1
|
Zhao T, Wang B, Liang W, Cheng S, Wang B, Cui M, Shou J. Accuracy of 18F-FDG PET Imaging in Differentiating Parkinson's Disease from Atypical Parkinsonian Syndromes: A Systematic Review and Meta-Analysis. Acad Radiol 2024; 31:4575-4594. [PMID: 39183130 DOI: 10.1016/j.acra.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
RATIONALE AND OBJECTIVE To quantitatively assess the accuracy of 18F-FDG PET in differentiating Parkinson's Disease (PD) from Atypical Parkinsonian Syndromes (APSs). METHODS PubMed, Embase, and Web of Science databases were searched to identify studies published from the inception of the databases up to June 2024 that used 18F-FDG PET imaging for the differential diagnosis of PD and APSs. The risk of bias in the included studies was assessed using the QUADAS-2 or QUADAS-AI tool. Bivariate random-effects models were used to calculate the pooled sensitivity, specificity, and the area under the curves (AUC) of summary receiver operating characteristic (SROC). RESULTS 24 studies met the inclusion criteria, involving a total of 1508 PD patients and 1370 APSs patients. 12 studies relied on visual interpretation by radiologists, of which the pooled sensitivity, specificity, and SROC-AUC for direct visual interpretation in diagnosing PD were 96% (95%CI: 91%, 98%), 90% (95%CI: 83%, 95%), and 0.98 (95%CI: 0.96, 0.99), respectively; the pooled sensitivity, specificity, and SROC-AUC for visual interpretation supported by univariate algorithms in diagnosing PD were 93% (95%CI: 90%, 95%), 90% (95%CI: 85%, 94%), and 0.96 (95%CI: 0.94, 0.97), respectively. 12 studies relied on artificial intelligence (AI) to analyze 18F-FDG PET imaging data. The pooled sensitivity, specificity, and SROC-AUC of machine learning (ML) for diagnosing PD were 87% (95%CI: 82%, 91%), 91% (95%CI: 86%, 94%), and 0.95 (95%CI: 0.93, 0.96), respectively. The pooled sensitivity, specificity, and SROC-AUC of deep learning (DL) for diagnosing PD were 97% (95%CI: 95%, 98%), 95% (95%CI: 89%, 98%), and 0.98 (95%CI: 0.96, 0.99), respectively. CONCLUSION 18F-FDG PET has a high accuracy in differentiating PD from APS, among which AI-assisted automatic classification performs well, with a diagnostic accuracy comparable to that of radiologists, and is expected to become an important auxiliary means of clinical diagnosis in the future.
Collapse
Affiliation(s)
- Tailiang Zhao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bingbing Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wei Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Sen Cheng
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bin Wang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100000, China
| | - Ming Cui
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jixin Shou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
2
|
Langheinrich TC, Thompson JC, Jones M, Richardson AMT, Mann DMA, Snowden JS. Apraxia phenotypes and frontotemporal lobar degeneration. J Neurol 2024:10.1007/s00415-024-12706-5. [PMID: 39387948 DOI: 10.1007/s00415-024-12706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/13/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Apraxia has been identified in all clinical forms of frontotemporal lobar degeneration (FTLD). The characteristics of apraxia symptoms and their underlying cognitive/motor basis are not fully understood. This study investigated apraxia in pathological subtypes of FTLD. METHODS The study constituted a retrospective review of 115 pathologically confirmed cases of FTLD from a single cognitive neurology centre. Patients in whom apraxia had been documented as a notable clinical characteristic were identified. Apraxia features, demographic, cognitive, neurological, and imaging findings were recorded. RESULTS Eighteen patients were identified: 12 with FTLD-tau pathology (7 corticobasal degeneration (CBD), four Pick type and one progressive supranuclear palsy (PSP)) and six with FTLD-TDP pathology, all type A and four linked to progranulin gene mutations. Apraxia as a dominant presenting feature was typically associated with tau pathologies, whereas it emerged in the context of aphasia in TDP pathology. Apraxia typically predominated in one body part (face or limb) in tau but not TDP pathology. Relatively preserved activities in daily life were associated with TDP. Apraxia of speech was associated with tau pathology. Pick-type pathology was linked to symmetrical atrophy and late development of limb rigidity. CONCLUSION Apraxia in FTLD subtypes has variable characteristics. Apraxia associated with CBD pathology conformed to criteria for probable corticobasal syndrome (CBS), whereas apraxia with Pick-type pathology did not. Apraxia in patients with TDP-A pathology was interpreted as one manifestation of their generalised communication disorder. Apraxia in FTLD may have distinct cognitive and motor substrates that require prospective investigation.
Collapse
Affiliation(s)
- Tobias C Langheinrich
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Northern Care AllianceNHS Foundation Trust, Salford, UK.
- Division of Psychology, Communication & Human Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Jennifer C Thompson
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Northern Care AllianceNHS Foundation Trust, Salford, UK
- Division of Psychology, Communication & Human Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Matthew Jones
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Northern Care AllianceNHS Foundation Trust, Salford, UK
- Division of Medical Education, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anna M T Richardson
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Northern Care AllianceNHS Foundation Trust, Salford, UK
- Division of Medical Education, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David M A Mann
- Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Julie S Snowden
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Northern Care AllianceNHS Foundation Trust, Salford, UK
- Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Anastassiadis C, Martinez-Valbuena I, Vasilevskaya A, Thapa S, Hadian M, Morales-Rivero A, Mora-Fisher D, Salvo C, Taghdiri F, Sato C, Moreno D, Anor CJ, Misquitta K, Couto B, Tang-Wai DF, Lang AE, Fox SH, Rogaeva E, Kovacs GG, Tartaglia MC. CSF α-Synuclein Seed Amplification Assay in Patients With Atypical Parkinsonian Disorders. Neurology 2024; 103:e209818. [PMID: 39208367 DOI: 10.1212/wnl.0000000000209818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES There is no disease-modifying treatment of corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP), 2 disorders characterized by their striking phenotypic, and, in CBS, pathologic heterogeneity. Seed amplification assays (SAAs) could enable the detection of neuropathologic processes, such as α-synuclein (αSyn) copathology, that affect the success of future disease-modifying treatment strategies. The primary objective was to assess possible αSyn copathology in CBS and PSP, as detected in CSF using an αSyn SAA (αSyn-SAA). Secondary objectives were to evaluate the association of αSyn-SAA positivity with other biomarkers including of Alzheimer disease (AD), and with clinical presentation. We hypothesized that αSyn-SAA positivity would be detectable in CBS and PSP and that it would be associated with AD biomarker positivity and β-amyloid (Aβ) 42 levels, neurodegeneration as assessed by neurofilament light chain (NfL) levels, and symptoms associated with synucleinopathies. METHODS This cross-sectional observational study included patients clinically diagnosed with CBS and PSP who underwent a lumbar puncture between 2012 and 2021 (Toronto Western Hospital, Canada). CSF was tested for αSyn-SAA positivity, AD biomarkers, and NfL levels. Clinical data were derived from medical records. RESULTS We tested the CSF of 40 patients with CBS (19 female patients, 65.9 ± 8.6 years) and 28 with PSP (13 female patients, 72.5 ± 8.7 years old), mostly White (n = 50) or Asian (n = 14). αSyn-SAA positivity was observed in 35.9% patients with CBS and 28.6% with PSP. In young-onset, but not late-onset patients, αSyn-SAA positivity and AD positivity were associated (odds ratio [OR] 8.8, 95% CI 1.2-82.6, p < 0.05). A multivariable linear regression analysis showed a significant interaction of αSyn-SAA status by age at onset on CSF Aβ42 levels (β = 0.3 ± 0.1, p < 0.05). Indeed, age at onset was positively related to Aβ42 levels only in αSyn-SAA-positive patients, as shown by slope comparison. A logistic regression analysis also suggested that REM sleep behavior disorder was associated with αSyn-SAA positivity (OR 60.2, 95% CI 5.2-1,965.8; p < 0.01). DISCUSSION We detected a frequency of αSyn-SAA positivity in CBS and PSP in line with pathologic studies, highlighting the usefulness of SAAs for in vivo detection of otherwise undetectable neuropathologic processes. Our results also suggest that AD status (specifically low Aβ42) and older age at onset may contribute to αSyn-SAA positivity. This opens new perspectives for the stratification of patients in clinical trials.
Collapse
Affiliation(s)
- Chloe Anastassiadis
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Ivan Martinez-Valbuena
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Anna Vasilevskaya
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Simrika Thapa
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Mohsen Hadian
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Alonso Morales-Rivero
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Daniela Mora-Fisher
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Cristina Salvo
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Foad Taghdiri
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Christine Sato
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Danielle Moreno
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Cassandra J Anor
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Karen Misquitta
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Blas Couto
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - David F Tang-Wai
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Anthony E Lang
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Susan H Fox
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Ekaterina Rogaeva
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Gabor G Kovacs
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- From the Tanz Centre for Research in Neurodegenerative Diseases (C.A., I.M.-V., A.V., S.T., M.H., F.T., C. Sato, D.M., C.J.A., K.M., A.E.L., E.R., G.G.K., M.C.T.); Krembil Brain Institute (I.M.-V., A.M.-R., B.C., D.F.T.-W., A.E.L., S.H.F., G.G.K., M.C.T.); The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (I.M.-V., A.M.-R., B.C., A.E.L., S.H.F., G.G.K., M.C.T.); Rossy Progressive Supranuclear Palsy Centre (I.M.-V., A.M.-R., A.E.L., G.G.K., M.C.T.), University Health Network and the University of Toronto; and University Health Network Memory Clinic (D.M.-F., C. Salvo, D.F.T.-W.), Toronto, Ontario, Canada
| |
Collapse
|
4
|
Tahara D, Tahara N, Akagi A, Riku Y, Sone J, Miyahara H, Nagai A, Yoshida M, Iwasaki Y. Clinical characteristics of Japanese patients with corticobasal degeneration. J Neurol Sci 2024; 466:123212. [PMID: 39243604 DOI: 10.1016/j.jns.2024.123212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
INTRODUCTION Corticobasal degeneration (CBD) is a clinically heterogeneous neurodegenerative disorder, for which pathological investigations are essential for a definitive diagnosis. This study explored the clinical characteristics of Japanese patients with pathologically confirmed CBD. METHODS We reviewed the data of Japanese patients with pathologically confirmed CBD who were consecutively autopsied at our institute. Clinical data were obtained from medical records and clinicopathological conferences. RESULTS Of the 34 patients initially reviewed, three were excluded because of a lack of detailed clinical data. Of the remaining 31 patients, 16 were men and 15 were women. The mean ages at onset and death were 63.3 ± 6.7 (51-79) years and 69.1 ± 6.9 (54-86), respectively. The median disease duration was 6.0 (2.5-12) years. The clinical phenotypes were as follows: progressive supranuclear palsy syndrome (PSPS; n = 20, 64.5 %), probable or possible corticobasal syndrome (n = 6, 19.4 %), frontal behavioral-spatial syndrome (n = 4, 12.9 %), nonfluent/agrammatic variant of primary progressive aphasia (n = 1, 3.2 %). Furthermore, 28 (90.3 %) patients exhibited dysphagia with a median latency of 3.5 (1.0-10.0) years, and 22 (71.0 %) patients who underwent tube feeding survived longer than those who did not (P = 0.013). CONCLUSIONS Compared with Western populations, a high prevalence of PSPS may be a clinical characteristic of Japanese patients with CBD. Additionally, dysphagia occurs in many patients with early latency and may shorten survival. Tube feeding contributes to the prolonged survival of patients with CBD.
Collapse
Affiliation(s)
- Daisuke Tahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan; Department of Neurology, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Nao Tahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan; Department of Neurology, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Atsushi Nagai
- Department of Neurology, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan.
| |
Collapse
|
5
|
Sakurai K, Tokumaru AM, Yoshida M, Saito Y, Wakabayashi K, Komori T, Hasegawa M, Ikeuchi T, Hayashi Y, Shimohata T, Murayama S, Iwasaki Y, Uchihara T, Sakai M, Yabe I, Tanikawa S, Takigawa H, Adachi T, Hanajima R, Fujimura H, Hayashi K, Sugaya K, Hasegawa K, Sano T, Takao M, Yokota O, Miki T, Kobayashi M, Arai N, Ohkubo T, Yokota T, Mori K, Ito M, Ishida C, Idezuka J, Toyoshima Y, Kanazawa M, Aoki M, Hasegawa T, Watanabe H, Hashizume A, Niwa H, Yasui K, Ito K, Washimi Y, Kubota A, Toda T, Nakashima K, Aiba I. Conventional magnetic resonance imaging key features for distinguishing pathologically confirmed corticobasal degeneration from its mimics: a retrospective analysis of the J-VAC study. Neuroradiology 2024:10.1007/s00234-024-03432-w. [PMID: 39039147 DOI: 10.1007/s00234-024-03432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Due to the indistinguishable clinical features of corticobasal syndrome (CBS), the antemortem differentiation between corticobasal degeneration (CBD) and its mimics remains challenging. However, the utility of conventional magnetic resonance imaging (MRI) for the diagnosis of CBD has not been sufficiently evaluated. This study aimed to investigate the diagnostic performance of conventional MRI findings in differentiating pathologically confirmed CBD from its mimics. METHODS Semiquantitative visual rating scales were employed to assess the degree and distribution of atrophy and asymmetry on conventional T1-weighted and T2-weighted images. Additionally, subcortical white matter hyperintensity (SWMH) on fluid-attenuated inversion recovery images were visually evaluated. RESULTS In addition to 19 patients with CBD, 16 with CBD mimics (progressive supranuclear palsy (PSP): 9, Alzheimer's disease (AD): 4, dementia with Lewy bodies (DLB): 1, frontotemporal lobar degeneration with TAR DNA-binding protein of 43 kDa(FTLD-TDP): 1, and globular glial tauopathy (GGT): 1) were investigated. Compared with the CBD group, the PSP-CBS subgroup showed severe midbrain atrophy without SWMH. The non-PSP-CBS subgroup, comprising patients with AD, DLB, FTLD-TDP, and GGT, showed severe temporal atrophy with widespread asymmetry, especially in the temporal lobes. In addition to over half of the patients with CBD, two with FTLD-TDP and GGT showed SWMH, respectively. CONCLUSION This study elucidates the distinct structural changes between the CBD and its mimics based on visual rating scales. The evaluation of atrophic distribution and SWMH may serve as imaging biomarkers of conventional MRI for detecting background pathologies.
