1
|
Lu S, Zhu X, Zeng P, Hu L, Huang Y, Guo X, Chen Q, Wang Y, Lai L, Xue A, Wang Y, Wang Z, Song W, Liu Q, Bian G, Li J, Bu Q, Cen X. Exposure to PFOA, PFOS, and PFHxS induces Alzheimer's disease-like neuropathology in cerebral organoids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125098. [PMID: 39389246 DOI: 10.1016/j.envpol.2024.125098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), a class of ubiquitous synthetic organic chemicals, are widely utilized across various industrial applications. However, the long-term neurological health effects of PFAS mixture exposure in humans remain poorly understood. To address this gap, we have designed a comprehensive study to predict and validate cell-type-specific neurotoxicity of PFASs using single-cell RNA sequencing (scRNA-seq) and cerebral organoids. Cerebral organoids were exposed to a PFAS mixture at concentrations of 1 × (10 ng/ml PFOS and PFOA, and 1 ng/ml PFHxS), 30 × , and 900 × over 35 days, with a follow-up analysis at day 70. Pathological alterations and lipidomic profiles were analyzed to identify disrupted molecular pathways and mechanisms. The scRNA-seq data revealed a significant impact of PFASs on neurons, suggesting a potential role in Alzheimer's Disease (AD) pathology, as well as intellectual and cognitive impairments. PFAS-treated cerebral organoids exhibited Aβ accumulation and tau phosphorylation. Lipidomic analyses further revealed lipid disturbances in response to PFAS mixture exposure, linking PFAS-induced AD-like neuropathology to sphingolipid metabolism disruption. Collectively, our findings provide novel insights into the PFAS-induced neurotoxicity, highlighting the significance of sphingolipid metabolism in the development of AD-like neuropathology. The use of cerebral organoids and scRNA-seq offers a powerful methodology for evaluating the health risks associated with environmental contaminants, particularly those with neurotoxic potential.
Collapse
Affiliation(s)
- Shiya Lu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xizhi Zhu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Pinli Zeng
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Linxia Hu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yan Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xinhua Guo
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiqi Chen
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yantang Wang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Li Lai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Aiqin Xue
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yanli Wang
- Jinniu Maternity and Child Health Hospital of Chengdu, Chengdu, 610036, China
| | - Zhiqiu Wang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wenbo Song
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qian Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Guohui Bian
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jiayuan Li
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qian Bu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Guo L, Liu Z, Jia X, Wang Q, Ji J, Lv N, Liu Z, Zhou Q, Sun C, Wang Y. Mitochondrial Protein TAMM41 Modulates Depressive-like Behaviors. Mol Neurobiol 2024; 61:10561-10573. [PMID: 38750395 DOI: 10.1007/s12035-024-04233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 11/24/2024]
Abstract
Several lines of evidence have highlighted the crucial role of mitochondria-based therapy in depression. However, there are still less mitochondrial targets for the depression treatment. TAM41 mitochondrial translocator assembly and maintenance homolog (TAMM41) is a mitochondrial inner membrane protein for maintaining mitochondrial function, which is tightly related to many brain diseases including Alzheimer's diseases and epilepsy. Here, we investigated whether TAMM41 would be a potential target to treat depression. We found that the expression of TAMM41 was markedly lower in corticosterone-induced depression, lipopolysaccharide-induced depression, and depressed patients. Meanwhile, loss of TAMM41 resulted in increased immobility in the forced swim test (FST), tail suspension test (TST), and center time in open field test (OFT), suggesting depressive-like behaviors in mice. Moreover, genetic overexpression of TAMM41 obviously exerted antidepressant-like activities. Mechanistically, proteomics revealed that pacsin1 might be the underlying target of TAMM41. Further data supported that TAMM41 regulated the expression of pacsin1, and its antidepressant-like effect at least partially was attributed to pacsin1. In addition, exosomes containing TAMM41 was sufficient to exhibit antidepressant-like effect, suggesting an alternative strategy to exert the effect of TAMM41. Taken together, the present study demonstrates the antidepressant-like effect of TAMM41 and sheds light on its molecular mechanism. These finding provide new insights into a therapeutic strategy targeting mitochondria in the development of novel antidepressants.
