1
|
Gérard C, Bardo A, Guéry JP, Pouydebat E, Narat V, Simmen B. Influence of food physical properties and environmental context on manipulative behaviors highlighted by new methodological approaches in zoo-housed bonobos (Pan paniscus). Am J Primatol 2024; 86:e23624. [PMID: 38546028 DOI: 10.1002/ajp.23624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 05/14/2024]
Abstract
Research on manipulative abilities in nonhuman primates, in the context of hominid evolution, has mostly focused on manual/pedal postures considered as static behaviors. While these behavioral repertoires highlighted the range of manipulative abilities in many species, manipulation is a dynamic process that mostly involves successive types of grips before reaching its goal. The present study aims to investigate the use of manual/pedal postures in zoo-housed bonobos in diverse dynamic food processing by using an innovative approach: the optimal matching analysis that compares sequences (i.e., succession of grasping postures) with each other. To characterize the manipulative techniques spontaneously employed by bonobos, we performed this sequential analysis of manual/pedal postures during 766 complete feeding sequences of 17 individuals. We analyzed the effectiveness with a score defined by a partial proxy of food intake (i.e., the number of mouthfuls) linked to a handling score measuring both the diversity and changes of manual postures during each sequence. We identified four techniques, used differently depending on the physical substrate on which the individual performed food manipulation and the food physical properties. Our results showed that manipulative techniques were more complex (i.e., higher handling score) for large foods and on substrates with lower stability. But the effectiveness score was not significantly lower for these items since manipulative complexity seemed to be compensated by a greater number of mouthfuls. It appeared that the techniques employed involved a trade-off between manipulative complexity and the amount of food ingested. This study allowed us to test and validate innovative analysis methods that are applicable to diverse ethological studies involving sequential events. Our results bring new data for a better understanding of the evolution of manual abilities in primates in association with different ecological contexts and both terrestrial and arboreal substrates and suggest that social and individual influences need to be explored further.
Collapse
Affiliation(s)
- Caroline Gérard
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, France
| | - Ameline Bardo
- Histoire Naturelle de l'Homme Préhistorique (HNHP), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, France
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Emmanuelle Pouydebat
- Mécanismes adaptatifs et évolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Victor Narat
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, France
| | - Bruno Simmen
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Dunmore CJ, Bachmann S, Synek A, Pahr DH, Skinner MM, Kivell TL. The deep trabecular structure of first metacarpals in extant hominids. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24695. [PMID: 36790736 DOI: 10.1002/ajpa.24695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES Recent studies have associated subarticular trabecular bone distribution in the extant hominid first metacarpal (Mc1) with observed thumb use, to infer fossil hominin thumb use. Here, we analyze the entire Mc1 to test for interspecific differences in: (1) the absolute volume of trabecular volume fraction, (2) the distribution of the deeper trabecular network, and (3) the distribution of trabeculae in the medullary cavity, especially beneath the Mc1 disto-radial flange. MATERIALS AND METHODS Trabecular bone was imaged using micro-computed tomography in a sample of Homo sapiens (n = 11), Pan paniscus (n = 10), Pan troglodytes (n = 11), Gorilla gorilla (n = 10) and Pongo sp., (n = 7). Using Canonical Holistic Morphometric Analysis (cHMA), we tested for interspecific differences in the trabecular bone volume fraction (BV/TV) and its relative distribution (rBV/TV) throughout the Mc1, including within the head, medullary cavity, and base. RESULTS P. paniscus had the highest, and H. sapiens the lowest, BV/TV relative to other species. rBV/TV distribution statistically distinguished the radial concentrations and lack of medullary trabecular bone in the H. sapiens Mc1 from all other hominids. H. sapiens and, to a lesser extent, G. gorilla also had a significantly higher trabecular volume beneath the disto-radial flange relative to other hominids. DISCUSSION These results are consistent with differences in observed thumb use in these species and may also reflect systemic differences in bone volume fraction. The trabecular bone extension into the medullary cavity and concentrations beneath the disto-radial flange may represent crucial biomechanical signals that will aid in the inference of fossil hominin thumb use.