Collapse
Affiliation(s)
- Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Aya M Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, 173-0015, Japan
- Department of Pathology and Laboratory Medicine, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, 187-8551, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8562, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, 183-0042, Japan
| | - Masato Hasegawa
- Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Chuo, Niigata, 951-8585, Japan
| | - Yuichi Hayashi
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Toshiki Uchihara
- Department of General Internal Medicine, Okinawa Chubu Hospital, Uruma, Okinawa, 904-2293, Japan
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Motoko Sakai
- Department of Neurology, NHO Suzuka National Hospital, Suzuka, Mie, 513-8501, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Satoshi Tanikawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Hiroshi Takigawa
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8504, Japan
| | - Tadashi Adachi
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8504, Japan
| | - Ritsuko Hanajima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8504, Japan
| | - Harutoshi Fujimura
- Department of Neurology, NHO Osaka Toneyama Medical Center, Toyonaka, Osaka, 560-8552, Japan
| | - Kentaro Hayashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, 183-0042, Japan
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, 183-0042, Japan
| | - Kazuko Hasegawa
- Department of Neurology, NHO Sagamihara National Hospital, Sagamihara, Kanagawa, 252-0392, Japan
| | - Terunori Sano
- Department of Laboratory Medicine, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, 187-8551, Japan
| | - Masaki Takao
- Department of Laboratory Medicine, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, 187-8551, Japan
| | - Osamu Yokota
- Department of Psychiatry, Kinoko Espoir Hospital, Kasaoka, Okayama, 714-0071, Japan
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita, Okayama, 700-8558, Japan
| | - Tomoko Miki
- Department of Psychiatry, Kinoko Espoir Hospital, Kasaoka, Okayama, 714-0071, Japan
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita, Okayama, 700-8558, Japan
| | - Michio Kobayashi
- Department of Neurology, NHO Akita National Hospital, Yurihonjo, Akita, 018-1393, Japan
| | - Nobutaka Arai
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Takuya Ohkubo
- Department of Neurology and Neurological Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8519, Japan
| | - Keiko Mori
- Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Mie, 512-1111, Japan
| | - Masumi Ito
- Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Mie, 512-1111, Japan
| | - Chiho Ishida
- Department of Neurology, NHO Iou National Hospital, Kanazawa, Ishikawa, 920-0192, Japan
| | - Jiro Idezuka
- Department of Neurology, Ojiya Sakura Hospital, Ojiya, Niigata, 947-0041, Japan
| | - Yasuko Toyoshima
- Department of Neurology, Brain Disease Center Agano Hospital, Agano, Niigata, 959-2221, Japan
- Department of Pathology, Brain Research Institute, Niigata University, Chuo, Niigata, 951-8585, Japan
| | - Masato Kanazawa
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Chuo, Niigata, 951-8585, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Atsushi Hashizume
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Hisayoshi Niwa
- Department of Neurology, Kariya Toyota General Hospital, Kariya, Aichi, 448-8505, Japan
| | - Keizo Yasui
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Aichi, 466-8650, Japan
| | - Keita Ito
- Department of Neurology, Hekinan Municipal Hospital, Hekinan, Aichi, 447-8502, Japan
| | - Yukihiko Washimi
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Akatsuki Kubota
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Kenji Nakashima
- Department of Neurology, NHO Matsue Medical Center, Matsue, Shimane, 690-8556, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO Higashinagoya National Hospital, Nagoya, Aichi, 465-8620, Japan
| |
Collapse
|
6
|
Holland N, Savulich G, Jones PS, Whiteside DJ, Street D, Swann P, Naessens M, Malpetti M, Hong YT, Fryer TD, Rittman T, Mulroy E, Aigbirhio FI, Bhatia KP, O'Brien JT, Rowe JB. Differential Synaptic Loss in β-Amyloid Positive Versus β-Amyloid Negative Corticobasal Syndrome. Mov Disord 2024; 39:1166-1178. [PMID: 38671545 DOI: 10.1002/mds.29814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND/OBJECTIVE The corticobasal syndrome (CBS) is a complex asymmetric movement disorder, with cognitive impairment. Although commonly associated with the primary 4-repeat-tauopathy of corticobasal degeneration, clinicopathological correlation is poor, and a significant proportion is due to Alzheimer's disease (AD). Synaptic loss is a pathological feature of many clinical and preclinical tauopathies. We therefore measured the degree of synaptic loss in patients with CBS and tested whether synaptic loss differed according to β-amyloid status. METHODS Twenty-five people with CBS, and 32 age-/sex-/education-matched healthy controls participated. Regional synaptic density was estimated by [11C]UCB-J non-displaceable binding potential (BPND), AD-tau pathology by [18F]AV-1451 BPND, and gray matter volume by T1-weighted magnetic resonance imaging. Participants with CBS had β-amyloid imaging with 11C-labeled Pittsburgh Compound-B ([11C]PiB) positron emission tomography. Symptom severity was assessed with the progressive supranuclear palsy-rating-scale, the cortical basal ganglia functional scale, and the revised Addenbrooke's Cognitive Examination. Regional differences in BPND and gray matter volume between groups were assessed by ANOVA. RESULTS Compared to controls, patients with CBS had higher [18F]AV-1451 uptake, gray matter volume loss, and reduced synaptic density. Synaptic loss was more severe and widespread in the β-amyloid negative group. Asymmetry of synaptic loss was in line with the clinically most affected side. DISCUSSION Distinct patterns of [11C]UCB-J and [18F]AV-1451 binding and gray matter volume loss, indicate differences in the pathogenic mechanisms of CBS according to whether it is associated with the presence of Alzheimer's disease or not. This highlights the potential for different therapeutic strategies in CBSs. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - George Savulich
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David J Whiteside
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Duncan Street
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Peter Swann
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Michelle Naessens
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Young T Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Franklin I Aigbirhio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - John T O'Brien
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Parmera JB, de Godoi Carneiro C, de Almeida IJ, de Oliveira MCB, Barbosa PM, Studart-Neto A, Ono CR, Nitrini R, Buchpiguel CA, Barbosa ER, Brucki SMD, Coutinho AM. Probable 4-Repeat Tauopathy Criteria Predict Brain Amyloid Negativity, Distinct Clinical Features, and FDG-PET/MRI Neurodegeneneration Patterns in Corticobasal Syndrome. Mov Disord Clin Pract 2024; 11:238-247. [PMID: 38155526 DOI: 10.1002/mdc3.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/29/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Corticobasal syndrome (CBS) is associated with diverse underlying pathologies, including the four-repeat (4R)-tauopathies. The Movement Disorders Society (MDS) criteria for progressive supranuclear palsy (PSP) proposed the novel category "probable 4R-tauopathy" to address the phenotypic overlap between PSP and corticobasal degeneration (CBD). OBJECTIVES To investigate the clinical ability of the MDS-PSP criteria for probable 4R-tauopathy in predicting a negative amyloid-PET in CBS. Additionally, this study aims to explore CBS patients classified as 4R-tauopathy concerning their clinical features and neuroimaging degeneration patterns. METHODS Thirty-two patients with probable CBS were prospectively evaluated and split into those who fulfilled or did not fulfill the 4R-tauopathy criteria (CBS-4RT+ vs. CBS-4RT-). All patients underwent positron emission tomographies (PET) with [18 F]fluorodeoxyglucose and [11 C]Pittsburgh Compound-B (PIB) on a hybrid PET-MRI scanner to perform multimodal quantitative comparisons with a control group. RESULTS Eleven patients were clinically classified as CBS-4RT+, and only one had a positive PIB-PET. The CBS-4RT+ classification had 92% specificity, 52% sensitivity, and 69% accuracy in predicting a negative PIB-PET. The CBS-4RT+ group presented with dysarthria and perseveration more often than the CBS-4RT- group. Moreover, the CBS-4RT+ group showed a prominent frontal hypometabolism extending to the supplementary motor area and striatum, and brain atrophy at the anterior cingulate and bilateral striata. CONCLUSIONS The 4R-tauopathy criteria were highly specific in predicting a negative amyloid-PET in CBS. Patients classified as 4R-tauopathy presented distinct clinical aspects, as well as brain metabolism and atrophy patterns previously associated with tauopathies.
Collapse
Affiliation(s)
- Jacy Bezerra Parmera
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Camila de Godoi Carneiro
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Isabel Junqueira de Almeida
- Department of Physical Therapy, Speech, and Occupational Therapy, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | | | - Pedro Melo Barbosa
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Adalberto Studart-Neto
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Carla Rachel Ono
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Egberto Reis Barbosa
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Artur Martins Coutinho
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| |
Collapse
|
8
|
Sahara N, Higuchi M. Diagnostic and therapeutic targeting of pathological tau proteins in neurodegenerative disorders. FEBS Open Bio 2024; 14:165-180. [PMID: 37746832 PMCID: PMC10839408 DOI: 10.1002/2211-5463.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023] Open
Abstract
Tauopathies, characterized by fibrillar tau accumulation in neurons and glial cells, constitute a major neuropathological category of neurodegenerative diseases. Neurofibrillary tau lesions are strongly associated with cognitive deficits in these diseases, but the causal mechanisms underlying tau-induced neuronal dysfunction remain unresolved. Recent advances in cryo-electron microscopy examination have revealed various core structures of tau filaments from different tauopathy patients, which can be used to classify tauopathies. In vivo visualization of tau pathology is now available using several tau positron emission tomography tracers. Among these radioprobes, PM-PBB3 allows high-contrast imaging of tau deposits in the brains of patients with diverse disorders and tauopathy mouse models. Selective degradation of pathological tau species by the ubiquitin-proteasome system or autophagy machinery is a potential therapeutic strategy. Alternatively, the non-cell-autonomous clearance of pathological tau species through neuron-glia networks could be reinforced as a disease-modifying treatment. In addition, the development of neuroinflammatory biomarkers is required for understanding the contribution of immunocompetent cells in the brain to preventing neurodegeneration. This review provides an overview of the current research and development of diagnostic and therapeutic agents targeting divergent tau pathologies.
Collapse
Affiliation(s)
- Naruhiko Sahara
- Department of Functional Brain Imaging, Institute for Quantum Medical SciencesNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical SciencesNational Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
9
|
Remoli G, Schilke ED, Magi A, Ancidoni A, Negro G, Da Re F, Frigo M, Giordano M, Vanacore N, Canevelli M, Ferrarese C, Tremolizzo L, Appollonio I. Neuropathological hints from CSF and serum biomarkers in corticobasal syndrome (CBS): a systematic review. Neurol Res Pract 2024; 6:1. [PMID: 38173024 PMCID: PMC10765833 DOI: 10.1186/s42466-023-00294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024] Open
Abstract
Corticobasal syndrome (CBS) is a clinical syndrome determined by various underlying neurodegenerative disorders requiring a pathological assessment for a definitive diagnosis. A literature review was performed following the methodology described in the Cochrane Handbook for Systematic Reviews to investigate the additional value of traditional and cutting-edge cerebrospinal fluid (CSF) and serum/plasma biomarkers in profiling CBS. Four databases were screened applying predefined inclusion criteria: (1) recruiting patients with CBS; (2) analyzing CSF/plasma biomarkers in CBS. The review highlights the potential role of the association of fluid biomarkers in diagnostic workup of CBS, since they may contribute to a more accurate diagnosis and patient selection for future disease-modifying agent; for example, future trial designs should consider baseline CSF Neurofilament Light Chains (NfL) or progranulin dosage to stratify treatment arms according to neuropathological substrates, and serum NfL dosage might be used to monitor the evolution of CBS. In this scenario, prospective cohort studies, starting with neurological examination and neuropsychological tests, should be considered to assess the correlations of clinical profiles and various biomarkers.
Collapse
Affiliation(s)
- Giulia Remoli
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
- Department of Neuroscience, Sapienza University of Roma, Roma, Italy
| | - Edoardo Dalmato Schilke
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy.
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy.
| | - Andrea Magi
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - Antonio Ancidoni
- National Institute of Health, Roma, Italy
- Department of Neuroscience, Sapienza University of Roma, Roma, Italy
| | - Giulia Negro
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - Fulvio Da Re
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - Maura Frigo
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - Martina Giordano
- Neurosurgery Unit, Department of Neuroscience, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
- University of Milan, Milano, Italy
| | - Nicola Vanacore
- National Institute of Health, Roma, Italy
- Department of Neuroscience, Sapienza University of Roma, Roma, Italy
| | - Marco Canevelli
- National Institute of Health, Roma, Italy
- Department of Neuroscience, Sapienza University of Roma, Roma, Italy
| | - Carlo Ferrarese
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - Lucio Tremolizzo
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - Ildebrando Appollonio
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
10
|
Jellinger KA. Pathomechanisms of cognitive and behavioral impairment in corticobasal degeneration. J Neural Transm (Vienna) 2023; 130:1509-1522. [PMID: 37659990 DOI: 10.1007/s00702-023-02691-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Corticobasal degeneration (CBD) is a rare, sporadic, late-onset progressive neurodegenerative disorder of unknown etiology, clinically characterized by an akinetic-rigid syndrome, behavior and personality disorders, language problems (aphasias), apraxia, executive and cognitive abnormalities and limb dystonia. The syndrome is not specific, as clinical features of pathologically proven CBD include several phenotypes. This 4-repeat (4R) tauopathy is morphologically featured by often asymmetric frontoparietal atrophy, ballooned/achromatic neurons containing filamentous 4R-tau aggregates in cortex and striatum, thread-like processes that are more widespread than in progressive supranuclear palsy (PSP), pathognomonic "astroglial plaques", and numerous inclusions in both astrocytes and oligodendroglia ("coiled bodies") in the white matter. Cognitive deficits in CBD are frequent initial presentations before onset of motor symptoms, depending on the phenotypic variant. They predominantly include executive and visuospatial dysfunction, sleep disorders and language deficits with usually preserved memory domains. Neuroimaging studies showed heterogenous locations of brain atrophy, particularly contralateral to the dominant symptoms, with disruption of striatal connections to prefrontal cortex and basal ganglia circuitry. Asymmetric hypometabolism, mainly involving frontal and parietal regions, is associated with brain cholinergic deficits, and dopaminergic nigrostriatal degeneration. Widespread alteration of cortical and subcortical structures causing heterogenous changes in various brain functional networks support the concept that CBD, similar to PSP, is a brain network disruption disorder. Putative pathogenic factors are hyperphosphorylated tau-pathology, neuroinflammation and oxidative injury, but the basic mechanisms of cognitive impairment in CBD, as in other degenerative movement disorders, are complex and deserve further elucidation as a basis for early diagnosis and adequate treatment of this fatal disorder.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
11
|
Collij LE, Farrar G, Zwan M, van de Giessen E, Ossenkoppele R, Barkhof F, Rozemuller AJM, Pijnenburg YAL, van der Flier WM, Bouwman F. Clinical outcomes up to 9 years after [ 18F]flutemetamol amyloid-PET in a symptomatic memory clinic population. Alzheimers Res Ther 2023; 15:207. [PMID: 38012799 PMCID: PMC10680192 DOI: 10.1186/s13195-023-01351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Previous studies demonstrated increases in diagnostic confidence and change in patient management after amyloid-PET. However, studies investigating longitudinal outcomes over an extended period of time are limited. Therefore, we aimed to investigate clinical outcomes up to 9 years after amyloid-PET to support the clinical validity of the imaging technique. METHODS We analyzed longitudinal data from 200 patients (Mage = 61.8, 45.5% female, MMMSE = 23.3) suspected of early-onset dementia that underwent [18F]flutemetamol-PET. Baseline amyloid status was determined through visual read (VR). Information on mortality was available with a mean follow-up of 6.7 years (range = 1.1-9.3). In a subset of 108 patients, longitudinal cognitive scores and clinical etiological diagnosis (eDx) at least 1 year after amyloid-PET acquisition were available (M = 3.06 years, range = 1.00-7.02). VR - and VR + patients were compared on mortality rates with Cox Hazard's model, prevalence of stable eDx using chi-square test, and longitudinal cognition with linear mixed models. Neuropathological data was available for 4 patients (mean delay = 3.59 ± 1.82 years, range = 1.2-6.3). RESULTS At baseline, 184 (92.0%) patients were considered to have dementia. The majority of VR + patients had a primary etiological diagnosis of AD (122/128, 95.3%), while the VR - group consisted mostly of non-AD etiologies, most commonly frontotemporal lobar degeneration (30/72, 40.2%). Overall mortality rate was 48.5% and did not differ between VR - and VR + patients. eDx at follow-up was consistent with baseline diagnosis for 92/108 (85.2%) patients, with most changes observed in VR - cases (VR - = 14/35, 40% vs VR + = 2/73, 2.7%, χ2 = 26.03, p < 0.001), who at no time received an AD diagnosis. VR + patients declined faster than VR - patients based on MMSE (β = - 1.17, p = 0.004), episodic memory (β = - 0.78, p = 0.003), fluency (β = - 1.44, p < 0.001), and attention scores (β = 16.76, p = 0.03). Amyloid-PET assessment was in line with post-mortem confirmation in all cases; two cases were VR + and showed widespread AD pathology, while the other two cases were VR - and showed limited amyloid pathology. CONCLUSION In a symptomatic population, we observed that amyloid-status did not impact mortality rates, but is predictive of cognitive functioning over time across several domains. Also, we show particular validity for a negative amyloid-PET assessment, as these patients did not receive an AD diagnosis at follow-up.
