of tooth size in the South Carolina Gullah. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:505-521. [DOI: 10.1002/ajpa.23290] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022]
|
15
|
Paul KS, Stojanowski CM. Comparative performance of deciduous and permanent dental morphology in detecting biological relatives. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017. [DOI: 10.1002/ajpa.23260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kathleen S. Paul
- Center for Bioarchaeological Research, School of Human Evolution and Social Change; Arizona State University; Tempe AZ 85287
| | - Christopher M. Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change; Arizona State University; Tempe AZ 85287
| |
Collapse
|
16
|
Paul KS, Astorino CM, Bailey SE. The Patterning Cascade Model and Carabelli's trait expression in metameres of the mixed human dentition: exploring a morphogenetic model. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 162:3-18. [DOI: 10.1002/ajpa.23080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/08/2016] [Accepted: 08/13/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Kathleen S. Paul
- Center for Bioarchaeological Research, School of Human Evolution and Social ChangeArizona State UniversityTempe Arizona85287
| | - Claudia M. Astorino
- The Graduate School and University Center, The City University of New YorkNew York New York10016
- New York Consortium in Evolutionary PrimatologyNew York New York10028
| | - Shara E. Bailey
- New York Consortium in Evolutionary PrimatologyNew York New York10028
- Center for the Study of Human Origins, Department of AnthropologyNew York UniversityNew York New York10012
| |
Collapse
|
17
|
Elucidating the evolution of hominid dentition in the age of phenomics, modularity, and quantitative genetics. Ann Anat 2016; 203:3-11. [DOI: 10.1016/j.aanat.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 12/11/2022]
|
18
|
Martinón-Torres M, Spěváčková P, Gracia-Téllez A, Martínez I, Bruner E, Arsuaga JL, Bermúdez de Castro JM. Morphometric analysis of molars in a Middle Pleistocene population shows a mosaic of 'modern' and Neanderthal features. J Anat 2013; 223:353-63. [PMID: 23914934 DOI: 10.1111/joa.12090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2013] [Indexed: 12/30/2022] Open
Abstract
Previous studies of upper first molar (M1) crown shape have shown significant differences between Homo sapiens and Homo neanderthalensis that were already present in the European Middle Pleistocene populations, including the large dental sample from Atapuerca-Sima de los Huesos (SH). Analysis of other M1 features such as the total crown base area, cusp proportions, cusp angles and occlusal polygon have confirmed the differences between both lineages, becoming a useful tool for the taxonomic assignment of isolated teeth from Late Pleistocene sites. However, until now the pattern of expression of these variables has not been known for the SH sample. This fossil sample, the largest collection from the European Middle Pleistocene, is generally interpreted as being from the direct ancestors of Neanderthals, and thus is a reference sample for assessing the origin of the Neanderthal morphologies. Surprisingly, our study reveals that SH M(1) s present a unique mosaic of H. neanderthalensis and H. sapiens features. Regarding the cusp angles and the relative occlusal polygon area, SH matches the H. neanderthalensis pattern. However, regarding the total crown base area and relative cusps size, SH M(1) s are similar to H. sapiens, with a small crown area, a strong hypocone reduction and a protocone enlargement, although the protocone expansion in SH is significantly larger than in any other group studied. The SH dental sample calls into question the uniqueness of some so-called modern traits. Our study also sounds a note of caution on the use of M(1) occlusal morphology for the alpha taxonomy of isolated M(1) s.