Collapse
Affiliation(s)
- Lin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221004, Jiangsu Province, China
| | - Ziyu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
| | - Xiaoxia Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
| | - Qinghua Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
| | - Jianlun Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221004, Jiangsu Province, China
| | - Na Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221004, Jiangsu Province, China
| | - Zhidong Liu
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221004, Jiangsu Province, China
| | - Qin Zhou
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 379 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
| | - Congcong Sun
- Department of Neurology, Qilu Hospital of Shandong University, 44 Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China.
| |
Collapse
|
3
|
Cui D, Liu H, Cao L, Du X, Liu D, Liu Z, Wang T, Yang H, Zheng X, Xie Z, Xu S, Bi J, Wang P. MST1, a novel therapeutic target for Alzheimer's disease, regulates mitochondrial homeostasis by mediating mitochondrial DNA transcription and the PI3K-Akt-ROS pathway. J Transl Med 2024; 22:1056. [PMID: 39578795 PMCID: PMC11583452 DOI: 10.1186/s12967-024-05852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent irreversible neurodegenerative condition marked by gradual cognitive deterioration and neuronal loss. The mammalian Ste20-like kinase (MST1)-Hippo pathway is pivotal in regulating cell apoptosis, immune response, mitochondrial function, and oxidative stress. However, the association between MST1 and mitochondrial function in AD remains unknown. Therefore, this study investigates the effect of MST1 on neuronal damage and cognitive impairment by regulating mitochondrial homeostasis in AD. METHODS In this study, 4- and 7-month-old 5xFAD mice were selected to simulate the early and middle stages of AD, respectively; age-matched wild-type mice served as controls for comparative analysis. Adeno-associated virus (AAV) was injected into the hippocampus of mice. Four weeks post-injection, cognitive function, neuronal damage indicators, and mitochondrial morphology, dynamics, oxidative stress, ATP, and apoptosis-related indicators were evaluated. Additionally, RNA-sequencing was performed on the hippocampal tissue of 5xFAD mice and MST1-knockdown 5xFAD mice. Subsequently, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on differentially expressed genes to elucidate the potential mechanism of MST1. In vitro studies were performed to investigate the effects of MST1 on SH-SY5Y model cell viability and mitochondrial function and validate the potential underlying molecular mechanisms. RESULTS MST1 overexpression accelerated neuronal degeneration and cognitive deficits in vivo while promoting oxidative stress and mitochondrial damage. Similarly, in vitro, MST1 overexpression facilitated apoptosis and mitochondrial dysfunction. MST1 knockdown and chemical inactivation reduced cognitive decline, mitochondrial dysfunction, and neuronal degeneration. Mechanistically, MST1 regulated the transcription of mitochondrial genes, including MT-ND4L, MT-ATP6, and MT-CO2, by binding to PGC1α. Moreover, MST1 influenced cellular oxidative stress through the PI3K-Akt-ROS pathway, ultimately disrupting mitochondrial homeostasis and mediating cell damage. CONCLUSIONS Cumulatively, these results suggest that MST1 primarily regulates mitochondrial DNA transcription levels by interacting with PGC1α and modulates cellular oxidative stress through the PI3K-Akt-ROS pathway, disrupting mitochondrial homeostasis. This discovery can be exploited to potentially enhance mitochondrial energy metabolism pathways by targeting MST1, offering novel potential therapeutic targets for treating AD.