Collapse
Affiliation(s)
- Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands.
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
| | | | - Marissa Zwan
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Centre for Medical Image Computing, and Queen Square Institute of Neurology, UCL, London, UK
| | | | - Yolande A L Pijnenburg
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
| | - Femke Bouwman
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Aiba I, Hayashi Y, Shimohata T, Yoshida M, Saito Y, Wakabayashi K, Komori T, Hasegawa M, Ikeuchi T, Tokumaru AM, Sakurai K, Murayama S, Hasegawa K, Uchihara T, Toyoshima Y, Saito Y, Yabe I, Tanikawa S, Sugaya K, Hayashi K, Sano T, Takao M, Sakai M, Fujimura H, Takigawa H, Adachi T, Hanajima R, Yokota O, Miki T, Iwasaki Y, Kobayashi M, Arai N, Ohkubo T, Yokota T, Mori K, Ito M, Ishida C, Tanaka M, Idezuka J, Kanazawa M, Aoki K, Aoki M, Hasegawa T, Watanabe H, Hashizume A, Niwa H, Yasui K, Ito K, Washimi Y, Mukai E, Kubota A, Toda T, Nakashima K. Clinical course of pathologically confirmed corticobasal degeneration and corticobasal syndrome. Brain Commun 2023; 5:fcad296. [PMID: 38090279 PMCID: PMC10715783 DOI: 10.1093/braincomms/fcad296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/01/2023] [Accepted: 11/02/2023] [Indexed: 12/28/2023] Open
Abstract
The clinical presentation of corticobasal degeneration is diverse, while the background pathology of corticobasal syndrome is also heterogeneous. Therefore, predicting the pathological background of corticobasal syndrome is extremely difficult. Herein, we investigated the clinical findings and course in patients with pathologically, genetically and biochemically verified corticobasal degeneration and corticobasal syndrome with background pathology to determine findings suggestive of background disorder. Thirty-two patients were identified as having corticobasal degeneration. The median intervals from the initial symptoms to the onset of key milestones were as follows: gait disturbance, 0.0 year; behavioural changes, 1.0 year; falls, 2.0 years; cognitive impairment, 2.0 years; speech impairment, 2.5 years; supranuclear gaze palsy, 3.0 years; urinary incontinence, 3.0 years; and dysphagia, 5.0 years. The median survival time was 7.0 years; 50% of corticobasal degeneration was diagnosed as corticobasal degeneration/corticobasal syndrome at the final presentation. Background pathologies of corticobasal syndrome (n = 48) included corticobasal degeneration (33.3%), progressive supranuclear palsy (29.2%) and Alzheimer's disease (12.5%). The common course of corticobasal syndrome was initial gait disturbance and early fall. In addition, corticobasal degeneration-corticobasal syndrome manifested behavioural change (2.5 years) and cognitive impairment (3.0 years), as the patient with progressive supranuclear palsy-corticobasal syndrome developed speech impairment (1.0 years) and supranuclear gaze palsy (6.0 years). The Alzheimer's disease-corticobasal syndrome patients showed cognitive impairment (1.0 years). The frequency of frozen gait at onset was higher in the corticobasal degeneration-corticobasal syndrome group than in the progressive supranuclear palsy-corticobasal syndrome group [P = 0.005, odds ratio (95% confidence interval): 31.67 (1.46-685.34)]. Dysarthria at presentation was higher in progressive supranuclear palsy-corticobasal syndrome than in corticobasal degeneration-corticobasal syndrome [P = 0.047, 6.75 (1.16-39.20)]. Pyramidal sign at presentation and personality change during the entire course were higher in Alzheimer's disease-corticobasal syndrome than in progressive supranuclear palsy-corticobasal syndrome [P = 0.011, 27.44 (1.25-601.61), and P = 0.013, 40.00 (1.98-807.14), respectively]. In corticobasal syndrome, decision tree analysis revealed that 'freezing at onset' or 'no dysarthria at presentation and age at onset under 66 years in the case without freezing at onset' predicted corticobasal degeneration pathology with a sensitivity of 81.3% and specificity of 84.4%. 'Dysarthria at presentation and age at onset over 61 years' suggested progressive supranuclear palsy pathology, and 'pyramidal sign at presentation and personality change during the entire course' implied Alzheimer's disease pathology. In conclusion, frozen gait at onset, dysarthria, personality change and pyramidal signs may be useful clinical signs for predicting background pathologies in corticobasal syndrome.
Collapse
Affiliation(s)
- Ikuko Aiba
- Department of Neurology, NHO Higashinagoya National Hospital,
Nagoya, Aichi 465-8620, Japan
| | - Yuichi Hayashi
- Department of Neurology, Gifu University Graduate School of
Medicine, Gifu 501-1194, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of
Medicine, Gifu 501-1194, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi
Medical University, Nagakute, Aichi 480-1195,
Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo
Metropolitan Institute for Geriatrics and Gerontology,
Itabashi, Tokyo 173-0015, Japan
- Department of Pathology and Laboratory Medicine, National Center Hospital,
National Center of Neurology and Psychiatry, Kodaira, Tokyo
187-8551, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of
Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo
Metropolitan Neurological Hospital, Fuchu, Tokyo
183-0042, Japan
| | - Masato Hasegawa
- Department of Brain & Neurosciences, Tokyo Metropolitan Institute of
Medical Science, Setagaya, Tokyo 156-8506,
Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata
University, Chuo, Niigata 951-8585, Japan
| | - Aya M Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Institute for
Geriatrics and Gerontology, Itabashi, Tokyo
173-0015, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and
Gerontology, Obu, Aichi 474-8511, Japan
| | - Shigeo Murayama
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders,
United Graduate School of Child Development, Osaka University,
Suita, Osaka 565-0871, Japan
- Department of Neurology and Neuropathology, Tokyo Metropolitan Institute
for Geriatrics and Gerontology, Itabashi, Tokyo
173-0015, Japan
| | - Kazuko Hasegawa
- Department of Neurology, NHO Sagamihara National Hospital,
Sagamihara, Kanagawa 252-0392, Japan
| | - Toshiki Uchihara
- Neurology Clinic with Neuromorphomics Laboratory, Nitobe-Memorial Nakano
General Hospital, Nakano, Tokyo 164-8607,
Japan
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of
Medical Science, Setagaya, Tokyo 156-8506,
Japan
| | - Yasuko Toyoshima
- Department of Neurology, Brain Disease Center Agano Hospital,
Agano, Niigata 959-2221, Japan
- Department of Pathology, Brain Research Institute, Niigata
University, Chuo, Niigata 951-8585, Japan
| | - Yufuko Saito
- Department of Neurology, NHO Higashinagoya National Hospital,
Nagoya, Aichi 465-8620, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of
Medicine, Hokkaido University, Sapporo, Hokkaido
060-8638, Japan
| | - Satoshi Tanikawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido
University, Sapporo, Hokkaido 001-0021, Japan
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological
Hospital, Fuchu, Tokyo 183-0042, Japan
| | - Kentaro Hayashi
- Department of Neurology, Tokyo Metropolitan Neurological
Hospital, Fuchu, Tokyo 183-0042, Japan
| | - Terunori Sano
- Department of Laboratory Medicine, National Center Hospital, National
Center of Neurology and Psychiatry, Kodaira, Tokyo
187-8551, Japan
| | - Masaki Takao
- Department of Laboratory Medicine, National Center Hospital, National
Center of Neurology and Psychiatry, Kodaira, Tokyo
187-8551, Japan
| | - Motoko Sakai
- Department of Neurology, NHO Suzuka National Hospital,
Suzuka, Mie 513-8501, Japan
| | - Harutoshi Fujimura
- Department of Neurology, NHO Osaka Toneyama Medical Center,
Toyonaka, Osaka 560-8552, Japan
| | - Hiroshi Takigawa
- Division of Neurology, Department of Brain and Neurosciences, Faculty of
Medicine, Tottori University, Yonago, Tottori
683-8503, Japan
| | - Tadashi Adachi
- Division of Neuropathology, Department of Brain and Neurosciences, Faculty
of Medicine, Tottori University, Yonago, Tottori
683-8503, Japan
| | - Ritsuko Hanajima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of
Medicine, Tottori University, Yonago, Tottori
683-8503, Japan
| | - Osamu Yokota
- Department of Psychiatry, Kinoko Espoir Hospital,
Kasaoka, Okayama 714-0071, Japan
- Department of Neuropsychiatry, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Kita,
Okayama 700-8558, Japan
| | - Tomoko Miki
- Department of Psychiatry, Kinoko Espoir Hospital,
Kasaoka, Okayama 714-0071, Japan
- Department of Neuropsychiatry, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Kita,
Okayama 700-8558, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi
Medical University, Nagakute, Aichi 480-1195,
Japan
| | - Michio Kobayashi
- Department of Neurology, NHO Akita National Hospital,
Yurihonjo, Akita 018-1393, Japan
| | - Nobutaka Arai
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical
Science, Setagaya, Tokyo 156-8506, Japan
| | - Takuya Ohkubo
- Department of Neurology and Neurological Sciences, Tokyo Medical and Dental
University, Bunkyo, Tokyo 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Sciences, Tokyo Medical and Dental
University, Bunkyo, Tokyo 113-8519, Japan
| | - Keiko Mori
- Department of Neurology, Oyamada Memorial Spa Hospital,
Yokkaichi, Mie 512-1111, Japan
| | - Masumi Ito
- Department of Neurology, Oyamada Memorial Spa Hospital,
Yokkaichi, Mie 512-1111, Japan
| | - Chiho Ishida
- Department of Neurology, NHO Iou National Hospital,
Kanazawa, Ishikawa 920-0192, Japan
| | - Masaharu Tanaka
- Department of Psychiatry, Mishima Hospital,
Nagaoka, Niigata 940-2302, Japan
| | - Jiro Idezuka
- Department of Neurology, Ojiya Sakura Hospital,
Ojiya, Niigata 947-0041, Japan
| | - Masato Kanazawa
- Department of Neurology, Clinical Neuroscience Branch, Brain Research
Institute, Niigata University, Chuo, Niigata
951-8585, Japan
| | - Kenju Aoki
- Department of Neurology, Brain Disease Center Agano Hospital,
Agano, Niigata 959-2221, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of
Medicine, Sendai, Miyagi 980-8574, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of
Medicine, Sendai, Miyagi 980-8574, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of
Medicine, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Hashizume
- Department of Clinical Research Education, Nagoya University Graduate
School of Medicine, Nagoya, Aichi 466-8550,
Japan
| | - Hisayoshi Niwa
- Department of Neurology, Kariya Toyota General Hospital,
Kariya, Aichi 448-8505, Japan
| | - Keizo Yasui
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya
Daini Hospital, Nagoya, Aichi 466-8650, Japan
| | - Keita Ito
- Department of Neurology, Hekinan Municipal Hospital,
Hekinan, Aichi 447-8502, Japan
| | - Yukihiko Washimi
- Department of Geriatrics and Gerontology, National Center for Geriatrics
and Gerontology, Obu, Aichi 474-8511, Japan
| | - Eiichiro Mukai
- Department of Neurology, Aichi-pref Saiseikai Rehabilitation
Hospital, Nagoya, Aichi 451-0052, Japan
| | - Akatsuki Kubota
- Department of Neurology, Graduate School of Medicine, The University of
Tokyo, Bunkyo, Tokyo 113-8655, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of
Tokyo, Bunkyo, Tokyo 113-8655, Japan
| | - Kenji Nakashima
- Department of Neurology, NHO Matsue Medical Center,
Matsue, Shimane 690-8556, Japan
| |
Collapse
|
13
|
Ananthavarathan P, Patel B, Peeros S, Obrocki R, Malek N. Neurological update: non-motor symptoms in atypical parkinsonian syndromes. J Neurol 2023; 270:4558-4578. [PMID: 37316556 PMCID: PMC10421812 DOI: 10.1007/s00415-023-11807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Among people with Parkinson's disease (PD), non-motor symptoms (NMS) are a well-recognised cause of significant morbidity and poor quality of life. Yet, it is only more recently that NMS have been recognised to affect the lives of patients with atypical parkinsonian syndromes in a similar fashion. The aim of this article is to highlight and compare the relative prevalence of NMS among patients with atypical parkinsonian syndromes in the published literature, which largely remain underreported and unaddressed in routine clinical practice. All NMS that are recognised to occur in PD are also found to commonly occur in atypical parkinsonian syndromes. In particular, excessive daytime sleepiness is more prevalent among atypical parkinsonian syndromes (94.3%) compared to PD (33.9%) or normal controls (10.5%) (p < 0.001). Urinary dysfunction (not limited to urinary incontinence) is not only found to occur in MSA (79.7%) and PD (79.9%), but has also been reported in nearly half of the patients with PSP (49.3%), DLB (42%) and CBD (53.8%) (p < 0.001). Apathy is significantly more common among the atypical parkinsonian syndromes [PSP (56%), MSA (48%), DLB (44%), CBD (43%)] compared to PD (35%) (p = 0.029). Early recognition and addressing of NMS among atypical parkinsonian syndromes may help improve the holistic patient care provided and may encompass a range of conservative and pharmacotherapeutic treatments to address these symptoms.
