1
|
Smith EE, Biessels GJ, Gao V, Gottesman RF, Liesz A, Parikh NS, Iadecola C. Systemic determinants of brain health in ageing. Nat Rev Neurol 2024; 20:647-659. [PMID: 39375564 DOI: 10.1038/s41582-024-01016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/09/2024]
Abstract
Preservation of brain health is a worldwide priority. The traditional view is that the major threats to the ageing brain lie within the brain itself. Consequently, therapeutic approaches have focused on protecting the brain from these presumably intrinsic pathogenic processes. However, an increasing body of evidence has unveiled a previously under-recognized contribution of peripheral organs to brain dysfunction and damage. Thus, in addition to the well-known impact of diseases of the heart and endocrine glands on the brain, accumulating data suggest that dysfunction of other organs, such as gut, liver, kidney and lung, substantially affects the development and clinical manifestation of age-related brain pathologies. In this Review, a framework is provided to indicate how organ dysfunction can alter brain homeostasis and promote neurodegeneration, with a focus on dementia. We delineate the associations of subclinical dysfunction in specific organs with dementia risk and provide suggestions for public health promotion and clinical management.
Collapse
Affiliation(s)
- Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Virginia Gao
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Medical Center Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Neal S Parikh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Weinstein G, Schonmann Y, Yeshua H, Zelber‐Sagi S. The association between liver fibrosis score and incident dementia: A nationwide retrospective cohort study. Alzheimers Dement 2024; 20:5385-5397. [PMID: 38946688 PMCID: PMC11350139 DOI: 10.1002/alz.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND We assessed the relationship of liver fibrosis score with incident dementia in a large, national sample. METHODS For this retrospective cohort study, data of dementia-free individuals aged 40-69 years were derived from electronic records of the largest healthcare provider in Israel. The association between liver fibrosis score (FIB-4), assessed from routine laboratory measurements, and incident dementia was explored through multivariate cox regression models. RESULTS Of the total sample (N = 826,578, mean age 55 ± 8 years at baseline), 636,967 (77%) had no fibrosis, 180,114 (21.8%) had inconclusive fibrosis status and 9497 (1.2%) had high risk for advanced fibrosis. Over a median follow-up of 17 years, 41,089 dementia cases were recorded. Inconclusive liver fibrosis and advanced fibrosis were associated with increased dementia risk (HR = 1.09, 95%CI: 1.07-1.11 and HR = 1.18, 95%CI: 1.10-1.27, respectively). This association remained robust through seven sensitivity analyses. CONCLUSIONS Liver fibrosis assessed through a serum-based algorithm may serve as a risk factor for dementia in the general population. HIGHLIGHTS Liver fibrosis may predict dementia diagnosis in the general population. Inconclusive liver fibrosis was associated with 9% increased dementia risk. Advanced liver fibrosis was associated with 18% increased dementia risk. Findings remained robust in sensitivity analyses and after adjustments.