Collapse
Affiliation(s)
- Dongqing Cui
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Haixia Liu
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Lili Cao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaowei Du
- The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Dingxin Liu
- The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Zhiping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| | - Tong Wang
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| | - Hui Yang
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Xiaolei Zheng
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Zhaohong Xie
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Ping Wang
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China.
| |
Collapse
|
4
|
Yin KF, Chen T, Gu XJ, Jiang Z, Su WM, Duan QQ, Wen XJ, Cao B, Li JR, Chi LY, Chen YP. Identification of Potential Causal Genes for Neurodegenerative Diseases by Mitochondria-Related Genome-Wide Mendelian Randomization. Mol Neurobiol 2024:10.1007/s12035-024-04528-3. [PMID: 39347895 DOI: 10.1007/s12035-024-04528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Current research lacks comprehensive investigations into the potential causal link between mitochondrial-related genes and the risk of neurodegenerative diseases (NDDs). We aimed to identify potential causative genes for five NDDs through an examination of mitochondrial-related gene expression levels. Through the integration of summary statistics from expression quantitative trait loci (eQTL) datasets (human blood and brain tissue), mitochondrial DNA copy number (mtDNA-CN), and genome-wide association studies (GWAS) datasets of five NDDs from European ancestry, we conducted a Mendelian randomization (MR) analysis to explore the potential causal relationship between mitochondrial-related genes and Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Lewy body dementia (LBD). Sensitivity analysis and Bayesian colocalization were employed to validate this causal relationship. Through MR analysis, we have identified potential causal relationships between 12 mitochondria-related genes and AD, PD, ALS, and FTD overlapping with motor neuron disease (FTD_MND) in human blood or brain tissue. Bayesian colocalization analysis further confirms 9 causal genes, including NDUFS2, EARS2, and MRPL41 for AD; NDUFAF2, MALSU1, and METTL8 for PD; MYO19 and MRM1 for ALS; and FASTKD1 for FTD_MND. Importantly, in both human blood and brain tissue, NDUFS2 exhibits a significant pathogenic effect on AD, while NDUFAF2 demonstrates a robust protective effect on PD. Additionally, the mtDNA-CN plays a protected role in LBD (OR = 0.62, p = 0.031). This study presents evidence establishing a causal relationship between mitochondrial dysfunction and NDDs. Furthermore, the identified candidate genes may serve as potential targets for drug development aimed at preventing NDDs.
Collapse
Affiliation(s)
- Kang-Fu Yin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Jing Gu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei-Ming Su
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qing-Qing Duan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiang-Jin Wen
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ju-Rong Li
- Department of Geriatrics, Dazhou Central Hospital, Dazhou, 635000, Sichuan, China
| | - Li-Yi Chi
- Department of Neurology, First Affiliated Hospital of Air Force Military Medical University, Xi'an, 710072, Shaanxi, China
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Odden MC, Li Y, Jotwani V, Dobrota S, Tan AX, Cummings SR, Shlipak MG, Scherzer R, Ix JH, Buckwalter MS, Tranah GJ. Joint and Individual Mitochondrial DNA Variation and Cognitive Outcomes in Black and White Older Adults. J Gerontol A Biol Sci Med Sci 2024; 79:glae170. [PMID: 39007867 PMCID: PMC11345514 DOI: 10.1093/gerona/glae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction manifests in neurodegenerative diseases and other age-associated disorders. In this study, we examined variation in inherited mitochondrial DNA (mtDNA) sequences in Black and White participants from 2 large aging studies to identify variants related to cognitive function. METHODS Participants included self-reported Black and White adults aged ≥70 years in the Lifestyle Interventions and Independence for Elders (LIFE; N = 1 319) and Health Aging and Body Composition (Health ABC; N = 788) studies. Cognitive function was measured by the Digit-Symbol Substitution Test (DSST), and the Modified Mini-Mental State Examination (3MSE) at baseline and over follow-up in LIFE (3.6 years) and Health ABC (10 years). We examined the joint effects of multiple variants across 16 functional mitochondrial regions with cognitive function using a sequence kernel association test. Based on these results, we prioritized meta-analysis of common variants in Black and White participants using mixed effects models. A Bonferroni-adjusted p value of <.05 was considered statistically significant. RESULTS Joint variation in subunits ND1, ND2, and ND5 of Complex I, 12S RNA, and hypervariable region (HVR) were significantly associated with DSST and 3MSE at baseline. In meta-analyses among Black participants, variant m.4216T>C, ND1 was associated with a faster decline in 3MSE, and variant m.462C>T in the HVR was associated with a slower decline in DSST. Variant m.5460G>C, ND2 was associated with slower and m.182C>T in the HVR was associated with faster decline in 3MSE in White participants. CONCLUSIONS Among Black and White adults, oxidative phosphorylation Complex I variants were associated with cognitive function.