Collapse
Affiliation(s)
- Piriyankan Ananthavarathan
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
- Department of Neuroinflammation, Institute of Neurology, University College London, 1st Floor, Russell Square House, 10-12 Russell Square, London, WC1B 5EH, UK.
| | - B Patel
- Department of Neurology, Queen's Hospital, Romford, Essex, UK
| | - S Peeros
- Department of Neurology, Queen's Hospital, Romford, Essex, UK
| | - R Obrocki
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Department of Neurology, Queen's Hospital, Romford, Essex, UK
| | - N Malek
- Department of Neurology, Queen's Hospital, Romford, Essex, UK
| |
Collapse
|
14
|
Kurihara M, Ishibashi K, Matsubara T, Hatano K, Ihara R, Higashihara M, Kameyama M, Tokumaru AM, Takeda K, Nishina Y, Kanemaru K, Ishii K, Iwata A. High sensitivity of asymmetric 18F-THK5351 PET abnormality in patients with corticobasal syndrome. Sci Rep 2023; 13:12147. [PMID: 37500734 PMCID: PMC10374540 DOI: 10.1038/s41598-023-39227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Corticobasal syndrome (CBS) is characterized by symptoms related to the asymmetric involvement of the cerebral cortex and basal ganglia. However, early detection of asymmetric imaging abnormalities can be challenging. Previous studies reported asymmetric 18F-THK5351 PET abnormalities in CBS patients, but the sensitivity for detecting such abnormalities in larger patient samples, including early-stage cases, remains unclear. Patients clinically diagnosed with CBS were recruited. All patients displayed asymmetric symptoms in the cerebral cortex and basal ganglia. Asymmetric THK5351 PET abnormalities were determined through visual assessment. Brain MRI, perfusion SPECT, and dopamine transporter (DAT) SPECT results were retrospectively reviewed. The 15 patients had a median age of 72 years (59-86 years) and a disease duration of 2 years (0.5-7 years). Four patients met the probable and 11 met the possible CBS criteria according to Armstrong criteria at the time of PET examination. All patients, including early-stage cases, exhibited asymmetric tracer uptake contralateral to their symptom-dominant side in the cerebral cortex/subcortical white matter and striatum (100%). The sensitivity for detecting asymmetric imaging abnormalities contralateral to the symptom-dominant side was 86.7% for brain MRI, 81.8% for perfusion SPECT, and 90% for DAT SPECT. White matter volume reduction was observed in the subcortical region of the precentral gyrus with increased THK5351 uptake, occurring significantly more frequently than gray matter volume reduction. THK5351 PET may be a sensitive imaging technique for detecting asymmetric CBS pathologies, including those in early stages.
Collapse
Affiliation(s)
- Masanori Kurihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
- Integrated Research Initiative for Living Well With Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Tomoyasu Matsubara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Keiko Hatano
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Ryoko Ihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Masashi Kameyama
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Diagnostic Radiology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Aya Midori Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Katsuhiko Takeda
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
- Bunkyo Cognitive Neuroscience Laboratory, Tokyo, Japan
| | - Yasushi Nishina
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kazutomi Kanemaru
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan.
- Integrated Research Initiative for Living Well With Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| |
Collapse
|
15
|
Donato L, Mordà D, Scimone C, Alibrandi S, D'Angelo R, Sidoti A. How Many Alzheimer-Perusini's Atypical Forms Do We Still Have to Discover? Biomedicines 2023; 11:2035. [PMID: 37509674 PMCID: PMC10377159 DOI: 10.3390/biomedicines11072035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer-Perusini's (AD) disease represents the most spread dementia around the world and constitutes a serious problem for public health. It was first described by the two physicians from whom it took its name. Nowadays, we have extensively expanded our knowledge about this disease. Starting from a merely clinical and histopathologic description, we have now reached better molecular comprehension. For instance, we passed from an old conceptualization of the disease based on plaques and tangles to a more modern vision of mixed proteinopathy in a one-to-one relationship with an alteration of specific glial and neuronal phenotypes. However, no disease-modifying therapies are yet available. It is likely that the only way to find a few "magic bullets" is to deepen this aspect more and more until we are able to draw up specific molecular profiles for single AD cases. This review reports the most recent classifications of AD atypical variants in order to summarize all the clinical evidence using several discrimina (for example, post mortem neurofibrillary tangle density, cerebral atrophy, or FDG-PET studies). The better defined four atypical forms are posterior cortical atrophy (PCA), logopenic variant of primary progressive aphasia (LvPPA), behavioral/dysexecutive variant and AD with corticobasal degeneration (CBS). Moreover, we discuss the usefulness of such classifications before outlining the molecular-genetic aspects focusing on microglial activity or, more generally, immune system control of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Domenico Mordà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
16
|
Dal SR, Lee Ong T, Martin AJ, Halpern JP, Fung VS. A late-onset neurological disorder: is progression inevitable? Parkinsonism Relat Disord 2023; 108:105092. [PMID: 35811228 DOI: 10.1016/j.parkreldis.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Affiliation(s)
- Shoaib R Dal
- Movement Disorder Unit, Neurology Department, Westmead Hospital, Westmead, NSW, Australia
| | - Tien Lee Ong
- Movement Disorder Unit, Neurology Department, Westmead Hospital, Westmead, NSW, Australia
| | - Andrew J Martin
- Movement Disorder Unit, Neurology Department, Westmead Hospital, Westmead, NSW, Australia; Blacktown Hospital, Blacktown, NSW, Australia
| | | | - Victor Sc Fung
- Movement Disorder Unit, Neurology Department, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Malarte ML, Gillberg PG, Kumar A, Bogdanovic N, Lemoine L, Nordberg A. Discriminative binding of tau PET tracers PI2620, MK6240 and RO948 in Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy brains. Mol Psychiatry 2023; 28:1272-1283. [PMID: 36447011 PMCID: PMC10005967 DOI: 10.1038/s41380-022-01875-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Recent mechanistic and structural studies have challenged the classical tauopathy classification approach and revealed the complexity and heterogeneity of tau pathology in Alzheimer's disease (AD) and primary tauopathies such as corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), progressing beyond distinct tau isoforms. In this multi-tau tracer study, we focused on the new second-generation tau PET tracers PI2620, MK6240 and RO948 to investigate this tau complexity in AD, CBD, and PSP brains using post-mortem radioligand binding studies and autoradiography of large and small frozen brain sections. Saturation binding studies indicated multiple binding sites for 3H-PI2620 in AD, CBD and PSP brains with different binding affinities (Kd ranging from 0.2 to 0.7 nM) and binding site densities (following the order: BmaxAD > BmaxCBD > BmaxPSP). Competitive binding studies complemented these findings, demonstrating the presence of two binding sites [super-high affinity (SHA): IC50(1) = 8.1 pM; and high affinity (HA): IC50(2) = 4.9 nM] in AD brains. Regional binding distribution studies showed that 3H-PI2620 could discriminate between AD (n = 6) and control cases (n = 9), especially in frontal cortex and temporal cortex tissue (p < 0.001) as well as in the hippocampal region (p = 0.02). 3H-PI2620, 3H-MK6240 and 3H-RO948 displayed similar binding behaviour in AD brains (in both homogenate competitive studies and one large frozen hemispherical brain section autoradiography studies) in terms of binding affinities, number of sites and regional patterns. Our small section autoradiography studies in the frontal cortex of CBD (n = 3) and PSP brains (n = 2) showed high specificity for 3H-PI2620 but not for 3H-MK6240 or 3H-RO948. Our findings clearly demonstrate different binding properties among the second-generation tau PET tracers, which may assist in further understanding of tau heterogeneity in AD versus non-AD tauopathies and suggests potential for development of pure selective 4R tau PET tracers.
Collapse
Grants
- Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
- Stiftelsen Olle Engkvist Byggmästare
- Svenska Forskningsrådet Formas (Swedish Research Council Formas)
- Stockholms Läns Landsting (Stockholm County Council)
- Hjärnfonden (Swedish Brain Foundation)
- Stockholm County Council -Karolinska Institute regional agreement on medical training and clinical research (ALF grant),the Swedish Alzheimer Foundation, the Foundation for Old Servants, Gun and Bertil Stohne’s Foundation, the KI Foundation for Geriatric Diseases, the Swedish Dementia Foundation, the Center for Innovative Medicine (CIMED) Region Stockholm, the Michael J Fox Foundation (MJFF-019728), the Alzheimer Association USA (AARF -21-848395), and the Recherche sur Alzheimer Foundation (Paris, France).
Collapse
Affiliation(s)
- Mona-Lisa Malarte
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Per-Göran Gillberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanovic
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Laëtitia Lemoine
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
18
|
Ishihara K, Fukui T, Kawamura M, Shiota JI, Nakano I. Symptomatology and Neuropathology of patients presenting with focal cortical signs. Neuropathology 2023; 43:27-43. [PMID: 36328774 DOI: 10.1111/neup.12854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/05/2022] [Accepted: 07/10/2022] [Indexed: 11/06/2022]
Abstract
Here, we describe two patients who presented with focal cortical signs and underwent neuropathological examination. Case 1 was a 73-year-old woman with progressive speech disorder and abnormal behavior. She showed agraphia of the frontal lobe type, featured by the omission of kana letters when writing, other than pyramidal tract signs, pseudobulbar palsy, and frontal lobe dementia. Neuropathological examination, including TAR DNA-binding protein 43 (TDP-43) immunohistochemistry, revealed bilateral frontal and anterior temporal lobe lesions accentuated in the precentral gyrus and posterior part of the middle frontal gyrus. Both upper and lower motor neurons showed pathological changes compatible with amyotrophic lateral sclerosis. Case 2 was a 62-year-old man with progressive speech disorder and hand clumsiness. He had a motor speech disorder, compatible with apraxia of speech, and limb apraxia of the limb-kinetic and ideomotor type. Neuropathological examination revealed degeneration in the left frontal lobe, including the precentral gyrus, anterior temporal, and parietal lobe cortices. Moreover, numerous argyrophilic neuronal intracytoplasmic inclusions (Pick body) and ballooned neurons were observed in these lesions and the limbic system. The pathological diagnosis was Pick disease involving the peri-Rolandic area and parietal lobe. In these two cases, the distribution of neuropathological changes in the cerebral cortices correlated with the clinical symptoms observed.
Collapse
Affiliation(s)
- Kenji Ishihara
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan.,Asahi Hospital of Neurology and Rehabilitation, Chiba, Japan
| | - Toshiya Fukui
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan.,Kawasaki Memorial Hospital, Kawasaki, Japan
| | - Mitsuru Kawamura
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan.,Okusawa Hospital, Tokyo, Japan
| | - Jun-Ichi Shiota
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan.,Ushioda Home Clinic, Yokohama, Japan
| | - Imaharu Nakano
- Department of Neurology, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
19
|
Sakurai K, Kaneda D, Morimoto S, Uchida Y, Inui S, Kimura Y, Kato T, Ito K, Hashizume Y. Asymmetric Cerebral Peduncle Atrophy: A Simple Diagnostic Clue for Distinguishing Frontotemporal Lobar Degeneration from Alzheimer's Disease. J Alzheimers Dis 2023; 95:1657-1665. [PMID: 37718809 DOI: 10.3233/jad-230441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Due to confusing clinicoradiological features such as amnestic symptoms and hippocampal atrophy in frontotemporal lobar degeneration (FTLD), antemortem differentiation between FTLD and Alzheimer's disease (AD) can be challenging. Although asymmetric atrophy of the cerebral peduncle is regarded as a representative imaging finding in some disorders of the FTLD spectrum, the utility of this finding has not been sufficiently evaluated for differentiating between FTLD and AD. OBJECTIVE This study aimed to explore the diagnostic performance of asymmetric cerebral peduncle atrophy on axial magnetic resonance imaging as a simple radiological discriminator between FTLD and AD. METHODS Seventeen patients with pathologically confirmed FTLD, including six with progressive supranuclear palsy, three with corticobasal degeneration, eight with TAR DNA-binding protein 43 (FTLD-TDP), and 11 with pathologically confirmed AD, were investigated. Quantitative indices representing the difference between the volumes of the bilateral cerebral peduncles (i.e., cerebral peduncular asymmetry index [CPAI]), the voxel-based specific regional analysis system for Alzheimer's disease (VSRAD) Z-score representing the degree of hippocampal atrophy, and semiquantitative visual analysis to evaluate the asymmetry of the cerebral peduncle (visual assessment of cerebral peduncular asymmetry: VACPA) were compared between the two groups. RESULTS Contrary to the VSRAD Z-score, the CPAI and VACPA scores demonstrated higher diagnostic performance in differentiating patients with FTLD from those with AD (areas under the receiver operating characteristic curve of 0.88, 082, and 0.60, respectively). CONCLUSIONS Quantitative and visual analytical techniques can differentiate between FTLD and AD. These simple methods may be useful in daily clinical practice.
Collapse
Affiliation(s)
- Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Daita Kaneda
- Choju Medical Institute, Fukushimura Hospital, Aichi, Japan
| | - Satoru Morimoto
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Shohei Inui
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Kengo Ito
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | | |
Collapse
|
20
|
Vipin A, Koh CL, Wong BYX, Zailan FZ, Tan JY, Soo SA, Satish V, Kumar D, Wang BZ, Ng ASL, Chiew HJ, Ng KP, Kandiah N. Amyloid-Tau-Neurodegeneration Profiles and Longitudinal Cognition in Sporadic Young-Onset Dementia. J Alzheimers Dis 2022; 90:543-551. [DOI: 10.3233/jad-220448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We examined amyloid-tau-neurodegeneration biomarker effects on cognition in a Southeast-Asian cohort of 84 sporadic young-onset dementia (YOD; age-at-onset <65 years) patients. They were stratified into A+N+, A– N+, and A– N– profiles via cerebrospinal fluid amyloid-β1–42 (A), phosphorylated-tau (T), MRI medial temporal atrophy (neurodegeneration– N), and confluent white matter hyperintensities cerebrovascular disease (CVD). A, T, and CVD effects on longitudinal Mini-Mental State Examination (MMSE) were evaluated. A+N+ patients demonstrated steeper MMSE decline than A– N+ (β = 1.53; p = 0.036; CI 0.15:2.92) and A– N– (β = 4.68; p = 0.001; CI 1.98:7.38) over a mean follow-up of 1.24 years. Within A– N+, T– CVD+ patients showed greater MMSE decline compared to T+CVD– patients (β = – 2.37; p = 0.030; CI – 4.41:– 0.39). A+ results in significant cognitive decline, while CVD influences longitudinal cognition in the A– sub-group.