Collapse
|
19
|
Biological variation in a large sample of mouse lemurs from Amboasary, Madagascar: Implications for interpreting variation in primate biology and paleobiology. J Hum Evol 2013; 64:1-20. [DOI: 10.1016/j.jhevol.2012.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 07/18/2012] [Accepted: 08/23/2012] [Indexed: 11/19/2022]
|
20
|
Grieco TM, Rizk OT, Hlusko LJ. A MODULAR FRAMEWORK CHARACTERIZES MICRO- AND MACROEVOLUTION OF OLD WORLD MONKEY DENTITIONS. Evolution 2012; 67:241-59. [DOI: 10.1111/j.1558-5646.2012.01757.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Schmidt C, Ousley S, Schmidt M. Brief communication: correcting overestimation when determining two-dimensional occlusal area in human molars. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 145:327-32. [PMID: 21469080 DOI: 10.1002/ajpa.21511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/28/2010] [Indexed: 11/07/2022]
Abstract
The robustness index (RI) is determined by multiplying dental mesiodistal and buccolingual diameters, and is used to estimate occlusal area. However, because teeth are not rectangular its calculation consistently causes overestimations. Moreover, teeth, in particular molars, are not identically shaped so overestimations vary. The current study seeks to determine the extent to which overestimations are affected by tooth shape and to improve RI's efficacy. Initially, 120 molars were sorted into six shape groups, which were determined by hypocone/hypoconulid expression. Three maxillary and three mandibular shape groups were set using the Arizona State University Dental Anthropology System. ANOVA results determined that RI overestimations, which averaged around 20%, were not the same for each shape category. Maxillary molars with large hypocones and mandibular molars with no hypoconulids were overestimated significantly less than the other molar groups. Regression-based correction formulae were generated and applied to the original sample. These formulae far more precisely estimated tooth area than RI and there were no differences in estimation based upon tooth shape. A subsequent validation study of 24 additional molars was undertaken to test the formulae on teeth not from the original sample. Overestimation/underestimation averaged 0.5% and was about the same for each of the tooth shape groups. Finally, six new correction formulae were generated using all 144 molars. The correction formulae provide, what is termed here, an adjusted robustness index (ARI), and it is recommended that ARI is used in future studies of molar occlusal area.
Collapse
Affiliation(s)
- Christopher Schmidt
- Department of Anthropology, University of Indianapolis, Indianapolis, IN 46227, USA.
| | | | | |
Collapse
|
22
|
Koh C, Bates E, Broughton E, Do NT, Fletcher Z, Mahaney MC, Hlusko LJ. Genetic integration of molar cusp size variation in baboons. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 142:246-60. [PMID: 20034010 DOI: 10.1002/ajpa.21221] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many studies of primate diversity and evolution rely on dental morphology for insight into diet, behavior, and phylogenetic relationships. Consequently, variation in molar cusp size has increasingly become a phenotype of interest. In 2007 we published a quantitative genetic analysis of mandibular molar cusp size variation in baboons. Those results provided more questions than answers, as the pattern of genetic integration did not fit predictions from odontogenesis. To follow up, we expanded our study to include data from the maxillary molar cusps. Here we report on these later analyses, as well as inter-arch comparisons with the mandibular data. We analyzed variation in two-dimensional maxillary molar cusp size using data collected from a captive pedigreed breeding colony of baboons, Papio hamadryas, housed at the Southwest National Primate Research Center. These analyses show that variation in maxillary molar cusp size is heritable and sexually dimorphic. We also estimated additive genetic correlations between cusps on the same crown, homologous cusps along the tooth row, and maxillary and mandibular cusps. The pattern for maxillary molars yields genetic correlations of one between the paracone-metacone and protocone-hypocone. Bivariate analyses of cuspal homologues on adjacent teeth yield correlations that are high or not significantly different from one. Between dental arcades, the nonoccluding cusps consistently yield high genetic correlations, especially the metaconid-paracone and metaconid-metacone. This pattern of genetic correlation does not immediately accord with the pattern of development and/or calcification, however these results do follow predictions that can be made from the evolutionary history of the tribosphenic molar.