Collapse
Affiliation(s)
| | - Yochai Schonmann
- Siaal Research Center for Family Medicine and Primary CareFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
- Department of Quality Measurements and ResearchClalit Health ServicesTel‐AvivIsrael
- Department of Family MedicineTel‐Aviv District, Clalit Health ServicesTel‐AvivIsrael
| | - Hanny Yeshua
- Department of Family MedicineTel‐Aviv District, Clalit Health ServicesTel‐AvivIsrael
- Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | | |
Collapse
|
3
|
Lu Y, Pike JR, Hoogeveen R, Walker K, Raffield L, Selvin E, Avery C, Engel S, Mielke MM, Garcia T, Heiss G, Palta P. Nonalcoholic Fatty Liver Disease and Longitudinal Change in Imaging and Plasma Biomarkers of Alzheimer Disease and Vascular Pathology. Neurology 2024; 102:e209203. [PMID: 38471046 PMCID: PMC11033987 DOI: 10.1212/wnl.0000000000209203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Prospective measures of plasma and cerebral MRI biomarkers of Alzheimer disease (AD) and vascular neuropathology provide an opportunity to investigate possible mechanisms linking liver disease and dementia. We aimed to quantify the association of midlife nonalcoholic fatty liver disease (NAFLD) with change in plasma and brain MRI biomarkers of AD and vascular neuropathology. METHODS We included participants from the Atherosclerosis Risk in Communities Study with brain MRI measurements of white matter hyperintensity (WMH) volume and temporal-parietal lobe cortical thickness meta region of interest (ROI) at up to 2 different visits, in 2011-13 and 2016-19, and plasma biomarkers of β-amyloid (Aβ)42:40, phosphorylated tau at threonine 181, and neurofilament light (NfL) were measured up to 3 times in 1993-95, 2011-13, and 2016-19. NAFLD was categorized using the fatty liver index in 1990-92. Multivariate linear regression was performed for associations between midlife NAFLD and change in plasma and brain MRI biomarkers of AD and vascular neuropathology. The primary models adjusted for demographics, Apolipoprotein E, alcohol use, and kidney function. RESULTS Among 1,706 participants (mean age 56 years, 62% female, 28% Black), midlife NAFLD vs no NAFLD was associated with greater late-life WMH volume (difference per SD 0.19, 95% CI 0.06-0.31) and faster late-life WMH increase over 6 years (difference in annual change, SD 0.28, 95% CI 0.05-0.51), suggesting accumulating vascular pathology. Midlife NAFLD vs no NAFLD was also associated with AD biomarkers in midlife (lower Aβ42:40 [SD -0.21, 95% CI -0.39 to -0.04] measured in 1993-95) and late life (lower Aβ42:40 [SD -0.13, 95% CI -0.23 to -0.03] and lower temporal-parietal lobe cortical thickness meta ROI [SD -0.16, 95% CI -0.28 to -0.05] measured in 2011-13). Although midlife NfL was lower in individuals with vs without midlife NAFLD, those with NAFLD exhibited a faster rate of NfL increase that accelerated over time. DISCUSSION Midlife NAFLD shows associations with AD and accumulating vascular pathology, revealing potential pathways linking liver function to dementia. Plasma biomarkers of neuropathology and neuronal injury may serve as easily measurable and dynamic indicators for monitoring the impacts of impaired liver function on brain health.
Collapse
Affiliation(s)
- Yifei Lu
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - James R Pike
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Ron Hoogeveen
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Keenan Walker
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Laura Raffield
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Elizabeth Selvin
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Christy Avery
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Stephanie Engel
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Michelle M Mielke
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Tanya Garcia
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Gerardo Heiss
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Priya Palta
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
4
|
Parikh NS, Wahbeh F, Tapia C, Ianelli M, Liao V, Jaywant A, Kamel H, Kumar S, Iadecola C. Cognitive impairment and liver fibrosis in non-alcoholic fatty liver disease. BMJ Neurol Open 2024; 6:e000543. [PMID: 38268753 PMCID: PMC10806883 DOI: 10.1136/bmjno-2023-000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024] Open
Abstract
Background Data regarding the prevalence and phenotype of cognitive impairment in non-alcoholic fatty liver disease (NAFLD) are limited. Objective We assessed the prevalence and nature of cognitive deficits in people with NAFLD and assessed whether liver fibrosis, an important determinant of outcomes in NAFLD, is associated with worse cognitive performance. Methods We performed a prospective cross-sectional study. Patients with NAFLD underwent liver fibrosis assessment with transient elastography and the following assessments: Cognitive Change Index, Eight-Item Informant Interview to Differentiate Aging and Dementia Questionnaire (AD8), Montreal Cognitive Assessment (MoCA), EncephalApp minimal hepatic encephalopathy test and a limited National Institutes of Health Toolbox battery (Flanker Inhibitory Control and Attention Test, Pattern Comparison Test and Auditory Verbal Learning Test). We used multiple linear regression models to examine the association between liver fibrosis and cognitive measures while adjusting for relevant covariates. Results We included 69 participants with mean age 50.4 years (SD 14.4); 62% were women. The median liver stiffness was 5.0 kilopascals (IQR 4.0-6.9), and 25% had liver fibrosis (≥7.0 kilopascals). Cognitive deficits were common in people with NAFLD; 41% had subjective cognitive impairment, 13% had an AD8 >2, 32% had MoCA <26 and 12% had encephalopathy detected on the EncephalApp test. In adjusted models, people with liver fibrosis had modestly worse performance only on the Flanker Inhibitory Control and Attention Task (β=-0.3; 95% CI -0.6 to -0.1). Conclusion Cognitive deficits are common in people with NAFLD, among whom liver fibrosis was modestly associated with worse inhibitory control and attention.
