1
|
Cunningham D, Reich T, Rizzi TE, Powell C, Schlupp I. Enrichment effects on growth, health, and reproduction in a single clone of the asexual Amazon molly, Poecilia formosa. PeerJ 2024; 12:e18734. [PMID: 39726741 PMCID: PMC11670767 DOI: 10.7717/peerj.18734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
This study examines the impact of two types of environmental enrichment on the growth of the Amazon molly (Poecilia formosa), a clonal fish species. We investigated the effects of two welfare-related enrichment factors: physical enrichment (presence of a halfpipe PVC and gravel substrate, E) and social enrichment (presence of visible neighbor fish, N). Fish were divided into four treatment groups: (1) both physical and social enrichment (EN), (2) no physical enrichment but social enrichment (nEN), (3) physical enrichment without social enrichment (EnN,), and (4) no enrichment (nEnN). Results showed that individuals, which received both types of enrichment, exhibited faster growth rates and lower early life mortality compared to the other groups, indicating improved health and welfare. However, this initial advantage did not persist into adulthood, suggesting that the benefits of enrichment may be stage specific. These findings highlight the importance of environmental factors in promoting welfare in a particular species, especially during early developmental stages. This study may have implications for early life-stage fish research indicating that some environmental factors may play a role in enhancing growth, reproductive competence, and reduced mortality. Enrichment effects on growth, health, and reproduction in a single clone of the asexual Amazon molly, Poecilia formosa.
Collapse
Affiliation(s)
- Debbie Cunningham
- Oklahoma State University, Office of the Vice President for Research, Stillwater, Oklahoma, United States
| | - Tyler Reich
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States
- International Stock Center for Livebearing Fishes, School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States
| | - Theresa E. Rizzi
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, United States
| | - Chance Powell
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States
- International Stock Center for Livebearing Fishes, School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States
- Department of Biological Sciences, University of Arkansas at Fayetteville, Fayetteville, Arkansas, United States
| | - Ingo Schlupp
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States
- International Stock Center for Livebearing Fishes, School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States
| |
Collapse
|
2
|
Howe-Wittek L, Kroschk P, Nieschalke K, Rawel HM, Krämer S, Raila J. Non-Invasive Monitoring of Corticosterone Levels in Mouse Urine with Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry. Molecules 2024; 29:5399. [PMID: 39598788 PMCID: PMC11597188 DOI: 10.3390/molecules29225399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
An innovative method for the quantification of corticosterone in the urine of C57BL/6J mice by liquid chromatography-electrospray ionization-tandem mass spectrometry was developed. Unconjugated and glucuronidated corticosterone was detected in the urine samples using enzymatic hydrolysis following liquid-liquid extraction. After optimization of the extraction protocol and LC-MS/MS parameters, we performed a validation study using a representative urine pool of C57BL/6J and Naval Medical Research Institute mice. The method shows good linearity (1-5000 fmol/µL) and the calculated limit of quantification amounts to 0.823 fmol/µL. Both intra-day and inter-day variation was ≤10%, while their recoveries amounted to 90.4-110.6% and 99.8%, respectively. Twenty-four hour urine collection of C57BL/6J mice restrained in two different metabolic cage types for two times was used to test the validated method. To control the hydration level of mice, the corticosterone concentration in their urine was normalized to urinary creatinine concentration. Our LC-MS/MS method represents a highly specific analytical tool for the quantification of corticosterone levels in urine samples, assisting in non-invasive monitoring of acute stress levels in laboratory mice.
Collapse
Affiliation(s)
- Laura Howe-Wittek
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany; (L.H.-W.); (K.N.); (H.M.R.)
- Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| | - Paul Kroschk
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany; (L.H.-W.); (K.N.); (H.M.R.)
| | - Kai Nieschalke
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany; (L.H.-W.); (K.N.); (H.M.R.)
- Federal Office of Consumer Protection and Food Safety (BVL), Unit 502-European Union Reference Laboratory (EURL) for Veterinary Drug Residues, 12277 Berlin, Germany
| | - Harshadrai M. Rawel
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany; (L.H.-W.); (K.N.); (H.M.R.)
| | - Stephanie Krämer
- Interdisciplinary Center of 3Rs in Animal Research (ICAR3R), Clinic of Veterinary Medicine, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Jens Raila
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany; (L.H.-W.); (K.N.); (H.M.R.)
| |
Collapse
|
3
|
Kim JH, Ha EK, Lee GC, Han B, Shin J, Han MY, Rhie S. Diverse weaning foods and diet patterns at multiple time points during infancy period and their association with neurodevelopmental outcomes in 6-year-old children. Eur J Clin Nutr 2024:10.1038/s41430-024-01528-3. [PMID: 39424987 DOI: 10.1038/s41430-024-01528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND/OBJECTIVES Understanding the impact of early-life nutritional choices on neurodevelopment in children is a growing area of research. To investigate the association between dietary patterns at multiple timelines and neurodevelopmental outcomes in 6-year-old children. SUBJECTS/METHODS This administrative observational study utilized a merged data from the national health insurance database and the health screening program for children. Information on the diet patterns from infancy to 3 years of age was obtained from parent-administered questionnaires. Dietary pattern clusters of the participants were identified using Polytomous Latent Class Analysis. The outcome was neurodevelopment using the Korean Developmental Screening Test (K-DST) at the age of 6 years. RESULTS The study identified four distinct clusters among with the 133,243 eligible children (49.6% male, birth weight 3.22 kg, head circumference 42.7 cm at 4 months). The control cluster (53.4%) exhibited a diet including breast milk feeding and a variety of dietary patterns at the age of 1 year. In contrast, cluster 1 (36.0%) showed a skewed dietary pattern at the same age. Cluster 2 (6.6%) displayed diverse dietary patterns at one year but primarily consumed formula at four months, while cluster 3 (4.0%) had reduced dietary diversity and formula feeding. Compared with the control cluster, the adjusted odds ratio for unfavorable development was 1.209 (95% CI, 1.156-1.266) in cluster 1, 1.418 (95% CI, 1.312-1.532) in cluster 2, and 1.741 (95% CI, 1.593-1.903) in cluster 3. These findings remained consistent across individual domains of the K-DST. CONCLUSIONS Dietary patterns during infancy and early childhood may be associated with neurodevelopment at the age of 6 years.
Collapse
Affiliation(s)
- Ju Hee Kim
- Department of Pediatrics, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, South Korea
| | - Eun Kyo Ha
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Gi Chun Lee
- Department of Computer Science and Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Boeun Han
- Department of Pediatrics, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Jeewon Shin
- Department of Pediatrics, Ilsan CHA Medical Center, CHA University School of Medicine, Goyang, South Korea
| | - Man Yong Han
- Department of Pediatrics, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, South Korea.
| | - Seonkyeong Rhie
- Department of Pediatrics, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, South Korea.
| |
Collapse
|
4
|
Voinescu A, Papaioannou T, Petrini K, Stanton Fraser D. Exergaming for dementia and mild cognitive impairment. Cochrane Database Syst Rev 2024; 9:CD013853. [PMID: 39319863 PMCID: PMC11423707 DOI: 10.1002/14651858.cd013853.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
BACKGROUND Dementia and mild cognitive impairment are significant contributors to disability and dependency in older adults. Current treatments for managing these conditions are limited. Exergaming, a novel technology-driven intervention combining physical exercise with cognitive tasks, is a potential therapeutic approach. OBJECTIVES To assess the effects of exergaming interventions on physical and cognitive outcomes, and activities of daily living, in people with dementia and mild cognitive impairment. SEARCH METHODS On 22 December 2023, we searched the Cochrane Dementia and Cognitive Improvement Group's register, MEDLINE (Ovid SP), Embase (Ovid SP), PsycINFO (Ovid SP), CINAHL (EBSCOhost), Web of Science Core Collection (Clarivate), LILACS (BIREME), ClinicalTrials.gov, and the WHO (World Health Organization) meta-register the International Clinical Trials Registry Portal. SELECTION CRITERIA We included randomised controlled trials (RCTs) that recruited individuals diagnosed with dementia or mild cognitive impairment (MCI). Exergaming interventions involved participants being engaged in physical activity of at least moderate intensity, and used immersive and non-immersive virtual reality (VR) technology and real-time interaction. We planned to classify comparators as inactive control group (e.g. no treatment, waiting list), active control group (e.g. standard treatment, non-specific active control), or alternative treatment (e.g. physical activity, computerised cognitive training). Outcomes were to be measured using validated instruments. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies for inclusion, extracted data, assessed the risk of bias using the Cochrane risk of bias tool RoB 2, and assessed the certainty of the evidence using GRADE. We consulted a third author if required. Where possible, we pooled outcome data using a fixed-effect or random-effects model. We expressed treatment effects as standardised mean differences (SMDs) for continuous outcomes and as risk ratios (RRs) for dichotomous outcomes, along with 95% confidence intervals (CIs). When data could not be pooled, we presented a narrative synthesis. MAIN RESULTS We included 11 studies published between 2014 and 2023. Six of these studies were pre-registered. Seven studies involved 308 participants with mild cognitive impairment, and five studies included 228 individuals with dementia. One of the studies presented data for both MCI and dementia separately. Most comparisons exhibited a high risk or some concerns of bias. We have only low or very low certainty about all the results presented below. Effects of exergaming interventions for people with dementia Compared to a control group Exergaming may improve global cognitive functioning at the end of treatment, but the evidence is very uncertain (SMD 1.47, 95% 1.04 to 1.90; 2 studies, 113 participants). The evidence is very uncertain about the effects of exergaming at the end of treatment on global physical functioning (SMD -0.20, 95% -0.57 to 0.17; 2 studies, 113 participants) or activities of daily living (ADL) (SMD -0.28, 95% -0.65 to 0.09; 2 studies, 113 participants). The evidence is very uncertain about adverse effects due to the small sample size and no events. Findings are based on two studies (113 participants), but data could not be pooled; both studies reported no adverse reactions linked to the intervention or control group. Compared to an alternative treatment group At the end of treatment, the evidence is very uncertain about the effects of exergaming on global physical functioning (SMD 0.14, 95% -0.30 to 0.58; 2 studies, 85 participants) or global cognitive functioning (SMD 0.11, 95% -0.33 to 0.55; 2 studies, 85 participants). For ADL, only one study was available (n = 67), which provided low-certainty evidence of little to no difference between exergaming and exercise. The evidence is very uncertain about adverse effects of exergaming compared with alternative treatment (RR 7.50, 95% CI 0.41 to 136.52; 2 studies, 2/85 participants). Effects of exergaming interventions for people with mild cognitive impairment (MCI) Compared to a control group Exergaming may improve global cognitive functioning at the end of treatment for people with MCI, but the evidence is very uncertain, (SMD 0.79, 95% 0.05 to 1.53; 2 studies, 34 participants). The evidence is very uncertain about the effects of exergaming at the end of treatment on global physical functioning (SMD 0.27, 95% -0.41 to 0.94; 2 studies, 34 participants) and ADL (SMD 0.51, 95% -0.01 to 1.03; 2 studies, 60 participants). The evidence is very uncertain about the effects of exergaming on adverse effects due to a small sample size and no events (0/14 participants). Findings are based on one study. Compared to an alternative treatment group The evidence is very uncertain about global physical functioning at the end of treatment. Only one study was included (n = 45). For global cognitive functioning, we included four studies (n = 235 participants), but due to considerable heterogeneity (I² = 96%), we could not pool results. The evidence is very uncertain about the effects of exergaming on global cognitive functioning. No study evaluated ADL outcomes. The evidence is very uncertain about adverse effects of exergaming due to the small sample size and no events (n = 123 participants). Findings are based on one study. AUTHORS' CONCLUSIONS Overall, the evidence is very uncertain about the effects of exergaming on global physical and cognitive functioning, and ADL. There may be an improvement in global cognitive functioning at the end of treatment for both people with dementia and people with MCI, but the evidence is very uncertain. The potential benefit is observed only when exergaming is compared with a control intervention (e.g. usual care, listening to music, health education), and not when compared with an alternative treatment with a specific effect, such as physical activity (e.g. standing and sitting exercises or cycling). The evidence is very uncertain about the effects of exergaming on adverse effects. All sessions took place in a controlled and supervised environment. Therefore, we do not know if exergaming can be safely used in a home environment, unsupervised.
