1
|
Neth BJ, Huynh K, Giles C, Wang T, Mellett NA, Duong T, Blach C, Schimmel L, Register TC, Blennow K, Zetterberg H, Batra R, Schweickart A, Dilmore AH, Martino C, Arnold M, Krumsiek J, Han X, Dorrestein PC, Knight R, Meikle PJ, Craft S, Kaddurah-Daouk R. Consuming a modified Mediterranean ketogenic diet reverses the peripheral lipid signature of Alzheimer's disease in humans. COMMUNICATIONS MEDICINE 2025; 5:11. [PMID: 39779882 PMCID: PMC11711287 DOI: 10.1038/s43856-024-00682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a major neurodegenerative disorder with significant environmental factors, including diet and lifestyle, influencing its onset and progression. Although previous studies have suggested that certain diets may reduce the incidence of AD, the underlying mechanisms remain unclear. METHOD In this post-hoc analysis of a randomized crossover study of 20 elderly adults, we investigated the effects of a modified Mediterranean ketogenic diet (MMKD) on the plasma lipidome in the context of AD biomarkers, analyzing 784 lipid species across 47 classes using a targeted lipidomics platform. RESULTS Here we identified substantial changes in response to MMKD intervention, aside from metabolic changes associated with a ketogenic diet, we identified a a global elevation across all plasmanyl and plasmenyl ether lipid species, with many changes linked to clinical and biochemical markers of AD. We further validated our findings by leveraging our prior clinical studies into lipid related changeswith AD (n = 1912), and found that the lipidomic signature with MMKD was inversely associated with the lipidomic signature of prevalent and incident AD. CONCLUSIONS Intervention with a MMKD was able to alter the plasma lipidome in ways that contrast with AD-associated patterns. Given its low risk and cost, MMKD could be a promising approach for prevention or early symptomatic treatment of AD.
Collapse
Affiliation(s)
- Bryan J Neth
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Tingting Wang
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Natalie A Mellett
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Thy Duong
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Thomas C Register
- Department of Pathology - Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richa Batra
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Annalise Schweickart
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Zhang X, Zhao S, Ma Y, Kang W, Zhou W, Zhang C, Abliz Z. Lipidomic profiling of the febrile rat hypothalamus by the intervention of Artemisia japonica extracts. J Pharm Biomed Anal 2024; 255:116588. [PMID: 39644683 DOI: 10.1016/j.jpba.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Artemisia species have been regarded as an important source of ethnic medicinal plants, such as A. annua and A. capillaris, both of which are widely used in clinical treatment. The clinical efficacy of A. japonica is similar to that of A. capillaris, but fewer pharmaceutical studies have been reported. Given that the extracts of A. japonica were observed to reduce the rectal temperature of febrile rats induced by LPS, this study was designed to demonstrate this regulatory effect of the extracts, with a particular focus on the lipidomic profiling of the febrile rat hypothalamus. A total of 72 differential metabolites were filtered out and the association between lipid profiling and potential mechanism was explored. Sphingolipid, glycerophospholipid, arachidonic acid and ether lipid metabolism pathways were significantly enriched. TNF-α, IL-6 and PGE2 cytokines in the hypothalamus were significantly downregulated by the intervention of the extracts of A. japonica. Enzymatic reaction enrichment analysis suggested that PEMT and COX-2 might be potential targets of the efficacy, and which were testified to be downregulated by the ELISA assay under the extracts intervention.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China; College of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Suqing Zhao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China; College of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yuxue Ma
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China; College of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Wen Kang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China; College of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Wenbin Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China; College of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Chen Zhang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China; Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China; College of Pharmacy, Minzu University of China, Beijing 100081, China; Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
3
|
Capocchi JK, Figueroa-Romero C, Dunham SJB, Faraci G, Rothman JA, Whiteson KL, Seo DO, Holtzman DM, Grabrucker S, Nolan YM, Kaddurah-Daouk R, Jett DA. Symposium: What Does the Microbiome Tell Us about Prevention and Treatment of AD/ADRD? J Neurosci 2024; 44:e1295242024. [PMID: 39384409 PMCID: PMC11466070 DOI: 10.1523/jneurosci.1295-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 10/11/2024] Open
Abstract
Alzheimer's disease (AD) and Alzheimer's disease-related dementias (ADRDs) are broad-impact multifactorial neurodegenerative diseases. Their complexity presents unique challenges for developing effective therapies. This review highlights research presented at the 2024 Society for Neuroscience meeting which emphasized the gut microbiome's role in AD pathogenesis by influencing brain function and neurodegeneration through the microbiota-gut-brain axis. This emerging evidence underscores the potential for targeting the gut microbiota to treat AD/ADRD.