Collapse
Affiliation(s)
- Neal S Parikh
- Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Farah Wahbeh
- Neurology, Weill Cornell Medicine, New York, New York, USA
| | | | | | - Vanessa Liao
- Neurology, Weill Cornell Medicine, New York, New York, USA
| | | | - Hooman Kamel
- Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Sonal Kumar
- Medicine, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
5
|
Gao PY, Ou YN, Wang HF, Wang ZB, Fu Y, He XY, Ma YH, Feng JF, Cheng W, Tan L, Yu JT. Associations of liver dysfunction with incident dementia, cognition, and brain structure: A prospective cohort study of 431 699 adults. J Neurochem 2024; 168:26-38. [PMID: 37830502 DOI: 10.1111/jnc.15988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
The relationship between liver dysfunction and dementia has been researched extensively but remains poorly understood. In this study, we investigate the longitudinal and cross-sectional associations between liver function and liver diseases and risk of incident dementia, impaired cognition, and brain structure abnormalities using Cox proportion hazard model and linear regression model. 431 699 participants with a mean of 8.65 (standard deviation [SD] 2.61) years of follow-up were included from the UK Biobank; 5542 all-cause dementia (ACD), 2427 Alzheimer's disease (AD), and 1282 vascular dementia (VaD) cases were documented. We observed that per SD decreases in alanine transaminase (ALT; hazard ratio [HR], 0.917; PFDR <0.001) and per SD increases in aspartate aminotransferase (AST; HR, 1.048; PFDR = 0.010), AST to ALT ratio (HR, 1.195; PFDR <0.001), gamma-glutamyl transpeptidase (GGT; HR, 1.066; PFDR <0.001), alcoholic liver disease (ALD; HR, 2.872; PFDR <0.001), and fibrosis and cirrhosis of liver (HR, 2.285; PFDR = 0.002), being significantly associated with a higher risk of incident ACD. Restricted cubic spline models identified a strong U-shaped association between Alb and AST and incident ACD (Pnonlinear <0.05). Worse cognition was positively correlated with AST, AST to ALT ratio, direct bilirubin (DBil), and GGT; negatively correlated with ALT, Alb, and total bilirubin (TBil); and ALD and fibrosis and cirrhosis of liver (PFDR <0.05). Moreover, changes in ALT, GGT, AST to ALT ratio, and ALD were significantly associated with altered cortical and subcortical regions, including hippocampus, amygdala, thalamus, pallidum, and fusiform (PFDR <0.05). In sensitivity analysis, metabolic dysfunction-associated steatotic liver disease (MASLD) was associated with the risk of ACD and brain subcortical changes. Our findings provide substantial evidence that liver dysfunction may be an important factor for incident dementia. Early intervention in the unhealthy liver may help prevent cognitive impairment and dementia incidence.
