1
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
2
|
Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux. Commun Biol 2021; 4:1007. [PMID: 34433872 PMCID: PMC8387396 DOI: 10.1038/s42003-021-02541-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
The haloarchaeon Haloferax mediterranei is a potential strain for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production, yet the production yield and cost are the major obstacles hindering the use of this archaeal strain. Leveraging the endogenous type I-B CRISPR-Cas system in H. mediterranei, we develop a CRISPR-based interference (CRISPRi) approach that allows to regulate the metabolic pathways related to PHBV synthesis, thereby enhancing PHBV production. Our CRISPRi approach can downregulate the gene expression in a range of 25% to 98% depending upon the target region. Importantly, plasmid-mediated CRISPRi downregulation on the citrate synthase genes (citZ and gltA) improves the PHBV accumulation by 76.4% (from 1.78 to 3.14 g/L). When crRNA cassette integrated into chromosome, this further shortens the PHBV fermentation period and enhances PHA productivity by 165%. Our transcriptome analysis shows that repression of citrate synthase genes redirects metabolic flux from the central metabolic pathways to PHBV synthesis pathway. These findings demonstrate that the CRISPRi-based gene regulation is a transformative toolkit for fine-tuning the endogenous metabolic pathways in the archaeal system, which can be applied to not only the biopolymer production but also many other applications. Lin et al. investigate the use of CRISPRi technology in haloarchaea to regulate the metabolic pathways related to PHBV synthesis to increase PHBV production in H. mediterranei. The authors report that repression of citrate synthase genes redirects metabolic flux and increases production of this degradable bioplastic, which could be used as an alternative to chemical synthetic plastic.
Collapse
|
3
|
Hao W, Cui W, Cheng Z, Han L, Suo F, Liu Z, Zhou L, Zhou Z. Development of a base editor for protein evolution via in situ mutation in vivo. Nucleic Acids Res 2021; 49:9594-9605. [PMID: 34390349 PMCID: PMC8450078 DOI: 10.1093/nar/gkab673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/16/2022] Open
Abstract
Protein evolution has significantly enhanced the development of life science. However, it is difficult to achieve in vitro evolution of some special proteins because of difficulties with heterologous expression, purification, and function detection. To achieve protein evolution via in situ mutation in vivo, we developed a base editor by fusing nCas with a cytidine deaminase in Bacillus subtilis through genome integration. The base editor introduced a cytidine-to-thymidine mutation of approximately 100% across a 5 nt editable window, which was much higher than those of other base editors. The editable window was expanded to 8 nt by extending the length of sgRNA, and conversion efficiency could be regulated by changing culture conditions, which was suitable for constructing a mutant protein library efficiently in vivo. As proof-of-concept, the Sec-translocase complex and bacitracin-resistance-related protein BceB were successfully evolved in vivo using the base editor. A Sec mutant with 3.6-fold translocation efficiency and the BceB mutants with different sensitivity to bacitracin were obtained. As the construction of the base editor does not rely on any additional or host-dependent factors, such base editors (BEs) may be readily constructed and applicable to a wide range of bacteria for protein evolution via in situ mutation.
Collapse
Affiliation(s)
- Wenliang Hao
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhongyi Cheng
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Feiya Suo
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
4
|
Jia N, Patel DJ. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat Rev Mol Cell Biol 2021; 22:563-579. [PMID: 34089013 DOI: 10.1038/s41580-021-00371-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
CRISPR loci and Cas proteins provide adaptive immunity in prokaryotes against invading bacteriophages and plasmids. In response, bacteriophages have evolved a broad spectrum of anti-CRISPR proteins (anti-CRISPRs) to counteract and overcome this immunity pathway. Numerous anti-CRISPRs have been identified to date, which suppress single-subunit Cas effectors (in CRISPR class 2, type II, V and VI systems) and multisubunit Cascade effectors (in CRISPR class 1, type I and III systems). Crystallography and cryo-electron microscopy structural studies of anti-CRISPRs bound to effector complexes, complemented by functional experiments in vitro and in vivo, have identified four major CRISPR-Cas suppression mechanisms: inhibition of CRISPR-Cas complex assembly, blocking of target binding, prevention of target cleavage, and degradation of cyclic oligonucleotide signalling molecules. In this Review, we discuss novel mechanistic insights into anti-CRISPR function that have emerged from X-ray crystallography and cryo-electron microscopy studies, and how these structures in combination with function studies provide valuable tools for the ever-growing CRISPR-Cas biotechnology toolbox, to be used for precise and robust genome editing and other applications.
