1
|
Rabbani B, Moghadam MA, Esmaeili S, Rabbani A, Akbari B, Mahdieh N. Pancreatitis as a Main Consequence of APOC2-Related Hypertriglyceridemia: The Role of Nonsense and Frameshift Variants. Int J Genomics 2024; 2024:6653857. [PMID: 38938447 PMCID: PMC11208794 DOI: 10.1155/2024/6653857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/13/2023] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
APOC2-related hypertriglyceridemia occurs due to biallelic variants of this gene. Here, genotype-phenotype architecture of all pathogenic APOC2 variants is investigated among heterozygous and homozygous individuals. Clinical heterogeneity of various types of the variants is also described, and pancreatitis in more than half of homozygotes carrying chain-termination variants is highlighted as well. For this study, patients were selected who had a plasma triglyceride level above 250 mg/dL. The coding and intronic regions of the APOC2 gene were amplified using the Sanger sequencing to investigate the presence of variants. The genotypes, lipid profiles, and detailed clinical features were documented for all APOC2-related patients and heterozygous individuals. Pathogenicity of the variants was predicted and categorized using available bioinformatics tools such as MutationTaster and PolyPhen-2 and ACMG criteria. MetaDome and Phyre2 were applied for structural and functional in silico analyses. 40% (12 out of 30) of APOC2 variants were chain-termination (nonsense and frameshift) variants. These types of variants were determined in 60.53% of patients. 55% of these patients showed pancreatitis followed by lipemia retinalis (29%), abdominal pain (24%), hepatosplenomegaly (24%), and xanthomas (18%). The mean age of onset was about 22 years old. In at least 50% of 38 homozygous individuals, the TG level was more than 2000 mg/dL. More than 25% of heterozygous individuals showed at least one symptom. Pancreatitis and a severe form of HTG were found in 5 and 2% of heterozygous individuals, respectively. The main clinical features of APOC2-related hypertriglyceridemia include pancreatitis, lipemia retinalis, abdominal pain, hepatosplenomegaly, and xanthomas. Nonsense and frameshift homozygous variants usually lead to a severe form of hypertriglyceridemia. Pancreatitis is one of the main consequences of these types of mutations; thus, it is important to consider this point when evaluating asymptomatic individuals. Heterozygous individuals may become symptomatic due to the role of unknown modifying agent including environmental genetic factors.
Collapse
Affiliation(s)
- Bahareh Rabbani
- Growth and Development Research CenterTehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Aghli Moghadam
- Department of GeneticsFaculty of SciencesShahid Chamran University of Ahvaz, Ahvaz, Iran
- Cardiogenetic Research CenterRajaie Cardiovascular Medical and Research CenterIran University of Medical Sciences, Tehran, Iran
| | - Shiva Esmaeili
- Growth and Development Research CenterTehran University of Medical Sciences, Tehran, Iran
| | - Amirhassan Rabbani
- Taleghani HospitalDepartment of Transplant & Hepatobiliary SurgeryShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahman Akbari
- Department of Medical BiotechnologySchool of MedicineKermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nejat Mahdieh
- Growth and Development Research CenterTehran University of Medical Sciences, Tehran, Iran
- Cardiogenetic Research CenterRajaie Cardiovascular Medical and Research CenterIran University of Medical Sciences, Tehran, Iran
- Physiology Research CenterIran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Alves M, Laranjeira F, Correia-da-Silva G. Understanding Hypertriglyceridemia: Integrating Genetic Insights. Genes (Basel) 2024; 15:190. [PMID: 38397180 PMCID: PMC10887881 DOI: 10.3390/genes15020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertriglyceridemia is an exceptionally complex metabolic disorder characterized by elevated plasma triglycerides associated with an increased risk of acute pancreatitis and cardiovascular diseases such as coronary artery disease. Its phenotype expression is widely heterogeneous and heavily influenced by conditions as obesity, alcohol consumption, or metabolic syndromes. Looking into the genetic underpinnings of hypertriglyceridemia, this review focuses on the genetic variants in LPL, APOA5, APOC2, GPIHBP1 and LMF1 triglyceride-regulating genes reportedly associated with abnormal genetic transcription and the translation of proteins participating in triglyceride-rich lipoprotein metabolism. Hypertriglyceridemia resulting from such genetic abnormalities can be categorized as monogenic or polygenic. Monogenic hypertriglyceridemia, also known as familial chylomicronemia syndrome, is caused by homozygous or compound heterozygous pathogenic variants in the five canonical genes. Polygenic hypertriglyceridemia, also known as multifactorial chylomicronemia syndrome in extreme cases of hypertriglyceridemia, is caused by heterozygous pathogenic genetic variants with variable penetrance affecting the canonical genes, and a set of common non-pathogenic genetic variants (polymorphisms, using the former nomenclature) with well-established association with elevated triglyceride levels. We further address recent progress in triglyceride-lowering treatments. Understanding the genetic basis of hypertriglyceridemia opens new translational opportunities in the scope of genetic screening and the development of novel therapies.