Collapse
Affiliation(s)
| | | | | | - Gina Faraci
- University of California, Irvine, Irvine, California 92697
| | - Jason A Rothman
- University of California, Irvine, Irvine, California 92697
- University of California, Riverside, Riverside, California 92521
| | | | - Dong-Oh Seo
- Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - David M Holtzman
- Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Stefanie Grabrucker
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 XF62, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 XF62, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | | | - David A Jett
- National Institute of Neurological Disorders and Stroke, Rockville, Maryland 20852
| |
Collapse
|
4
|
Beyene HB, Huynh K, Wang T, Paul S, Cinel M, Mellett NA, Olshansky G, Meikle TG, Watts GF, Hung J, Hui J, Beilby J, Blangero J, Moses EK, Shaw JE, Magliano DJ, Giles C, Meikle PJ. Development and validation of a plasmalogen score as an independent modifiable marker of metabolic health: population based observational studies and a placebo-controlled cross-over study. EBioMedicine 2024; 105:105187. [PMID: 38861870 PMCID: PMC11215217 DOI: 10.1016/j.ebiom.2024.105187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Decreased levels of circulating ethanolamine plasmalogens [PE(P)], and a concurrent increase in phosphatidylethanolamine (PE) are consistently reported in various cardiometabolic conditions. Here we devised, a plasmalogen score (Pls Score) that mirrors a metabolic signal that encompasses the levels of PE(P) and PE and captures the natural variation in circulating plasmalogens and perturbations in their metabolism associated with disease, diet, and lifestyle. METHODS We utilised, plasma lipidomes from the Australian Obesity, Diabetes and Lifestyle study (AusDiab; n = 10,339, 55% women) a nationwide cohort, to devise the Pls Score and validated this in the Busselton Health Study (BHS; n = 4,492, 56% women, serum lipidome) and in a placebo-controlled crossover trial involving Shark Liver Oil (SLO) supplementation (n = 10, 100% men). We examined the association of the Pls Score with cardiometabolic risk factors, type 2 diabetes mellitus (T2DM), cardiovascular disease and all-cause mortality (over 17 years). FINDINGS In a model, adjusted for age, sex and BMI, individuals in the top quintile of the Pls Score (Q5) relative to Q1 had an OR of 0.31 (95% CI 0.21-0.43), 0.39 (95% CI 0.25-0.61) and 0.42 (95% CI 0.30-0.57) for prevalent T2DM, incident T2DM and prevalent cardiovascular disease respectively, and a 34% lower mortality risk (HR = 0.66; 95% CI 0.56-0.78). Significant associations between diet and lifestyle habits and Pls Score exist and these were validated through dietary supplementation of SLO that resulted in a marked change in the Pls Score. INTERPRETATION The Pls Score as a measure that captures the natural variation in circulating plasmalogens, was not only inversely related to cardiometabolic risk and all-cause mortality but also associate with diet and lifestyle. Our results support the potential utility of the Pls Score as a biomarker for metabolic health and its responsiveness to dietary interventions. Further research is warranted to explore the underlying mechanisms and optimise the practical implementation of the Pls Score in clinical and population settings. FUNDING National Health and Medical Research Council (NHMRC grant 233200), National Health and Medical Research Council of Australia (Project grant APP1101320), Health Promotion Foundation of Western Australia, and National Health and Medical Research Council of Australia Senior Research Fellowship (#1042095).
Collapse
Affiliation(s)
- Habtamu B Beyene
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia
| | - Tingting Wang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia
| | - Sudip Paul
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Michelle Cinel
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | | | - Thomas G Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, Perth, WA, Australia; Cardiometabolic Service, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, Australia
| | - Joseph Hung
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Jennie Hui
- PathWest Laboratory Medicine of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia; School of Population and Global Health, University of Western Australia, Crawley, WA, Australia
| | - John Beilby
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - John Blangero
- South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Eric K Moses
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jonathan E Shaw
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Dianna J Magliano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia.