Collapse
Affiliation(s)
| | | | - Karin Petrini
- Department of Psychology, University of Bath, Bath, UK
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, UK
| | | |
Collapse
|
5
|
Camarini R, Marianno P, Costa BY, Palombo P, Noto AR. Environmental enrichment and complementary clinical interventions as therapeutic approaches for alcohol use disorder in animal models and humans. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:323-354. [PMID: 39523059 DOI: 10.1016/bs.irn.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alcohol use disorder (AUD) is a multifactorial disorder arising from a complex interplay of various genetic, environmental, psychological, and social factors. Environmental factors influence alcohol misuse and can lead to AUD. While stress plays a crucial role in the onset and progression of this disorder, environmental enrichment (EE) also influences ethanol-induced behavioral and neurobiological responses. These alterations include reduced ethanol consumption, diminished operant self-administration, attenuated behavioral sensitization, and enhanced conditioned place preference. EE exerts modulatory effects on multiple neurobiological processes, such as the brain-derived neurotrophic factor/TrkB signaling pathway, the oxytocinergic system, and the hypothalamic-pituitary-adrenal axis. EE, which includes stimulating activities to counteract ethanol effects in animal studies, has parallels in human intervention that have shown potential benefits. Physical activity, cognitive behavioral therapy, and meditation, alongside techniques involving cognitive stimulation, social interaction, and recreational activities, may lead to more effective therapeutic outcomes in treatments of AUD.
Collapse
Affiliation(s)
- Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil.
| | - Priscila Marianno
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil
| | - Beatriz Yamada Costa
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil
| | - Paola Palombo
- Department of Psychobiology, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Ana Regina Noto
- Department of Psychobiology, Universidade Federal de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Fiamingo M, Bailey A, Toler S, Lee K, Oshiro W, Yoo B, Krantz T, Evansky P, Davies D, Gilmour MI, Farraj A, Jaspers I, Hazari MS. Enriched housing differentially alters allostatic load and cardiopulmonary responses to wildfire-related smoke in male and female mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:561-578. [PMID: 38721998 PMCID: PMC11167957 DOI: 10.1080/15287394.2024.2346582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Living conditions are an important modifier of individual health outcomes and may lead to higher allostatic load (AL). However, housing-induced cardiovascular and immune effects contributing to altered environmental responsiveness remain understudied. This investigation was conducted to examine the influence of enriched (EH) versus depleted housing (DH) conditions on cardiopulmonary functions, systemic immune responses, and allostatic load in response to a single wildfire smoke (WS) exposure in mice. Male and female C57BL/6J mice were divided into EH or DH for 22 weeks, and cardiopulmonary assessments measured before and after exposures to either one-hr filtered air (FA) or flaming eucalyptus WS exposure. Male and female DH mice exhibited increased heart rate (HR) and left ventricular mass (LVM), as well as reduced stroke volume and end diastolic volume (EDV) one week following exposure to WS. Female DH mice displayed significantly elevated levels of IL-2, IL-17, corticosterone and hemoglobin A1c (HbA1c) following WS, while female in EH mice higher epinephrine levels were detected. Female mice exhibited higher AL than males with DH, which was potentiated post-WS exposure. Thus, DH increased susceptibility to extreme air pollution in a gender-dependent manner suggesting that living conditions need to be evaluated as a modifier of toxicological responses.
Collapse
Affiliation(s)
- Michelle Fiamingo
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| | - Aleah Bailey
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| | - Sydnie Toler
- Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaleb Lee
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830
| | - Wendy Oshiro
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Brendan Yoo
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Todd Krantz
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Paul Evansky
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711
| | - David Davies
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711
| | - M. Ian Gilmour
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Aimen Farraj
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| | - Mehdi S. Hazari
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711
| |
Collapse
|
7
|
Jellinger AL, Suthard RL, Yuan B, Surets M, Ruesch EA, Caban AJ, Liu S, Shpokayte M, Ramirez S. Chronic activation of a negative engram induces behavioral and cellular abnormalities. eLife 2024; 13:RP96281. [PMID: 38990919 PMCID: PMC11239178 DOI: 10.7554/elife.96281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.
Collapse
Affiliation(s)
- Alexandra L Jellinger
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston UniversityBostonUnited States
| | - Rebecca L Suthard
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston UniversityBostonUnited States
- Graduate Program for Neuroscience, Boston UniversityBostonUnited States
| | - Bingbing Yuan
- Whitehead Institute for Biomedical Research, MITCambridgeUnited States
| | - Michelle Surets
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston UniversityBostonUnited States
| | - Evan A Ruesch
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston UniversityBostonUnited States
| | - Albit J Caban
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston UniversityBostonUnited States
- Graduate Program for Neuroscience, Boston UniversityBostonUnited States
| | - Shawn Liu
- Department of Physiology and Cellular Biophysics, Columbia University Medical CenterNew YorkUnited States
| | - Monika Shpokayte
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston UniversityBostonUnited States
- Graduate Program for Neuroscience, Boston UniversityBostonUnited States
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston UniversityBostonUnited States
- Neurophotonics Center, and Photonics Center, Boston UniversityBostonUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| |
Collapse
|
8
|
Lewis A. A non-adaptationist hypothesis of play behaviour. J Physiol 2024; 602:2433-2453. [PMID: 37656171 DOI: 10.1113/jp284413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Play is a suite of apparently non-functional, pleasurable behaviours observed in human and non-human animals. Although the phenomenon has been studied extensively, no adaptationist behavioural theory of how play evolved can be supported by the available evidence. However, the advancement of the extended evolutionary synthesis and developments in systems biology offer alternative avenues for non-adaptationist physiological hypotheses. I therefore propose a hypothesis of play, based upon a complex ACh activity that is under agential control of the organism, whereby play initiates ACh-mediated feedforward and feedback processes which act to: (i) regulate metabolic processes; (ii) form new ACh receptors via ACh mRNA activity; (iii) mediate attention, memory consolidation and learning; and (iv) mediate social behaviours, reproduction and embryonic development. However, play occurs across taxa, but does not occur across all taxonomic groups or within all species of a taxonomic group. Thus, to support the validity of the proposed hypothesis, I further propose potential explanations for this anomaly, which include sampling and observer biases, altricial versus precocial juvenile development, and the influence of habitat niche and environmental conditions on behaviour. The proposed hypothesis thus offers new avenues for study in both the biological and social sciences, in addition to having potential applications in applied sciences, such as animal welfare and biomedical research. Crucially, it is hoped that this hypothesis will promote further study of a valid and behaviourally significant, yet currently enigmatic, biological phenomenon.
Collapse
Affiliation(s)
- Amelia Lewis
- Independent Researcher, Lincoln, Lincolnshire, UK
| |
Collapse
|
9
|
Schonkeren SL, Thijssen MS, Idris M, Wouters K, de Vaan J, Teubner A, Gijbels MJ, Boesmans W, Melotte V. Differences in enteric neuronal density in the NSE-Noggin mouse model across institutes. Sci Rep 2024; 14:3686. [PMID: 38355947 PMCID: PMC10866904 DOI: 10.1038/s41598-024-54337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
The enteric nervous system (ENS) is a large and complex part of the peripheral nervous system, and it is vital for gut homeostasis. To study the ENS, different hyper- and hypo-innervated model systems have been developed. The NSE-Noggin mouse model was described as one of the few models with a higher enteric neuronal density in the colon. However, in our hands NSE-Noggin mice did not present with a hyperganglionic phenotype. NSE-Noggin mice were phenotyped based on fur appearance, genotyped and DNA sequenced to demonstrate transgene and intact NSE-Noggin-IRES-EGFP construct presence, and RNA expression of Noggin was shown to be upregulated. Positive EGFP staining in the plexus of NSE-Noggin mice also confirmed Noggin protein expression. Myenteric plexus preparations of the colon were examined to quantify both the overall density of enteric neurons and the proportions of enteric neurons expressing specific subtype markers. The total number of enteric neurons in the colonic myenteric plexus of transgenic mice did not differ significantly from wild types, nor did the proportion of calbindin, calretinin, or serotonin immunoreactive myenteric neurons. Possible reasons as to why the hyperinnervated phenotype could not be observed in contrast with original studies using this mouse model are discussed, including study design, influence of microbiota, and other environmental variables.
Collapse
Affiliation(s)
- Simone L Schonkeren
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Meike S Thijssen
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Musa Idris
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kim Wouters
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joëlle de Vaan
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Andreas Teubner
- Central Animal Facility, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Marion J Gijbels
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis & Ischemic Syndrome, Amsterdam Infection and Immunity: Inflammatory Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Werend Boesmans
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Veerle Melotte
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands.
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Čechová B, Jurčovičová J, Petríková I, Vaculín Š, Šandera Š, Šlamberová R. Impact of altered environment and early postnatal methamphetamine exposure on serotonin levels in the rat hippocampus during adolescence. Lab Anim Res 2024; 40:1. [PMID: 38308379 PMCID: PMC10835812 DOI: 10.1186/s42826-024-00192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Methamphetamine (MA) is a highly abused psychostimulant across all age groups including pregnant women. Because developing brain is vulnerable by the action of drugs, or other noxious stimuli, the aim of our study was to examine the effect of early postnatal administration of MA alone or in combination with enriched environment (EE) and/or stress of separate housing, on the levels of serotonin (5HT) in the hippocampus of male rat pups at three stages of adolescence (postnatal day (PND) 28, 35 and 45). MA (5 mg/kg/ml) was administered subcutaneously (sc) to pups (direct administration), or via mothers' milk between PND1 and PND12 (indirect administration). Controls were exposed saline (SA). Pups were exposed to EE and/or to separation from the weaning till the end of the experiment. RESULTS On PND 28, in sc-treated series, EE significantly increased the muted 5HT in SA pups after separation and restored the pronounced inhibition of 5HT by MA. No beneficial effect of EE was present in pups exposed to combination of MA and separation. 5HT development declined over time; EE, MA and separation had different effects on 5HT relative to adolescence stage. CONCLUSIONS Present study shows that MA along with environment or housing affect 5HT levels, depending on both the age and the method of application (direct or indirect). These findings extend the knowledge on the effects of MA alone and in combination with different housing conditions on the developing brain and highlight the increased sensitivity to MA during the first few months after birth.