Collapse
Affiliation(s)
- Mara Alves
- Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Francisco Laranjeira
- CGM—Centro de Genética Médica Jacinto de Magalhães, Centro Hospitalar Universitário de Santo António (CHUdSA), 4099-028 Porto, Portugal;
- UMIB—Unit for Multidisciplinary Research in Biomedicine, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-346 Porto, Portugal
- ITR—Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO Applied Molecular Biosciences Unit and Associate Laboratory i4HB—Institute for Health and Bioeconomy Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Han L, Qiang G, Yang L, Kou R, Li Q, Xin M, Liu R, Zhang Z. Plasma exchange therapy for familial chylomicronemia syndrome in infant: A case report. Medicine (Baltimore) 2022; 101:e29689. [PMID: 35960041 PMCID: PMC9371531 DOI: 10.1097/md.0000000000029689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Familial chylomicronemia syndrome (FCS) is a rare genetic disease. FCS usually manifests by the age of 10 years, and 25% of cases of FCS occur during infancy. Here we present a case of FCS in a male infant and summarize our experiences on the diagnosis and therapy of this case. PATIENT CONCERNS A male infant aged 1 month and 8 days had recurrent hematochezia and hyperchylomicronemia. DIAGNOSIS FCS based on symptoms and genetic test. INTERVENTIONS Plasma exchange therapy. OUTCOMES His development was normal with a good spirit and satisfactory weight gain, and no hematochezia occurred again. CONCLUSION Genetic test is important for accurate diagnosis of FCS, and we identified a new mutation of lipoprotein lipase gene c.88C>A which conformed to autosomal recessive inheritance. Plasma exchange therapy can be applied to infants with FCS with low risk and good outcomes.
Collapse
Affiliation(s)
- Lei Han
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Guangfeng Qiang
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lei Yang
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Rui Kou
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qiubo Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Meiyun Xin
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ruihan Liu
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Zhengjun Zhang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining, China
- * Correspondence: Zhengjun Zhang, Department of Endocrinology, Affiliated Hospital of Jining Medical University, Tianjinfu St, Jining, 272001 Shandong, China (e-mail: )
| |
Collapse
|
4
|
Kloska A, Węsierska M, Malinowska M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J. Lipophagy and Lipolysis Status in Lipid Storage and Lipid Metabolism Diseases. Int J Mol Sci 2020; 21:E6113. [PMID: 32854299 PMCID: PMC7504288 DOI: 10.3390/ijms21176113] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
This review discusses how lipophagy and cytosolic lipolysis degrade cellular lipids, as well as how these pathway ys communicate, how they affect lipid metabolism and energy homeostasis in cells and how their dysfunction affects the pathogenesis of lipid storage and lipid metabolism diseases. Answers to these questions will likely uncover novel strategies for the treatment of aforementioned human diseases, but, above all, will avoid destructive effects of high concentrations of lipids-referred to as lipotoxicity-resulting in cellular dysfunction and cell death.