Collapse
Affiliation(s)
- Christina Koh
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Roseman CC, Willmore KE, Rogers J, Hildebolt C, Sadler BE, Richtsmeier JT, Cheverud JM. Genetic and environmental contributions to variation in baboon cranial morphology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 143:1-12. [PMID: 20623673 PMCID: PMC3258659 DOI: 10.1002/ajpa.21341] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development, function, and integration of morphological characteristics are all hypothesized to influence the utility of traits for phylogenetic reconstruction by affecting the way in which morphological characteristics evolve. We use a baboon model to test the hypotheses about phenotypic and quantitative genetic variation of traits in the cranium that bear on a phenotype's propensity to evolve. We test the hypotheses that: 1) individual traits in different functionally and developmentally defined regions of the cranium are differentially environmentally, genetically, and phenotypically variable; 2) genetic covariance with other traits constrains traits in one region of the cranium more than those in others; 3) and regions of the cranium subject to different levels of mechanical strain differ in the magnitude of variation in individual traits. We find that the levels of environmental and genetic variation in individual traits are randomly distributed across regions of the cranium rather than being structured by developmental origin or degree of exposure to strain. Individual traits in the cranial vault tend to be more constrained by covariance with other traits than those in other regions. Traits in regions subject to high degrees of strain during mastication are not any more variable at any level than other traits. If these results are generalizable to other populations, they indicate that there is no reason to suppose that individual traits from any one part of the cranium are intrinsically less useful for reconstructing patterns of evolution than those from any other part.
Collapse
Affiliation(s)
- Charles C Roseman
- Department of Anthropology, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Simerly CR, Castro CA, Jacoby E, Grund K, Turpin J, McFarland D, Champagne J, Jimenez JB, Frost P, Bauer C, Hewitson L, Schatten G. Assisted Reproductive Technologies (ART) with baboons generate live offspring: a nonhuman primate model for ART and reproductive sciences. Reprod Sci 2010; 17:917-30. [PMID: 20631291 DOI: 10.1177/1933719110374114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human reproduction has benefited significantly by investigating nonhuman primate (NHP) models, especially rhesus macaques. To expand the Old World monkey species available for human reproductive studies, we present protocols in baboons, our closest Old World primate relatives, for assisted reproductive technologies (ART) leading to live born offspring. Baboons complement rhesus by confirming or modifying observations generated in humans often obtained by the study of clinically discarded specimens donated by anonymous infertility patient couples. Here, baboon ART protocols, including oocyte collection, in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), preimplantation development to blastocyst stage, and embryo transfer techniques are described. With baboon ART methodologies in place, motility during baboon fertilization was investigated by time-lapse video microscopy (TLVM). The first ART baboons produced by ICSI, a pair of male twins, were delivered naturally at 165 days postgestation. Genetic testing of these twins confirmed their ART parental origins and demonstrated that they are unrelated fraternal twins not identicals. These results have implications for ART outcomes, embryonic stem cell (ESC) derivation, and reproductive sciences.
Collapse
Affiliation(s)
- Calvin R Simerly
- Division of Developmental and Regenerative Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Pittsburgh Development Center; Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dental affinities of the C-group inhabitants of Hierakonpolis, Egypt: Nubian, Egyptian, or both? HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2010; 61:81-101. [PMID: 20185126 DOI: 10.1016/j.jchb.2010.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 01/13/2010] [Indexed: 11/24/2022]
Abstract
By c. 2050 BC a small community of C-Group Nubians was present deep within Egyptian territory at the city of Hierakonpolis. Their descendants stayed for the next 400 years. Today, the site of Hierakonpolis, 113 km north of Aswan, is known for its Egyptian deposits; however, it also contains a C-Group cemetery, which documents the northernmost occurrence of this culture. Sixty skeletons were excavated. Tombs feature Nubian architecture and goods, including leather garments, although the use of Egyptian mortuary practices and artifacts increased through time. Dates range from the early 11th Dynasty into the Second Intermediate period. During this time the Egyptian empire occupied Lower Nubia, and their state ideology vilified Nubians. Yet, at least in death, the C-Group inhabitants of Hierakonpolis proudly displayed their cultural heritage. Beyond discerning the reason(s) for their presence at the site (e.g., mercenaries, leather-workers, entertainers?), the focus of this report is to estimate their biological affinity. Were they akin to other Nubians, Egyptians, or both? And, was increasing 'Egyptianization' evident in the mortuary ritual accompanied by concomitant genetic influence? To address these queries, up to 36 dental morphological traits in the recovered individuals were compared to those in 26 regional comparative samples. The most influential traits were identified and phenetic affinities were calculated using the mean measure of divergence and other multivariate analyses. Assuming phenetic similarity provides an estimate of genetic relatedness, these affinities suggest the individuals comprising the C-Group sample were, and remained Nubian during their tenure at Hierakonpolis.
Collapse
|