Collapse
Affiliation(s)
- Barbora Čechová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Jurčovičová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Petríková
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Šimon Vaculín
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Štěpán Šandera
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
11
|
Bahi A. Gestational environmental enrichment prevents chronic social stress induced anxiety- and ethanol-related behaviors in offspring. Pharmacol Biochem Behav 2024; 234:173679. [PMID: 37977553 DOI: 10.1016/j.pbb.2023.173679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Epidemiological surveys have shown a strong relationship between maternal stress and offspring's mood disorders. Growing evidence suggested that environmental enrichment (EE) improves cognitive function in models of psychiatric and neurological disorders. However, the potential protective effects of gestational EE on social stress-elicited mood disorders in offspring have not been studied. Knowing that the undeveloped brain is more sensitive to gestational environmental stimuli, we hypothesized that initiating cognitive stimulation, during gestation, would protect against social stress-induced behavioral alterations in adulthood. Therefore, the present study aimed to investigate the effects of gestational EE on social stress-elicited anxiety- and ethanol-related behaviors in adult offspring. EE consisted of free access, of dams, to tubular devices of different shapes, colors, and sizes that were changed regularly. After birth and weaning, young adult offspring were exposed to 19 days of social stress and anxiety-like behavior was evaluated by elevated plus maze, open field, and marbles burying tests. The two-bottle choice (TBC) drinking paradigm was used to assess stress-induced ethanol intake. Results showed that gestational EE prevented social stress-elicited anxiogenic-like effects with no differences in spontaneous locomotor activity. Moreover, in the TBC paradigm, mice pre-exposed to EE consistently showed a significantly decreased consumption and preference for ethanol with no effects on tastants' intakes. Interestingly, gestational EE increased serum BDNF levels, which showed a correlation with measures of anxiety- and ethanol-related behaviors. These findings indicate that some neurodevelopmental changes associated with prenatal EE may counteract adult social stress-induced behavioral alterations through a BDNF mechanism. Therefore, we propose that gestational EE has significant protective and beneficial effects on social stress-induced cognitive impairment. It can also alleviate anxiety-like behavior and subsequent excessive alcohol consumption.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Anatomy, CMHS, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
12
|
Bartke A, Hascup E, Hascup K. Responses to Many Anti-Aging Interventions Are Sexually Dimorphic. World J Mens Health 2024; 42:29-38. [PMID: 37118966 PMCID: PMC10782120 DOI: 10.5534/wjmh.230015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 04/30/2023] Open
Abstract
There is increasing appreciation that sex differences are not limited to reproductive organs or traits related to reproduction and that sex is an important biological variable in most characteristics of a living organism. The biological process of aging and aging-related traits are no exception and exhibit numerous, often major, sex differences. This article explores one aspect of these differences, namely sex differences in the responses to anti-aging interventions. Aging can be slowed down and/or postponed by a variety of environmental ("lifestyle"), genetic or pharmacological interventions. Although many, particularly older studies utilized only one sex of experimental animals, there is considerable evidence that responses to these interventions can be very different in females and males. Calorie restriction (CR), that is reducing food intake without malnutrition can extend longevity in both sexes, but specific metabolic alterations and health benefits induced by CR are not the same in women and men. In laboratory mice, several of the genetic alterations that reduce insulin-like growth factor I (IGF-1) signaling extend longevity more effectively in females or in females only. Beneficial effects of rapamycin, an inhibitor of mTOR signaling, on mouse longevity are greater in females. In contrast, several anti-aging compounds, including a weak estrogen, 17 alpha estradiol, extend longevity of male, but not female, mice. Apparently, fundamental mechanisms of aging are not identical in females and males and it is essential to use both sexes in studies aimed at identifying novel anti-aging interventions. Recommendations for lifestyle modifications, drugs, and dietary supplements to maintain good health and functionality into advanced age and to live longer will likely need to be tailored to the sex of the user.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Erin Hascup
- Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin Hascup
- Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
13
|
Bohn L, Bierbaum L, Kästner N, von Kortzfleisch VT, Kaiser S, Sachser N, Richter SH. Structural enrichment for laboratory mice: exploring the effects of novelty and complexity. Front Vet Sci 2023; 10:1207332. [PMID: 37841462 PMCID: PMC10570735 DOI: 10.3389/fvets.2023.1207332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Providing structural enrichment is a widespread refinement method for laboratory rodents and other animals in captivity. So far, animal welfare research has mostly focused on the effect of increased complexity either by accumulating or combining different enrichment items. However, increasing complexity is not the only possibility to refine housing conditions. Another refinement option is to increase novelty by regularly exchanging known enrichment items with new ones. In the present study, we used pair-housed non-breeding female C57BL/6J and DBA/2N mice to investigate the effect of novelty when applying structural enrichment. We used a double cage system, in which one cage served as home cage and the other as extra cage. While the home cage was furnished in the same way for all mice, in the extra cage we either provided only space with no additional enrichment items (space), a fixed set of enrichment items (complexity), or a changing set of enrichment items (novelty). Over 5 weeks, we assessed spontaneous behaviors, body weight, and extra cage usage as indicators of welfare and preference. Our main results showed that mice with access to structurally enriched extra cages (complexity and novelty) spent more time in their extra cages and complexity mice had lower latencies to enter their extra cages than mice with access to the extra cages without any structural enrichment (space). This indicates that the mice preferred the structurally enriched extra cages over the structurally non-enriched space cages. We found only one statistically significant difference between the novelty and complexity condition: during week 3, novelty mice spent more time in their extra cages than complexity mice. Although we did not detect any other significant differences between the novelty and complexity condition in the present study, more research is required to further explore the potential benefits of novelty beyond complexity.
Collapse
Affiliation(s)
- Lena Bohn
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Louisa Bierbaum
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Niklas Kästner
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | | | - Sylvia Kaiser
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - S. Helene Richter
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| |
Collapse
|
14
|
Bramati G, Stauffer P, Nigri M, Wolfer DP, Amrein I. Environmental enrichment improves hippocampus-dependent spatial learning in female C57BL/6 mice in novel IntelliCage sweet reward-based behavioral tests. Front Behav Neurosci 2023; 17:1256744. [PMID: 37791111 PMCID: PMC10543696 DOI: 10.3389/fnbeh.2023.1256744] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 10/05/2023] Open
Abstract
The IntelliCage is an automated home-cage system that allows researchers to investigate the spontaneous behavior and learning abilities of group-housed mice. The IntelliCage enables us to increase the standardization and reproducibility of behavioral outcomes by the omission of experimenter-mouse interactions. Although the IntelliCage provides a less stressful environment for animals, standard IntelliCage protocols use controlled water access as the motivational driver for learning. To overcome possible water restrictions in slow learners, we developed a series of novel protocols based on appetitive learning, in which mice had permanent access to plain water but were additionally rewarded with sweetened water upon solving the task. C57BL/6NCrl female mice were used to assess the efficacy of these sweet reward-based protocols in a series of learning tasks. Compared to control mice tested with standard protocols, mice motivated with a sweet reward did equal to or better in operant performance and place learning tasks. Learning of temporal rules was slower than that in controls. When faced with a combined temporal x spatial working memory task, sweet-rewarded mice learned little and chose plain water. In a second set of experiments, the impact of environmental enrichment on appetitive learning was tested. Mice kept under enriched environment (EE) or standard housing (SH) conditions prior to the IntelliCage experiments performed similarly in the sweet-rewarded place learning task. EE mice performed better in the hippocampus-dependent spatial working memory task. The improved performance of EE mice in the hippocampus-dependent spatial working memory task might be explained by the observed larger volume of their mossy fibers. Our results confirm that environmental enrichment increases complex spatial learning abilities and leads to long-lasting morphological changes in the hippocampus. Furthermore, simple standard IntelliCage protocols could easily be adapted to sweet rewards, which improve animal welfare by removing the possibility of water restriction. However, complex behavioral tasks motivated by sweet reward-based learning need further adjustments to reach the same efficacy as standard protocols.
Collapse
Affiliation(s)
- Giulia Bramati
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
| | - Pia Stauffer
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
| | - Martina Nigri
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH, Zürich, Switzerland
| | - David P. Wolfer
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH, Zürich, Switzerland
| | - Irmgard Amrein
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH, Zürich, Switzerland
| |
Collapse
|
15
|
Alarcón TA, Presti-Silva SM, Simões APT, Ribeiro FM, Pires RGW. Molecular mechanisms underlying the neuroprotection of environmental enrichment in Parkinson's disease. Neural Regen Res 2023; 18:1450-1456. [PMID: 36571341 PMCID: PMC10075132 DOI: 10.4103/1673-5374.360264] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease is the most common movement disorder, affecting about 1% of the population over the age of 60 years. Parkinson's disease is characterized clinically by resting tremor, bradykinesia, rigidity and postural instability, as a result of the progressive loss of nigrostriatal dopaminergic neurons. In addition to this neuronal cell loss, Parkinson's disease is characterized by the accumulation of intracellular protein aggregates, Lewy bodies and Lewy neurites, composed primarily of the protein α-synuclein. Although it was first described almost 200 years ago, there are no disease-modifying drugs to treat patients with Parkinson's disease. In addition to conventional therapies, non-pharmacological treatment strategies are under investigation in patients and animal models of neurodegenerative disorders. Among such strategies, environmental enrichment, comprising physical exercise, cognitive stimulus, and social interactions, has been assessed in preclinical models of Parkinson's disease. Environmental enrichment can cause structural and functional changes in the brain and promote neurogenesis and dendritic growth by modifying gene expression, enhancing the expression of neurotrophic factors and modulating neurotransmission. In this review article, we focus on the current knowledge about the molecular mechanisms underlying environmental enrichment neuroprotection in Parkinson's disease, highlighting its influence on the dopaminergic, cholinergic, glutamatergic and GABAergic systems, as well as the involvement of neurotrophic factors. We describe experimental pre-clinical data showing how environmental enrichment can act as a modulator in a neurochemical and behavioral context in different animal models of Parkinson's disease, highlighting the potential of environmental enrichment as an additional strategy in the management and prevention of this complex disease.