Collapse
Affiliation(s)
- Ashwati Vipin
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Chen Ling Koh
- National Neuroscience Institute, Singapore, Singapore
| | | | - Fatin Zahra Zailan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Jayne Yi Tan
- National Neuroscience Institute, Singapore, Singapore
| | - See Ann Soo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Vaynii Satish
- National Neuroscience Institute, Singapore, Singapore
| | - Dilip Kumar
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | | | - Adeline Su Lyn Ng
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Hui Jin Chiew
- National Neuroscience Institute, Singapore, Singapore
| | - Kok Pin Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nagaendran Kandiah
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
21
|
Tipton PW, Deutschlaender AB, Savica R, Heckman MG, Brushaber DE, Dickerson BC, Gavrilova RH, Geschwind DH, Ghoshal N, Graff-Radford J, Graff-Radford NR, Grossman M, Hsiung GYR, Huey ED, Irwin DJ, Jones DT, Knopman DS, McGinnis SM, Rademakers R, Ramos EM, Forsberg LK, Heuer HW, Onyike C, Tartaglia C, Domoto-Reilly K, Roberson ED, Mendez MF, Litvan I, Appleby BS, Grant I, Kaufer D, Boxer AL, Rosen HJ, Boeve BF, Wszolek ZK. Differences in Motor Features of C9orf72, MAPT, or GRN Variant Carriers With Familial Frontotemporal Lobar Degeneration. Neurology 2022; 99:e1154-e1167. [PMID: 35790423 PMCID: PMC9536745 DOI: 10.1212/wnl.0000000000200860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/02/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Familial frontotemporal lobar degeneration (f-FTLD) is a phenotypically heterogeneous spectrum of neurodegenerative disorders most often caused by variants within chromosome 9 open reading frame 72 (C9orf72), microtubule-associated protein tau (MAPT), or granulin (GRN). The phenotypic association with each of these genes is incompletely understood. We hypothesized that the frequency of specific clinical features would correspond with different genes. METHODS We screened the Advancing Research and Treatment in Frontotemporal Lobar Degeneration (ARTFL)/Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS)/ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration Consortium for symptomatic carriers of pathogenic variants in C9orf72, MAPT, or GRN. We assessed for clinical differences among these 3 groups based on data recorded as part of a detailed neurologic examination, the Progressive Supranuclear Palsy Rating Scale, Progressive Supranuclear Palsy-Quality of Life Rating Scale, Unified Parkinson's Disease Rating Scale Part III (motor items), and the Amyotrophic Lateral Sclerosis Functional Rating Scale, revised version. Data were analyzed using Kruskal-Wallis and Wilcoxon rank-sum tests and Fisher exact test. RESULTS We identified 184 symptomatic participants who had a single pathogenic variant in C9orf72 (n = 88), MAPT (n = 53), or GRN (n = 43). Motor symptom age at onset was earliest in the MAPT participants followed by C9orf72, whereas the GRN pathogenic variant carriers developed symptoms later. C9orf72 participants more often had fasciculations, muscle atrophy, and weakness, whereas parkinsonism was less frequent. Vertical oculomotor abnormalities were more common in the MAPT cohort, whereas apraxia and focal limb dystonia occurred more often in participants with GRN variants. DISCUSSION We present a large comparative study of motor features in C9orf72, MAPT, and GRN pathogenic variant carriers with symptomatic f-FTLD. Our findings demonstrate characteristic phenotypic differences corresponding with specific gene variants that increase our understanding of the genotype-phenotype relationship in this complex spectrum of neurodegenerative disorders. TRIAL REGISTRATION INFORMATION NCT02365922, NCT02372773, and NCT04363684.
Collapse
Affiliation(s)
- Philip Wade Tipton
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill.
| | - Angela B Deutschlaender
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Rodolfo Savica
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Michael G Heckman
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Danielle E Brushaber
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Bradford C Dickerson
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Ralitza H Gavrilova
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Daniel H Geschwind
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Nupur Ghoshal
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Jonathan Graff-Radford
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Neill R Graff-Radford
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Murray Grossman
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Ging-Yuek R Hsiung
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Edward D Huey
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - David John Irwin
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - David T Jones
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - David S Knopman
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Scott M McGinnis
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Rosa Rademakers
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Eliana Marisa Ramos
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Leah K Forsberg
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Hilary W Heuer
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Chiadi Onyike
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Carmela Tartaglia
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Kimiko Domoto-Reilly
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Erik D Roberson
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Mario F Mendez
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Irene Litvan
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Brian S Appleby
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Ian Grant
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Daniel Kaufer
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Adam L Boxer
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Howard J Rosen
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Brad F Boeve
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Zbigniew K Wszolek
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| |
Collapse
|
22
|
Yoshida M, Akagi A, Miyahara H, Riku Y, Ando T, Ikeda T, Yabata H, Moriyoshi H, Koizumi R, Iwasaki Y. Macroscopic diagnostic clue for parkinsonism. Neuropathology 2022; 42:394-419. [PMID: 35996308 DOI: 10.1111/neup.12853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/25/2022]
Abstract
The neuropathological background of parkinsonism includes various neurodegenerative disorders, including Lewy body disease (LBD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). The pathological diagnostic procedure begins by assessing the macroscopic findings to evaluate the degenerative lesions in brains with the naked eye. Usually, degenerative lesions show variable atrophy and brownish discoloration in accordance with disease-specific profiles. These macroscopic appearances support neuropathologists in identifying the relevant regions for microscopic examination. The neuropathological diagnosis of parkinsonism is based on regional distribution and fundamental proteinopathies in neurons and glia cells. LBD and MSA are synucleinopathies, and PSP and CBD are tauopathies. Among them, glial-predominant proteinopathy (MSA, PSP, and CBD) may play a significant role in volume reduction. Therefore, macroscopic inspection provides the appropriate direction for assessment. The disease duration, the severity of lesions, and mixed pathologies make the validation of macroscopic observations more complicated. In this review, we outline the macroscopic diagnostic clues in LBD, MSA, PSP, and CBD that could help with pathological refinement.
Collapse
Affiliation(s)
- Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Ando
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshimasa Ikeda
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Yabata
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Shiga University of Medical Science, Ohtsu
| | - Hideyuki Moriyoshi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuichi Koizumi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
23
|
Pasquini J, Trogu F, Morelli C, Poletti B, Girotti F, Peverelli S, Brusati A, Ratti A, Ciammola A, Silani V, Ticozzi N. Parkinsonian Syndromes in Motor Neuron Disease: A Clinical Study. Front Aging Neurosci 2022; 14:917706. [PMID: 35832068 PMCID: PMC9271964 DOI: 10.3389/fnagi.2022.917706] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background Parkinsonian syndromes may rarely occur in motor neuron disease (MND). However, previous studies are heterogeneous and mostly case reports or small case series. Therefore, we aimed to identify and characterize patients with concurrent parkinsonian syndromes extracted from a cohort of 1,042 consecutive cases diagnosed with MND at a tertiary Italian Center. Methods Diagnosis of Parkinson's disease (PD), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) was made according to current criteria. Clinical characterization included: upper and lower motor neuron disease features, typical and atypical parkinsonian features, oculomotor disorders, cognitive testing, MRI features, and, when available molecular neuroimaging. Genetic testing was carried out for major MND and PD-associated genes. Results Parkinsonian syndromes were diagnosed in 18/1042 (1.7%) of MND patients (7 PD, 6 PSP, 3 CBS, 2 other parkinsonisms). Based on phenotype, patients could be categorized into amyotrophic lateral sclerosis (ALS)-parkinsonism and primary lateral sclerosis (PLS)-parkinsonism clusters. Across the whole database, parkinsonism was significantly more common in PLS than in other MND phenotypes (12.1 vs. 1.1%, p = 5.0 × 10−10). MND patients with parkinsonian features had older age of onset, higher frequency of oculomotor disorders, cognitive impairment, and family history of parkinsonism or dementia. Two patients showed pathogenic mutations in TARDBP and C9orf72 genes. Conclusion Specific patterns in MND-parkinsonism were observed, with PLS patients often showing atypical parkinsonian syndromes and ALS patients more frequently showing typical PD. Systematic clinical, genetic, and neuropathologic characterization may provide a better understanding of these phenotypes.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Neurology Residency Program, Università Degli Studi di Milano, Milan, Italy
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Francesca Trogu
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Neurology Residency Program, Università Degli Studi di Milano, Milan, Italy
| | - Claudia Morelli
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Floriano Girotti
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Alberto Brusati
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Milan, Italy
| | - Andrea Ciammola
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università Degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università Degli Studi di Milano, Milan, Italy
- *Correspondence: Nicola Ticozzi
| |
Collapse
|
24
|
Koga S, Josephs KA, Aiba I, Yoshida M, Dickson DW. Neuropathology and emerging biomarkers in corticobasal syndrome. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328586. [PMID: 35697501 PMCID: PMC9380481 DOI: 10.1136/jnnp-2021-328586] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022]
Abstract
Corticobasal syndrome (CBS) is a clinical syndrome characterised by progressive asymmetric limb rigidity and apraxia with dystonia, myoclonus, cortical sensory loss and alien limb phenomenon. Corticobasal degeneration (CBD) is one of the most common underlying pathologies of CBS, but other disorders, such as progressive supranuclear palsy (PSP), Alzheimer's disease (AD) and frontotemporal lobar degeneration with TDP-43 inclusions, are also associated with this syndrome.In this review, we describe common and rare neuropathological findings in CBS, including tauopathies, synucleinopathies, TDP-43 proteinopathies, fused in sarcoma proteinopathy, prion disease (Creutzfeldt-Jakob disease) and cerebrovascular disease, based on a narrative review of the literature and clinicopathological studies from two brain banks. Genetic mutations associated with CBS, including GRN and MAPT, are also reviewed. Clinicopathological studies on neurodegenerative disorders associated with CBS have shown that regardless of the underlying pathology, frontoparietal, as well as motor and premotor pathology is associated with CBS. Clinical features that can predict the underlying pathology of CBS remain unclear. Using AD-related biomarkers (ie, amyloid and tau positron emission tomography (PET) and fluid biomarkers), CBS caused by AD often can be differentiated from other causes of CBS. Tau PET may help distinguish AD from other tauopathies and non-tauopathies, but it remains challenging to differentiate non-AD tauopathies, especially PSP and CBD. Although the current clinical diagnostic criteria for CBS have suboptimal sensitivity and specificity, emerging biomarkers hold promise for future improvements in the diagnosis of underlying pathology in patients with CBS.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ikuko Aiba
- Department of Neurology, National Hospital Organization Higashinagoya National Hospital, Nagoya, Aichi, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
25
|
Parmera JB, de Oliveira MCB, Rodrigues RD, Coutinho AM. Progressive supranuclear palsy and corticobasal degeneration: novel clinical concepts and advances in biomarkers. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:126-136. [PMID: 35976324 PMCID: PMC9491415 DOI: 10.1590/0004-282x-anp-2022-s134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are sporadic adult-onset primary tauopathies clinically classified among the atypical parkinsonian syndromes. They are intrinsically related with regard to their clinical features, pathology, biochemistry, and genetic risk factors. OBJECTIVES This review highlights the current knowledge on PSP and CBD, focusing on evolving clinical concepts, new diagnostic criteria, and advances in biomarkers. METHODS We performed a non-systematic literature review through the PubMed database. The search was restricted to articles written in English, published from 1964 to date. RESULTS Clinicopathologic and in vivo biomarkers studies have broadened PSP and CBD clinical phenotypes. They are now recognized as a range of motor and behavioral syndromes associated with underlying 4R-tauopathy neuropathology. The Movement Disorders Society PSP diagnostic criteria included clinical variants apart from the classical description, increasing diagnostic sensitivity. Meanwhile, imaging biomarkers have explored the complexity of symptoms and pathological processes related to corticobasal syndrome and CBD. CONCLUSIONS In recent years, several prospective or clinicopathologic studies have assessed clinical, radiological, and fluid biomarkers that have helped us gain a better understanding of the complexity of the 4R-tauopathies, mainly PSP and CBD.
Collapse
Affiliation(s)
- Jacy Bezerra Parmera
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
| | | | - Roberta Diehl Rodrigues
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia, Laboratório de Medicina Nuclear (LIM 44), São Paulo, SP, Brazil
| | - Artur Martins Coutinho
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Radiologia, Centro de Medicina Nuclear, Laboratório de Medicina Nuclear (LIM 43), São Paulo, SP, Brazil
| |
Collapse
|
26
|
Riley KJ, Graner BD, Veronesi MC. The tauopathies: Neuroimaging characteristics and emerging experimental therapies. J Neuroimaging 2022; 32:565-581. [PMID: 35470528 PMCID: PMC9545715 DOI: 10.1111/jon.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
The tauopathies are a heterogeneous group of neurodegenerative disorders in which the prevailing underlying disease process is intracellular deposition of abnormal misfolded tau protein. Diseases often categorized as tauopathies include progressive supranuclear palsy, chronic traumatic encephalopathy, corticobasal degeneration, and frontotemporal lobar degeneration. Tauopathies can be classified through clinical assessment, imaging findings, histologic validation, or molecular biomarkers tied to the underlying disease mechanism. Many tauopathies vary in their clinical presentation and overlap substantially in presentation, making clinical diagnosis of a specific primary tauopathy difficult. Anatomic imaging findings are also rarely specific to a single tauopathy, and when present may not manifest until well after the point at which therapy may be most impactful. Molecular biomarkers hold the most promise for patient care and form a platform upon which emerging diagnostic and therapeutic applications could be developed. One of the most exciting developments utilizing these molecular biomarkers for assessment of tau deposition within the brain is tau‐PET imaging utilizing novel ligands that specifically target tau protein. This review will discuss the background, significance, and clinical presentation of each tauopathy with additional attention to the pathologic mechanisms at the protein level. The imaging characteristics will be outlined with select examples of emerging imaging techniques. Finally, current treatment options and emerging therapies will be discussed. This is by no means a comprehensive review of the literature but is instead intended for the practicing radiologist as an overview of a rapidly evolving topic.
Collapse
Affiliation(s)
- Kalen J Riley
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brian D Graner
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael C Veronesi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
27
|
McKenna MC, Murad A, Huynh W, Lope J, Bede P. The changing landscape of neuroimaging in frontotemporal lobar degeneration: from group-level observations to single-subject data interpretation. Expert Rev Neurother 2022; 22:179-207. [PMID: 35227146 DOI: 10.1080/14737175.2022.2048648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION While the imaging signatures of frontotemporal lobar degeneration (FTLD) phenotypes and genotypes are well-characterised based on group-level descriptive analyses, the meaningful interpretation of single MRI scans remains challenging. Single-subject MRI classification frameworks rely on complex computational models and large training datasets to categorise individual patients into diagnostic subgroups based on distinguishing imaging features. Reliable individual subject data interpretation is hugely important in the clinical setting to expedite the diagnosis and classify individuals into relevant prognostic categories. AREAS COVERED This article reviews (1) the neuroimaging studies that propose single-subject MRI classification strategies in symptomatic and pre-symptomatic FTLD, (2) potential practical implications and (3) the limitations of current single-subject data interpretation models. EXPERT OPINION Classification studies in FTLD have demonstrated the feasibility of categorising individual subjects into diagnostic groups based on multiparametric imaging data. Preliminary data indicate that pre-symptomatic FTLD mutation carriers may also be reliably distinguished from controls. Despite momentous advances in the field, significant further improvements are needed before these models can be developed into viable clinical applications.