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Navolokin N, Adushkina V, Zlatogorskaya D, Telnova V, Evsiukova A, Vodovozova E, Eroshova A, Dosadina E, Diduk S, Semyachkina-Glushkovskaya O. Promising Strategies to Reduce the SARS-CoV-2 Amyloid Deposition in the Brain and Prevent COVID-19-Exacerbated Dementia and Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:788. [PMID: 38931455 PMCID: PMC11206883 DOI: 10.3390/ph17060788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic, caused by infection with the SARS-CoV-2 virus, is associated with cognitive impairment and Alzheimer's disease (AD) progression. Once it enters the brain, the SARS-CoV-2 virus stimulates accumulation of amyloids in the brain that are highly toxic to neural cells. These amyloids may trigger neurological symptoms in COVID-19. The meningeal lymphatic vessels (MLVs) play an important role in removal of toxins and mediate viral drainage from the brain. MLVs are considered a promising target to prevent COVID-19-exacerbated dementia. However, there are limited methods for augmentation of MLV function. This review highlights new discoveries in the field of COVID-19-mediated amyloid accumulation in the brain associated with the neurological symptoms and the development of promising strategies to stimulate clearance of amyloids from the brain through lymphatic and other pathways. These strategies are based on innovative methods of treating brain dysfunction induced by COVID-19 infection, including the use of photobiomodulation, plasmalogens, and medicinal herbs, which offer hope for addressing the challenges posed by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Nikita Navolokin
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Daria Zlatogorskaya
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Arina Evsiukova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Anna Eroshova
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Elina Dosadina
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Sergey Diduk
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
- Research Institute of Carcinogenesis of the N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe Shosse 24, 115522 Moscow, Russia
| | | |
Collapse
|
6
|
Peña-Bautista C, Álvarez-Sánchez L, García-Lluch G, Raga L, Quevedo P, Peretó M, Balaguer A, Baquero M, Cháfer-Pericás C. Relationship between Plasma Lipid Profile and Cognitive Status in Early Alzheimer Disease. Int J Mol Sci 2024; 25:5317. [PMID: 38791355 PMCID: PMC11120743 DOI: 10.3390/ijms25105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer disease (AD) is a heterogeneous and complex disease in which different pathophysiological mechanisms are involved. This heterogenicity can be reflected in different atrophy patterns or clinical manifestations. Regarding biochemical pathways involved in early AD, lipid metabolism plays an important role; therefore, lipid levels have been evaluated as potential AD diagnosis biomarkers, and their levels could be related to different AD clinical manifestations. Therefore, the aim of this work is to study AD lipid profiles from early AD patients and evaluate their clinical significance. For this purpose, untargeted plasma lipidomic analysis was carried out in early AD patients (n = 31) diagnosed with cerebrospinal fluid (CSF) biomarkers. Cluster analysis was carried out to define early AD subgroups according to the lipid levels. Then, the clinical significance of each lipid profile subgroup was studied, analyzing differences for other variables (cognitive status, CSF biomarkers, medication, comorbidities, age, and gender). The cluster analysis revealed two different groups of AD patients. Cluster 1 showed higher levels of plasma lipids and better cognitive status than Cluster 2. However, no differences were found for the other variables (age, gender, medication, comorbidities, cholesterol, and triglycerides levels) between both groups. Plasma lipid levels could differentiate two early AD subgroups, which showed different cognitive statuses. However, further research with a large cohort and longitudinal study evaluating the clinical evolution of these patients is required. In general, it would involve a relevant advance in the knowledge of AD pathological mechanisms, potential treatments, and precision medicine.
Collapse
Affiliation(s)
- Carmen Peña-Bautista
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
| | - Lourdes Álvarez-Sánchez
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
| | - Gemma García-Lluch
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
| | - Luis Raga
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
| | - Paola Quevedo
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
| | - Mar Peretó
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
| | - Angel Balaguer
- Faculty of Mathematical Sciences, University of Valencia, 46100 Burjassot, Spain;
| | - Miguel Baquero
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
- Division of Neurology, Hospital Universitari I Politècnic La Fe, 46026 Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
| |
Collapse
|
7
|
Kim JP, Nho K, Wang T, Huynh K, Arnold M, Risacher SL, Bice PJ, Han X, Kristal BS, Blach C, Baillie R, Kastenmüller G, Meikle PJ, Saykin AJ, Kaddurah-Daouk R. Circulating lipid profiles are associated with cross-sectional and longitudinal changes of central biomarkers for Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.12.23291054. [PMID: 37398438 PMCID: PMC10312871 DOI: 10.1101/2023.06.12.23291054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Investigating the association of lipidome profiles with central Alzheimer's disease (AD) biomarkers, including amyloid/tau/neurodegeneration (A/T/N), can provide a holistic view between the lipidome and AD. We performed cross-sectional and longitudinal association analysis of serum lipidome profiles with AD biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort (N=1,395). We identified lipid species, classes, and network modules that were significantly associated with cross-sectional and longitudinal changes of A/T/N biomarkers for AD. Notably, we identified the lysoalkylphosphatidylcholine (LPC(O)) as associated with "A/N" biomarkers at baseline at lipid species, class, and module levels. Also, GM3 ganglioside showed significant association with baseline levels and longitudinal changes of the "N" biomarkers at species and class levels. Our study of circulating lipids and central AD biomarkers enabled identification of lipids that play potential roles in the cascade of AD pathogenesis. Our results suggest dysregulation of lipid metabolic pathways as precursors to AD development and progression.