Collapse
Affiliation(s)
- Tamara Andrea Alarcón
- Department of Physiological Sciences; Laboratory of Molecular and Behavioral Neurobiology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria, Brazil
| | - Sarah Martins Presti-Silva
- Laboratory of Molecular and Behavioral Neurobiology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria; Department of Biochemistry and Immunology, Institute o Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Brazil
| | - Ana Paula Toniato Simões
- Department of Physiological Sciences; Laboratory of Molecular and Behavioral Neurobiology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria, Brazil
| | - Fabiola Mara Ribeiro
- Department of Biochemistry and Immunology, Institute o Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Brazil
| | - Rita Gomes Wanderley Pires
- Department of Physiological Sciences; Laboratory of Molecular and Behavioral Neurobiology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria, Brazil
| |
Collapse
|
16
|
Shin S, Lee S. The impact of environmental factors during maternal separation on the behaviors of adolescent C57BL/6 mice. Front Mol Neurosci 2023; 16:1147951. [PMID: 37293540 PMCID: PMC10244624 DOI: 10.3389/fnmol.2023.1147951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Neonatal maternal separation is a widely used method to construct an early-life stress model in rodents. In this method, pups are separated from their mothers for several hours every day during the first 2 weeks of life, which results in adverse early-life events. It is a known fact that maternal separation can exert a significant impact on the behavior and psychological health, such as anxiety and depression, in adolescent offspring. However, environmental conditions during maternal separation can differ such as the presence of other animals or by placing pups in a different dam. To investigate the differential effects of various conditions of maternal separation on the behavior of adolescent mice, we created the following groups: (1) iMS group: pups were moved to an isolated room with no other adult mice in a nearby cage, (2) eDam group: the pups randomly exchanged their dams, (3) OF group: pups were shifted to another cage with the bedding material containing maternal odor (olfactory stimulation), and (4) MS group: pups were shifted to another vivarium. From postnatal day (PND) 2-20 (i.e., 19 consecutive days), pups were separated from the dam daily for 4 h and exposed to various environments (MS, iMS, eDam, and OF) or were left undisturbed [control (CON) group]. A series of behavioral assessments were conducted to evaluate locomotion, anxiety, recognition, learning, and memory in adolescent offspring. The results showed that neonatal maternal separation led to impaired recognition memory, motor coordination, and motor skill learning across all groups. However, the iMS group exhibited anxiety-like behavior in the elevated plus maze test and enhanced the extinction of fear memory in the auditory fear conditioning test. The OF and eDam groups displayed partially recovered short-term working memory in the Y-maze test but exhibited opposite exploratory behaviors. The OF group spent more time in the center, while the eDam group spent less time. These findings demonstrated that exposure to different environmental conditions during maternal separation causes behavioral alterations in adolescent offspring, providing a potential explanation for the variation in behavioral phenotypes observed in the early-life stress models.
Collapse
|
17
|
Marignac G, Pilot-Storck F. Body, ambient and felt temperature: An attempt to resolve a human and mice dilemma. Biochimie 2023:S0300-9084(23)00110-4. [PMID: 37211254 DOI: 10.1016/j.biochi.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
Mice thermoneutral zone lies at temperatures much higher than expected when considering the geographical extension of the species. Growing evidence shows that mouse-dependent thermogenesis experimentation needs to cope with temperatures below those at which the animals are most comfortable. The associated physiological changes interfere with experimental results, thereby highlighting the apparently trivial subject of room-temperature. Working at above 25 °C is difficult for researchers and animal care technicians. Herein, we explore alternative solutions related to living habits of wild mice that could improve translation of research on mice to humans. Standard murine environments are often colder than those in laboratory facilities and their behavior is mainly characterized by a gregarious, nesting and exploratory way of life. Optimization of their thermal environment can thus also be achieved by avoiding individual housing and providing high-quality nesting material and devices that would allow locomotor activity, hence muscle thermogenesis. These options have additional relevance in terms of animal welfare. When precise monitoring of the temperature is required, temperature-controlled cabinets can be used for the duration of the experiments. During the manipulation of mice, a heated laminar flow hood or tray could create an optimized microenvironment. The specification of temperature-related data in publications should contain information on the translatability of the described mouse models to humans. Furthermore, publications should describe the premises of the laboratory in relation to housing possibilities and murine behavior.
Collapse
Affiliation(s)
- Geneviève Marignac
- Ecole Nationale Vétérinaire d'Alfort, EnvA, F-94700, Maisons-Alfort, France.
| | - Fanny Pilot-Storck
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010, Créteil, France; Lab Animal Science, Ecole Nationale Vétérinaire d'Alfort, EnvA, IMRB, F-94700, Maisons-Alfort, France
| |
Collapse
|
18
|
Kapusta J, Siewierska D, Kruczek M, Pochron E, Olejniczak P. Species specific differences in short-term behavioral reaction of voles to cage elements removal. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
19
|
Burke DA, Morehouse JR, Saraswat Ohri S, Magnuson DS. Unintentional Effects from Housing Enhancement Resulting in Functional Improvement in Spinal Cord-Injured Mice. Neurotrauma Rep 2023; 4:71-81. [PMID: 36726872 PMCID: PMC9886192 DOI: 10.1089/neur.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It is well established that both positive and negative housing conditions of laboratory animals can affect behavioral, biochemical, and physiological responses. Housing enhancements have been shown to have beneficial effects on locomotor outcomes in rodents with spinal cord injury (SCI). Subsequent to an unplanned housing enhancement of the addition of a balcony to home cages by animal care personnel at a research facility, a retrospective analysis of multiple SCI studies was performed to determine whether outcomes differed before (four studies, N = 28) and after (four studies, N = 23) the addition of the balcony. Locomotor and morphological differences were compared after a mild-moderate T9 spinal cord contusion injury in wild-type mice. Post-injury assessments of locomotor function for 6 weeks included Basso Mouse Scale (BMS) and treadmill kinematic assessments (week 6). Balcony-housed mice showed greater improvements not only in basic locomotor functions (weight-supported stepping, balance) compared to those in standard housing, but also surpassed mice in standard housing without the balcony in higher-order locomotor recovery outcomes, including BMS late-stage recovery measures (paw, tail, and trunk indices). Additionally, balcony-housed mice had overall higher BMS scores, consistently attained more BMS subscores, and had better treadmill track width and stride length compared to those with no balcony. The housing enhancement of a balcony led to unforeseen consequences and unexpected higher recovery outcomes compared to mice in standard housing. This retrospective study highlights the importance of housing conditions in the key outcomes of locomotor recovery after incomplete contusive SCIs in mice.
Collapse
Affiliation(s)
- Darlene A. Burke
- Department of Neurological Surgery, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Address correspondence to: Darlene A. Burke, MS, Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, KY 40292, USA.
| | - Johnny R. Morehouse
- Department of Neurological Surgery, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA
| | - Sujata Saraswat Ohri
- Department of Neurological Surgery, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA
| | - David S.K. Magnuson
- Department of Neurological Surgery, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA
| |
Collapse
|
20
|
Johnson BP, Cohen LG. Applied strategies of neuroplasticity. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:599-609. [PMID: 37620093 DOI: 10.1016/b978-0-323-98817-9.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Various levels of somatotopic organization are present throughout the human nervous system. However, this organization can change when needed based on environmental demands, a phenomenon known as neuroplasticity. Neuroplasticity can occur when learning a new motor skill, adjusting to life after blindness, or following a stroke. Following an injury, these neuroplastic changes can be adaptive or maladaptive, and often occur regardless of whether rehabilitation occurs or not. But not all movements produce neuroplasticity, nor do all rehabilitation interventions. Here, we focus on research regarding how to maximize adaptive neuroplasticity while also minimizing maladaptive plasticity, known as applied neuroplasticity. Emphasis is placed on research exploring how best to apply neuroplastic principles to training environments and rehabilitation protocols. By studying and applying these principles in research and clinical practice, it is hoped that learning of skills and regaining of function and independence can be optimized.
Collapse
Affiliation(s)
- Brian P Johnson
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
21
|
Green MR, Swaney WT. Interacting effects of environmental enrichment across multiple generations on early life phenotypes in zebrafish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B: MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022. [DOI: 10.1002/jez.b.23184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Michael R. Green
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
- Chester Medical School University of Chester Chester UK
| | - William T. Swaney
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
| |
Collapse
|
22
|
Fleten KG, Hyldbakk A, Einen C, Benjakul S, Strand BL, Davies CDL, Mørch Ý, Flatmark K. Alginate Microsphere Encapsulation of Drug-Loaded Nanoparticles: A Novel Strategy for Intraperitoneal Drug Delivery. Mar Drugs 2022; 20:744. [PMID: 36547891 PMCID: PMC9782800 DOI: 10.3390/md20120744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Alginate hydrogels have been broadly investigated for use in medical applications due to their biocompatibility and the possibility to encapsulate cells, proteins, and drugs. In the treatment of peritoneal metastasis, rapid drug clearance from the peritoneal cavity is a major challenge. Aiming to delay drug absorption and reduce toxic side effects, cabazitaxel (CAB)-loaded poly(alkyl cyanoacrylate) (PACA) nanoparticles were encapsulated in alginate microspheres. The PACAlg alginate microspheres were synthesized by electrostatic droplet generation and the physicochemical properties, stability, drug release kinetics, and mesothelial cytotoxicity were analyzed before biodistribution and therapeutic efficacy were studied in mice. The 450 µm microspheres were stable at in vivo conditions for at least 21 days after intraperitoneal implantation in mice, and distributed evenly throughout the peritoneal cavity without aggregation or adhesion. The nanoparticles were stably retained in the alginate microspheres, and nanoparticle toxicity to mesothelial cells was reduced, while the therapeutic efficacy of free CAB was maintained or improved in vivo. Altogether, this work presents the alginate encapsulation of drug-loaded nanoparticles as a promising novel strategy for the treatment of peritoneal metastasis that can improve the therapeutic ratio between toxicity and therapeutic efficacy.
Collapse
Affiliation(s)
- Karianne Giller Fleten
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Astrid Hyldbakk
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway
- Department of Physics, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Caroline Einen
- Department of Physics, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Sopisa Benjakul
- Department of Physics, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Berit Løkensgard Strand
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Catharina de Lange Davies
- Department of Physics, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Ýrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Gastroenterological Surgery, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| |
Collapse
|
23
|
Kondo SY, Kropik J, Wong MADLY. Effect of Bedding Substrates on Blood Glucose and Body Weight in Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:611-614. [PMID: 36375816 PMCID: PMC9732771 DOI: 10.30802/aalas-jaalas-22-000047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Differences in cage microenvironments may contribute to variation in data and affect the outcome of animal studies involving metabolic diseases. To study this, we compared the effects 3 types of bedding-corncob bedding, hardwood bedding, and hardwood bedding plus a cardboard enrichment item-on baseline fasting and nonfasting blood glucose and body weight in mice. Mice housed on corncob bedding showed significantly higher fasting blood glucose than did mice housed on hardwood bedding, with or without the enrichment item. None of the groups showed an effect of bedding type on nonfasting blood glucose levels or body weight. This information informs the choice of bedding substrates for studies that measure fasting blood glucose and potentially mitigates a variable that could confound research outcomes.