Collapse
Affiliation(s)
- Michelle C Odden
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, California, USA
| | - Yongmei Li
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, California, USA
| | - Vasantha Jotwani
- Kidney Health Research Collaborative, Department of Medicine, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sylvie Dobrota
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, California, USA
| | - Annabel X Tan
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, California, USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Michael G Shlipak
- Kidney Health Research Collaborative, Department of Medicine, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Rebecca Scherzer
- Kidney Health Research Collaborative, Department of Medicine, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Joachim H Ix
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, California, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
6
|
Zhu C, Tong T, Farrell JJ, Martin ER, Bush WS, Pericak-Vance MA, Wang LS, Schellenberg GD, Haines JL, Lunetta KL, Farrer LA, Zhang X. MitoH3: Mitochondrial Haplogroup and Homoplasmic/Heteroplasmic Variant Calling Pipeline for Alzheimer's Disease Sequencing Project. J Alzheimers Dis Rep 2024; 8:575-587. [PMID: 38746629 PMCID: PMC11091720 DOI: 10.3233/adr-230120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/21/2024] [Indexed: 07/13/2024] Open
Abstract
Background Mitochondrial DNA (mtDNA) is a double-stranded circular DNA and has multiple copies in each cell. Excess heteroplasmy, the coexistence of distinct variants in copies of mtDNA within a cell, may lead to mitochondrial impairments. Accurate determination of heteroplasmy in whole-genome sequencing (WGS) data has posed a significant challenge because mitochondria carrying heteroplasmic variants cannot be distinguished during library preparation. Moreover, sequencing errors, contamination, and nuclear mtDNA segments can reduce the accuracy of heteroplasmic variant calling. Objective To efficiently and accurately call mtDNA homoplasmic and heteroplasmic variants from the large-scale WGS data generated from the Alzheimer's Disease Sequencing Project (ADSP), and test their association with Alzheimer's disease (AD). Methods In this study, we present MitoH3-a comprehensive computational pipeline for calling mtDNA homoplasmic and heteroplasmic variants and inferring haplogroups in the ADSP WGS data. We first applied MitoH3 to 45 technical replicates from 6 subjects to define a threshold for detecting heteroplasmic variants. Then using the threshold of 5% ≤variant allele fraction≤95%, we further applied MitoH3 to call heteroplasmic variants from a total of 16,113 DNA samples with 6,742 samples from cognitively normal controls and 6,183 from AD cases. Results This pipeline is available through the Singularity container engine. For 4,311 heteroplasmic variants identified from 16,113 samples, no significant variant count difference was observed between AD cases and controls. Conclusions Our streamlined pipeline, MitoH3, enables computationally efficient and accurate analysis of a large number of samples.