Collapse
Affiliation(s)
- Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Sebastian Bachmann
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Alexander Synek
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
- Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Bardo A, Dunmore CJ, Cornette R, Kivell TL. Morphological integration and shape covariation between the trapezium and first metacarpal among extant hominids. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24800. [PMID: 37377134 DOI: 10.1002/ajpa.24800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 04/16/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVES The shape of the trapezium and first metacarpal (Mc1) markedly influence thumb mobility, strength, and the manual abilities of extant hominids. Previous research has typically focused solely on trapezium-Mc1 joint shape. Here we investigate how morphological integration and shape covariation between the entire trapezium (articular and non-articular surfaces) and the entire Mc1 reflect known differences in thumb use in extant hominids. MATERIALS AND METHODS We analyzed shape covariation in associated trapezia and Mc1s across a large, diverse sample of Homo sapiens (n = 40 individuals) and other extant hominids (Pan troglodytes, n = 16; Pan paniscus, n = 13; Gorilla gorilla gorilla, n = 27; Gorilla beringei, n = 6; Pongo pygmaeus, n = 14; Pongo abelii, n = 9) using a 3D geometric morphometric approach. We tested for interspecific significant differences in degree of morphological integration and patterns of shape covariation between the entire trapezium and Mc1, as well as within the trapezium-Mc1 joint specifically. RESULTS Significant morphological integration was only found in the trapezium-Mc1 joint of H. sapiens and G. g. gorilla. Each genus showed a specific pattern of shape covariation between the entire trapezium and Mc1 that was consistent with different intercarpal and carpometacarpal joint postures. DISCUSSION Our results are consistent with known differences in habitual thumb use, including a more abducted thumb during forceful precision grips in H. sapiens and a more adducted thumb in other hominids used for diverse grips. These results will help to infer thumb use in fossil hominins.
Collapse
Affiliation(s)
- Ameline Bardo
- Département Homme et Environnement, UMR 7194 - HNHP, CNRS-MNHN, Musée de l'Homme, Paris, France
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| | - Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| | - Raphaël Cornette
- Institute of Systematic, Evolution, Biodiversity (ISYEB), UMR 7205-CNRS/MNHN/UPMC/EPHE, National Museum of Natural History, Paris, France
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
4
|
Syeda SM, Tsegai ZJ, Cazenave M, Skinner MM, Kivell TL. Cortical bone distribution of the proximal phalanges in great apes: implications for reconstructing manual behaviours. J Anat 2023; 243:707-728. [PMID: 37358024 PMCID: PMC10557399 DOI: 10.1111/joa.13918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
Primate fingers are typically in direct contact with the environment during both locomotion and manipulation, and aspects of external phalangeal morphology are known to reflect differences in hand use. Since bone is a living tissue that can adapt in response to loading through life, the internal bone architecture of the manual phalanges should also reflect differences in manual behaviours. Here, we use the R package Morphomap to analyse high-resolution microCT scans of hominid proximal phalanges of digits 2-5 to determine whether cortical bone structure reflects variation in manual behaviours between bipedal (Homo), knuckle-walking (Gorilla, Pan) and suspensory (Pongo) taxa. We test the hypothesis that relative cortical bone distribution patterns and cross-sectional geometric properties will differ both among extant great apes and across the four digits due to locomotor and postural differences. Results indicate that cortical bone structure reflects the varied hand postures employed by each taxon. The phalangeal cortices of Pongo are significantly thinner and have weaker cross-sectional properties relative to the African apes, yet thick cortical bone under their flexor sheath ridges corresponds with predicted loading during flexed finger grips. Knuckle-walking African apes have even thicker cortical bone under the flexor sheath ridges, as well as in the region proximal to the trochlea, but Pan also has thicker diaphyseal cortices than Gorilla. Humans display a distinct pattern of distodorsal thickening, as well as relatively thin cortices, which may reflect the lack of phalangeal curvature combined with frequent use of flexed fingered hand grips during manipulation. Within each taxon, digits 2-5 have a similar cortical distribution in Pongo, Gorilla and, unexpectedly, Homo, which suggest similar loading of all fingers during habitual locomotion or hand use. In Pan, however, cortical thickness differs between the fingers, potentially reflecting differential loading during knuckle-walking. Inter- and intra-generic variation in phalangeal cortical bone structure reflects differences in manual behaviours, offering a comparative framework for reconstructing hand use in fossil hominins.
Collapse
Affiliation(s)
- Samar M. Syeda
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Zewdi J. Tsegai
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoIllinoisUSA
| | - Marine Cazenave
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
- Division of AnthropologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
- Department of Anatomy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Matthew M. Skinner
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Tracy L. Kivell
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
5
|
Gérard C, Bardo A, Guéry JP, Pouydebat E, Simmen B, Narat V. Manipulative repertoire of bonobos (Pan paniscus) in spontaneous feeding situation. Am J Primatol 2022; 84:e23383. [PMID: 35417066 DOI: 10.1002/ajp.23383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/01/2022] [Accepted: 03/19/2022] [Indexed: 12/23/2022]
Abstract
Comparative behavioral studies of hand use amongst primate species, including humans, have been central in research on evolutionary mechanisms. In particular, the manipulative abilities of our closest relatives, the chimpanzee (Pan troglodytes), have been widely described in various contexts, showing a high level of dexterity both in zoo and in natural conditions. In contrast, the study of bonobos' manipulative abilities has almost exclusively been carried out in experimental contexts related to tool use. The objective of the present study is to describe the richness of the manipulative repertoire of zoo-housed bonobos, in a spontaneous feeding context including various physical substrates to gain a larger insight into our evolutionary past. Our study describes a great variety of grasping postures and grip associations in bonobos, close to the range of manipulative repertoire in chimpanzees, confirming that the two species are not markedly different in terms of cognitive and morphological constraints associated with food manipulation. We also observed differences in manipulative behaviors between juveniles and adults, indicating a greater diversity in grip associations and grasping postures used in isolation with age, and a sex-biased use of tools with females using tools more often than males. These results are consistent with the previous results in the Pan genus and reinforce the hypothesis that the evolutionary mechanisms underlying the flexibility of manipulative behaviors are shared by both species and that these ecological strategies would have already evolved in their common ancestor.