Collapse
Affiliation(s)
- Jun Pyo Kim
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Neurology, Samsung Medical Center, Seoul, Korea
| | - Kwangsik Nho
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tingting Wang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
- Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Shannon L Risacher
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paula J Bice
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Bruce S Kristal
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
- Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia
| | - Andrew J Saykin
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
8
|
Wang T, Huynh K, Giles C, Mellett NA, Duong T, Nguyen A, Lim WLF, Smith AAT, Olshansky G, Cadby G, Hung J, Hui J, Beilby J, Watts GF, Chatterjee P, Martins I, Laws SM, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Taddei K, Doré V, Fripp J, Arnold M, Kastenmüller G, Nho K, Saykin AJ, Baillie R, Han X, Martins RN, Moses EK, Kaddurah‐Daouk R, Meikle PJ. APOE ε2 resilience for Alzheimer's disease is mediated by plasma lipid species: Analysis of three independent cohort studies. Alzheimers Dement 2022; 18:2151-2166. [PMID: 35077012 PMCID: PMC9787288 DOI: 10.1002/alz.12538] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The apolipoprotein E (APOE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease. However, its effect on lipid metabolic pathways, and their mediating effect on disease risk, is poorly understood. METHODS We performed lipidomic analysis on three independent cohorts (the Australian Imaging, Biomarkers and Lifestyle [AIBL] flagship study, n = 1087; the Alzheimer's Disease Neuroimaging Initiative [ADNI] 1 study, n = 819; and the Busselton Health Study [BHS], n = 4384), and we defined associations between APOE ε2 and ε4 and 569 plasma/serum lipid species. Mediation analysis defined the proportion of the treatment effect of the APOE genotype mediated by plasma/serum lipid species. RESULTS A total of 237 and 104 lipid species were associated with APOE ε2 and ε4, respectively. Of these 68 (ε2) and 24 (ε4) were associated with prevalent Alzheimer's disease. Individual lipid species or lipidomic models of APOE genotypes mediated up to 30% and 10% of APOE ε2 and ε4 treatment effect, respectively. DISCUSSION Plasma lipid species mediate the treatment effect of APOE genotypes on Alzheimer's disease and as such represent a potential therapeutic target.
Collapse
|
9
|
François M, Karpe AV, Liu JW, Beale DJ, Hor M, Hecker J, Faunt J, Maddison J, Johns S, Doecke JD, Rose S, Leifert WR. Multi-Omics, an Integrated Approach to Identify Novel Blood Biomarkers of Alzheimer's Disease. Metabolites 2022; 12:949. [PMID: 36295851 PMCID: PMC9610280 DOI: 10.3390/metabo12100949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The metabolomic and proteomic basis of mild cognitive impairment (MCI) and Alzheimer's disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism and AD/MCI pathogenesis is unclear. This study compared the metabolomic and proteomic signature of plasma from cognitively normal (CN) and dementia patients diagnosed with MCI or AD, to identify specific cellular pathways and new biomarkers altered with the progression of the disease. We analysed 80 plasma samples from individuals with MCI or AD, as well as age- and gender-matched CN individuals, by utilising mass spectrometry methods and data analyses that included combined pathway analysis and model predictions. Several proteins clearly identified AD from the MCI and CN groups and included plasma actins, mannan-binding lectin serine protease 1, serum amyloid A2, fibronectin and extracellular matrix protein 1 and Keratin 9. The integrated pathway analysis showed various metabolic pathways were affected in AD, such as the arginine, alanine, aspartate, glutamate and pyruvate metabolism pathways. Therefore, our multi-omics approach identified novel plasma biomarkers for the MCI and AD groups, identified changes in metabolic processes, and may form the basis of a biomarker panel for stratifying dementia participants in future clinical trials.
Collapse
Affiliation(s)
- Maxime François
- CSIRO Health & Biosecurity, Human Health Program, Molecular Diagnostic Solutions Group, Adelaide, SA 5000, Australia
| | - Avinash V. Karpe
- CSIRO Land & Water, Metabolomics Unit, Ecosciences Precinct, Dutton Park, QLD 4001, Australia
| | - Jian-Wei Liu
- CSIRO Land & Water, Agricultural and Environmental Sciences Precinct, Acton, Canberra, ACT 2601, Australia
| | - David J. Beale
- CSIRO Land & Water, Metabolomics Unit, Ecosciences Precinct, Dutton Park, QLD 4001, Australia
| | - Maryam Hor
- CSIRO Health & Biosecurity, Human Health Program, Molecular Diagnostic Solutions Group, Adelaide, SA 5000, Australia
| | - Jane Hecker
- Department of Internal Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Jeff Faunt