Collapse
Affiliation(s)
- Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zhi-Bo Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Weinstein G, O'Donnell A, Frenzel S, Xiao T, Yaqub A, Yilmaz P, de Knegt RJ, Maestre GE, Melo van Lent D, Long M, Gireud‐Goss M, Ittermann T, Frost F, Bülow R, Vasan RS, Grabe HJ, Ikram MA, Beiser AS, Seshadri S. Nonalcoholic fatty liver disease, liver fibrosis, and structural brain imaging: The Cross-Cohort Collaboration. Eur J Neurol 2024; 31:e16048. [PMID: 37641505 PMCID: PMC10840827 DOI: 10.1111/ene.16048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND PURPOSE Prior studies reported conflicting findings regarding the association of nonalcoholic fatty liver disease (NAFLD) and liver fibrosis with measures of brain health. We examined whether NAFLD and liver fibrosis are associated with structural brain imaging measures in middle- and old-age adults. METHODS In this cross-sectional study among dementia- and stroke-free individuals, data were pooled from the Offspring and Third Generation cohorts of the Framingham Heart Study (FHS), the Rotterdam Study (RS), and the Study of Health in Pomerania. NAFLD was assessed through abdominal imaging. Transient hepatic elastography (FibroScan) was used to assess liver fibrosis in FHS and RS. Linear regression models were used to explore the relation of NAFLD and liver fibrosis with brain volumes, including total brain, gray matter, hippocampus, and white matter hyperintensities, adjusting for potential confounders. Results were combined using fixed effects meta-analysis. RESULTS In total, 5660 and 3022 individuals were included for NAFLD and liver fibrosis analyses, respectively. NAFLD was associated with smaller volumes of total brain (β = -3.5, 95% confidence interval [CI] = -5.4 to -1.7), total gray matter (β = -1.9, 95% CI = -3.4 to -0.3), and total cortical gray matter (β = -1.9, 95% CI = -3.7 to -0.01). In addition, liver fibrosis (defined as liver stiffness measure ≥8.2 kPa) was related to smaller total brain volumes (β = -7.3, 95% CI = -11.1 to -3.5). Heterogeneity between studies was low. CONCLUSIONS NAFLD and liver fibrosis may be directly related to brain aging. Larger and prospective studies are warranted to validate these findings and identify liver-related preventive strategies for neurodegeneration.
Collapse
Affiliation(s)
| | - Adrienne O'Donnell
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Framingham StudyFraminghamMassachusettsUSA
| | - Stefan Frenzel
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
| | - Tian Xiao
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Amber Yaqub
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Pinar Yilmaz
- Department of Radiology & Nuclear MedicineErasmus University Medical CenterRotterdamthe Netherlands
| | - Robert J. de Knegt
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Gladys E. Maestre
- Neurosciences Laboratory, Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of MedicineUniversidad del Zulia Maracaibo VenezuelaMaracaiboVenezuela
- Division of Neurosciences, Department of Biomedical SciencesUniversity of Texas Rio Grande Valley School of MedicineEdinburgTexasUSA
| | - Debora Melo van Lent
- Framingham StudyFraminghamMassachusettsUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Michelle Long
- Section of Gastroenterology, Boston Medical CenterBoston University School of MedicineBostonMassachusettsUSA
| | - Monica Gireud‐Goss
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
| | - Till Ittermann
- Institute for Community MedicineUniversity Medicine GreifswaldGreifswaldGermany
| | - Fabian Frost
- Department of Medicine AUniversity Medicine GreifswaldGreifswaldGermany
| | - Robin Bülow
- Institute for Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Ramachandran S. Vasan
- Framingham StudyFraminghamMassachusettsUSA
- Section of Preventive Medicine and Epidemiology, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| | - Hans J. Grabe
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Disease, partner site Rostock/GreifswaldRostockGermany
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
- Department of Radiology & Nuclear MedicineErasmus University Medical CenterRotterdamthe Netherlands
| | - Alexa S. Beiser
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Framingham StudyFraminghamMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| | - Sudha Seshadri
- Framingham StudyFraminghamMassachusettsUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
7
|