Collapse
Affiliation(s)
- Caroline Gérard
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Ameline Bardo
- Histoire Naturelle de l'Homme Préhistorique (HNHP), Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Paris, France.,Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | | | - Emmanuelle Pouydebat
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Bruno Simmen
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Victor Narat
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| |
Collapse
|
6
|
van Leeuwen T, Vanneste M, D'Agostino P, Vereecke EE. Trapeziometacarpal joint mobility in gibbons (fam. Hylobatidae) and rhesus macaques (Macaca mulatta). AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 177:708-718. [PMID: 36787653 DOI: 10.1002/ajpa.24461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/15/2021] [Accepted: 11/22/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The purpose of this study is to investigate the differences in 3D kinematics of the trapeziometacarpal (TMC) joint between gibbons (fam. Hylobatidae) and macaques (Macaca mulatta), two non-human primate groups with a distinct locomotor behavior. Gibbons are highly arboreal species, while macaques are quadrupeds. Here, we investigate the mobility and structural constraints of the TMC joint in both these primates and evaluate the hypothesis that differences in locomotor mode are reflected in joint structure and function. MATERIALS AND METHODS We have developed an innovative software suite allowing for the quantification of in situ 3D kinematics based on medical imaging of the primate TMC joint using a unique sample of eight gibbons and seven macaques. These analyses are further supported by detailed dissection of the surrounding ligaments. RESULTS The data demonstrate distinct differences in TMC joint mobility between gibbons and macaques, with wide ranges of motion in the gibbon TMC joint and restricted movement in macaques. Furthermore, the dissections show little dissimilarity in ligament anatomy that could be associated with the differences in TMC joint capabilities. CONCLUSION We conclude that gibbons possess a highly mobile TMC joint and the ball-and-socket morphology allows for large ranges of motion. This type of morphology, however, does not offer much inherent stabilization. Lack of structural joint reinforcement suggests that gibbons may have difficulty in performing any type of power grasp with high loads. Macaques, on the other hand, are shown to have a considerably reinforced TMC joint, which is likely related to the habitual loading of the thumb during locomotion.
Collapse
Affiliation(s)
- Timo van Leeuwen
- Department of Development and Regeneration, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Maarten Vanneste
- Department of Development and Regeneration, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Priscilla D'Agostino
- Department of Development and Regeneration, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Louise Medical Center, Hand Clinic, Brussels, Belgium
| | - Evie E Vereecke
- Department of Development and Regeneration, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
The Precision of the Human Hand: Variability in Pinch Strength and Manual Dexterity. Symmetry (Basel) 2022. [DOI: 10.3390/sym14010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Changes in hand morphology throughout human evolution have facilitated the use of forceful pad-to-pad precision grips, contributing to the development of fine motor movement and dexterous manipulation typical of modern humans. Today, variation in human hand function may be affected by demographic and/or lifestyle factors, but these remain largely unexplored. We measured pinch grip strength and dexterity in a heterogeneous cross-sectional sample of human participants (n = 556) to test for the potential effects of sex, age, hand asymmetries, hand morphology, and frequently practiced manual activities across the lifespan. We found a significant effect of sex on pinch strength, dexterity, and different directional asymmetries, with the practice of manual musical instruments, significantly increasing female dexterity for both hands. Males and females with wider hands were also stronger, but not more precise, than those with longer hands, while the thumb-index ratio had no effect. Hand dominance asymmetry further had a significant effect on dexterity but not on pinch strength. These results indicate that different patterns of hand asymmetries and hand function are influenced in part by life experiences, improving our understanding of the link between hand form and function and offering a referential context for interpreting the evolution of human dexterity.