- Department of General Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - John Maddison
- Aged Care Rehabilitation & Palliative Care, SA Health, Modbury Hospital, Modbury, SA 5092, Australia
| | - Sally Johns
- Aged Care Rehabilitation & Palliative Care, SA Health, Modbury Hospital, Modbury, SA 5092, Australia
| | - James D. Doecke
- Australian e-Health Research Centre, CSIRO, Level 7, Surgical Treatment and Rehabilitation Service—STARS, Herston, QLD 4029, Australia
| | - Stephen Rose
- Australian e-Health Research Centre, CSIRO, Level 7, Surgical Treatment and Rehabilitation Service—STARS, Herston, QLD 4029, Australia
| | - Wayne R. Leifert
- CSIRO Health & Biosecurity, Human Health Program, Molecular Diagnostic Solutions Group, Adelaide, SA 5000, Australia
| |
Collapse
|
10
|
Theiss EL, Griebsch LV, Lauer AA, Janitschke D, Erhardt VKJ, Haas EC, Kuppler KN, Radermacher J, Walzer O, Portius D, Grimm HS, Hartmann T, Grimm MOW. Vitamin B12 Attenuates Changes in Phospholipid Levels Related to Oxidative Stress in SH-SY5Y Cells. Cells 2022; 11:cells11162574. [PMID: 36010649 PMCID: PMC9406929 DOI: 10.3390/cells11162574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is closely linked to Alzheimer’s disease (AD), and is detected peripherally as well as in AD-vulnerable brain regions. Oxidative stress results from an imbalance between the generation and degradation of reactive oxidative species (ROS), leading to the oxidation of proteins, nucleic acids, and lipids. Extensive lipid changes have been found in post mortem AD brain tissue; these changes include the levels of total phospholipids, sphingomyelin, and ceramide, as well as plasmalogens, which are highly susceptible to oxidation because of their vinyl ether bond at the sn-1 position of the glycerol-backbone. Several lines of evidence indicate that a deficiency in the neurotropic vitamin B12 is linked with AD. In the present study, treatment of the neuroblastoma cell line SH-SY5Y with vitamin B12 resulted in elevated levels of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and plasmalogens. Vitamin B12 also protected plasmalogens from hydrogen peroxide (H2O2)-induced oxidative stress due to an elevated expression of the ROS-degrading enzymes superoxide-dismutase (SOD) and catalase (CAT). Furthermore, vitamin B12 elevates plasmalogen synthesis by increasing the expression of alkylglycerone phosphate synthase (AGPS) and choline phosphotransferase 1 (CHPT1) in SH-SY5Y cells exposed to H2O2-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Oliver Walzer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany
| | | | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Correspondence: or
| |
Collapse
|
11
|
Goodenowe DB, Haroon J, Kling MA, Zielinski M, Mahdavi K, Habelhah B, Shtilkind L, Jordan S. Targeted Plasmalogen Supplementation: Effects on Blood Plasmalogens, Oxidative Stress Biomarkers, Cognition, and Mobility in Cognitively Impaired Persons. Front Cell Dev Biol 2022; 10:864842. [PMID: 35874835 PMCID: PMC9297104 DOI: 10.3389/fcell.2022.864842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022] Open
Abstract
Plasmalogens are a specific type of glycerophospholipid found in especially high levels in neuronal membranes. Decreased blood and brain levels of docosahexaenoic acid (DHA) containing plasmalogens are associated with decreased cognition and neuromuscular function in humans. Administration of 1-O-alkyl-2-acylglycerol (AAG) plasmalogen precursors containing DHA at the sn-2 position dose-dependently increase blood DHA plasmalogens and are neuroprotective in animal models of neurodegeneration at doses between 10 and 50 mg/kg. We conducted an investigational clinical trial in 22 cognitively impaired persons to evaluate the effects of an escalating oral dosing regimen of DHA-AAG from 900 to 3,600 mg/day over a 4-month period on blood serum plasmalogen and non-plasmalogen phospholipids and oxidative stress biomarkers. Safety, tolerability and therapeutic effects on cognition and mobility were also evaluated. DHA plasmalogen levels increased with increasing dose and remained significantly elevated at all treatment doses and durations. DHA plasmalogen levels were positively associated with catalase activity and negatively associated with malondialdehyde (MDA) levels. DHA-AAG supplementation normalized catalase activity in persons with low baseline catalase activity, normalized MDA levels in persons with high baseline MDA levels, and normalized superoxide dismutase activity in persons with high baseline SOD activity. Cognition improved in nine participants, was unchanged in nine, and declined in four. Mobility improved in twelve, was unchanged in five and declined in four participants. Changes in cognition and mobility were statistically significant versus a random outcome. Baseline DHA-plasmalogen levels were not predictive of clinical response. DHA-AAG was well tolerated at all dosages and no adverse reactions were observed.