Collapse
Affiliation(s)
- Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Tong Tong
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - John J. Farrell
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Eden R. Martin
- John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William S. Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan L. Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Kathryn L. Lunetta
- Departments of Biostatistics Boston University School of Public Health, Boston, MA, USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Departments of Biostatistics Boston University School of Public Health, Boston, MA, USA
- Departments of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Departments of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Departments of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Departments of Biostatistics Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
7
|
Wei W, Jiang Y, Hu G, He Y, Chen H. Recent Advances of Mitochondrial Alterations in Alzheimer's Disease: A Perspective of Mitochondrial Basic Events. J Alzheimers Dis 2024; 101:379-396. [PMID: 39213063 DOI: 10.3233/jad-240092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders and is characterized by a decrease in learning capacity, memory loss and behavioral changes. In addition to the well-recognized amyloid-β cascade hypothesis and hyperphosphorylated Tau hypothesis, accumulating evidence has led to the proposal of the mitochondrial dysfunction hypothesis as the primary etiology of AD. However, the predominant molecular mechanisms underlying the development and progression of AD have not been fully elucidated. Mitochondrial dysfunction is not only considered an early event in AD pathogenesis but is also involved in the whole course of the disease, with numerous pathophysiological processes, including disordered energy metabolism, Ca2+ homeostasis dysfunction and hyperactive oxidative stress. In the current review, we have integrated emerging evidence to summarize the main mitochondrial alterations- bioenergetic metabolism, mitochondrial inheritance, mitobiogenesis, fission- fusion dynamics, mitochondrial degradation, and mitochondrial movement- underlying AD pathogenesis; precisely identified the mitochondrial regulators; discussed the potential mechanisms and primary processes; highlighted the leading players; and noted additional incidental signaling pathway changes. This review may help to stimulate research exploring mitochondrial metabolically-oriented neuroprotection strategies in AD therapies, leading to a better understanding of the link between the mitochondrial dysfunction hypothesis and AD pathogenesis.
Collapse
Affiliation(s)
- Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Ying Jiang
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Guizhen Hu
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Yanfang He
- Department of Blood Transfusion, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Huiyi Chen
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| |
Collapse
|
8
|
Lehrer S, Rheinstein PH. Increased Maternal Compared to Paternal Transmission of Alzheimer's Disease May Be Due to Increased Incidence of Depression in Women. In Vivo 2023; 37:2447-2451. [PMID: 37905609 PMCID: PMC10621409 DOI: 10.21873/invivo.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Mothers transmit Alzheimer's disease (AD) more frequently than fathers. Factors other than female longevity may be at work to promote maternal transmission of AD. Among these are the X chromosome, mitochondrial DNA, and AD comorbidities, especially depression. A recent study associated mitochondrial SNP rs2853499 with AD. MATERIALS AND METHODS We used UK Biobank (UKBB) data to investigate the relation of mitochondrial SNP rs2853499, with AD. To identify cases of AD we used ICD10 code G30.9. Data processing was performed on Minerva, a Linux mainframe with Centos 7.6, at the Icahn School of Medicine at Mount Sinai. We used PLINK, a whole-genome association analysis toolset, to analyze the UKB22418 mitochondrial hard-called chromosome file. RESULTS Of 953 AD cases, 493 were male (51.7%) and 460 were female (48.3%). Mothers were twice as likely to transmit AD compared to fathers. We found that in individuals with AD, 22.3% (n=201) carried the A allele of SNP rs2853499, 77.7% (n=700) carried the G allele. In individuals without AD, 22.2% (n=10,7726) carried the A allele of SNP rs2853499, 77.8% (n=378,535) carried the G allele. This difference was not significant (p=0.91, two-tailed Fisher exact test). Therefore, factors other than mitochondrial SNP rs2853499 may be at work to promote maternal transmission of AD. CONCLUSION We conclude that depression, a multigenic illness, in the mother is most likely the basis for the fact that mothers transmit AD twice as often as fathers.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.;
| | | |
Collapse
|
9
|
Ji J, Gao C, Wang Q, Jia X, Tian H, Wei Y, Liu Z, Wang Y, Guo L. The sigma-1 receptor-TAMM41 axis modulates neuroinflammation and attenuates memory impairment during the latent period of epileptogenesis. Animal Model Exp Med 2023. [PMID: 37852612 DOI: 10.1002/ame2.12341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/18/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Therapy in the latent period is favorable for retarding the process of epileptogenesis. Recently, we have discovered that the activated sigma-1 receptor (Sig-1R) attenuates the hippocampus pathological injury and memory impairment in the latent period of epileptogenesis. But the molecular mechanism needs further investigation. METHODS PRE-084 was utilized as a research tool to highly selectively activate Sig-1R in epileptic mice. After the treatment of PRE-084, the pro-inflammatory cytokines, neuropathological traits, and the level of mitochondrial translocator assembly and maintenance 41 homolog (TAMM41) in the hippocampus were examined. The mode in which the Sig-1R interacts with TAMM41 was explored. The role of TAMM41 in the protecting effect of PRE-084 was established. RESULTS PRE-084 inhibited the growth of pro-inflammatory cytokines, reduced the formation of gliosis, alleviated neuronal damage in the hippocampus, and attenuated memory impairment in the latent period of epileptogenesis. The protein level of TAMM41 decreased in the hippocampi of epileptic mice and increased in the PRE-084-treated mice. The Sig-1R bound with TAMM41 directly, maintaining the stability of TAMM41. Knockdown of TAMM41 reversed the protective effect of PRE-084, and overexpression of TAMM41 exhibited a similar protective action to that of PRE-084. CONCLUSION We presented the concept of the "sigma-1 receptor-TAMM41 axis" and proposed that augmenting this axis can attenuate neuroinflammation and memory impairment in the process of epileptogenesis.