Collapse
Affiliation(s)
| | - Aizuri Murad
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Australia
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, France
| |
Collapse
|
28
|
Ferrea S, Junker FB, Hartmann CJ, Dinkelbach L, Eickhoff SB, Moldovan AS, Südmeyer M, Schnitzler A, Schmidt‐Wilcke T. Brain volume patterns in corticobasal syndrome versus idiopathic Parkinson's disease. J Neuroimaging 2022; 32:720-727. [DOI: 10.1111/jon.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/25/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Stefano Ferrea
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Frederick Benjamin Junker
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Christian Johannes Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Department of Neurology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Lars Dinkelbach
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM‐7) Research Center Jülich Jülich Germany
| | - Alexia Sabine Moldovan
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Department of Neurology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Department of Neurology Ernst von Bergmann Hospital Potsdam Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Tobias Schmidt‐Wilcke
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Center of Neurology Bezirksklinikum Mainkofen Deggendorf Germany
| |
Collapse
|
29
|
Sirtuins and Autophagy in Age-Associated Neurodegenerative Diseases: Lessons from the C. elegans Model. Int J Mol Sci 2021; 22:ijms222212263. [PMID: 34830158 PMCID: PMC8619060 DOI: 10.3390/ijms222212263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Age-associated neurodegenerative diseases are known to have "impaired protein clearance" as one of the key features causing their onset and progression. Hence, homeostasis is the key to maintaining balance throughout the cellular system as an organism ages. Any imbalance in the protein clearance machinery is responsible for accumulation of unwanted proteins, leading to pathological consequences-manifesting in neurodegeneration and associated debilitating outcomes. Multiple processes are involved in regulating this phenomenon; however, failure to regulate the autophagic machinery is a critical process that hampers the protein clearing pathway, leading to neurodegeneration. Another important and widely known component that plays a role in modulating neurodegeneration is a class of proteins called sirtuins. These are class III histone deacetylases (HDACs) that are known to regulate various vital processes such as longevity, genomic stability, transcription and DNA repair. These enzymes are also known to modulate neurodegeneration in an autophagy-dependent manner. Considering its genetic relevance and ease of studying disease-related endpoints in neurodegeneration, the model system Caenorhabditis elegans has been successfully employed in deciphering various functional outcomes related to critical protein molecules, cell death pathways and their association with ageing. This review summarizes the vital role of sirtuins and autophagy in ageing and neurodegeneration, in particular highlighting the knowledge obtained using the C. elegans model system.
Collapse
|
30
|
Corticobasal syndrome etiologies in a young Filipino patient: A case report and literature review. Clin Neurol Neurosurg 2021; 210:107002. [PMID: 34717235 DOI: 10.1016/j.clineuro.2021.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022]
Abstract
While corticobasal syndrome (CBS) has long been associated with corticobasal degeneration (CBD), only 24-57% of CBS patients will have the classic histopathologic findings of CBD postmortem. Here, we present a 28-year-old male who had a 3-year history of progressive right sided predominant, atypical parkinsonism, limb dystonia, stimulus sensitive myoclonus, apraxia, aphasia, alien limb phenomenon, and cognitive impairment, typical of CBS, who, based on Armstrong criteria will qualify as possible CBD. In conclusion, among young patients presenting with CBS, tauopathies are still the most common causes, but inherited metabolic and white matter diseases as well as other non-tau associated neurodegenerative conditions should also be ruled out. Nevertheless, since most of these are diagnosed histopathologically, accurate and complete clinical findings, in addition to extensive metabolic work ups, imaging and genetic tests may be needed to clinch the cause of this syndrome.
Collapse
|
31
|
Hwangbo S, Hwang S, Suh MK, Kim SJ, Kim Y, Kim HJ, Na DL, Seo SW, Suh YL. Two cases of non-fluent variant primary progressive aphasia with different pathological diagnoses. PRECISION AND FUTURE MEDICINE 2021. [DOI: 10.23838/pfm.2021.00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Non-fluent variant primary progressive aphasia (nfvPPA), a subtype of frontotemporal lobar dementia syndrome, has been proven to have various pathological diagnoses. A 63-year-old woman and 71-year-old man separately visited our clinic for language dysfunction. Both patients showed non-fluent speech. The female patient showed personality change accompanied by language dysfunction, while the male patient had parkinsonian symptoms such as bradykinesia and cogwheel rigidity. Both patients were clinically diagnosed with nfvPPA. Several years after the first visit, the patients died, and a brain autopsy was performed. On postmortem examination, the female patient was pathologically diagnosed with Pick’s disease, while the male patient was diagnosed with progressive supranuclear palsy. Our report suggests that nfvPPA patients might show distinct clinical features depending on underlying pathologies.
Collapse
|
32
|
Di Pietro M, Russo M, Dono F, Carrarini C, Thomas A, Di Stefano V, Telese R, Bonanni L, Sensi SL, Onofrj M, Franciotti R. A Critical Review of Alien Limb-Related Phenomena and Implications for Functional Magnetic Resonance Imaging Studies. Front Neurol 2021; 12:661130. [PMID: 34566830 PMCID: PMC8458742 DOI: 10.3389/fneur.2021.661130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/06/2021] [Indexed: 11/27/2022] Open
Abstract
Consensus criteria on corticobasal degeneration (CBD) include alien limb (AL) phenomena. However, the gist of the behavioral features of AL is still “a matter of debate.” CBD-related AL has so far included the description of involuntary movements, frontal release phenomena (frontal AL), or asomatognosia (posterior or “real” AL). In this context, the most frequent symptoms are language and praxis deficits and cortical sensory misperception. However, asomatognosia requires, by definition, intact perception and cognition. Thus, to make a proper diagnosis of AL in the context of CBD, cognitive and language dysfunctions must be carefully verified and objectively assessed. We reviewed the current literature on AL in CBD and now propose that the generic use of the term AL should be avoided. This catchall AL term should instead be deconstructed. We propose that the term AL is appropriate to describe clinical features associated with specific brain lesions. More discrete sets of regionally bound clinical signs that depend on dysfunctions of specific brain areas need to be assessed and presented when posing the diagnosis. Thus, in our opinion, the AL term should be employed in association with precise descriptions of the accompanying involuntary movements, sensory misperceptions, agnosia-asomatognosia contents, and the presence of utilization behavior. The review also offers an overview of functional magnetic resonance imaging-based studies evaluating AL-related phenomena. In addition, we provide a complementary set of video clips depicting CBD-related involuntary movements that should not mistakenly be interpreted as signs of AL.
Collapse
Affiliation(s)
- Martina Di Pietro
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Claudia Carrarini
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Vincenzo Di Stefano
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Roberta Telese
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,IRCCS C. Mondino Foundation, Pavia, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy.,YDA Foundation, Institute of Immune Therapy and Advanced Biological Treatment, Pescara, Italy
| | - Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
33
|
Parmera JB, de Almeida IJ, de Oliveira MCB, Silagi ML, de Godoi Carneiro C, Studart-Neto A, Ono CR, Reis Barbosa E, Nitrini R, Buchpiguel CA, Brucki SMD, Coutinho AM. Metabolic and Structural Signatures of Speech and Language Impairment in Corticobasal Syndrome: A Multimodal PET/MRI Study. Front Neurol 2021; 12:702052. [PMID: 34526958 PMCID: PMC8435851 DOI: 10.3389/fneur.2021.702052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Corticobasal syndrome (CBS) is a progressive neurological disorder related to multiple underlying pathologies, including four-repeat tauopathies, such as corticobasal degeneration and progressive supranuclear palsy, and Alzheimer's disease (AD). Speech and language are commonly impaired, encompassing a broad spectrum of deficits. We aimed to investigate CBS speech and language impairment patterns in light of a multimodal imaging approach. Materials and Methods: Thirty-one patients with probable CBS were prospectively evaluated concerning their speech–language, cognitive, and motor profiles. They underwent positron emission tomography with [18F]fluorodeoxyglucose (FDG-PET) and [11C]Pittsburgh Compound-B (PIB-PET) on a hybrid PET-MRI machine to assess their amyloid status. PIB-PET images were classified based on visual and semi-quantitative analyses. Quantitative group analyses were performed on FDG-PET data, and atrophy patterns on MRI were investigated using voxel-based morphometry (VBM). Thirty healthy participants were recruited as imaging controls. Results: Aphasia was the second most prominent cognitive impairment, presented in 67.7% of the cases, following apraxia (96.8%). We identified a wide linguistic profile, ranging from nonfluent variant-primary progressive aphasia to lexical–semantic deficits, mostly with impaired verbal fluency. PIB-PET was classified as negative (CBS-A– group) in 18/31 (58%) and positive (CBS-A+ group) in 13/31 (42%) patients. The frequency of dysarthria was significantly higher in the CBS-A– group than in the CBS-A+ group (55.6 vs. 7.7%, p = 0.008). CBS patients with dysarthria had a left-sided hypometabolism at frontal regions, with a major cluster at the left inferior frontal gyrus and premotor cortex. They showed brain atrophy mainly at the opercular frontal gyrus and putamen. There was a positive correlation between [18F]FDG uptake and semantic verbal fluency at the left inferior (p = 0.006, R2 = 0.2326), middle (0.0054, R2 = 0.2376), and superior temporal gyri (p = 0.0066, R2 = 0.2276). Relative to the phonemic verbal fluency, we found a positive correlation at the left frontal opercular gyrus (p = 0.0003, R2 = 0.3685), the inferior (p = 0.0004, R2 = 0.3537), and the middle temporal gyri (p = 0.0001, R2 = 0.3993). Discussion: In the spectrum of language impairment profile, dysarthria might be helpful to distinguish CBS patients not related to AD. Metabolic and structural signatures depicted from this feature provide further insights into the motor speech production network and are also helpful to differentiate CBS variants.
Collapse
Affiliation(s)
- Jacy Bezerra Parmera
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Isabel Junqueira de Almeida
- Department of Physical Therapy, Speech, and Occupational Therapy, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Castello Barbosa de Oliveira
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Neurology Unit, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Marcela Lima Silagi
- Department of Speech, Language and Hearing Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Camila de Godoi Carneiro
- Laboratory of Nuclear Medicine, Nuclear Medicine Center and Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Adalberto Studart-Neto
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carla Rachel Ono
- Laboratory of Nuclear Medicine, Nuclear Medicine Center and Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Egberto Reis Barbosa
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine, Nuclear Medicine Center and Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Artur Martins Coutinho
- Laboratory of Nuclear Medicine, Nuclear Medicine Center and Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Wilson D, Le Heron C, Anderson T. Corticobasal syndrome: a practical guide. Pract Neurol 2021. [DOI: 10.1136/practneurol-2020-002835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Corticobasal syndrome is a disorder of movement, cognition and behaviour with several possible underlying pathologies, including corticobasal degeneration. It presents insidiously and is slowly progressive. Clinicians should consider the diagnosis in people presenting with any combination of extrapyramidal features (with poor response to levodopa), apraxia or other parietal signs, aphasia and alien-limb phenomena. Neuroimaging showing asymmetrical perirolandic cortical changes supports the diagnosis, while advanced neuroimaging may give insight into the underlying pathology. Identifying corticobasal syndrome carries some management implications (especially if protein-based treatments arise in the future) and prognostic significance. Its treatment is largely symptomatic and is best undertaken within a multidisciplinary setting, including a neurologist, physiotherapist, occupational therapist, speech language therapist, psychiatrist and, ultimately, a palliative care clinician. Corticobasal syndrome can be a confusing entity for neurologists, not least because it has over time evolved from being considered predominantly as a movement disorder to a condition spanning a wide range of cognitive and motor manifestations. In this practical review, we attempt to disentangle this syndrome and provide clarity around diagnosis, its underlying pathological substrates, key clinical features and potential treatments.
Collapse
|
35
|
Ulugut H, Stek S, Wagemans LEE, Jutten RJ, Keulen MA, Bouwman FH, Prins ND, Lemstra AW, Krudop W, Teunissen CE, van Berckel BNM, Ossenkoppele R, Barkhof F, van der Flier WM, Scheltens P, Pijnenburg YAL. The natural history of primary progressive aphasia: beyond aphasia. J Neurol 2021; 269:1375-1385. [PMID: 34216263 PMCID: PMC8857134 DOI: 10.1007/s00415-021-10689-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Primary progressive aphasia (PPA) is divided into three prototypical subtypes that are all characterized by their single core symptom of aphasia. Although later in their course, other cognitive, behavioral, and motor domains may become involved, little is known about the progression profile of each subtype relative to the other subtypes. METHODS In this longitudinal retrospective cohort study, based on the recent biomarker-supported diagnostic criteria, 24 subjects diagnosed with semantic variant (svPPA), 22 with non-fluent variant (nfvPPA), and 18 with logopenic variant (lvPPA) were collected and followed up for 1-6 years. Symptom distribution, cognitive test and neuropsychiatric inventory scores, and progression into another syndrome were assessed. RESULTS Over time, lvPPA progressed with broader language problems (PPA-extended) and nfvPPA progressed to mutism, whereas semantic impairment remained the major problem in svPPA. Apart from linguistic problems, svPPA developed pronounced behavioral disturbances, whereas lvPPA exhibited a greater cognitive decline. By contrast, in nfvPPA motor deficits were more common. Furthermore, within 5 years (IQR = 2.5) after clinical onset, 65.6% of the patients additionally fulfilled the clinical criteria for another neurodegenerative syndrome (PPA-plus). Fourteen out of 24 (58%) svPPA patients additionally met the diagnostic criteria of behavioral variant frontotemporal dementia (5.1 years, IQR = 1.1), whereas the clinical features of 15/18 (83%) lvPPA patients were consistent with Alzheimer disease dementia (4.5 years IQR = 3.4). Furthermore, 12/22 (54%) of the subjects with the nfvPPA progressed to meet the diagnostic criteria of corticobasal syndrome, progressive supranuclear palsy, or motor neuron disease (5.1 years IQR = 3.4). DISCUSSION Despite aphasia being the initial and unique hallmark of the syndrome, our longitudinal results showed that PPA is not a language limited disorder and progression differs widely for each subtype, both with respect to the nature of symptoms and disease duration.
Collapse
Affiliation(s)
- Hulya Ulugut
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands.
| | - Simone Stek
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Lianne E E Wagemans
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Roos J Jutten
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Maria Antoinette Keulen
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Femke H Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Niels D Prins
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Welmoed Krudop
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Charlotte E Teunissen
- Neurological Laboratory Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- UCL Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Campese N, Palermo G, Del Gamba C, Beatino MF, Galgani A, Belli E, Del Prete E, Della Vecchia A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. Progress regarding the context-of-use of tau as biomarker of Alzheimer's disease and other neurodegenerative diseases. Expert Rev Proteomics 2021; 18:27-48. [PMID: 33545008 DOI: 10.1080/14789450.2021.1886929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Tau protein misfolding and accumulation in toxic species is a critical pathophysiological process of Alzheimer's disease (AD) and other neurodegenerative disorders (NDDs). Tau biomarkers, namely cerebrospinal fluid (CSF) total-tau (t-tau), 181-phosphorylated tau (p-tau), and tau-PET tracers, have been recently embedded in the diagnostic criteria for AD. Nevertheless, the role of tau as a diagnostic and prognostic biomarker for other NDDs remains controversial.Areas covered: We performed a systematical PubMed-based review of the most recent advances in tau-related biomarkers for NDDs. We focused on papers published from 2015 to 2020 assessing the diagnostic or prognostic value of each biomarker.Expert opinion: The assessment of tau biomarkers in alternative easily accessible matrices, through the development of ultrasensitive techniques, represents the most significant perspective for AD-biomarker research. In NDDs, novel tau isoforms (e.g. p-tau217) or proteolytic fragments (e.g. N-terminal fragments) may represent candidate diagnostic and prognostic biomarkers and may help monitoring disease progression. Protein misfolding amplification assays, allowing the identification of different tau strains (e.g. 3 R- vs. 4 R-tau) in CSF, may constitute a breakthrough for the in vivo stratification of NDDs. Tau-PET may help tracking the spatial-temporal evolution of tau pathophysiology in AD but its application outside the AD-spectrum deserves further studies.