Collapse
|
12
|
Koch J, Watschinger K, Werner ER, Keller MA. Tricky Isomers—The Evolution of Analytical Strategies to Characterize Plasmalogens and Plasmanyl Ether Lipids. Front Cell Dev Biol 2022; 10:864716. [PMID: 35573699 PMCID: PMC9092451 DOI: 10.3389/fcell.2022.864716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Typically, glycerophospholipids are represented with two esterified fatty acids. However, by up to 20%, a significant proportion of this lipid class carries an ether-linked fatty alcohol side chain at the sn-1 position, generally referred to as ether lipids, which shape their specific physicochemical properties. Among those, plasmalogens represent a distinct subgroup characterized by an sn-1 vinyl-ether double bond. The total loss of ether lipids in severe peroxisomal defects such as rhizomelic chondrodysplasia punctata indicates their crucial contribution to diverse cellular functions. An aberrant ether lipid metabolism has also been reported in multifactorial conditions including Alzheimer’s disease. Understanding the underlying pathological implications is hampered by the still unclear exact functional spectrum of ether lipids, especially in regard to the differentiation between the individual contributions of plasmalogens (plasmenyl lipids) and their non-vinyl-ether lipid (plasmanyl) counterparts. A primary reason for this is that exact identification and quantification of plasmalogens and other ether lipids poses a challenging and usually labor-intensive task. Diverse analytical methods for the detection of plasmalogens have been developed. Liquid chromatography–tandem mass spectrometry is increasingly used to resolve complex lipid mixtures, and with optimized parameters and specialized fragmentation strategies, discrimination between ethers and plasmalogens is feasible. In this review, we recapitulate historic and current methodologies for the recognition and quantification of these important lipids and will discuss developments in this field that can contribute to the characterization of plasmalogens in high structural detail.
Collapse
Affiliation(s)
- Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ernst R. Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A. Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Markus A. Keller,
| |
Collapse
|
13
|
Veitch DP, Weiner MW, Aisen PS, Beckett LA, DeCarli C, Green RC, Harvey D, Jack CR, Jagust W, Landau SM, Morris JC, Okonkwo O, Perrin RJ, Petersen RC, Rivera‐Mindt M, Saykin AJ, Shaw LM, Toga AW, Tosun D, Trojanowski JQ. Using the Alzheimer's Disease Neuroimaging Initiative to improve early detection, diagnosis, and treatment of Alzheimer's disease. Alzheimers Dement 2022; 18:824-857. [PMID: 34581485 PMCID: PMC9158456 DOI: 10.1002/alz.12422] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The Alzheimer's Disease Neuroimaging Initiative (ADNI) has accumulated 15 years of clinical, neuroimaging, cognitive, biofluid biomarker and genetic data, and biofluid samples available to researchers, resulting in more than 3500 publications. This review covers studies from 2018 to 2020. METHODS We identified 1442 publications using ADNI data by conventional search methods and selected impactful studies for inclusion. RESULTS Disease progression studies supported pivotal roles for regional amyloid beta (Aβ) and tau deposition, and identified underlying genetic contributions to Alzheimer's disease (AD). Vascular disease, immune response, inflammation, resilience, and sex modulated disease course. Biologically coherent subgroups were identified at all clinical stages. Practical algorithms and methodological changes improved determination of Aβ status. Plasma Aβ, phosphorylated tau181, and neurofilament light were promising noninvasive biomarkers. Prognostic and diagnostic models were externally validated in ADNI but studies are limited by lack of ethnocultural cohort diversity. DISCUSSION ADNI has had a profound impact in improving clinical trials for AD.
Collapse
Affiliation(s)
- Dallas P. Veitch
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
| | - Michael W. Weiner
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of PsychiatryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Laurel A. Beckett
- Division of Biostatistics, Department of Public Health SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Charles DeCarli
- Department of Neurology and Center for NeuroscienceUniversity of California DavisDavisCaliforniaUSA
| | - Robert C. Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Broad Institute, Ariadne Labsand Harvard Medical SchoolBostonMassachusettsUSA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health SciencesUniversity of California DavisDavisCaliforniaUSA
| | | | - William Jagust
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - John C. Morris
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Richard J. Perrin
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | | | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences and Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arthur W. Toga
- Laboratory of Neuroimaging, USC Stevens Institute of Neuroimaging and Informatics, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Duygu Tosun
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
14
|
Bozelli JC, Azher S, Epand RM. Plasmalogens and Chronic Inflammatory Diseases. Front Physiol 2021; 12:730829. [PMID: 34744771 PMCID: PMC8566352 DOI: 10.3389/fphys.2021.730829] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022] Open
Abstract