Collapse
Affiliation(s)
- Jianlun Ji
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ce Gao
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qinghua Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxia Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Hao Tian
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yaqin Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhidong Liu
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lin Guo
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Pan X, Coban Akdemir ZH, Gao R, Jiang X, Sheynkman GM, Wu E, Huang JH, Sahni N, Yi SS. AD-Syn-Net: systematic identification of Alzheimer's disease-associated mutation and co-mutation vulnerabilities via deep learning. Brief Bioinform 2023; 24:bbad030. [PMID: 36752347 PMCID: PMC10025433 DOI: 10.1093/bib/bbad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most challenging neurodegenerative diseases because of its complicated and progressive mechanisms, and multiple risk factors. Increasing research evidence demonstrates that genetics may be a key factor responsible for the occurrence of the disease. Although previous reports identified quite a few AD-associated genes, they were mostly limited owing to patient sample size and selection bias. There is a lack of comprehensive research aimed to identify AD-associated risk mutations systematically. To address this challenge, we hereby construct a large-scale AD mutation and co-mutation framework ('AD-Syn-Net'), and propose deep learning models named Deep-SMCI and Deep-CMCI configured with fully connected layers that are capable of predicting cognitive impairment of subjects effectively based on genetic mutation and co-mutation profiles. Next, we apply the customized frameworks to data sets to evaluate the importance scores of the mutations and identified mutation effectors and co-mutation combination vulnerabilities contributing to cognitive impairment. Furthermore, we evaluate the influence of mutation pairs on the network architecture to dissect the genetic organization of AD and identify novel co-mutations that could be responsible for dementia, laying a solid foundation for proposing future targeted therapy for AD precision medicine. Our deep learning model codes are available open access here: https://github.com/Pan-Bio/AD-mutation-effectors.