Collapse
Affiliation(s)
- Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Magdalena Węsierska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| |
Collapse
|
5
|
Gao M, Yang C, Wang X, Guo M, Yang L, Gao S, Zhang X, Ruan G, Li X, Tian W, Lu G, Dong X, Ma S, Li W, Wang Y, Zhu H, He J, Yang H, Liu G, Xian X. ApoC2 deficiency elicits severe hypertriglyceridemia and spontaneous atherosclerosis: A rodent model rescued from neonatal death. Metabolism 2020; 109:154296. [PMID: 32562799 DOI: 10.1016/j.metabol.2020.154296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/26/2022]
Abstract
RATIONALE ApoC2 is an important activator for lipoprotein lipase-mediated hydrolysis of triglyceride-rich plasma lipoproteins. ApoC2-deficient patients display severe hypertriglyceridemia (sHTG) and recurrent acute pancreatitis. However, due to embryonic lethality in ApoC2 deleted mouse extensive understanding of ApoC2 function is limited in mammalian species. OBJECTIVE We sought to generate an animal model with ApoC2 deficiency in a rodent with some human-like features and then study the precise effects of ApoC2 on lipid and glucose homeostasis. METHODS AND RESULTS Using CRISPR/Cas9, we deleted Apoc2 gene from golden Syrian hamster and the homozygous (-/-) pups can be born in matured term but exhibited neonatal lethality. By continuous iv administration of normal hamster serum the ApoC2-/- pups could survive till weaning and displayed severe HTG in adulthood on chow diet. A single iv injection of AAV-hApoC2 at birth can also rescue the neonatal death of ApoC2-/- pups. Adult ApoC2-/-hamsters exhibited a unique phenotype of sHTG with hypoglycemia, hypoinsulinemia and spontaneous atherosclerosis. The sHTG in ApoC2-/- adult hamsters could not be corrected by various lipid-lowering medications, but partially ameliorated by medium chain triglyceride diet and completely corrected by AAV-hApoC2. CONCLUSIONS Our study provides a novel ApoC2-deleted mammalian model with severe hypertriglyceridemia that was fully characterized and highlights a potential therapeutic approach for the treatment of ApoC2 deficient patients.
Collapse
Affiliation(s)
- Mingming Gao
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China; Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chun Yang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China
| | - Xiaowei Wang
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Mengmeng Guo
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China
| | - Liu Yang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Shanshan Gao
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Xin Zhang
- Hebei Invivo Biotech Co, Shijiazhuang, China
| | - Guiyun Ruan
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangping Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenhong Tian
- Beijing FivePlus Molecular Medicine Institute Co. Ltd., Beijing, China
| | - Guotao Lu
- Surgical Intensive Care Unit, Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoyan Dong
- Beijing FivePlus Molecular Medicine Institute Co. Ltd., Beijing, China
| | - Sisi Ma
- Beijing FivePlus Molecular Medicine Institute Co. Ltd., Beijing, China
| | - Weiqin Li
- Surgical Intensive Care Unit, Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Jiuming He
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China.
| | - Xunde Xian
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China.