Collapse
Affiliation(s)
- Sylvia Y Kondo
- Animal and Veterinary Services Program and,Corresponding author.
| | - Jasmine Kropik
- Human Nutrition Food and Animal Sciences, University of Hawaii, Honolulu, Hawaii
| | | |
Collapse
|
24
|
Prendergast K, McAllister AK. Generating a Reproducible Model of Mid-Gestational Maternal Immune Activation using Poly(I:C) to Study Susceptibility and Resilience in Offspring. J Vis Exp 2022:10.3791/64095. [PMID: 36063000 PMCID: PMC9933952 DOI: 10.3791/64095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Maternal immune activation (MIA) during pregnancy is consistently linked to increased risk of neurodevelopmental and neuropsychiatric disorders in offspring. Animal models of MIA are used to test causality, investigate mechanisms, and develop diagnostics and treatments for these disorders. Despite their widespread use, many MIA models suffer from a lack of reproducibility and almost all ignore two important aspects of this risk factor: (i) many offspring are resilient to MIA, and (ii) susceptible offspring can exhibit distinct combinations of phenotypes. To increase reproducibility and model both susceptibility and resilience to MIA, the baseline immunoreactivity (BIR) of female mice before pregnancy is used to predict which pregnancies will result in either resilient offspring or offspring with defined behavioral and molecular abnormalities after exposure to MIA. Here, a detailed method of inducing MIA via intraperitoneal (i.p.) injection of the double stranded RNA (dsRNA) viral mimic poly(I:C) at 12.5 days of gestation is provided. This method induces an acute inflammatory response in the dam, which results in perturbations in brain development in mice that map onto similarly impacted domains in human psychiatric and neurodevelopmental disorders (NDDs).
Collapse
|
25
|
Cardona E, Brunet V, Baranek E, Milhade L, Skiba-Cassy S, Bobe J, Calandreau L, Roy J, Colson V. Physical Enrichment Triggers Brain Plasticity and Influences Blood Plasma Circulating miRNA in Rainbow Trout ( Oncorhynchus mykiss). BIOLOGY 2022; 11:1093. [PMID: 35892949 PMCID: PMC9394377 DOI: 10.3390/biology11081093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Physical enrichment is known to improve living conditions of fish held in farming systems and has been shown to promote behavioral plasticity in captive fish. However, the brain's regulatory-mechanism systems underlying its behavioral effects remain poorly studied. The present study investigated the impact of a three-month exposure to an enriched environment (EE vs. barren environment, BE) on the modulation of brain function in rainbow trout (Oncorhynchus mykiss) juveniles. Using high-throughput RT-qPCR, we assessed mRNA genes related to brain function in several areas of the trout brain. These included markers of cerebral activity and plasticity, neurogenesis, synaptogenesis, or selected neurotransmitters pathways (dopamine, glutamate, GABA, and serotonin). Overall, the fish from EE displayed a series of differentially expressed genes (neurotrophic, neurogenesis, and synaptogenesis markers) essentially localized in the telencephalon, which could underpin the beneficial effects of complexifying the environment on fish brain plasticity. In addition, EE significantly affected blood plasma c-miRNA signatures, as revealed by the upregulation of four c-miRNAs (miR-200b/c-3p, miR-203a-3p, miR-205-1a-5p, miR-218a-5p) in fish blood plasma after 185 days of EE exposure. Overall, we concluded that complexifying the environment through the addition of physical structures that stimulate and encourage fish to explore promotes the trout's brain function in farming conditions.
Collapse
Affiliation(s)
- Emilie Cardona
- INRAE, INRAE, Université de Pau & Pays Adour, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (E.C.); (E.B.); (S.S.-C.)
| | | | - Elodie Baranek
- INRAE, INRAE, Université de Pau & Pays Adour, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (E.C.); (E.B.); (S.S.-C.)
| | - Léo Milhade
- IRISA, INRIA, CNRS, Université de Rennes 1, 35000 Rennes, France;
| | - Sandrine Skiba-Cassy
- INRAE, INRAE, Université de Pau & Pays Adour, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (E.C.); (E.B.); (S.S.-C.)
| | - Julien Bobe
- INRAE, LPGP, 35000 Rennes, France; (V.B.); (J.B.)
| | | | - Jérôme Roy
- INRAE, INRAE, Université de Pau & Pays Adour, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (E.C.); (E.B.); (S.S.-C.)
| | | |
Collapse
|
26
|
Aldhshan MS, Mizuno TM. Effect of environmental enrichment on aggression and the expression of brain-derived neurotrophic factor transcript variants in group-housed male mice. Behav Brain Res 2022; 433:113986. [DOI: 10.1016/j.bbr.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/20/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
|
27
|
Webber S, Cobb ML, Coe J. Welfare Through Competence: A Framework for Animal-Centric Technology Design. Front Vet Sci 2022; 9:885973. [PMID: 35847650 PMCID: PMC9280685 DOI: 10.3389/fvets.2022.885973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Digital technologies offer new ways to ensure that animals can lead a good life in managed settings. As interactive enrichment and smart environments appear in zoos, farms, shelters, kennels and vet facilities, it is essential that the design of such technologies be guided by clear, scientifically-grounded understandings of what animals need and want, to be successful in improving their wellbeing. The field of Animal-Computer Interaction proposes that this can be achieved by centering animals as stakeholders in technology design, but there remains a need for robust methods to support interdisciplinary teams in placing animals' interests at the heart of design projects. Responding to this gap, we present the Welfare through Competence framework, which is grounded in contemporary animal welfare science, established technology design practices and applied expertise in animal-centered design. The framework brings together the “Five Domains of Animal Welfare” model and the “Coe Individual Competence” model, and provides a structured approach to defining animal-centric objectives and refining them through the course of a design project. In this paper, we demonstrate how design teams can use this framework to promote positive animal welfare in a range of managed settings. These much-needed methodological advances contribute a new theoretical foundation to debates around the possibility of animal-centered design, and offer a practical agenda for creating technologies that support a good life for animals.
Collapse
Affiliation(s)
- Sarah Webber
- Faculty of Engineering and Information Technology, School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Sarah Webber
| | - Mia L. Cobb
- Faculty of Engineering and Information Technology, School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia
- Faculty of Veterinary and Agricultural Sciences, Animal Welfare Science Centre, The University of Melbourne, Parkville, VIC, Australia
| | - Jon Coe
- Jon Coe Design, Healesville, VIC, Australia
| |
Collapse
|
28
|
Balietti M, Conti F. Environmental enrichment and the aging brain: is it time for standardization? Neurosci Biobehav Rev 2022; 139:104728. [PMID: 35691473 DOI: 10.1016/j.neubiorev.2022.104728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/01/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Aging entails a progressive decline of cognitive abilities. However, since the brain is endowed with considerable plasticity, adequate stimulation can delay or partially compensate for age-related structural and functional impairment. Environmental enrichment (EE) has been reported to determine a wide range of cerebral changes. Although most findings have been obtained in young and adult animals, research has recently turned to aged individuals. Notably, EE can contribute identifying key lifestyle factors whose change can help extend the "mind-span", i.e., the time an individual lives in a healthy cognitive condition. Here we discuss specific methodological issues that can affect the outcomes of EE interventions applied to aged rodents, summarize the main variables that would need standardization (e.g., timing and duration, enrichment items, control animals and setting), and offer some suggestions on how this goal may be achieved. Reaching a consensus on EE experiment design would significantly reduce differences between and within laboratories, enable constructive discussions among researchers, and improve data interpretation.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy; Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
29
|
Corredor K, Marín DP, García CC, Restrepo DA, Martínez GS, Cardenas FP. Providing Environmental Enrichment without Altering Behavior in Male and Female Wistar Rats ( Rattus norvegicus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:234-240. [PMID: 35379381 PMCID: PMC9137287 DOI: 10.30802/aalas-jaalas-21-000075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/09/2021] [Accepted: 12/21/2021] [Indexed: 06/07/2023]
Abstract
In research using animal models, subjects are commonly maintained under standard housing conditions, mainly because of the idea that enhancing welfare conditions could alter experimental data. Another common practice in many laboratories relates to the preponderant use of males. Several reasons justifying this practice include the rapid hormonal and endocrine change in females, which may require a higher number of female animals to achieve more homogenous groups, thereby creating a dilemma with the reduction principle in animal research. In past decades, a relationship between enriched environments and enhanced cognitive functions has been reported in rats, but many of those enriched environmental protocols were not systematically or rigorously studied, leading to unexpected effects on behavior. Here we report the effects of 4 types of housing conditions (standard, structural changes, exercise, and foraging) in Wistar rats on anxiety (elevated plus maze), exploratory (open field), and stress vulnerability (forced swim test) responses. Sex was used as a blocking factor. Data show no effect of housing conditions on anxiety and exploratory behaviors, but do show an effect on stress responses. These results suggest the possibility of using a protocol for environmental enrichment without concern about altering experimental data. From this stand, new ways to enhance animal welfare in research laboratories could be designed and implemented.
Collapse
Key Words
- ee, environmental enrichment
- of, open field
- epm, elevated plus maze
- fst, forced swim test
- sd, standard condition
- st, structural modification
- ex, exercise, playing, and exploration
- fg, foraging
Collapse
Affiliation(s)
- Karen Corredor
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia; Centro de Investigaciones en Biomodelos, Bogotá, Colombia;,
| | - Daniela P Marín
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia
| | - Christian C García
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia
| | - Daniela A Restrepo
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia
| | | | - Fernando P Cardenas
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia
| |
Collapse
|
30
|
Effects of environmental enrichment on exploratory behavior, win-stay and lose-shift performance, motor sequence learning, and reversal learning during the three-lever operant task in mice. Behav Brain Res 2022; 429:113904. [DOI: 10.1016/j.bbr.2022.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
|
31
|
Ratuski AS, Weary DM. Environmental Enrichment for Rats and Mice Housed in Laboratories: A Metareview. Animals (Basel) 2022; 12:ani12040414. [PMID: 35203123 PMCID: PMC8868396 DOI: 10.3390/ani12040414] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/10/2022] Open
Abstract
Simple Summary Environmental enrichment has been widely studied with laboratory rodents, but there is no consensus regarding what counts as enrichment or what it should achieve. Inconsistent use of the term “enrichment” creates challenges in drawing conclusions about the quality of an environment. We conducted a metareview to better understand the definitions and goals of enrichment, perceived risks or requirements of enrichment, and what forms of enrichment have previously been endorsed for use with rodents housed in laboratories. This may help researchers and animal care staff to better define their chosen approach and intended outcomes when providing environmental enrichment. Abstract Environmental enrichment has been widely studied in rodents, but there is no consensus on what enrichment should look like or what it should achieve. Inconsistent use of the term “enrichment” creates challenges in drawing conclusions about the quality of an environment, which may slow housing improvements for laboratory animals. Many review articles have addressed environmental enrichment for laboratory rats and mice (Rattus norvegicus and Mus musculus). We conducted a metareview of 29 review articles to assess how enrichment has been defined and what are commonly described as its goals or requirements. Recommendations from each article were summarised to illustrate the conditions generally considered suitable for laboratory rodents. While there is no consensus on alternative terminology, many articles acknowledged that the blanket use of the terms “enriched” and “enrichment” should be avoided. Environmental enrichment was most often conceptualised as a method to increase natural behaviour and improve animal welfare. Authors also commonly outlined perceived risks and requirements of environmental enrichment. We discuss these perceptions, make suggestions for future research, and advocate for the adoption of more specific and value-neutral terminology.