Collapse
|
8
|
van Leeuwen T, van Lenthe GH, Vereecke EE, Schneider MT. Stress distribution in the bonobo ( Pan paniscus) trapeziometacarpal joint during grasping. PeerJ 2021; 9:e12068. [PMID: 34703659 PMCID: PMC8489413 DOI: 10.7717/peerj.12068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/05/2021] [Indexed: 01/27/2023] Open
Abstract
The primate thumb plays a central role in grasping and the basal trapeziometacarpal (TMC) joint is critical to its function. The TMC joint morphology varies across primates, yet little is known about form-function interaction within in the TMC joint. The purpose of this study was to investigate how stress distributions within the joint differ between five grasping types commonly employed by bonobos (Pan paniscus). Five cadaveric bonobo forearms were CT scanned in five standardized positions of the hand as a basis for the generation of parametric finite element models to compare grasps. We have developed a finite element analysis (FEA) approach to investigate stress distribution patterns in the TMC joint associated with each grasp type. We hypothesized that the simulated stress distributions for each position would correspond with the patterns expected from a saddle-shaped joint. However, we also expected differences in stress patterns arising from instraspecific variations in morphology. The models showed a high agreement between simulated and expected stress patterns for each of the five grasps (86% of successful simulations), while partially (52%) and fully (14%) diverging patterns were also encountered. We identified individual variations of key morphological features in the bonobo TMC joint that account for the diverging stress patterns and emphasized the effect of interindividual morphological variation on joint functioning. This study gives unprecedented insight in the form-function interactions in the TMC joint of the bonobo and provides an innovative FEA approach to modelling intra-articular stress distributions, a valuable tool for the study of the primate thumb biomechanics.
Collapse
Affiliation(s)
- Timo van Leeuwen
- Department of Development and Regeneration, KU Leuven, KULAK, Kortrijk, Belgium.,Department of Mechanical Engineering: Biomechanics Section, KU Leuven, Leuven, Belgium
| | - G Harry van Lenthe
- Department of Mechanical Engineering: Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Evie E Vereecke
- Department of Development and Regeneration, KU Leuven, KULAK, Kortrijk, Belgium
| | - Marco T Schneider
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Osuna-Mascaró AJ, Ortiz C, Stolz C, Musgrave S, Sanz CM, Morgan DB, Fragaszy DM. Dexterity and technique in termite fishing by chimpanzees (Pan troglodytes troglodytes) in the Goualougo Triangle, Republic of Congo. Am J Primatol 2020; 83:e23215. [PMID: 33196112 PMCID: PMC7816224 DOI: 10.1002/ajp.23215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Although the phenomenon of termite fishing by chimpanzees (Pan troglodytes) has historical and theoretical importance for primatology, we still have a limited understanding of how chimpanzees accomplish this activity, and in particular, about details of skilled actions and the nature of individual variation in fishing techniques. We examined movements, hand positions, grips, and other details from remote video footage of seven adult and subadult female chimpanzees using plant probes to extract Macrotermes muelleri termites from epigeal nests. Six chimpanzees used exclusively one hand (left or right) to grip the probe during termite fishing. All chimpanzees used the same repertoire of actions to insert, adjust, and withdraw the probe but differed in the frequency of use of particular actions. Chimpanzees have been described as eating termites in two ways—directly from the probe or by sweeping them from the probe with one hand. We describe a third technique: sliding the probe between the digits of one stationary hand as the probe is extracted from the nest. The sliding technique requires complementary bimanual coordination (extracting with one hand and grasping lightly with the other, at the same time). We highlight the importance of actions with two hands—one gripping, one assisting—in termite fishing and discuss how probing techniques are correlated with performance. Additional research on digital function and on environmental, organismic, and task constraints will further reveal manual dexterity in termite fishing. Using remote video footage from camera traps in Goualougo Triangle, Republic of Congo, we describe chimpanzees' manual actions, postures, and positions, and movements of the probe while they fished for termites in epigeal termite nests.
Chimpanzees used diverse grips, with and without the thumb, and two hands—one gripping, one assisting—to handle the probe delicately and to move it precisely.
We describe a new technique for recovering termites: sliding the probe between the digits of one stationary hand as the probe is extracted from the nest with the other hand, and a new action: oscillatory movements of the probe while it was inserted in the nest.
Collapse
Affiliation(s)
| | - Camila Ortiz
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - Caroline Stolz
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - Stephanie Musgrave
- Department of Anthropology, University of Miami, Coral Gables, Florida, USA
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, Saint Louis, Missouri, USA.,Congo Program, Wildlife Conservation Society, Brazzaville, Republic of Congo
| | - David B Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Illinois, USA
| | | |
Collapse
|
10
|
Lefeuvre M, Gouat P, Mulot B, Cornette R, Pouydebat E. Behavioural variability among captive African elephants in the use of the trunk while feeding. PeerJ 2020; 8:e9678. [PMID: 32874780 PMCID: PMC7441921 DOI: 10.7717/peerj.9678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/16/2020] [Indexed: 11/20/2022] Open
Abstract
The Proboscideans, an order of mammals including elephants, are the largest of the Earth lands animals. One probable consequence of the rapid increase of their body size is the development of the trunk, a multitask highly sensitive organ used in a large repertoire of behaviours. The absence of bones in the trunk allows a substantial degree of freedom for movement in all directions, and this ability could underlie individual-level strategies. We hypothesised a stronger behavioural variability in simple tasks, and a correlation between the employed behaviours and the shape and size of the food. The observations of a captive group of African elephants allowed us to create a complete catalogue of trunk movements in feeding activities. We noted manipulative strategies and impact of food item properties on the performed behaviours. The results show that a given item is manipulated with a small panel of behaviours, and some behaviours are specific to a single shape of items. The study of the five main feeding behaviours emphasises a significant variability between the elephants. Each individual differed from every other individual in the proportion of at least one behaviour, and every behaviour was performed in different proportions by the elephants. Our findings suggest that during their lives elephants develop individual strategies adapted to the manipulated items, which increases their feeding efficiency.