Collapse
Affiliation(s)
- Xingxin Pan
- Livestrong Cancer Institutes, and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zeynep H Coban Akdemir
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ruixuan Gao
- Departments of Chemistry and Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiaoqian Jiang
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Gloria M Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, and UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Erxi Wu
- Livestrong Cancer Institutes, and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, TX 76508, USA
- Department of Pharmaceutical Sciences, Texas A & M University Health Science Center, College of Pharmacy, College Station, TX 77843, USA
| | - Jason H Huang
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, TX 76508, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Jiang Y, Wan M, Xiao X, Lin Z, Liu X, Zhou Y, Liao X, Lin J, Zhou H, Zhou L, Weng L, Wang J, Guo J, Jiang H, Zhang Z, Xia K, Li J, Tang B, Jiao B, Shen L. GSN gene frameshift mutations in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2023; 94:436-447. [PMID: 36650038 DOI: 10.1136/jnnp-2022-330465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND The pathogenic missense mutations of the gelsolin (GSN) gene lead to familial amyloidosis of the Finnish type (FAF); however, our previous study identified GSN frameshift mutations existed in patients with Alzheimer's disease (AD). The GSN genotype-phenotype heterogeneity and the role of GSN frameshift mutations in patients with AD are unclear. METHOD In total, 1192 patients with AD and 1403 controls were screened through whole genome sequencing, and 884 patients with AD were enrolled for validation. Effects of GSN mutations were evaluated in vitro. GSN, Aβ42, Aβ40 and Aβ42/40 were detected in both plasma and cerebrospinal fluid (CSF). RESULTS Six patients with AD with GSN P3fs and K346fs mutations (0.50%, 6/1192) were identified, who were diagnosed with AD but not FAF. In addition, 13 patients with AD with GSN frameshift mutations were found in the validation cohort (1.47%, 13/884). Further in vitro experiments showed that both K346fs and P3fs mutations led to the GSN loss of function in inhibiting Aβ-induced toxicity. Moreover, a higher level of plasma (p=0.001) and CSF (p=0.005) GSN was observed in AD cases than controls, and a positive correlation was found between the CSF GSN and CSF Aβ42 (r=0.289, p=0.009). Besides, the GSN level was initially increasing and then decreasing with the disease course and cognitive decline. CONCLUSIONS GSN frameshift mutations may be associated with AD. An increase in plasma GSN is probably a compensatory reaction in AD, which is a potential biomarker for early AD.
Collapse
Affiliation(s)
- Yaling Jiang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - XueWen Xiao
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Zhuojie Lin
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,Department of Geriatrics Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,Department of Geriatrics Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Jingyi Lin
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine, Key Laboratory of Molecular Precision Medicine of Hunan Province, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jiada Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
12
|
Harerimana NV, Paliwali D, Romero-Molina C, Bennett DA, Pa J, Goate A, Swerdlow RH, Andrews SJ. The role of mitochondrial genome abundance in Alzheimer's disease. Alzheimers Dement 2022; 19:2069-2083. [PMID: 36224040 DOI: 10.1002/alz.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1912] [Revised: 12/12/1912] [Accepted: 12/12/1912] [Indexed: 11/05/2022]
Abstract
Mitochondrial dysfunction is an early and prominent feature of Alzheimer's disease (AD), with impaired energy metabolism preceding the onset of clinical symptoms. Here we propose an update to the mitochondrial dysfunction hypothesis of AD based on recent results examining the role of mitochondrial genome abundance in AD. In a large post mortem study, we show that lower brain mitochondrial genome abundance is associated with a greater odds of AD neuropathological change and worse cognitive performance. We hypothesize that lower mitochondrial genome abundance impairs mitochondrial function by reducing mitochondrial bioenergetics, thereby impacting neuronal and glial cell function. However, it remains to be determined if mitochondrial dysfunction causes, mediates, or is a by-product of AD pathogenesis. Additional support for this hypothesis will be generated by linking peripheral blood mitochondrial genome abundance to AD and establishing clinical trials of compounds that upregulate total mitochondrial genome abundance or boost mitochondrial mass.
Collapse
Affiliation(s)
- Nadia V Harerimana
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Devashi Paliwali
- Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Carmen Romero-Molina
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Judy Pa
- Department of Neurosciences, Alzheimer's Disease Cooperative Study (ADCS), University of California, San Diego, California, USA
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
| | - Shea J Andrews
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
13
|
Li Y, Xia X, Wang Y, Zheng JC. Mitochondrial dysfunction in microglia: a novel perspective for pathogenesis of Alzheimer's disease. J Neuroinflammation 2022; 19:248. [PMID: 36203194 PMCID: PMC9535890 DOI: 10.1186/s12974-022-02613-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the elderly globally. Emerging evidence has demonstrated microglia-driven neuroinflammation as a key contributor to the onset and progression of AD, however, the mechanisms that mediate neuroinflammation remain largely unknown. Recent studies have suggested mitochondrial dysfunction including mitochondrial DNA (mtDNA) damage, metabolic defects, and quality control (QC) disorders precedes microglial activation and subsequent neuroinflammation. Therefore, an in-depth understanding of the relationship between mitochondrial dysfunction and microglial activation in AD is important to unveil the pathogenesis of AD and develop effective approaches for early AD diagnosis and treatment. In this review, we summarized current progress in the roles of mtDNA, mitochondrial metabolism, mitochondrial QC changes in microglial activation in AD, and provide comprehensive thoughts for targeting microglial mitochondria as potential therapeutic strategies of AD.