Gao PY, Ou YN, Huang YM, Wang ZB, Fu Y, Ma YH, Li QY, Ma LY, Cui RP, Mi YC, Tan L, Yu JT. Associations between liver function and cerebrospinal fluid biomarkers of Alzheimer's disease pathology in non-demented adults: The CABLE study. J Neurochem 2024; 168:39-51. [PMID: 38055867 DOI: 10.1111/jnc.16025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Liver function has been suggested as a possible factor in the progression of Alzheimer's disease (AD) development. However, the association between liver function and cerebrospinal fluid (CSF) levels of AD biomarkers remains unclear. In this study, we analyzed the data from 1687 adults without dementia from the Chinese Alzheimer's Biomarker and LifestylE study to investigate differences in liver function between pathological and clinical AD groups, as defined by the 2018 National Institute on Aging-Alzheimer's Association Research Framework. We also examined the linear relationship between liver function, CSF AD biomarkers, and cognition using linear regression models. Furthermore, mediation analyses were applied to explore the potential mediation effects of AD pathological biomarkers on cognition. Our findings indicated that, with AD pathological and clinical progression, the concentrations of total protein (TP), globulin (GLO), and aspartate aminotransferase/alanine transaminase (ALT) increased, while albumin/globulin (A/G), adenosine deaminase, alpha-L-fucosidase, albumin, prealbumin, ALT, and glutamate dehydrogenase (GLDH) concentrations decreased. Furthermore, we also identified significant relationships between TP (β = -0.115, pFDR < 0.001), GLO (β = -0.184, pFDR < 0.001), and A/G (β = 0.182, pFDR < 0.001) and CSF β-amyloid1-42 (Aβ1-42 ) (and its related CSF AD biomarkers). Moreover, after 10 000 bootstrapped iterations, we identified a potential mechanism by which TP and GLDH may affect cognition by mediating CSF AD biomarkers, with mediation effect sizes ranging from 3.91% to 16.44%. Overall, our results suggested that abnormal liver function might be involved in the clinical and pathological progression of AD. Amyloid and tau pathologies also might partially mediate the relationship between liver function and cognition. Future research is needed to fully understand the underlying mechanisms and causality to develop an approach to AD prevention and treatment approach.
Collapse
Affiliation(s)
- Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yi-Ming Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zhi-Bo Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qiong-Yao Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Li-Yun Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Rui-Ping Cui
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yin-Chu Mi
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Han SW, Lee SH, Kim JH, Lee JJ, Park YH, Kim S, Nho K, Sohn JH. Association of Serum Liver Enzymes with Brain Amyloidopathy and Cognitive Performance. J Alzheimers Dis Rep 2023; 7:1465-1474. [PMID: 38225965 PMCID: PMC10789293 DOI: 10.3233/adr-230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024] Open
Abstract
Background Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) plaque accumulation and neurofibrillary tangles in the brain. Emerging evidence has suggested potential interactions between the brain and periphery, particularly the liver, in regulating Aβ homeostasis. Objective This study aimed to investigate the association of serum liver enzymes with brain amyloidopathy and cognitive performance in patients with complaints of cognitive decline. Methods A total of 1,036 patients (mean age 74 years, 66.2% female) with subjective cognitive decline, mild cognitive impairment, AD dementia, and other neurodegenerative diseases were included using the Smart Clinical Data Warehouse. Amyloid positron emission tomography (PET) imaging, comprehensive neuropsychological evaluations, and measurements of liver enzymes, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase, total bilirubin, and albumin, were assessed. After propensity score matching, logistic and linear regression analyses were used to investigate the associations between liver enzymes, amyloid status, and cognitive performance. Additionally, a machine learning approach was used to assess the classification performance of liver enzymes in predicting amyloid PET positivity. Results Lower ALT levels and higher AST-to-ALT ratios were significantly associated with amyloid PET positivity and AD diagnosis. The AST-to-ALT ratio was also significantly associated with poor memory function. Machine learning analysis revealed that the classification performance of amyloid status (AUC = 0.642) for age, sex, and apolipoprotein E ɛ4 carrier status significantly improved by 6.2% by integrating the AST-to-ALT ratio. Conclusions These findings highlight the potential association of liver function on AD and its potential as a diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Sang-Won Han