Collapse
Affiliation(s)
- Maëlle Lefeuvre
- Adaptive Mechanisms and Evolution, CNRS/MNHN MECADEV, Paris, France.,Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Cracow, Poland
| | - Patrick Gouat
- Laboratoire d'Éthologie Expérimentale et Comparée E.A. 4443, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Baptiste Mulot
- Zooparc de Beauval & Beauval Nature, Saint-Aignan, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Paris, France
| | | |
Collapse
|
11
|
Dunmore CJ, Bardo A, Skinner MM, Kivell TL. Trabecular variation in the first metacarpal and manipulation in hominids. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171:219-241. [PMID: 31762017 DOI: 10.1002/ajpa.23974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The dexterity of fossil hominins is often inferred by assessing the comparative manual anatomy and behaviors of extant hominids, with a focus on the thumb. The aim of this study is to test whether trabecular structure is consistent with what is currently known about habitually loaded thumb postures across extant hominids. MATERIALS AND METHODS We analyze first metacarpal (Mc1) subarticular trabecular architecture in humans (Homo sapiens, n = 10), bonobos (Pan paniscus, n = 10), chimpanzees (Pan troglodytes, n = 11), as well as for the first time, gorillas (Gorilla gorilla gorilla, n = 10) and orangutans (Pongo sp., n = 1, Pongo abelii, n = 3 and Pongo pygmaeus, n = 5). Using a combination of subarticular and whole-epiphysis approaches, we test for significant differences in relative trabecular bone volume (RBV/TV) and degree of anisotropy (DA) between species. RESULTS Humans have significantly greater RBV/TV on the radiopalmar aspects of both the proximal and distal Mc1 subarticular surfaces and greater DA throughout the Mc1 head than other hominids. Nonhuman great apes have greatest RBV/TV on the ulnar aspect of the Mc1 head and the palmar aspect of the Mc1 base. Gorillas possessed significantly lower DA in the Mc1 head than any other taxon in our sample. DISCUSSION These results are consistent with abduction of the thumb during forceful "pad-to-pad" precision grips in humans and, in nonhuman great apes, a habitually adducted thumb that is typically used in precision and power grips. This comparative context will help infer habitual manipulative and locomotor grips in fossil hominins.
Collapse
Affiliation(s)
- Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Ameline Bardo
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
12
|
Key AJM, Dunmore CJ, Marzke MW. The unexpected importance of the fifth digit during stone tool production. Sci Rep 2019; 9:16724. [PMID: 31723201 PMCID: PMC6853985 DOI: 10.1038/s41598-019-53332-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/31/2019] [Indexed: 01/30/2023] Open
Abstract
Unique anatomical features of the human hand facilitate our ability to proficiently and forcefully perform precision grips and in-hand manipulation of objects. Extensive research has been conducted into the role of digits one to three during these manual behaviours, and the origin of the highly derived first digit anatomy that facilitates these capabilities. Stone tool production has long been thought a key influence in this regard. Despite previous research stressing the unique derived morphology of the human fifth digit little work has investigated why humans alone display these features. Here we examine the recruitment frequency, loading magnitude, and loading distribution of all digits on the non-dominant hand of skilled flintknappers during four technologically distinct types of Lower Palaeolithic stone tool production. Our data reveal the fifth digit to be heavily and frequently recruited during all studied behaviours. It occasionally incurred pressures, and was used in frequencies, greater or equal to those of the thumb, and frequently the same or greater than those of the index finger. The fifth digit therefore appears key to >2 million years of stone tool production activities, a behaviour that likely contributed to the derived anatomy observed in the modern human fifth ray.