Collapse
|
32
|
Gatto E, Bruzzone M, Maschio MD, Dadda M. Effects of environmental enrichment on recognition memory in zebrafish larvae. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Welfare of encaged rodents: Species specific behavioral reaction of voles to new enrichment items. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2021.105522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Obermueller B, Castellani C, Till H, Reininger-Gutmann B, Singer G. An examination of nest-building behaviour using five different nesting materials in C57BL/6J and BALB/c mice. Anim Welf 2021. [DOI: 10.7120/09627286.30.4.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of our study was to assess the nest-building behaviour of two mouse (Mus musculus) strains using different nesting materials and examine possible sex- and housing-specific effects. Adult mice of two strains (C57BL/6J; n = 64 and BALB/cAnNCrl; n = 99) were randomly allocated
to the following housing groups: single-housed male, single-housed female, pair-housed male and pair-housed female. One of the following nest-building materials was placed in each home-cage in a random order: nestlets (Plexx BV, The Netherlands), cocoons (Carfil, Belgium), wooden wool, crinklets
and compact (all three, Safe, Germany). The following day, nests were rated applying a nest-scoring scale ranging from 0 to 10, the nests were removed, and a different nest-building material provided. In both tested strains, nestlets achieved the highest nest-building scores when compared
to the other four nest-building materials. All nest-building materials scored higher in BALB/c mice compared to C57BL/6J animals reaching statistical significance in crinklets only. Sex comparison revealed that female C57BL/6J mice only scored significantly higher using crinklets than males
and BALB/c female mice were rated significantly higher using wooden wool, cocoons and compact than their male counterparts. While pair-housed C57BL/6J animals built higher-rated nests than single-housed mice in the C57BL/6J strain in all five materials tested, the scores were not significantly
different in the BALB/c strain. Results of the present study reveal significant strain-, sex- and housing-related influences on the complexity of nests using different standardised building materials. Such observations need to be taken into account when planning the optimal enrichment programme
for laboratory animals.
Collapse
|
35
|
Kawakami K, Matsuo H, Kajitani N, Yamada T, Matsumoto KI. Comparison of survival rates in four inbred mouse strains under different housing conditions: effects of environmental enrichment. Exp Anim 2021; 71:150-160. [PMID: 34789620 PMCID: PMC9130035 DOI: 10.1538/expanim.21-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Housing conditions can affect the well-being of laboratory animals and thereby affect the outcomes of experiments. The appropriate environment is essential for the expression of natural
behavior in animals. Here, we compared survival rates in four inbred mouse strains maintained under three different environmental conditions. Three mouse strains (C57BL/6J, C3H/HeN, and
DBA/2J) housed under environmental enrichment (EE) conditions showed improved survival; however, EE did not alter the survival rate of the fourth strain, BALB/c. None of the strains showed
significant differences in body weights or plasma corticosterone levels in the three environmental conditions. For BALB/c mice, the rates of debility were higher in the EE group.
Interestingly, for C57BL/6J and C3H/HeN mice, the incidence of animals with alopecia was significantly lower in the EE groups than in the control group. It is possible that the enriched
environment provided greater opportunities for sheltering in a secure location in which to avoid interactions with other mice. The cloth mat flooring used for the EE group was bitten and
chewed by the mice. Our findings suggest that depending on the mouse strains different responses to EE are caused with regard to health and survival rates. The results of this study provide
basic data for further studies on EE.
Collapse
Affiliation(s)
- Kohei Kawakami
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University
| | - Hiroyuki Matsuo
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University
| | - Naoyo Kajitani
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University
| | - Takaya Yamada
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University
| |
Collapse
|
36
|
Apparatus design and behavioural testing protocol for the evaluation of spatial working memory in mice through the spontaneous alternation T-maze. Sci Rep 2021; 11:21177. [PMID: 34707108 PMCID: PMC8551159 DOI: 10.1038/s41598-021-00402-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/11/2021] [Indexed: 11/08/2022] Open
Abstract
Spatial working memory can be assessed in mice through the spontaneous alternation T-maze test. The T-maze is a T-shaped apparatus featuring a stem (start arm) and two lateral goal arms (left and right arms). The procedure is based on the natural tendency of rodents to prefer exploring a novel arm over a familiar one, which induces them to alternate the choice of the goal arm across repeated trials. During the task, in order to successfully alternate choices across trials, an animal has to remember which arm had been visited in the previous trial, which makes spontaneous alternation T-maze an optimal test for spatial working memory. As this test relies on a spontaneous behaviour and does not require rewards, punishments or pre-training, it represents a particularly useful tool for cognitive evaluation, both time-saving and animal-friendly. We describe here in detail the apparatus and the protocol, providing representative results on wild-type healthy mice.
Collapse
|
37
|
Wang J, Wang D, Hu G, Yang L, Liu Z, Yan D, Serikuly N, Alpyshov E, Demin KA, Strekalova T, Gil Barcellos LJ, Barcellos HHA, Amstislavskaya TG, de Abreu MS, Kalueff AV. The role of auditory and vibration stimuli in zebrafish neurobehavioral models. Behav Processes 2021; 193:104505. [PMID: 34547376 DOI: 10.1016/j.beproc.2021.104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Strongly affecting human and animal physiology, sounds and vibration are critical environmental factors whose complex role in behavioral and brain functions necessitates further clinical and experimental studies. Zebrafish are a promising model organism for neuroscience research, including probing the contribution of auditory and vibration stimuli to neurobehavioral processes. Here, we summarize mounting evidence on the role of sound and vibration in zebrafish behavior and brain function, and outline future directions of translational research in this field. With the growing environmental exposure to noise and vibration, we call for more active use of zebrafish models for probing neurobehavioral and bioenvironmental consequences of acute and long-term exposure to sounds and vibration in complex biological systems.
Collapse
Affiliation(s)
- Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZiYuan Liu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - Erik Alpyshov
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- St. Petersburg State University, St. Petersburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Tatiana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Maastricht University, Maastricht, The Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Leonardo J Gil Barcellos
- Graduate Programs in Bio-experimentation and Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
38
|
Minie VA, Petric R, Ramos-Maciel S, Wright EC, Trainor BC, Duque-Wilckens N. Enriched laboratory housing increases sensitivity to social stress in female California mice ( Peromyscus californicus). Appl Anim Behav Sci 2021; 241. [PMID: 34366522 DOI: 10.1016/j.applanim.2021.105381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Domesticated mice and rats have shown to be powerful model systems for biomedical research, but there are cases in which the biology of species is a poor match for the hypotheses under study. The California mouse (Peromyscus californicus) has unique traits that make it an ideal model for studying biological mechanisms underlying human-relevant behaviors such as intra-female aggression, biparental care, and monogamy. Indeed, peer-reviewed scientific publications using California mouse as a model for behavioral research have more than doubled in the past decade. Critically, behavioral outcomes in captive animals can be profoundly affected by housing conditions, but there is very limited knowledge regarding species-specific housing needs in California mice. Currently, California mouse investigators have to rely on guidelines aimed for more common laboratory species that show vastly different physiology, behavior, and/or ecological niche. This not only could be suboptimal for animals' welfare, but also result in lack of standardization that could potentially compromise experimental reproducibility and replicability across laboratories. With the aim of assessing how different housing systems can affect California mouse behavior both in the home cage as well as the open field and social interaction tests before and after social defeat stress, here we tested three different caging systems: 1. Standard mouse cage, 2. Large cage, and 3. Large cage + environmental enrichment (EE), which focused on increasing vertical complexity based on observations that California mice are semiarboreal in the wild. We found that the effects of housing were largely sex specific: compared to standard cages, in females large + EE reduced home cage stereotypic-like backflipping and rearing behaviors, while large cage increased social interactions. In males, the large+EE cage reduced rearing and digging but did not significantly affect backflipping behavior. Interestingly, while there were no significant differences in the open field and social interaction pre-stress behaviors, large and large+EE housing increased the sensitivity of these tests to detect stress induced phenotypes in females. Together, these results suggest that increasing social and environmental complexity affects home cage behaviors in male and female California mice without interfering with, but rather increasing the magnitude of, the effects of defeat stress on the open field and social interaction tests.
Collapse
Affiliation(s)
- Vanessa A Minie
- Department of Psychology, University of California Davis, CA 95616
| | - Radmila Petric
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | | | - Emily C Wright
- Department of Psychology, University of California Davis, CA 95616
| | - Brian C Trainor
- Department of Psychology, University of California Davis, CA 95616
| | - Natalia Duque-Wilckens
- Department of Psychology, University of California Davis, CA 95616.,Department of Physiology, Michigan State University, East Lansing MI 48824.,Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
39
|
Saré RM, Lemons A, Smith CB. Behavior Testing in Rodents: Highlighting Potential Confounds Affecting Variability and Reproducibility. Brain Sci 2021; 11:brainsci11040522. [PMID: 33924037 PMCID: PMC8073298 DOI: 10.3390/brainsci11040522] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Rodent models of brain disorders including neurodevelopmental, neuropsychiatric, and neurodegenerative diseases are essential for increasing our understanding of underlying pathology and for preclinical testing of potential treatments. Some of the most important outcome measures in such studies are behavioral. Unfortunately, reports from different labs are often conflicting, and preclinical studies in rodent models are not often corroborated in human trials. There are many well-established tests for assessing various behavioral readouts, but subtle aspects can influence measurements. Features such as housing conditions, conditions of testing, and the sex and strain of the animals can all have effects on tests of behavior. In the conduct of behavior testing, it is important to keep these features in mind to ensure the reliability and reproducibility of results. In this review, we highlight factors that we and others have encountered that can influence behavioral measures. Our goal is to increase awareness of factors that can affect behavior in rodents and to emphasize the need for detailed reporting of methods.