It is becoming widely acknowledged that lipids play key roles in cellular function, regulating a variety of biological processes. Lately, a subclass of glycerophospholipids, namely plasmalogens, has received increased attention due to their association with several degenerative and metabolic disorders as well as aging. All these pathophysiological conditions involve chronic inflammatory processes, which have been linked with decreased levels of plasmalogens. Currently, there is a lack of full understanding of the molecular mechanisms governing the association of plasmalogens with inflammation. However, it has been shown that in inflammatory processes, plasmalogens could trigger either an anti- or pro-inflammation response. While the anti-inflammatory response seems to be linked to the entire plasmalogen molecule, its pro-inflammatory response seems to be associated with plasmalogen hydrolysis, i.e., the release of arachidonic acid, which, in turn, serves as a precursor to produce pro-inflammatory lipid mediators. Moreover, as plasmalogens comprise a large fraction of the total lipids in humans, changes in their levels have been shown to change membrane properties and, therefore, signaling pathways involved in the inflammatory cascade. Restoring plasmalogen levels by use of plasmalogen replacement therapy has been shown to be a successful anti-inflammatory strategy as well as ameliorating several pathological hallmarks of these diseases. The purpose of this review is to highlight the emerging role of plasmalogens in chronic inflammatory disorders as well as the promising role of plasmalogen replacement therapy in the treatment of these pathologies.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON, Canada
| | - Sayed Azher
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
15
|
Li L, Xu W, Tan CC, Cao XP, Wei BZ, Dong CW, Tan L. A gene-environment interplay between omega-3 supplementation and APOE ε4 provides insights for Alzheimer's disease precise prevention amongst high-genetic-risk population. Eur J Neurol 2021; 29:422-431. [PMID: 34710256 DOI: 10.1111/ene.15160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE The present study aimed to explore whether and how omega-3 (ω-3) supplementation could interact with genetic factors to modulate cognitive functions, amyloid pathologies, and Alzheimer's disease (AD) risk. METHODS A total of 1,670 non-demented participants (mean age 73 years, 47% females, 41% APOE ε4 carriers) were followed up for 10 years. Hierarchical regressions, linear mixed-effects models, and Cox proportional hazards models were used to examine the interaction effects of ω-3 supplementation with APOE ε4 and polygenic hazard scores, after adjusting for age, gender, education, cognitive diagnosis, insomnia, depression, anxiety, and cardiovascular risk score. RESULTS Individuals who progress to AD during the follow-up tend to take a shorter duration of ω-3 at baseline than those stable, for whom the difference remained significant only amongst APOE ε4 carriers (p < 0.01). The interaction term (APOE ε4 × ω-3) accounted for a significant amount of variance in cognition and cerebral amyloid burden. Long-term ω-3 use protected cognition (especially memory function) and lowered amyloid burden and AD risk only amongst APOE ε4 carriers. Mediation analysis suggested that amyloid pathologies, brain reserve capacities, and brain metabolism mediated the relationships of ω-3 use with memory and global cognition for APOE ε4 (+) carriers. Similar interaction and mediation effects were also indicated amongst high-risk subjects defined by polygenic hazard scores. CONCLUSIONS Long-term ω-3 intake may have a role in AD prevention in genetically at-risk populations.
Collapse
Affiliation(s)
- Lin Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.,Department of Neurology, Linyi People's Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bao-Zhen Wei
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Cheng-Wen Dong
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | | |
Collapse
|
16
|
Yutuc E, Dickson AL, Pacciarini M, Griffiths L, Baker PRS, Connell L, Öhman A, Forsgren L, Trupp M, Vilarinho S, Khalil Y, Clayton PT, Sari S, Dalgic B, Höflinger P, Schöls L, Griffiths WJ, Wang Y. Deep mining of oxysterols and cholestenoic acids in human plasma and cerebrospinal fluid: Quantification using isotope dilution mass spectrometry. Anal Chim Acta 2021; 1154:338259. [PMID: 33736801 PMCID: PMC7988461 DOI: 10.1016/j.aca.2021.338259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023]
Abstract
Both plasma and cerebrospinal fluid (CSF) are rich in cholesterol and its metabolites. Here we describe in detail a methodology for the identification and quantification of multiple sterols including oxysterols and sterol-acids found in these fluids. The method is translatable to any laboratory with access to liquid chromatography – tandem mass spectrometry. The method exploits isotope-dilution mass spectrometry for absolute quantification of target metabolites. The method is applicable for semi-quantification of other sterols for which isotope labelled surrogates are not available and approximate quantification of partially identified sterols. Values are reported for non-esterified sterols in the absence of saponification and total sterols following saponification. In this way absolute quantification data is reported for 17 sterols in the NIST SRM 1950 plasma along with semi-quantitative data for 8 additional sterols and approximate quantification for one further sterol. In a pooled (CSF) sample used for internal quality control, absolute quantification was performed on 10 sterols, semi-quantification on 9 sterols and approximate quantification on a further three partially identified sterols. The value of the method is illustrated by confirming the sterol phenotype of a patient suffering from ACOX2 deficiency, a rare disorder of bile acid biosynthesis, and in a plasma sample from a patient suffering from cerebrotendinous xanthomatosis, where cholesterol 27-hydroxylase is deficient. Absolute quantification of oxysterols and cholestenoic acids. Methodology applicable to plasma and cerebrospinal fluid. Data generated for non-esterified and total sterols. Diastereoisomers at C-24 and C-25 separated and quantified.