Collapse
Affiliation(s)
- Alastair J M Key
- School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK.
| | | | - Mary W Marzke
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
13
|
Pouydebat E, Bardo A. An interdisciplinary approach to the evolution of grasping and manipulation. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Emmanuelle Pouydebat
- UMR 7179 CNRS/MNHN, Département d’Ecologie et de Gestion de la Biodiversité, Paris, France
| | - Ameline Bardo
- Animal Postcranial Evolution Laboratory, Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| |
Collapse
|
14
|
Fabre AC, Peckre L, Pouydebat E, Wall CE. Does the shape of forelimb long bones co-vary with grasping behaviour in strepsirrhine primates? Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Fine prehensile activities are often thought to have been associated with the evolution of the human hand. However, there has been no holistic approach establishing the link between the morphology of the forelimb and grasping ability in living primates. The present study investigated the possible relationships between grasping behaviour and the morphology of the forelimb in strepsirrhines in a phylogenetic context. To do so, grasping behaviour during feeding and the shape of the long bones of the forelimb were analysed for 22 species of strepsirrhines. The data obtained show that there is a phylogenetic signal in forelimb morphology in primates in relation to grasping behaviour, but also that there is a marked co-evolution between grasping behaviour and the shape of the humerus and radius. This latter finding suggests a functional association between grasping and forelimb shape, which in turn suggests that bone shape constrains or facilitates behaviour. This result may permit future inferences to be made regarding this behaviour in extinct species and deserves further examination in more detail.
Collapse
Affiliation(s)
- Anne-Claire Fabre
- Department of Life Sciences, The Natural History Museum, London, UK
- Department of Evolutionary Anthropology, Duke University, Durham, USA
- UMR 7179 C.N.R.S., M.N.H.N. Département d’Ecologie et de Gestion de la Biodiversité, Muséum National d’Histoire Naturelle, Paris, France
| | - Louise Peckre
- UMR 7179 C.N.R.S., M.N.H.N. Département d’Ecologie et de Gestion de la Biodiversité, Muséum National d’Histoire Naturelle, Paris, France
- Behavioral Ecology & Sociobiology Unit, German Primate Center Leibniz Institute for Primate Research, Deutsches Primatenzentrum GmbH, Kellnerweg, Göttingen, Germany
| | - Emmanuelle Pouydebat
- UMR 7179 C.N.R.S., M.N.H.N. Département d’Ecologie et de Gestion de la Biodiversité, Muséum National d’Histoire Naturelle, Paris, France
| | - Christine E Wall
- Department of Evolutionary Anthropology, Duke University, Durham, USA
| |
Collapse
|
15
|
Key A, Merritt SR, Kivell TL. Hand grip diversity and frequency during the use of Lower Palaeolithic stone cutting-tools. J Hum Evol 2018; 125:137-158. [DOI: 10.1016/j.jhevol.2018.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 11/15/2022]
|
16
|
van Leeuwen T, Vanneste M, Kerkhof FD, D’agostino P, Vanhoof MJM, Stevens JMG, Harry van Lenthe G, Vereecke EE. Mobility and structural constraints of the bonobo trapeziometacarpal joint. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Timo van Leeuwen
- Muscles & Movement, Biomedical Sciences Group, University of Leuven Campus Kulak, Kortrijk, Belgium
| | - Maarten Vanneste
- Muscles & Movement, Biomedical Sciences Group, University of Leuven Campus Kulak, Kortrijk, Belgium
| | - Faes D Kerkhof
- Muscles & Movement, Biomedical Sciences Group, University of Leuven Campus Kulak, Kortrijk, Belgium
| | - Priscilla D’agostino
- Muscles & Movement, Biomedical Sciences Group, University of Leuven Campus Kulak, Kortrijk, Belgium
| | - Marie J M Vanhoof
- Muscles & Movement, Biomedical Sciences Group, University of Leuven Campus Kulak, Kortrijk, Belgium
| | - Jeroen M G Stevens
- Centre for Research and Conservation, Royal Zoological Society Antwerp, Belgium
- Behavioural Ecology and Ecophysiology Group, University of Antwerp, Belgium
| | - G Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, University of Leuven, Leuven, Belgium
| | - Evie E Vereecke
- Muscles & Movement, Biomedical Sciences Group, University of Leuven Campus Kulak, Kortrijk, Belgium
| |
Collapse
|
17
|
Bardo A, Vigouroux L, Kivell TL, Pouydebat E. The impact of hand proportions on tool grip abilities in humans, great apes and fossil hominins: A biomechanical analysis using musculoskeletal simulation. J Hum Evol 2018; 125:106-121. [PMID: 30502891 DOI: 10.1016/j.jhevol.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 10/27/2022]
Abstract
Differences in grip techniques used across primates are usually attributed to variation in thumb-finger proportions and muscular anatomy of the hand. However, this cause-effect relationship is not fully understood because little is known about the biomechanical functioning and mechanical loads (e.g., muscle or joint forces) of the non-human primate hand compared to that of humans during object manipulation. This study aims to understand the importance of hand proportions on the use of different grip strategies used by humans, extant great apes (bonobos, gorillas and orangutans) and, potentially, fossil hominins (Homo naledi and Australopithecus sediba) using a musculoskeletal model of the hand. Results show that certain grips are more challenging for some species, particularly orangutans, than others, such that they require stronger muscle forces for a given range of motion. Assuming a human-like range of motion at each hand joint, simulation results show that H. naledi and A. sediba had the biomechanical potential to use the grip techniques considered important for stone tool-related behaviors in humans. These musculoskeletal simulation results shed light on the functional consequences of the different hand proportions among extant and extinct hominids and the different manipulative abilities found in humans and great apes.