| |
Collapse
|
6
|
Kose E, Armagan C, Teke Kısa P, Onay H, Arslan N. Severe hyperchylomicronemia in two infants with novel APOC2 gene mutation. J Pediatr Endocrinol Metab 2018; 31:1289-1293. [PMID: 30307897 DOI: 10.1515/jpem-2018-0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
Background Familial apo C-II deficiency is a rare hereditary disorder frequently caused by lipoprotein lipase (LPL) and APOC2 gene mutations. To date, less than 30 patients with familial apo C-II deficiency with 24 different mutations have been identified in the literature. Here, we describe two familial chylomicronemia syndrome cases in infants with two novel mutations of the APOC2 gene. Case presentation Case 1, a 46-day-old female, was admitted to our hospital for evaluation due to the lipemic appearance of the blood sample. A clinical examination revealed hepatomegaly and lipemia retinalis. Triglyceride level of 6295 mg/dL was decreased with a strict low-fat diet, medium-chain triglycerides (MCT) oil-rich formula and omega-3 fatty acid supplementation. Due to low adherence to the diet, TG elevation was detected and fresh frozen plasma (10 mL/kg/day) was administered for 2 days. A novel homozygous p.Q25X (c.73C>T) mutation in the APOC2 gene was detected. Case 2, a 10-month-old female patient, referred to our center for the differential diagnosis of hyperlipidemia as her blood sample could not be assessed due to its lipemic appearance. Laboratory examinations showed a TG level of 4520 mg/dL which was reduced with a low-fat diet, MCT oil-rich formula and omega-3 fatty acid supplementation. Hepatosteatosis and splenomegaly were determined using abdominal sonography. A novel homozygous IVS2+6T>G (c.55+6T>G) mutation in the APOC2 gene was identified. Conclusions We describe two novel homozygous mutations (p.Q25X [c.73C>T] and IVS2+6T>G [c.55+6T>G]) in the APOC2 gene in infants with hyperchylomicronemia. To the best of our knowledge, Case 1 is the youngest patient with familial apo C-II deficiency in the literature to date.
Collapse
Affiliation(s)
- Engin Kose
- Dokuz Eylul University, Department of Pediatrics, Izmir, Turkey
| | - Coskun Armagan
- Dokuz Eylul University, Department of Pediatrics, Izmir, Turkey
| | - Pelin Teke Kısa
- Dokuz Eylul University, Department of Pediatric Metabolism and Nutrition, Izmir, Turkey
| | - Huseyin Onay
- Ege University, Department of Medical Genetics, Izmir, Turkey
| | - Nur Arslan
- Dokuz Eylul University, Department of Pediatric Metabolism and Nutrition, Izmir, Turkey
| |
Collapse
|
7
|
Ayyavoo A, Raghupathy P, Agarwal M, Hofman P. Severe Familial Hypertriglyceridemia: Successful Treatment With Insulin and a Modified Meal Plan. J Endocr Soc 2018; 2:1357-1362. [PMID: 30519673 PMCID: PMC6270957 DOI: 10.1210/js.2018-00299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022] Open
Abstract
Context Mutations in genes encoding the lipoprotein lipase enzyme, its cofactor, or transport proteins can cause severe familial hypertriglyceridemia, resulting in serious complications, such as severe pancreatitis, hepatosplenomegaly, lipid encephalopathy, and failure to thrive. Current treatment includes a low-saturated-fat formula enriched with high medium-chain triglyceride (TGs), oral fibrates, omega-3 fatty acids, or plasmapheresis. Case Description A 71-day-old infant with very severe hypertriglyceridemia and recurrent pancreatitis associated with a likely pathogenic variant in the LPL gene was treated successfully with insulin infusion and a locally prepared low-fat formula feed after stopping breast milk. Subcutaneous insulin was administered daily from 9 to 30 months of age. His serum TG level was markedly lower, although higher than normal. No episodes of hypoglycemia were noted. Fenofibrate and omega-3 fatty acids were ineffective in this infant. At the last follow-up visit, he was 36 months old and growing normally. He was consuming a special meal plan and receiving insulin injections during high-fat meals. Two other young infants with severe hypertriglyceridemia were growing normally after a short course of insulin infusion and the same modified reduced long chain fat diet. Conclusions Insulin is an unusual and affordable therapeutic option for some patients with severe hypertriglyceridemia and can be helpful in the prevention of acute and chronic complications. Locally available cereals and millets with high crude fiber and a low glycemic index, along with medium chain TGs, was used to prepare an economical special formula at home to maintain TG concentrations in the acceptable limits.