Collapse
Affiliation(s)
- Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Alison L Dickson
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Manuela Pacciarini
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Lauren Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | | | | | - Anders Öhman
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Lars Forsgren
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Miles Trupp
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Sílvia Vilarinho
- Departments of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Youssef Khalil
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Peter T Clayton
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Sinan Sari
- Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Buket Dalgic
- Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Philip Höflinger
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
17
|
Otoki Y, Kato S, Nakagawa K, Harvey DJ, Jin LW, Dugger BN, Taha AY. Lipidomic Analysis of Postmortem Prefrontal Cortex Phospholipids Reveals Changes in Choline Plasmalogen Containing Docosahexaenoic Acid and Stearic Acid Between Cases With and Without Alzheimer's Disease. Neuromolecular Med 2021; 23:161-175. [PMID: 33475971 DOI: 10.1007/s12017-020-08636-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a progressive and incurable brain disorder that has been associated with structural changes in brain phospholipids (PLs), including diacyl species and ether-linked PLs known as plasmalogens. Most studies have characterized total changes in brain PL pools (e.g., choline plasmalogens), particularly in prefrontal cortex, but detailed and quantitative information on the molecular PL species impacted by the disease is limited. In this study, we used a comprehensive mass-spectrometry method to quantify diacyl and plasmalogen species, alkyl synthetic precursors of plasmalogens, and lysophospholipid degradation products of diacyl and plasmalogen PLs, in postmortem samples of prefrontal cortex from 21 AD patients and 20 age-matched controls. Total PLs were also quantified with gas-chromatography analysis of bound fatty acids following thin layer chromatography isolation. There was a significant 27% reduction in the concentration (nmol/g wet weight) of choline plasmalogen containing stearic acid (alkenyl group) and docosahexaenoic acid in AD compared to controls. Stearic acid concentration in total PLs was reduced by 26%. Our findings suggest specific changes in PLs containing stearic acid and docosahexaenoic acid in AD prefrontal cortex, highlighting structural and turnover PL pathways that could be targeted.
Collapse
Affiliation(s)
- Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.,Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Shunji Kato
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan.,J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California - Davis, Davis, CA, USA
| | - Lee-Way Jin
- Department of Pathology, University of California - Davis School of Medicine, Davis, CA, USA
| | - Britany N Dugger
- Department of Pathology, University of California - Davis School of Medicine, Davis, CA, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA. .,NIH-West Coast Metabolomics Center, Genome Center, University of California - Davis, Davis, CA, USA.
| |
Collapse
|
18
|
Fonteh AN, Chiang AJ, Arakaki X, Edminster SP, Harrington MG. Accumulation of Cerebrospinal Fluid Glycerophospholipids and Sphingolipids in Cognitively Healthy Participants With Alzheimer's Biomarkers Precedes Lipolysis in the Dementia Stage. Front Neurosci 2020; 14:611393. [PMID: 33390893 PMCID: PMC7772205 DOI: 10.3389/fnins.2020.611393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Insight into lipids' roles in Alzheimer's disease (AD) pathophysiology is limited because brain membrane lipids have not been characterized in cognitively healthy (CH) individuals. Since age is a significant risk factor of AD, we hypothesize that aging renders the amyloid precursor protein (APP) more susceptible to abnormal processing because of deteriorating membrane lipids. To reflect brain membranes, we studied their lipid components in cerebrospinal fluid (CSF) and brain-derived CSF nanoparticle membranes. Based on CSF Aβ42/Tau levels established biomarkers of AD, we define a subset of CH participants with normal Aβ42/Tau (CH-NAT) and another group with abnormal or pathological Aβ42/Tau (CH-PAT). We report that glycerophospholipids are differentially metabolized in the CSF supernatant fluid and nanoparticle membrane fractions from CH-NAT, CH-PAT, and AD participants. Phosphatidylcholine molecular species from the supernatant fraction of CH-PAT were higher than in the CH-NAT and AD participants. Sphingomyelin levels in the supernatant fraction were lower in the CH-PAT and AD than in the CH-NAT group. The decrease in sphingomyelin corresponded with an increase in ceramide and dihydroceramide and an increase in the ceramide to sphingomyelin ratio in AD. In contrast to the supernatant fraction, sphingomyelin is higher in the nanoparticle fraction from the CH-PAT group, accompanied by lower ceramide and dihydroceramide and a decrease in the ratio of ceramide to sphingomyelin in CH-PAT compared with CH-NAT. On investigating the mechanism for the lipid changes in AD, we observed that phospholipase A2 (PLA2) activity was higher in the AD group than the CH groups. Paradoxically, acid and neutral sphingomyelinase (SMase) activities were lower in AD compared to the CH groups. Considering external influences on lipids, the clinical groups did not differ in their fasting blood lipids or dietary lipids, consistent with the CSF lipid changes originating from brain pathophysiology. The lipid accumulation in a prodromal AD biomarker positive stage identifies perturbation of lipid metabolism and disturbances in APP/Amyloid beta (Aβ) as early events in AD pathophysiology. Our results identify increased lipid turnover in CH participants with AD biomarkers, switching to a predominantly lipolytic state in dementia. This knowledge may be useful for targeting and testing new AD treatments.
Collapse
Affiliation(s)
- Alfred N. Fonteh
- Huntington Medical Research Institutes, Pasadena, CA, United States
| | | | | | | | | |
Collapse
|