Collapse
|
40
|
Reiser S, Pohlmann DM, Blancke T, Koops U, Trautner J. Environmental enrichment during early rearing provokes epigenetic changes in the brain of a salmonid fish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100838. [PMID: 33930773 DOI: 10.1016/j.cbd.2021.100838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Environmental enrichment is used to increase structural complexity of captive rearing systems and has been shown to provoke a wide range of effects in the kept animals. Here we studied the effects of enrichment on DNA methylation patterns at the whole-genome level in the brain of rainbow trout reared in an aquaculture setting. We investigated the epigenetic effects between different types of enrichment (natural substrate vs. artificial substrate vs. barren) in three developmental stages (egg vs. alevin vs. fry) and as enrichment was discontinued at the fingerling stage by means of the Methylation-Sensitive Amplified Polymorphism (MSAP) technique. While enrichment did not affect growth in body size, we found enrichment to affected global DNA methylation in the brain at the egg and alevin stage, i.e., the period during development where the animals are in close physical contact with the substrate. At these stages, trout reared on the two substrates differed more from the control than the substrates differed from each other. Only minor differences between rearing environments were detected following emergence at the fry stage. When enrichment was discontinued during the rearing of fingerlings, no differences in DNA methylation patterns were observed between the rearing environments. Our results provide further evidence on the effects of enrichment in the captive rearing of fish and show that enrichment can even modulate epigenetic patterns. The effect on the epigenome may be causal for the previously reported effects of enrichment on gene expression, behaviour and brain development.
Collapse
Affiliation(s)
- Stefan Reiser
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany.
| | | | - Tina Blancke
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| | - Udo Koops
- Thünen Institute of Fisheries Ecology, Wulfsdorfer Weg 204, 22926 Ahrensburg, Germany
| | - Jochen Trautner
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| |
Collapse
|
41
|
Fischer ML, Rodrigues GS, Aguero WP, Zotz R, Simão-Silva DP. Refinement as ethics principle in animal research: Is it necessary to standardize the Environmental enrichment in laboratory animals? AN ACAD BRAS CIENC 2021; 93:e20191526. [PMID: 33787753 DOI: 10.1590/0001-3765202120191526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/12/2020] [Indexed: 11/22/2022] Open
Abstract
The Environmental enrichment technique, although scientifically recognized for raising the level of animal welfare, has led to the questioning of its influence on the results of experimental research. Thus, the goal is to promote reflection about the need for standardization of these procedures. For that, documents and experimental analysis were done, in order to quantify and characterize the types of environmental enrichment used and to evaluate the effect of that in the social behavior of Rattus norvegicus. Data from the document review confirmed the hypothesis that the researchers have used a variety of methods, not demonstrating a concern for standardization and prior assessment of its effects on the search results. Demand was corroborated in the experimental study in which, although there was available a simple object acting as refuge promotes behavioral improvements, the presence of the co-specific, as well as characteristics of the micro and macro environment can compromise the homogeneity of the sample. The data from this study endorse the need for validation procedures of environmental enrichment for specific proposals, to investigative data comparison, are possible and contribute to the refinement of the search to reduce the number of animals targeted for this purpose.
Collapse
Affiliation(s)
- Marta L Fischer
- Programa de Pós-Graduação em Bioética, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil
| | - Gabriela S Rodrigues
- Programa de Pós-Graduação em Bioética, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil
| | - Windy P Aguero
- Programa de Pós-Graduação em Bioética, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil
| | - Rafael Zotz
- Programa de Pós-Graduação em Bioética, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil
| | - Daiane P Simão-Silva
- Programa de Pós-Graduação em Bioética, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil.,Instituto para Pesquisa do Câncer/IPEC, Departamento Científico, Rua Fortim Atalaia, 1900, 85051-060 Guarapuava, PR, Brazil
| |
Collapse
|
42
|
Stevens CH, Reed BT, Hawkins P. Enrichment for Laboratory Zebrafish-A Review of the Evidence and the Challenges. Animals (Basel) 2021; 11:ani11030698. [PMID: 33807683 PMCID: PMC8001412 DOI: 10.3390/ani11030698] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The zebrafish is one of the most commonly used animals in scientific research, but there remains a lack of consensus over good practice for zebrafish housing and care. One such area which lacks agreement is whether laboratory zebrafish should be provided with environmental enrichment—additions or modifications to the basic laboratory environment which aim to improve welfare, such as plastic plants in tanks. The need for the provision of appropriate environmental enrichment has been recognised in other laboratory animal species, but some scientists and animal care staff are hesitant to provide enrichment for zebrafish, arguing that there is little or no evidence that enrichment can benefit zebrafish welfare. This review aims to summarise the current literature on the effects of enrichment on zebrafish physiology, behaviour and welfare, and identifies some forms of enrichment which are likely to benefit zebrafish. It also considers the possible challenges that might be associated with introducing more enrichment, and how these might be addressed. Abstract Good practice for the housing and care of laboratory zebrafish Danio rerio is an increasingly discussed topic, with focus on appropriate water quality parameters, stocking densities, feeding regimes, anaesthesia and analgesia practices, methods of humane killing, and more. One area of current attention is around the provision of environmental enrichment. Enrichment is accepted as an essential requirement for meeting the behavioural needs and improving the welfare of many laboratory animal species, but in general, provision for zebrafish is minimal. Some of those involved in the care and use of zebrafish suggest there is a ‘lack of evidence’ that enrichment has welfare benefits for this species, or cite a belief that zebrafish do not ‘need’ enrichment. Concerns are also sometimes raised around the practical challenges of providing enrichments, or that they may impact on the science being undertaken. However, there is a growing body of evidence suggesting that various forms of enrichment are preferred by zebrafish over a barren tank, and that enriched conditions can improve welfare by reducing stress and anxiety. This review explores the effects that enrichment can have on zebrafish behaviour, physiology and welfare, and considers the challenges to facilities of providing more enrichment for the zebrafish they house.
Collapse
|
43
|
Öztürk M, Ingenwerth M, Sager M, von Gall C, Ali AAH. Does a Red House Affect Rhythms in Mice with a Corrupted Circadian System? Int J Mol Sci 2021; 22:2288. [PMID: 33669004 PMCID: PMC7956239 DOI: 10.3390/ijms22052288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/05/2023] Open
Abstract
The circadian rhythms of body functions in mammals are controlled by the circadian system. The suprachiasmatic nucleus (SCN) in the hypothalamus orchestrates subordinate oscillators. Time information is conveyed from the retina to the SCN to coordinate an organism's physiology and behavior with the light/dark cycle. At the cellular level, molecular clockwork composed of interlocked transcriptional/translational feedback loops of clock genes drives rhythmic gene expression. Mice with targeted deletion of the essential clock gene Bmal1 (Bmal1-/-) have an impaired light input pathway into the circadian system and show a loss of circadian rhythms. The red house (RH) is an animal welfare measure widely used for rodents as a hiding place. Red plastic provides light at a low irradiance and long wavelength-conditions which affect the circadian system. It is not known yet whether the RH affects rhythmic behavior in mice with a corrupted circadian system. Here, we analyzed whether the RH affects spontaneous locomotor activity in Bmal1-/- mice under standard laboratory light conditions. In addition, mPER1- and p-ERK-immunoreactions, as markers for rhythmic SCN neuronal activity, and day/night plasma corticosterone levels were evaluated. Our findings indicate that application of the RH to Bmal1-/- abolishes rhythmic locomotor behavior and dampens rhythmic SCN neuronal activity. However, RH had no effect on the day/night difference in corticosterone levels.
Collapse
Affiliation(s)
- Menekse Öztürk
- Institute for Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Dusseldorf, Germany; (M.Ö.); (M.I.); (A.A.H.A.)
| | - Marc Ingenwerth
- Institute for Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Dusseldorf, Germany; (M.Ö.); (M.I.); (A.A.H.A.)
- Institute of Pathology, Medical Faculty, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Martin Sager
- Central Institute for Animal Research and Animal Protection (ZETT), Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany;
| | - Charlotte von Gall
- Institute for Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Dusseldorf, Germany; (M.Ö.); (M.I.); (A.A.H.A.)
| | - Amira A. H. Ali
- Institute for Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Dusseldorf, Germany; (M.Ö.); (M.I.); (A.A.H.A.)
| |
Collapse
|
44
|
Klein ME, Rieckmann M, Sedding D, Hause G, Meister A, Mäder K, Lucas H. Towards the Development of Long Circulating Phosphatidylserine (PS)- and Phosphatidylglycerol (PG)-Enriched Anti-Inflammatory Liposomes: Is PEGylation Effective? Pharmaceutics 2021; 13:pharmaceutics13020282. [PMID: 33669803 PMCID: PMC7922817 DOI: 10.3390/pharmaceutics13020282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
The anionic phospholipids (PLs) phosphatidylserine (PS) and phosphatidylglycerol (PG) are endogenous phospholipids with anti-inflammatory and immunomodulatory activity. A potential clinical use requires well-defined systems and for several applications, a long circulation time is desirable. Therefore, we aimed the development of long circulating liposomes with intrinsic anti-inflammatory activity. Hence, PS- and PG-enriched liposomes were produced, whilst phosphatidylcholine (PC) liposomes served as control. Liposomes were either formulated as conventional or PEGylated formulations. They had diameters below 150 nm, narrow size distributions and composition-dependent surface charges. Pharmacokinetics were assessed non-invasively via in vivo fluorescence imaging (FI) and ex vivo in excised organs over 2 days. PC liposomes, conventionally formulated, were rapidly cleared from the circulation, while PEGylation resulted in prolongation of liposome circulation robustly distributing among most organs. In contrast, PS and PG liposomes, both as conventional or PEGylated formulations, were rapidly cleared. Non-PEGylated PS and PG liposomes did accumulate almost exclusively in the liver. In contrast, PEGylated PS and PG liposomes were observed mainly in liver and spleen. In summary, PEGylation of PS and PG liposomes was not effective to prolong the circulation time but caused a higher uptake in the spleen.
Collapse
Affiliation(s)
- Miriam E. Klein
- Faculty of Biosciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.E.K.); (K.M.)
| | - Max Rieckmann
- Mid-German Heart Center, Department of Cardiology, University Hospital, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.R.); (D.S.)
| | - Daniel Sedding
- Mid-German Heart Center, Department of Cardiology, University Hospital, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.R.); (D.S.)
| | - Gerd Hause
- Biocenter, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Annette Meister
- Faculty of Biosciences, IWE ZIK HALOmem and Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Karsten Mäder
- Faculty of Biosciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.E.K.); (K.M.)
| | - Henrike Lucas
- Faculty of Biosciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.E.K.); (K.M.)