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gangwon-do, Republic of Korea
| | - Sang-Hwa Lee
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gangwon-do, Republic of Korea
| | - Jong Ho Kim
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Jae-Jun Lee
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jong-Hee Sohn
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gangwon-do, Republic of Korea
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si, Gangwon-do, Republic of Korea
| |
Collapse
|
9
|
Floriddia E. In conversation with Costantino Iadecola. Nat Neurosci 2023; 26:2042-2045. [PMID: 37973870 DOI: 10.1038/s41593-023-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
|
10
|
Jiang R, Wu J, Rosenblatt M, Dai W, Rodriguez RX, Sui J, Qi S, Liang Q, Xu B, Meng Q, Calhoun VD, Scheinost D. Elevated C-reactive protein mediates the liver-brain axis: a preliminary study. EBioMedicine 2023; 93:104679. [PMID: 37356206 PMCID: PMC10320521 DOI: 10.1016/j.ebiom.2023.104679] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Chronic liver diseases of all etiologies exist along a spectrum with varying degrees of hepatic fibrosis. Despite accumulating evidence implying associations between liver fibrosis and cognitive functioning, there is limited research exploring the underlying neurobiological factors and the possible mediating role of inflammation on the liver-brain axis. METHODS Using data from the UK Biobank, we examined the cross-sectional association of liver fibrosis (as measured by Fibrosis-4 score) with cognitive functioning and regional grey matter volumes (GMVs) while adjusting for numerous covariates and multiple comparisons. We further performed post-hoc preliminary analysis to investigate the mediating effect of C-reactive protein (CRP) on the association between liver fibrosis and both cognitive functioning and GMVs. FINDINGS We analysed behaviour from up to 447,626 participants (N ranged from 45,055 to 447,533 per specific cognitive metric) 37 years and older. 38,244 participants (age range 44-82 years) had GMV data collected at a median 9-year follow-up. Liver fibrosis showed significant associations with cognitive performance in reasoning, working memory, visual memory, prospective memory, executive function, and processing speed. Subgroup analysis indicated larger effects sizes for symbol digital substitution but smaller effect sizes for trail making in middle-aged people than their old counterparts. Neuroimaging analyses revealed significant associations between liver fibrosis and reduced regional GMVs, primarily in the hippocampus, thalamus, ventral striatum, parahippocampal gyrus, brain stem, and cerebellum. CRP levels were significantly higher in adults with advanced liver fibrosis than those without, indicating an elevated systemic inflammation. Moreover, the serum CRP significantly mediated the effect of liver fibrosis on most cognitive measures and regional GMVs in the hippocampus and brain stem. INTERPRETATION This study provides a well-powered characterization of associations between liver fibrosis, cognitive impairment, and grey matter atrophy. It also highlights the possibly mediating role of systemic inflammation on the liver-brain axis. Early surveillance and prevention of liver diseases may reduce cognitive decline and brain GMV loss. FUNDING National Science Foundation, and National Institutes of Health.
Collapse
Affiliation(s)
- Rongtao Jiang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Jing Wu
- Second Department of Liver Disease Center, Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Wei Dai
- Department of Biostatistics, Yale University, New Haven, CT 06520, USA
| | - Raimundo X Rodriguez
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100088, China
| | - Shile Qi
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Qinghao Liang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Bin Xu
- Second Department of Liver Disease Center, Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Qinghua Meng
- Department of Medical Oncology, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, China
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA; Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, 100 College Street, New Haven, CT 06510, USA.
| |
Collapse
|