Collapse
Affiliation(s)
- Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Del Gamba
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Vergallo
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| |
Collapse
|
37
|
Peterson KA, Patterson K, Rowe JB. Language impairment in progressive supranuclear palsy and corticobasal syndrome. J Neurol 2021; 268:796-809. [PMID: 31321513 PMCID: PMC7914167 DOI: 10.1007/s00415-019-09463-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
Although commonly known as movement disorders, progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) may present with changes in speech and language alongside or even before motor symptoms. The differential diagnosis of these two disorders can be challenging, especially in the early stages. Here we review their impact on speech and language. We discuss the neurobiological and clinical-phenomenological overlap of PSP and CBS with each other, and with other disorders including non-fluent agrammatic primary progressive aphasia and primary progressive apraxia of speech. Because language impairment is often an early and persistent problem in CBS and PSP, there is a need for improved methods for language screening in primary and secondary care, and more detailed language assessments in tertiary healthcare settings. Improved language assessment may aid differential diagnosis as well as inform clinical management decisions.
Collapse
Affiliation(s)
- Katie A Peterson
- Department of Clinical Neurosciences and MRC Cognition and Brain Sciences Unit, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge, CB2 0SZ, UK.
| | - Karalyn Patterson
- Department of Clinical Neurosciences and MRC Cognition and Brain Sciences Unit, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge, CB2 0SZ, UK
| | - James B Rowe
- Department of Clinical Neurosciences and MRC Cognition and Brain Sciences Unit, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge, CB2 0SZ, UK
| |
Collapse
|
38
|
Boeve BF, Rosen H. Clinical and Neuroimaging Aspects of Familial Frontotemporal Lobar Degeneration Associated with MAPT and GRN Mutations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:77-92. [PMID: 33433870 DOI: 10.1007/978-3-030-51140-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Numerous kindreds with familial frontotemporal lobar degeneration have been linked to mutations in microtubule-associated protein tau (MAPT) or progranulin (GRN) genes. While there are many similarities in the clinical manifestations and associated neuroimaging findings, there are also distinct differences. In this review, we compare and contrast the demographic/inheritance characteristics, histopathology, pathophysiology, clinical aspects, and key neuroimaging findings between those with MAPT and GRN mutations.
Collapse
Affiliation(s)
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
Arienti F, Lazzeri G, Vizziello M, Monfrini E, Bresolin N, Saetti MC, Picillo M, Franco G, Di Fonzo A. Unravelling Genetic Factors Underlying Corticobasal Syndrome: A Systematic Review. Cells 2021; 10:171. [PMID: 33467748 PMCID: PMC7830591 DOI: 10.3390/cells10010171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Corticobasal syndrome (CBS) is an atypical parkinsonian presentation characterized by heterogeneous clinical features and different underlying neuropathology. Most CBS cases are sporadic; nevertheless, reports of families and isolated individuals with genetically determined CBS have been reported. In this systematic review, we analyze the demographical, clinical, radiological, and anatomopathological features of genetically confirmed cases of CBS. A systematic search was performed using the PubMed, EMBASE, and Cochrane Library databases, included all publications in English from 1 January 1999 through 1 August 2020. We found forty publications with fifty-eight eligible cases. A second search for publications dealing with genetic risk factors for CBS led to the review of eight additional articles. GRN was the most common gene involved in CBS, representing 28 out of 58 cases, followed by MAPT, C9ORF72, and PRNP. A set of symptoms was shown to be significantly more common in GRN-CBS patients, including visuospatial impairment, behavioral changes, aphasia, and language alterations. In addition, specific demographical, clinical, biochemical, and radiological features may suggest mutations in other genes. We suggest a diagnostic algorithm to help in identifying potential genetic cases of CBS in order to improve the diagnostic accuracy and to better understand the still poorly defined underlying pathogenetic process.
Collapse
Affiliation(s)
- Federica Arienti
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, Neuroscience Section, University of Milan, 20122 Milan, Italy; (F.A.); (G.L.); (M.V.); (E.M.); (M.C.S.)
| | - Giulia Lazzeri
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, Neuroscience Section, University of Milan, 20122 Milan, Italy; (F.A.); (G.L.); (M.V.); (E.M.); (M.C.S.)
| | - Maria Vizziello
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, Neuroscience Section, University of Milan, 20122 Milan, Italy; (F.A.); (G.L.); (M.V.); (E.M.); (M.C.S.)
| | - Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, Neuroscience Section, University of Milan, 20122 Milan, Italy; (F.A.); (G.L.); (M.V.); (E.M.); (M.C.S.)
| | - Nereo Bresolin
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy; (N.B.); (G.F.)
| | - Maria Cristina Saetti
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, Neuroscience Section, University of Milan, 20122 Milan, Italy; (F.A.); (G.L.); (M.V.); (E.M.); (M.C.S.)
| | - Marina Picillo
- Center for Neurodegenerative Diseases, Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, 84084 Salerno, Italy;
| | - Giulia Franco
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy; (N.B.); (G.F.)
| | - Alessio Di Fonzo
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy; (N.B.); (G.F.)
| |
Collapse
|
40
|
Coughlin DG, Dickson DW, Josephs KA, Litvan I. Progressive Supranuclear Palsy and Corticobasal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:151-176. [PMID: 33433875 DOI: 10.1007/978-3-030-51140-1_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are neurodegenerative tauopathies with neuronal and glial lesions composed of tau that is composed predominantly of isomers with four repeats in the microtubule-binding domain (4R tau). The brain regions vulnerable to pathology in PSP and CBD overlap, but there are differences, particularly with respect to distribution of neuronal loss, the relative abundance of neuronal and glial lesions, the morphologic features of glial lesions, and the frequency of comorbid pathology. Both PSP and CBD have a wide spectrum of clinical manifestations, including disorders of movement and cognition. Recognition of phenotypic diversity in PSP and CBD may improve antemortem diagnostic accuracy, which tends to be very good for the most common presentation of PSP (Richardson syndrome), but poor for the most characteristic presentation of CBD (corticobasal syndrome: CBS). Development of molecular and imaging biomarkers may improve antemortem diagnostic accuracy. Currently, multidisciplinary symptomatic and supportive treatment with pharmacological and non-pharmacological strategies remains the standard of care. In the future, experimental therapeutic trials will be important to slow disease progression.
Collapse
Affiliation(s)
| | | | | | - Irene Litvan
- UC San Diego Department of Neurosciences, La Jolla, CA, USA.
| |
Collapse
|
41
|
Peterson KA, Jones PS, Patel N, Tsvetanov KA, Ingram R, Cappa SF, Lambon Ralph MA, Patterson K, Garrard P, Rowe JB. Language Disorder in Progressive Supranuclear Palsy and Corticobasal Syndrome: Neural Correlates and Detection by the MLSE Screening Tool. Front Aging Neurosci 2021; 13:675739. [PMID: 34381350 PMCID: PMC8351757 DOI: 10.3389/fnagi.2021.675739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) affect speech and language as well as motor functions. Clinical and neuropathological data indicate a close relationship between these two disorders and the non-fluent variant of primary progressive aphasia (nfvPPA). We use the recently developed Mini Linguistic State Examination tool (MLSE) to study speech and language disorders in patients with PSP, CBS, and nfvPPA, in combination with structural magnetic resonance imaging (MRI). Methods: Fifty-one patients (PSP N = 13, CBS N = 19, nfvPPA N = 19) and 30 age-matched controls completed the MLSE, the short form of the Boston Diagnostic Aphasia Examination (BDAE), and the Addenbrooke's Cognitive Examination III. Thirty-eight patients and all controls underwent structural MRI at 3 Tesla, with T1 and T2-weighted images processed by surface-based and subcortical segmentation within FreeSurfer 6.0.0 to extract cortical thickness and subcortical volumes. Morphometric differences were compared between groups and correlated with the severity of speech and language impairment. Results: CBS and PSP patients showed impaired MLSE performance, compared to controls, with a similar language profile to nfvPPA, albeit less severe. All patient groups showed reduced cortical thickness in bilateral frontal regions and striatal volume. PSP and nfvPPA patients also showed reduced superior temporal cortical thickness, with additional thalamic and amygdalo-hippocampal volume reductions in nfvPPA. Multivariate analysis of brain-wide cortical thickness and subcortical volumes with MLSE domain scores revealed associations between performance on multiple speech and language domains with atrophy of left-lateralised fronto-temporal cortex, amygdala, hippocampus, putamen, and caudate. Conclusions: The effect of PSP and CBS on speech and language overlaps with nfvPPA. These three disorders cause a common anatomical pattern of atrophy in the left frontotemporal language network and striatum. The MLSE is a short clinical screening tool that can identify the language disorder of PSP and CBS, facilitating clinical management and patient access to future clinical trials.
Collapse
Affiliation(s)
- Katie A. Peterson
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - P. Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Nikil Patel
- Department of Neurosciences, St. George’s, University of London, London, United Kingdom
| | - Kamen A. Tsvetanov
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Ingram
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Stefano F. Cappa
- IUSS Cognitive Neuroscience Center (ICoN), University Institute for Advanced Studies IUSS, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Karalyn Patterson
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Peter Garrard
- Department of Neurosciences, St. George’s, University of London, London, United Kingdom
| | - James B. Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: James B. Rowe
| |
Collapse
|
42
|
Miyata M, Kakeda S, Yoneda T, Ide S, Okada K, Adachi H, Korogi Y. Signal intensity of cerebral gyri in corticobasal syndrome on phase difference enhanced magnetic resonance images: Comparison of progressive supranuclear palsy and Parkinson's disease. J Neurol Sci 2020; 419:117210. [PMID: 33130433 DOI: 10.1016/j.jns.2020.117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
We evaluated cerebral gyri (CG) on phase difference enhanced imaging (PADRE) of corticobasal syndrome (CBS), progressive supranuclear palsy (PSP), and Parkinson's disease (PD) patients to determine whether it is possible to discriminate among them on an individual basis. Two radiologists reviewed appearance of the normal CG and that of CBS patients on PADRE, and deviations from the appearance of the normal CG were recorded. Next, based on the CG abnormalities, two other reviewers reviewed PADRE images from 12 CBS, 14 PSP, and 30 PD patients. In healthy subjects on the PADRE images, the signal intensity (SI) of the gray matter (GM) was homogeneously, slightly hyperintense to the subcortical white matter (SCWM), and the SI of the SCWM was homogeneously hypointense. In CBS patients, hypointense layer in superficial GM and disappearance of hypointense in SCWM. The frequency of the abnormal findings on PADRE in the blinded manner by two readers was 100% (12/12), 3% (1/30), and 29% (4/14 in Reader 1) or 36% (5/14 in Reader 2) in CBS PD, and PSP patients, respectively. Laterality of the PADRE findings was showed in 12 (100%) CBS patients and 3 (21%) PSP, but not in any PD patients. The previously reported typical findings in CBS on conventional magnetic resonance image (MRIs) were observed in only 42% (5/12) of CBS patients. In conclusion, the abnormal findings in CG on PADRE appears more useful than conventional MRI findings for discriminating CBS from PD on an individual basis.
Collapse
Affiliation(s)
- Mari Miyata
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan.
| | - Shingo Kakeda
- Department of Radiology, Hirosaki University, Aomori, Japan
| | - Tetsuya Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Kazumasa Okada
- Department of Neurology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| |
Collapse
|
43
|
Parmera JB, Coutinho AM, Aranha MR, Studart-Neto A, de Godoi Carneiro C, de Almeida IJ, Fontoura Solla DJ, Ono CR, Barbosa ER, Nitrini R, Buchpiguel CA, Brucki SMD. FDG-PET Patterns Predict Amyloid Deposition and Clinical Profile in Corticobasal Syndrome. Mov Disord 2020; 36:651-661. [PMID: 33206389 DOI: 10.1002/mds.28373] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Corticobasal syndrome (CBS) is an atypical parkinsonian syndrome related to multiple underlying pathologies. OBJECTIVE To investigate if individual brain [18 F]fluorodeoxyglucose-positron emission tomography (FDG-PET) patterns could distinguish CBS due to Alzheimer's disease (AD) from other pathologies based on [11 C]Pittsburgh Compound-B (PIB)-PET. METHODS Forty-five patients with probable CBS were prospectively evaluated regarding cognitive and movement disorders profile. They underwent FDG-PET and were distributed into groups: likely related to AD (CBS FDG-AD) or likely non-AD (CBS FDG-nonAD) pathology. Thirty patients underwent PIB-PET on a hybrid PET-magnetic resonance imaging equipment to assess their amyloid status. FDG and PIB-PET images were classified individually based on visual and semi-quantitative analysis, blinded to each other. Quantitative group analyses were also performed. RESULTS CBS FDG-AD group demonstrated worse cognitive performances, mostly concerning attention, memory, visuospatial domains, and displayed more myoclonus and hallucinations. The non-AD metabolic group presented more often limb dystonia, ocular motor dysfunction, motor perseveration, and dysarthria. All patients classified as CBS FDG-AD tested positive at PIB-PET compared to 3 of 20 in the non-AD group. The individual FDG-PET classification demonstrated 76.92% of sensitivity, 100% of specificity and positive predictive value and 88.5% of balanced accuracy to detect positive PIB-PET scans. Individuals with positive and negative PIB-PET showed hypometabolism in posterior temporoparietal areas and in thalamus and brainstem, respectively, mainly contralateral to most affected side, disclosing possible metabolic signatures of CBS variants. CONCLUSION FDG-PET was useful to predict AD and non-AD CBS variants depicting their specific degeneration patterns, different clinical features, and brain amyloid deposition. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacy Bezerra Parmera
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Artur Martins Coutinho
- Laboratory of Nuclear Medicine (LIM 43), Center of Nuclear Medicine, Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Mateus Rozalem Aranha
- Laboratory of Nuclear Medicine (LIM 43), Center of Nuclear Medicine, Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil.,Laboratory of Magnetic Resonance in Neuroradiology (LIM 44), Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Adalberto Studart-Neto
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Camila de Godoi Carneiro
- Laboratory of Nuclear Medicine (LIM 43), Center of Nuclear Medicine, Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Isabel Junqueira de Almeida
- Department of Physical Therapy, Speech, and Occupational Therapy, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Davi J Fontoura Solla
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Carla Rachel Ono
- Laboratory of Nuclear Medicine (LIM 43), Center of Nuclear Medicine, Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Egberto Reis Barbosa
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM 43), Center of Nuclear Medicine, Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| |
Collapse
|
44
|
Lang AE, Stebbins GT, Wang P, Jabbari E, Lamb R, Morris H, Boxer AL, Boxer (PI) A, Boeve B, Dickerson B, Grossman M, Litvan I, Ljubenkov P, Pantelyat A, Rojas-Martinez J, Tartaglia MC, Wills AM, Morris (PI) H, Amar K, Capps E, Carey G, Church A, Critchley P, Ghosh B, Houlden H, Hu M, Jabbari E, Kobylecki C, Massey L, Molloy S, Nath U, Pavese N, Rowe J. The Cortical Basal ganglia Functional Scale (CBFS): Development and preliminary validation. Parkinsonism Relat Disord 2020; 79:121-126. [DOI: 10.1016/j.parkreldis.2020.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/05/2020] [Accepted: 08/15/2020] [Indexed: 11/28/2022]
|
45
|
Vasilevskaya A, Taghdiri F, Multani N, Anor C, Misquitta K, Houle S, Burke C, Tang-Wai D, Lang AE, Fox S, Slow E, Rusjan P, Tartaglia MC. PET Tau Imaging and Motor Impairments Differ Between Corticobasal Syndrome and Progressive Supranuclear Palsy With and Without Alzheimer's Disease Biomarkers. Front Neurol 2020; 11:574. [PMID: 32754109 PMCID: PMC7366127 DOI: 10.3389/fneur.2020.00574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Frontotemporal lobar degeneration (FTLD)-related syndrome includes progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). PSP is usually caused by a tauopathy but can have associated Alzheimer's disease (AD) while CBS can be caused by tauopathy, transactive response DNA binding protein 43 kDa, or AD pathology. Our aim was to compare the parkinsonian syndromes presenting without AD biomarkers (CBS/PSP-non-AD) to parkinsonian syndromes with AD biomarkers (CBS/PSP-AD). Materials and Methods: Twenty-four patients [11 males, 13 females; age (68.46 ± 7.23)] were recruited for this study. The whole cohort was divided into parkinsonian syndromes without AD biomarkers [N = 17; diagnoses (6 CBS, 11 PSP)] and parkinsonian syndromes with AD biomarkers [N = 7; diagnoses (6 CBS-AD, 1 PSP-AD)]. Anatomical MRI and PET imaging with tau ligand [18F]-AV1451 tracer was completed. Cerebrospinal fluid analysis or [18F]-AV1451 PET imaging was used to assess for the presence of AD biomarkers. Progressive supranuclear palsy rating scale (PSPRS) and unified Parkinson's disease rating scale (UPDRS) motor exam were implemented to assess for motor disturbances. Language and cognitive testing were completed. Results: The CBS/PSP-non-AD group [age (70.18 ± 6.65)] was significantly older (p = 0.028) than the CBS/PSP-AD group [age (64.29 ± 7.32)]. There were no differences between the groups in terms of gender, education, years of disease duration, and disease severity as measured with the Clinical Dementia Rating scale. The CBS/PSP-non-AD group had significantly lower PET Tau Standard Volume Uptake Ratio (SUVR) values compared to the CBS/PSP-AD group in multiple frontal and temporal areas, and inferior parietal (all p < 0.03). The CBS/PSP-non-AD group had significantly higher scores compared to the CBS/PSP-AD group on PSPRS (p = 0.004) and UPDRS motor exam (p = 0.045). The CBS/PSP-non-AD group had higher volumes of inferior parietal, precuneus, and hippocampus (all p < 0.02), but lower volume of midbrain (p = 0.02), compared to the CBS/PSP-AD group. Discussion: The CBS/PSP-non-AD group had higher motor disturbances compared to the CBS/PSP-AD group; however, both groups performed similarly on neuropsychological measures. The AD biomarker group had increased global uptake of PET Tau SUVR and lower volumes in AD-specific areas. These results show that the presenting phenotype of CBS and PSP syndromes and the distribution of injury are strongly affected by the presence of AD biomarkers.