Collapse
Affiliation(s)
- Yun Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China. .,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200331, China. .,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China. .,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200434, China.
| | - Yi Wang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200331, China.,Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital Affiliated to Tongji University School of Medicine, Shanghai, 201613, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China. .,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200331, China. .,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China. .,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200434, China. .,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
14
|
Cosemans C, Wang C, Alfano R, Martens DS, Sleurs H, Dockx Y, Vanbrabant K, Janssen BG, Vanpoucke C, Lefebvre W, Smeets K, Nawrot TS, Plusquin M. In utero particulate matter exposure in association with newborn mitochondrial ND4L 10550A>G heteroplasmy and its role in overweight during early childhood. Environ Health 2022; 21:88. [PMID: 36117180 PMCID: PMC9484069 DOI: 10.1186/s12940-022-00899-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/01/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Mitochondria play an important role in the energy metabolism and are susceptible to environmental pollution. Prenatal air pollution exposure has been linked with childhood obesity. Placental mtDNA mutations have been associated with prenatal particulate matter exposure and MT-ND4L10550A>G heteroplasmy has been associated with BMI in adults. Therefore, we hypothesized that in utero PM2.5 exposure is associated with cord blood MT-ND4L10550A>G heteroplasmy and early life growth. In addition, the role of cord blood MT-ND4L10550A>G heteroplasmy in overweight during early childhood is investigated. METHODS This study included 386 mother-newborn pairs. Outdoor PM2.5 concentrations were determined at the maternal residential address. Cord blood MT-ND4L10550A>G heteroplasmy was determined using Droplet Digital PCR. Associations were explored using logistic regression models and distributed lag linear models. Mediation analysis was performed to quantify the effects of prenatal PM2.5 exposure on childhood overweight mediated by cord blood MT-ND4L10550A>G heteroplasmy. RESULTS Prenatal PM2.5 exposure was positively associated with childhood overweight during the whole pregnancy (OR = 2.33; 95% CI: 1.20 to 4.51; p = 0.01), which was mainly driven by the second trimester. In addition, prenatal PM2.5 exposure was associated with cord blood MT-ND4L10550A>G heteroplasmy from gestational week 9 - 13. The largest effect was observed in week 10, where a 5 µg/m3 increment in PM2.5 was linked with cord blood MT-ND4L10550A>G heteroplasmy (OR = 0.93; 95% CI: 0.87 to 0.99). Cord blood MT-ND4L10550A>G heteroplasmy was also linked with childhood overweight (OR = 3.04; 95% CI: 1.15 to 7.50; p = 0.02). The effect of prenatal PM2.5 exposure on childhood overweight was mainly direct (total effect OR = 1.18; 95% CI: 0.99 to 1.36; natural direct effect OR = 1.20; 95% CI: 1.01 to 1.36)) and was not mediated by cord blood MT-ND4L10550A>G heteroplasmy. CONCLUSIONS Cord blood MT-ND4L10550A>G heteroplasmy was linked with childhood overweight. In addition, in utero exposure to PM2.5 during the first trimester of pregnancy was associated with cord blood MT-ND4L10550A>G heteroplasmy in newborns. Our analysis did not reveal any mediation of cord blood MT-ND4L10550A>G heteroplasmy in the association between PM2.5 exposure and childhood overweight.
Collapse
Affiliation(s)
- Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Hanne Sleurs
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Kenneth Vanbrabant
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - Wouter Lefebvre
- Flemish Institute for Technological Research, VITO, Mol, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- School of Public Health, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|