Collapse
Affiliation(s)
- Ahila Ayyavoo
- G. Kuppuswamy Naidu Memorial Hospital, Coimbatore, India.,Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Meenal Agarwal
- GenePathDx (Causeway Healthcare Private Limited), Pune, India.,I-SHARE Foundation, Pune, India
| | - Paul Hofman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Benson M, Wong RW, Young RC, Gibson JB, Fan Y, Harper CA. DYNAMIC RETINA VESSEL COLOR CHANGE DURING OCULAR COMPRESSION IN SEVERE LIPEMIA RETINALIS. Retin Cases Brief Rep 2018; 12 Suppl 1:S98-S101. [PMID: 29283911 DOI: 10.1097/icb.0000000000000695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PURPOSE The aim of this study was to describe dynamic color change in retinal vessels from white to coral pink due to externally applied ocular pressure in a 6-week-old infant with lipemia retinalis secondary to type 1b familial hyperlipoproteinemia. METHODS Fundus images and fluorescein angiogram were taken with RetCam3 camera. Color photographs of pooled blood were taken during phlebotomy. RESULTS Genetic analysis revealed a rare genetic mutation in the APOC2 gene, a lipoprotein lipase activator. Intraocular pressure applied to the globe induced a color change in the retinal arteries from white to coral pink. Disruption in laminar flow leading to this change is described. CONCLUSION This is the first report to attribute the retinal vessel color change to disrupted laminar flow and the intermixing of larger erythrocytes and smaller chylomicrons in a patient with lipemia retinalis. In addition, this is a rare example of congenital hyperlipidemia in the offspring of nonconsanguineous parents.
Collapse
Affiliation(s)
| | - Robert W Wong
- Austin Retina Associates, Austin, Texas
- Department of Surgery and Perioperative Services, Dell Medical School, Austin, Texas
| | - Ryan C Young
- Austin Retina Associates, Austin, Texas
- Dell Children's Medical Center of Central Texas, Austin, Texas
| | - James B Gibson
- Department of Surgery and Perioperative Services, Dell Medical School, Austin, Texas
- Section of Clinical and Metabolic Genetics, "Specially for Children," Austin, Texas
| | - Yuxin Fan
- John Welsh Cardiovascular Diagnostic Laboratory, Houston, Texas
- Texas Children's Hospital, Houston, Texas
- Baylor College of Medicine, Houston, Texas
| | - Clio Armitage Harper
- Austin Retina Associates, Austin, Texas
- Department of Surgery and Perioperative Services, Dell Medical School, Austin, Texas
- Dell Children's Medical Center of Central Texas, Austin, Texas
| |
Collapse
|
9
|
Martin NA, Nawrocki A, Molnar V, Elkjaer ML, Thygesen EK, Palkovits M, Acs P, Sejbaek T, Nielsen HH, Hegedus Z, Sellebjerg F, Molnar T, Barbosa EGV, Alcaraz N, Gallyas F, Svenningsen AF, Baumbach J, Lassmann H, Larsen MR, Illes Z. Orthologous proteins of experimental de- and remyelination are differentially regulated in the CSF proteome of multiple sclerosis subtypes. PLoS One 2018; 13:e0202530. [PMID: 30114292 PMCID: PMC6095600 DOI: 10.1371/journal.pone.0202530] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Here, we applied a multi-omics approach (i) to examine molecular pathways related to de- and remyelination in multiple sclerosis (MS) lesions; and (ii) to translate these findings to the CSF proteome in order to identify molecules that are differentially expressed among MS subtypes. METHODS To relate differentially expressed genes in MS lesions to de- and remyelination, we compared transcriptome of MS lesions to transcriptome of cuprizone (CPZ)-induced de- and remyelination. Protein products of the overlapping orthologous genes were measured within the CSF by quantitative proteomics, parallel reaction monitoring (PRM). Differentially regulated proteins were correlated with molecular markers of inflammation by using MesoScale multiplex immunoassay. Expression kinetics of differentially regulated orthologous genes and proteins were examined in the CPZ model. RESULTS In the demyelinated and remyelinated corpus callosum, we detected 1239 differentially expressed genes; 91 orthologues were also differentially expressed in MS lesions. Pathway analysis of these orthologues suggested that the TYROBP (DAP12)-TREM2 pathway, TNF-receptor 