Collapse
Affiliation(s)
- Anna Vasilevskaya
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Namita Multani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Cassandra Anor
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Karen Misquitta
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Sylvain Houle
- PET Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Charles Burke
- School of Medicine and Dentistry, Western University, Windsor, ON, Canada
| | - David Tang-Wai
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Anthony E Lang
- Edmond J. Safra Program for Parkinson Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Susan Fox
- Edmond J. Safra Program for Parkinson Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Elizabeth Slow
- Edmond J. Safra Program for Parkinson Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Pablo Rusjan
- PET Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
46
|
Matsuda K, Satoh M, Tabei KI, Ueda Y, Taniguchi A, Matsuura K, Asahi M, Ii Y, Niwa A, Tomimoto H. Impairment of intermediate somatosensory function in corticobasal syndrome. Sci Rep 2020; 10:11155. [PMID: 32636419 PMCID: PMC7340789 DOI: 10.1038/s41598-020-67991-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
Corticobasal syndrome (CBS) is characterized by unilateral atrophy of the brain. New diagnostic criteria for CBS include intermediate somatosensory dysfunction. Here, we aimed to carefully examine intermediate somatosensory function to identify tests which can assess impairment in CBS patients. Using voxel-based morphometry (VBM), we also aimed to show the anatomical bases of these impairments. Subjects included 14 patients diagnosed with CBS and 14 patients with Parkinson's disease (PD). Patients were evaluated using intermediate somatosensory tests and neuropsychological assessments. VBM was used to analyze differences in gray matter volumes between CBS and PD patients. In the PD group, no tests showed a significant difference between the dominant-side onset and the non-dominant-side onset. In the CBS group, all tests showed worse scores on the affected side. For detecting intermediate somatosensory dysfunction in CBS, two tests are recommended: tactile object naming and 2-point discrimination. VBM analysis showed that the volume of the left post- and pre-central gyrus, and both sides of the supplementary motor area were significantly decreased in the CBS group compared to the PD group. Although CBS remains untreatable, early and correct diagnosis is possible by performing close examination of intermediate somatosensory function.
Collapse
Affiliation(s)
- Kana Matsuda
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Rehabilitation, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masayuki Satoh
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Ken-Ichi Tabei
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yukito Ueda
- Department of Rehabilitation, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akira Taniguchi
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Keita Matsuura
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaru Asahi
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Atsushi Niwa
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
47
|
Dinkelbach L, Südmeyer M, Hartmann CJ, Roeber S, Arzberger T, Felsberg J, Ferrea S, Moldovan AS, Amunts K, Schnitzler A, Caspers S. Somatosensory area 3b is selectively unaffected in corticobasal syndrome: combining MRI and histology. Neurobiol Aging 2020; 94:89-100. [PMID: 32593032 DOI: 10.1016/j.neurobiolaging.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/04/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
An increasing number of neuroimaging studies addressing patients with corticobasal syndrome use macroscopic definitions of brain regions. As a closer link to functionally relevant units, we aimed at identifying magnetic resonance-based atrophy patterns in regions defined by probability maps of cortical microstructure. For this purpose, three analyses were conducted: (1) Whole-brain cortical thickness was compared between 36 patients with corticobasal syndrome and 24 controls. A pattern of pericentral atrophy was found, covering primary motor area 4, premotor area 6, and primary somatosensory areas 1, 2, and 3a. Within the central region, only area 3b was without atrophy. (2) In 18 patients, longitudinal measures with follow-ups of up to 59 months (mean 21.3 ± 15.4) were analyzed. Areas 1, 2, and 6 showed significantly faster atrophy rates than primary somatosensory area 3b. (3) In an individual autopsy case, longitudinal in vivo morphometry and postmortem pathohistology were conducted. The rate of magnetic resonance-based atrophy was significantly correlated with tufted-astrocyte load in those cytoarchitectonically defined regions also seen in the group study, with area 3b being selectively unaffected.
Collapse
Affiliation(s)
- Lars Dinkelbach
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Ernst von Bergmann Klinikum, Potsdam, Germany
| | - Christian Johannes Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Jörg Felsberg
- Department of Neuropathology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Stefano Ferrea
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Alexia-Sabine Moldovan
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
48
|
Seckin ZI, Whitwell JL, Utianski RL, Botha H, Ali F, Duffy JR, Clark HM, Machulda MM, Jordan LG, Min HK, Lowe VJ, Josephs KA. Ioflupane 123I (DAT scan) SPECT identifies dopamine receptor dysfunction early in the disease course in progressive apraxia of speech. J Neurol 2020; 267:2603-2611. [PMID: 32388831 DOI: 10.1007/s00415-020-09883-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To describe 123I-FP-CIT (DAT scan) SPECT findings in progressive apraxia of speech (PAOS) patients and to compare those findings with progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). BACKGROUND PAOS is a neurodegenerative syndrome in which patients present with apraxia of speech, a motor speech disorder affecting programming and planning of speech. Patients with PAOS predictably develop Parkinsonism. DAT scan is a neuroimaging tool that assesses the integrity of presynaptic dopamine transporters in striatum and is usually abnormal in PSP and CBS. METHODS As part of an NIH-funded grant, we performed a DAT scan on 17 PAOS patients early in the disease course. DaTQUANT software was used to quantify uptake in the left and right caudate and anterior/posterior putamen, with striatum to background ratios (SBRs). The PAOS cohort was compared to 15 PSP and 8 CBS patients. RESULTS Five PAOS patients (29%) showed abnormalities in at least one striatal region on DAT scan. When the five PAOS patients with abnormal DAT were compared to the PSP and CBS patients, the only difference observed was lower uptake in the posterior putamen in PSP (p = 0.03). There were no differences is putamen/caudate ratio or in symmetry of uptake, across all groups. There was also no difference in MDS-UPDRS-III scores between PAOS patients with and without abnormal DAT scans (p = 0.56). CONCLUSIONS Abnormal DAT scan is observed early in the disease course in approximately 30% of PAOS patients, with striatal abnormalities similar to those in PSP and CBS.
Collapse
Affiliation(s)
- Zeynep Idil Seckin
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 1st Street S.W., Rochester, MN, 55905, USA
| | | | - Rene L Utianski
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 1st Street S.W., Rochester, MN, 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 1st Street S.W., Rochester, MN, 55905, USA
| | - Farwa Ali
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 1st Street S.W., Rochester, MN, 55905, USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 1st Street S.W., Rochester, MN, 55905, USA
| | - Heather M Clark
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 1st Street S.W., Rochester, MN, 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 1st Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
49
|
Shi Z, Fu LP, Zhang N, Zhao X, Liu S, Zuo C, Cai L, Wang Y, Gao S, Ai L, Guan YH, Xu B, Ji Y. Amyloid PET in Dementia Syndromes: A Chinese Multicenter Study. J Nucl Med 2020; 61:1814-1819. [PMID: 32385166 DOI: 10.2967/jnumed.119.240325] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
Cerebral β-amyloid deposits and regional glucose metabolism assessed by PET are used to distinguish between Alzheimer disease (AD) and other dementia syndromes. In the present multicenter study, we estimated the prevalence of β-amyloid deposits on PET imaging in a wide variety of dementia syndromes and mild cognitive impairment (MCI) within a memory clinic population. Methods: Of the 1,193 consecutive patients with cognitive impairment (CI) who received 1 11C-PIB PET or 18F-AV45 PET or both 11C-PIB PET and 18F-AV45 PET, 960 were diagnosed with AD, 36 with frontotemporal dementia (FTD), 5 with dementia with Lewy bodies, 144 with MCI, 29 with vascular dementia, 4 with corticobasal syndrome, and 15 with unclassifiable dementia. Baseline clinical diagnoses were independently established without access to PET imaging results. Apolipoprotein E (ApoE) genotype analysis was performed on CI patients and 231 sex- and age-matched controls. Results: Of the 1,193 CI patients, 860 (72.1%) were amyloid-positive. The prevalence of amyloid positivity in AD and MCI patients was 86.8% (833/960) and 9.7% (14/144), respectively. In FTD patients, the prevalence of β-amyloid deposits was 5.6% (2/36). In the 4 corticobasal syndrome patients, 2 were amyloid-positive. Three of the 5 patients with dementia with Lewy bodies showed amyloid positivity, as did 6 of the 29 vascular dementia (20.7%) patients. The ApoEε4 allele frequency was significantly increased in amyloid-positive CI patients (30.5%) as compared with other amyloid-negative CI patients (14%) or controls (7.3%). Conclusion: Amyloid imaging may potentially be the most helpful parameter for differential diagnosis in dementia, particularly to distinguish between AD and FTD. Amyloid PET can be used in conjunction with the ApoEε4 allele genetic risk test for amyloid deposits.
Collapse
Affiliation(s)
- Zhihong Shi
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Department of Neurology, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Li-Ping Fu
- Department of Nuclear Medicine, 1st Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China.,Department of Nuclear Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Nan Zhang
- Department of Neurology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaobin Zhao
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuai Liu
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Department of Neurology, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Cai
- Department of PET-CT Diagnostics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Wang
- Department of PET-CT Diagnostics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuo Gao
- Department of PET-CT Diagnostics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi-Hui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Baixuan Xu
- Department of Nuclear Medicine, 1st Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Yong Ji
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Department of Neurology, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China .,China National Clinical Research Center for Neurological Diseases, Beijing, China; and.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Maltais DD, Jordan LG, Min HK, Miyagawa T, Przybelski SA, Lesnick TG, Reichard RR, Dickson DW, Murray ME, Kantarci K, Boeve BF, Lowe VJ. Confirmation of 123I-FP-CIT SPECT Quantification Methods in Dementia with Lewy Bodies and Other Neurodegenerative Disorders. J Nucl Med 2020; 61:1628-1635. [PMID: 32198310 DOI: 10.2967/jnumed.119.239418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Our rationale was to conduct a retrospective study comparing 3 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (123I-FP-CIT) SPECT quantitative methods in patients with neurodegenerative syndromes as referenced to neuropathologic findings. Methods: 123I-FP-CIT-SPECT and neuropathologic findings among patients with neurodegenerative syndromes from the Mayo Alzheimer Disease Research Center and Mayo Clinic Study of Aging were examined. Three 123I-FP-CIT SPECT quantitative assessment methods-MIMneuro, DaTQUANT, and manual region-of-interest creation on a workstation-were compared with neuropathologic findings describing the presence or absence of Lewy body disease (LBD). Striatum-to-background ratios (SBRs) generated by DaTQUANT were compared with the calculated SBRs of the manual method and MIMneuro. The left and right SBRs for caudate, putamen, and striatum were evaluated with the manual method. For DaTQUANT and MIMneuro, the left, right, total, and average SBRs and z scores for whole striatum, caudate, putamen, anterior putamen, and posterior putamen were calculated. Results: The cohort included 24 patients (20 [83%] male, mean age for all patients at death, 75.4 ± 10.0 y). The antemortem clinical diagnoses were Alzheimer disease dementia (n = 6), probable dementia with Lewy bodies (n = 12), mixed Alzheimer disease dementia and probable dementia with Lewy bodies (n = 1), Parkinson disease with mild cognitive impairment (n = 2), corticobasal syndrome (n = 1), idiopathic rapid-eye-movement sleep behavior disorder (n = 1), and behavioral-variant frontotemporal dementia (n = 1). Seventeen (71%) had LBD. All 3 123I-FP-CIT SPECT quantitative methods had an area under the receiver-operating-characteristics curve ranging from more than 0.93 to up to 1.000 (P < 0.001) and showed excellent discrimination between LBD and non-LBD patients in each region assessed (P < 0.001). There was no significant difference between the accuracy of the regions in discriminating the 2 groups, with good discrimination for both caudate and putamen. Conclusion: All 3 123I-FP-CIT SPECT quantitative methods showed excellent discrimination between LBD and non-LBD patients in each region assessed, using both SBRs and z scores.
Collapse
Affiliation(s)
| | | | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Scott A Przybelski
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Timothy G Lesnick
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Robert R Reichard
- Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota; and
| | | | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|