Collapse
Affiliation(s)
- Ameline Bardo
- Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France; Department of Adaptations du Vivant, UMR 7179-CNRS/MNHN, MECADEV, Paris, 75321, France; Animal Postcranial Evolution Laboratory, Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, United Kingdom.
| | - Laurent Vigouroux
- Institute of Movement Sciences, UMR 7287-CNRS, Aix-Marseille University, Marseille, 13288, France
| | - Tracy L Kivell
- Animal Postcranial Evolution Laboratory, Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, United Kingdom; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
| | - Emmanuelle Pouydebat
- Department of Adaptations du Vivant, UMR 7179-CNRS/MNHN, MECADEV, Paris, 75321, France
| |
Collapse
|
18
|
Stephens NB, Kivell TL, Pahr DH, Hublin JJ, Skinner MM. Trabecular bone patterning across the human hand. J Hum Evol 2018; 123:1-23. [PMID: 30072187 DOI: 10.1016/j.jhevol.2018.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023]
Abstract
Hand bone morphology is regularly used to link particular hominin species with behaviors relevant to cognitive/technological progress. Debates about the functional significance of differing hominin hand bone morphologies tend to rely on establishing phylogenetic relationships and/or inferring behavior from epigenetic variation arising from mechanical loading and adaptive bone modeling. Most research focuses on variation in cortical bone structure, but additional information about hand function may be provided through the analysis of internal trabecular structure. While primate hand bone trabecular structure is known to vary in ways that are consistent with expected joint loading differences during manipulation and locomotion, no study exists that has documented this variation across the numerous bones of the hand. We quantify the trabecular structure in 22 bones of the human hand (early/extant modern Homo sapiens) and compare structural variation between two groups associated with post-agricultural/industrial (post-Neolithic) and foraging/hunter-gatherer (forager) subsistence strategies. We (1) establish trabecular bone volume fraction (BV/TV), modulus (E), degree of anisotropy (DA), mean trabecular thickness (Tb.Th) and spacing (Tb.Sp); (2) visualize the average distribution of site-specific BV/TV for each bone; and (3) examine if the variation in trabecular structure is consistent with expected joint loading differences among the regions of the hand and between the groups. Results indicate similar distributions of trabecular bone in both groups, with those of the forager sample presenting higher BV/TV, E, and lower DA, suggesting greater and more variable loading during manipulation. We find indications of higher loading along the ulnar side of the forager sample hand, with high site-specific BV/TV distributions among the carpals that are suggestive of high loading while the wrist moves through the 'dart-thrower's' motion. These results support the use of trabecular structure to infer behavior and have direct implications for refining our understanding of human hand evolution and fossil hominin hand use.
Collapse
Affiliation(s)
- Nicholas B Stephens
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NZ, United Kingdom; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Dieter H Pahr
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NZ, United Kingdom; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Neufuss J, Robbins MM, Baeumer J, Humle T, Kivell TL. Manual skills for food processing by mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Johanna Neufuss
- Animal Postcranial Evolution (APE) Laboratory, Skeletal Biology Research Centre, School of Anthropology & Conservation, University of Kent, Canterbury, UK
| | - Martha M Robbins
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jana Baeumer
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tatyana Humle
- Durrell Institute of Conservation and Ecology, School of Anthropology & Conservation, University of Kent, Canterbury, UK
| | - Tracy L Kivell
- Animal Postcranial Evolution (APE) Laboratory, Skeletal Biology Research Centre, School of Anthropology & Conservation, University of Kent, Canterbury, UK
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
20
|
van Leeuwen T, Vanhoof MJM, Kerkhof FD, Stevens JMG, Vereecke EE. Insights into the musculature of the bonobo hand. J Anat 2018; 233:328-340. [PMID: 29938781 PMCID: PMC6081514 DOI: 10.1111/joa.12841] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 02/01/2023] Open
Abstract
The human hand is well known for its unique dexterity which is largely facilitated by a highly mobile, long and powerful thumb that enables both tool manufacturing and use, a key component of human evolution. The bonobo (Pan paniscus), the closest extant relative to modern humans together with the chimpanzee (Pan troglodytes), also possesses good manipulative capabilities but with a lower level of dexterity compared with modern humans. Despite the close phylogenetic relationship between bonobos and humans, detailed quantitative data of the bonobo forelimb musculature remains largely lacking. To understand how morphology may influence dexterity, we investigated the functional anatomy of the bonobo hand using a unique sample of eight bonobo cadavers, along with one chimpanzee and one human (Homo sapiens) cadaver. We performed detailed dissections of unembalmed specimens to collect quantitative datasets of the extrinsic and intrinsic hand musculature, in addition to qualitative descriptions of the forelimb muscle configurations, allowing estimation of force-generating capacities for each functional group. Furthermore, we used medical imaging to quantify the articular surface of the trapeziometacarpal joint to estimate the intra-articular pressure. Our results show that the force-generating capacity for most functional groups of the extrinsic and intrinsic hand muscles in bonobos is largely similar to that of humans, with differences in relative importance of the extensors and rotators. The bonobo thumb musculature has a lower force-generating capacity than observed in the human specimen, but the estimated maximal intra-articular pressure is higher in bonobos. Most importantly, bonobos show a higher degree of functional coupling between the muscles of the thumb, index and lateral fingers than observed in humans. It is conceivable that differentiation and individualization of the hand muscles rather than relative muscle development explain the higher level of dexterity of humans compared with that of bonobos.