- Correspondence: ; Tel.: +49-345-552-5133
| |
Collapse
|
45
|
Mesa-Gresa P, Ramos-Campos M, Redolat R. Behavioral impact of experience based on environmental enrichment: Influence of age and duration of exposure in male NMRI mice. Dev Psychobiol 2021; 63:1071-1081. [PMID: 33452673 DOI: 10.1002/dev.22093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 01/22/2023]
Abstract
Prior studies have suggested that short periods of exposure to environmental enrichment (EE) in rodents induce physiological and behavioral effects. In the present study, our aim was to evaluate if the impact of experiences based on EE could be modulated by the age of onset and the developmental period of exposure. NMRI male mice (n = 64) were exposed to EE or standard environment (SE) and behavioral changes (anxiety, exploration, memory and social interaction) were evaluated. Groups compared were: (a) SE: exposure to SE on post-natal day (PND) 28 and lasting 6 months; (b) EE-6: exposure to EE on PND 28 and lasting 6 months; (c) EE-4: exposure to EE on PND 91 and lasting 4 months; (d) EE-2: exposure to EE on PND 154 and lasting 2 months. Results indicated that in the hole-board task the decrease in exploratory behavior reached significance when EE was initiated at adolescence whereas anxiolytic effects in the elevated plus-maze tend to diminish after a longer period of EE. No significant effects of EE on aggressive behavior or novel object recognition were obtained. Taking these results into account, further studies are needed in order to determine the possible modulating role of age and duration of exposure to enriched environments on behavior. Results obtained could explain some discrepancies reported in previous studies, providing new evidence that could contribute to the design of future research related to the benefits of complex and enriched environments.
Collapse
Affiliation(s)
- Patricia Mesa-Gresa
- Departamento Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Marta Ramos-Campos
- Departamento Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Rosa Redolat
- Departamento Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| |
Collapse
|
46
|
Oatess TL, Harrison FE, Himmel LE, Jones CP. Effects of Acrylic Tunnel Enrichment on Anxiety-Like Behavior, Neurogenesis, and Physiology of C57BL/6J Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2021; 60:44-53. [PMID: 33008490 PMCID: PMC7831345 DOI: 10.30802/aalas-jaalas-19-000159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 05/13/2020] [Indexed: 11/05/2022]
Abstract
Environmental enrichment for mice lags behind the standard enrichment offered to other laboratory rodents due to concerns about environmental variability and, in specific contexts, aggression. Our objective in this study was to evaluate concerns that the introduction of structural enrichment in the form of a single red acrylic mouse tunnel into murine housing may confound study findings. We measured effects on anxiety-like behaviors (elevated zero maze and open field activity), hippocampal neurogenesis, body weight gain, and physiologic markers of stress (adrenal gland weight, plasma corticosterone concentration, and neutrophil:lymphocyte ratio). Male and female C57BL/6J mice were randomly assigned to one of 2 groups: a standard-housed control group with enrichment consisting of paper nesting material, or an enriched group that received a single acrylic tunnel in addition to nesting material. All results fell within biologically normal ranges regardless of treatment, and variability (standard deviation) was not significantly different between groups for any measure. Mice in the enriched group showed modest differences during open field testing suggestive of decreased anxiety, traveling farther and depositing fewer fecal boli than standard-housed mice. Male mice in the tunnel-enriched group gained more body weight than standard-housed male mice. No significant effects by treatment were found in neurogenic or physiologic parameters. These results indicate that provision of simple structural enrichment is unlikely to have confounding effects on murine anxiety-like behaviors, neurogenesis, body weight gain, or physiologic parameters. We therefore recommend the inclusion of simple structural enrichment, such as an acrylic tunnel, to the standard environmental enrichment of social housing and nesting material for mice.
Collapse
Affiliation(s)
- Tai L Oatess
- Department of Pathology, Microbiology, and Immunology, Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fiona E Harrison
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren E Himmel
- Department of Pathology, Microbiology, and Immunology, Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carissa P Jones
- Department of Pathology, Microbiology, and Immunology, Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;,
| |
Collapse
|
47
|
Durán-Carabali LE, Odorcyk FK, Greggio S, Venturin GT, Sanches EF, Schu GG, Carvalho AS, Pedroso TA, de Sá Couto-Pereira N, Da Costa JC, Dalmaz C, Zimmer ER, Netto CA. Pre- and early postnatal enriched environmental experiences prevent neonatal hypoxia-ischemia late neurodegeneration via metabolic and neuroplastic mechanisms. J Neurochem 2020; 157:1911-1929. [PMID: 33098090 DOI: 10.1111/jnc.15221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/04/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
Prenatal and early postnatal periods are important for brain development and neural function. Neonatal insults such as hypoxia-ischemia (HI) causes prolonged neural and metabolic dysregulation, affecting central nervous system maturation. There is evidence that brain hypometabolism could increase the risk of adult-onset neurodegenerative diseases. However, the impact of non-pharmacologic strategies to attenuate HI-induced brain glucose dysfunction is still underexplored. This study investigated the long-term effects of early environmental enrichment in metabolic, cell, and functional responses after neonatal HI. Thereby, male Wistar rats were divided according to surgical procedure, sham, and HI (performed at postnatal day 3), and the allocation to standard (SC) or enriched condition (EC) during gestation and lactation periods. In-vivo cerebral metabolism was assessed by means of [18 F]-FDG micro-positron emission tomography, and cognitive, biochemical, and histological analyses were performed in adulthood. Our findings reveal that HI causes a reduction in glucose metabolism and glucose transporter levels as well as hyposynchronicity in metabolic brain networks. However, EC during prenatal or early postnatal period attenuated these metabolic disturbances. A positive correlation was observed between [18 F]-FDG values and volume ratios in adulthood, indicating that preserved tissue by EC is metabolically active. EC promotes better cognitive scores, as well as down-regulation of amyloid precursor protein in the parietal cortex and hippocampus of HI animals. Furthermore, growth-associated protein 43 was up-regulated in the cortex of EC animals. Altogether, results presented support that EC during gestation and lactation period can reduce HI-induced impairments that may contribute to functional decline and progressive late neurodegeneration.
Collapse
Affiliation(s)
- Luz Elena Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Kawa Odorcyk
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samuel Greggio
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Eduardo Farias Sanches
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Garcia Schu
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrey Soares Carvalho
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thales Avila Pedroso
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natividade de Sá Couto-Pereira
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa Da Costa
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Dalmaz
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Rigon Zimmer
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
48
|
Kolla NJ, Bortolato M. The role of monoamine oxidase A in the neurobiology of aggressive, antisocial, and violent behavior: A tale of mice and men. Prog Neurobiol 2020; 194:101875. [PMID: 32574581 PMCID: PMC7609507 DOI: 10.1016/j.pneurobio.2020.101875] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/20/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Over the past two decades, research has revealed that genetic factors shape the propensity for aggressive, antisocial, and violent behavior. The best-documented gene implicated in aggression is MAOA (Monoamine oxidase A), which encodes the key enzyme for the degradation of serotonin and catecholamines. Congenital MAOA deficiency, as well as low-activity MAOA variants, has been associated with a higher risk for antisocial behavior (ASB) and violence, particularly in males with a history of child maltreatment. Indeed, the interplay between low MAOA genetic variants and early-life adversity is the best-documented gene × environment (G × E) interaction in the pathophysiology of aggression and ASB. Additional evidence indicates that low MAOA activity in the brain is strongly associated with a higher propensity for aggression; furthermore, MAOA inhibition may be one of the primary mechanisms whereby prenatal smoke exposure increases the risk of ASB. Complementary to these lines of evidence, mouse models of Maoa deficiency and G × E interactions exhibit striking similarities with clinical phenotypes, proving to be valuable tools to investigate the neurobiological mechanisms underlying antisocial and aggressive behavior. Here, we provide a comprehensive overview of the current state of the knowledge on the involvement of MAOA in aggression, as defined by preclinical and clinical evidence. In particular, we show how the convergence of human and animal research is proving helpful to our understanding of how MAOA influences antisocial and violent behavior and how it may assist in the development of preventative and therapeutic strategies for aggressive manifestations.
Collapse
Affiliation(s)
- Nathan J Kolla
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH) Research Imaging Centre, Toronto, ON, Canada; Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada; Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada; Translational Initiative on Antisocial Personality Disorder (TrIAD); Program of Research on Violence Etiology, Neurobiology, and Treatment (PReVENT).
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA; Translational Initiative on Antisocial Personality Disorder (TrIAD); Program of Research on Violence Etiology, Neurobiology, and Treatment (PReVENT).
| |
Collapse
|
49
|
Pritchett-Corning KR. Environmental Complexity and Research Outcomes. ILAR J 2020; 60:239-251. [PMID: 32559304 DOI: 10.1093/ilar/ilaa007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
Environmental complexity is an experimental paradigm as well as a potential part of animals' everyday housing experiences. In experimental uses, researchers add complexity to stimulate brain development, delay degenerative brain changes, elicit more naturalistic behaviors, and test learning and memory. Complexity can exacerbate or mitigate behavioral problems, give animals a sense of control, and allow for expression of highly driven, species-typical behaviors that can improve animal welfare. Complex environments should be designed thoughtfully with the animal's natural behaviors in mind, reported faithfully in the literature, and evaluated carefully for unexpected effects.
Collapse
Affiliation(s)
- Kathleen R Pritchett-Corning
- Office of Animal Resources, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
50
|
Crouzier L, Couly S, Roques C, Peter C, Belkhiter R, Arguel Jacquemin M, Bonetto A, Delprat B, Maurice T. Sigma-1 (σ 1) receptor activity is necessary for physiological brain plasticity in mice. Eur Neuropsychopharmacol 2020; 39:29-45. [PMID: 32893057 DOI: 10.1016/j.euroneuro.2020.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
The sigma-1 receptor (S1R) is a membrane-associated protein expressed in neurons and glia at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs). S1R interacts with different partners to regulate cellular responses, including ER stress, mitochondrial physiology and Ca2+ fluxes. S1R shapes cellular plasticity by directly modulating signaling pathways involved in inflammatory responses, cell survival and death. We here analyzed its impact on brain plasticity in vivo, in mice trained in a complex maze, the Hamlet test. The device, providing strong enriched environment (EE) conditions, mimics a small village. It has a central agora and streets expanding from it, leading to functionalized houses where animals can Drink, Eat, Hide, Run, or Interact. Animals were trained in groups, 4 h/day for two weeks, and their maze exploration and topographic memory could be analyzed. Several groups of mice were considered: non-trained vs. trained; repeatedly administered with saline vs. NE-100, a selective S1R antagonist; and wildtype vs. S1R KO mice. S1R inactivation altered maze exploration and prevented topographic learning. EE induced a strong plasticity measured through resilience to behavioral despair or to the amnesic effects of scopolamine, and increases in S1R expression and bdnf mRNA levels in the hippocampus; increases in neurogenesis (proliferation and maturation); and increases of histone acetylation in the hippocampus and cortex. S1R inactivation altered all these parameters significantly, showing that S1R activity plays a major role in physiological brain plasticity. As S1R is a major resident protein in MAMs, modulating ER responses and mitochondrial homeostasy, MAM physiology appeared impacted by enriched environment.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Simon Couly
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Chloé Roques
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Coralie Peter
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | | | - Anna Bonetto
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France.
| |
Collapse
|