Collapse
Affiliation(s)
- Ning Jia
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Abstract
Despite their simplicity, viruses exhibit certain types of social interactions. Situations in which a given virus achieves higher fitness in combination with other members of the viral population have been described at the level of transmission, replication, suppression of host immune responses, and host killing, enabling the evolution of viral cooperation. Although cellular coinfection with multiple viral particles is the typical playground for these interactions, cooperation between viruses infecting different cells is also established through cellular and viral-encoded communication systems. In general, the stability of cooperation is compromised by cheater genotypes, as best exemplified by defective interfering particles. As predicted by social evolution theory, cheater invasion can be avoided when cooperators interact preferentially with other cooperators, a situation that is promoted in spatially structured populations. Processes such as transmission bottlenecks, organ compartmentalization, localized spread of infection foci, superinfection exclusion, and even discrete intracellular replication centers promote multilevel spatial structuring in viruses. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas and Universitat de València, 46980 Paterna, València, Spain;
| |
Collapse
|
6
|
Dasgupta I, Flotte TR, Keeler AM. CRISPR/Cas-Dependent and Nuclease-Free In Vivo Therapeutic Gene Editing. Hum Gene Ther 2021; 32:275-293. [PMID: 33750221 PMCID: PMC7987363 DOI: 10.1089/hum.2021.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022] Open
Abstract
Precise gene manipulation by gene editing approaches facilitates the potential to cure several debilitating genetic disorders. Gene modification stimulated by engineered nucleases induces a double-stranded break (DSB) in the target genomic locus, thereby activating DNA repair mechanisms. DSBs triggered by nucleases are repaired either by the nonhomologous end-joining or the homology-directed repair pathway, enabling efficient gene editing. While there are several ongoing ex vivo genome editing clinical trials, current research underscores the therapeutic potential of CRISPR/Cas-based (clustered regularly interspaced short palindrome repeats-associated Cas nuclease) in vivo gene editing. In this review, we provide an overview of the CRISPR/Cas-mediated in vivo genome therapy applications and explore their prospective clinical translatability to treat human monogenic disorders. In addition, we discuss the various challenges associated with in vivo genome editing technologies and strategies used to circumvent them. Despite the robust and precise nuclease-mediated gene editing, a promoterless, nuclease-independent gene targeting strategy has been utilized to evade the drawbacks of the nuclease-dependent system, such as off-target effects, immunogenicity, and cytotoxicity. Thus, the rapidly evolving paradigm of gene editing technologies will continue to foster the progress of gene therapy applications.
Collapse
Affiliation(s)
- Ishani Dasgupta
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Terence R. Flotte
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Allison M. Keeler
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| |
Collapse
|
7
|
Mahendra C, Christie KA, Osuna BA, Pinilla-Redondo R, Kleinstiver BP, Bondy-Denomy J. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nat Microbiol 2020; 5:620-629. [PMID: 32218510 PMCID: PMC7194981 DOI: 10.1038/s41564-020-0692-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/14/2020] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas adaptive immune systems protect bacteria and archaea against their invading genetic parasites, including bacteriophages/viruses and plasmids. In response to this immunity, many phages have anti-CRISPR (Acr) proteins that inhibit CRISPR-Cas targeting. To date, anti-CRISPR genes have primarily been discovered in phage or prophage genomes. Here, we uncovered acr loci on plasmids and other conjugative elements present in Firmicutes using the Listeria acrIIA1 gene as a marker. The four identified genes, found in Listeria, Enterococcus, Streptococcus and Staphylococcus genomes, can inhibit type II-A SpyCas9 or SauCas9, and are thus named acrIIA16-19. In Enterococcus faecalis, conjugation of a Cas9-targeted plasmid was enhanced by anti-CRISPRs derived from Enterococcus conjugative elements, highlighting a role for Acrs in the dissemination of plasmids. Reciprocal co-immunoprecipitation showed that each Acr protein interacts with Cas9, and Cas9-Acr complexes were unable to cleave DNA. Northern blotting suggests that these anti-CRISPRs manipulate single guide RNA length, loading or stability. Mirroring their activity in bacteria, AcrIIA16 and AcrIIA17 provide robust and highly potent broad-spectrum inhibition of distinct Cas9 proteins in human cells (for example, SpyCas9, SauCas9, SthCas9, NmeCas9 and CjeCas9). This work presents a focused analysis of non-phage Acr proteins, demonstrating a role in horizontal gene transfer bolstered by broad-spectrum CRISPR-Cas9 inhibition.
Collapse
Affiliation(s)
- Caroline Mahendra
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Kathleen A Christie
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Beatriz A Osuna
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Rafael Pinilla-Redondo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, Copenhagen, Denmark
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|