Collapse
Affiliation(s)
- Timo van Leeuwen
- Muscles & MovementBiomedical Sciences GroupUniversity of Leuven Campus KulakKortrijkBelgium
| | - Marie J. M. Vanhoof
- Muscles & MovementBiomedical Sciences GroupUniversity of Leuven Campus KulakKortrijkBelgium
| | - Faes D. Kerkhof
- Muscles & MovementBiomedical Sciences GroupUniversity of Leuven Campus KulakKortrijkBelgium
| | - Jeroen M. G. Stevens
- Centre for Research and ConservationRoyal Zoological Society AntwerpAntwerpBelgium
- Behavioural Ecology and Ecophysiology GroupUniversity of AntwerpAntwerpBelgium
| | - Evie E. Vereecke
- Muscles & MovementBiomedical Sciences GroupUniversity of Leuven Campus KulakKortrijkBelgium
| |
Collapse
|
21
|
Anzeraey A, Aumont M, Decamps T, Herrel A, Pouydebat E. The effect of food properties on grasping and manipulation in the aquatic frog Xenopus laevis. ACTA ACUST UNITED AC 2017; 220:4486-4491. [PMID: 28982969 DOI: 10.1242/jeb.159442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/03/2017] [Indexed: 11/20/2022]
Abstract
The ability to grasp an object is fundamental from an evolutionary perspective. Involved in many daily activities, grasping has been extensively studied in primates and other mammals. Yet other groups of tetrapods, including anurans, have also evolved significant forelimb prehensile capacities that are often thought to have originated in an arboreal context. In addition, grasping is also observed in aquatic species. But how aquatic frogs use their forelimbs to capture and manipulate prey remains largely unknown. The aim of this study is to explore how the grasping and manipulation of food items in aquatic frogs is impacted by food properties such as size and mobility. To do so, we uses the aquatic frog Xenopus laevis and quantified the use of the hands and fingers while processing mobile and stationary prey of different sizes (small, intermediate and large). Our results show that X. laevis is able to individualize the digits and that the mobility and the length of the prey significantly influence the kind of grasping pattern used. Grasping abilities are thus not specific to terrestrial or arboreal species. These results illustrate how prey properties impact grasping and manipulation strategies in an aquatic frog and shed further light on the ecological contexts that may have given rise to the origin of grasping in frogs.
Collapse
Affiliation(s)
- Aude Anzeraey
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, 75005, Paris Cedex 5, France
| | - Madeleine Aumont
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, 75005, Paris Cedex 5, France
| | - Thierry Decamps
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, 75005, Paris Cedex 5, France
| | - Anthony Herrel
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, 75005, Paris Cedex 5, France
| | - Emmanuelle Pouydebat
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, 75005, Paris Cedex 5, France
| |
Collapse
|
22
|
Bardo A, Cornette R, Borel A, Pouydebat E. Manual function and performance in humans, gorillas, and orangutans during the same tool use task. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:821-836. [DOI: 10.1002/ajpa.23323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/13/2017] [Accepted: 09/10/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Ameline Bardo
- Paris Descartes University, Sorbonne Paris Cité; Paris 75006 France
- Department of Ecology and Management of Biodiversity; UMR 7179-CNRS/MNHN, MECADEV; Paris 75321 France
| | - Raphaël Cornette
- Institute of Systematic; Evolution, Biodiversity (ISYEB), UMR 7205-CNRS/MNHN/UPMC/EPHE, National Museum of Natural History; Paris 75005 France
| | - Antony Borel
- Department of Prehistory; UMR 7194-CNRS-MNHN, Musée de l'Homme; Paris 75116 France
| | - Emmanuelle Pouydebat
- Department of Ecology and Management of Biodiversity; UMR 7179-CNRS/MNHN, MECADEV; Paris 75321 France
| |
Collapse
|