1, CYBA and the proteasome subunit PSMB9 were related to de- and remyelination. We designed 129 peptides representing 51 orthologous proteins, measured them by PRM in 97 individual CSF, and compared their levels between relapsing (n = 40) and progressive MS (n = 57). Four proteins were differentially regulated among relapsing and progressive MS: tyrosine protein kinase receptor UFO (UFO), TIMP-1, apolipoprotein C-II (APOC2), and beta-2-microglobulin (B2M). The orthologous genes/proteins in the mouse brain peaked during acute remyelination. UFO, TIMP-1 and B2M levels correlated inversely with inflammation in the CSF (IL-6, MCP-1/CCL2, TARC/CCL17). APOC2 showed positive correlation with IL-2, IL-16 and eotaxin-3/CCL26. CONCLUSIONS Pathology-based multi-omics identified four CSF markers that were differentially expressed in MS subtypes. Upregulated TIMP-1, UFO and B2M orthologues in relapsing MS were associated with reduced inflammation and reflected reparatory processes, in contrast to the upregulated orthologue APOC2 in progressive MS that reflected changes in lipid metabolism associated with increased inflammation.
Collapse
Affiliation(s)
- Nellie A. Martin
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Arkadiusz Nawrocki
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Viktor Molnar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Eva K. Thygesen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Miklos Palkovits
- Laboratory of Neuromorphology and Human Brain Tissue Bank/Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Peter Acs
- Department of Neurology, University of Pecs, Pecs, Hungary
| | - Tobias Sejbaek
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Helle H. Nielsen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Zoltan Hegedus
- Laboratory of Bioinformatics, Biological Research Centre, Szeged, Hungary
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Therapy, University of Pecs, Pecs, Hungary
| | - Eudes G. V. Barbosa
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Nicolas Alcaraz
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Asa F. Svenningsen
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Neurology, University of Pecs, Pecs, Hungary
- Department of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
10
|
Nakajima K, Tanaka A. Atherogenic postprandial remnant lipoproteins; VLDL remnants as a causal factor in atherosclerosis. Clin Chim Acta 2018; 478:200-215. [PMID: 29307667 DOI: 10.1016/j.cca.2017.12.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/23/2017] [Accepted: 12/24/2017] [Indexed: 01/02/2023]
Abstract
Oxidized LDL (Ox-LDL) and chylomicron (CM) remnants have been suggested to be the most atherogenic lipoproteins that initiate and exacerbate coronary atherosclerosis. In this review, we propose a hypothesis of the causal lipoproteins in atherosclerosis based on our recent findings on postprandial remnant lipoproteins (RLP). Plasma RLP-C and RLP-TG increased significantly after food intake, especially a fat load. More than 80% of the TG increase after the fat load consisted of the TG in RLP, which contained significantly greater apoB100 than apoB48 particles as VLDL remnants. The majority of the LPL in non-heparin plasma was found in RLP as an RLP-LPL complex and released into the circulation after hydrolysis. Plasma LPL did not increase after food intake, which may have caused the partial hydrolysis of CM and VLDL as well as the significant increase of RLP-TG in the postprandial plasma. LPL was inversely correlated with the RLP particle size after food intake. We showed that VLDL remnants are the major atherogenic lipoproteins in the postprandial plasma associated with insufficient LPL activity and a causal factor in the initiation and progression of atherosclerosis. We also propose "LPL bound TG-rich lipoproteins" as a new definition of remnant lipoproteins based on the findings of the RLP-LPL complex in the non-heparin plasma.
Collapse
Affiliation(s)
- Katsuyuki Nakajima
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan; Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Akira Tanaka
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| |
Collapse
|
11
|
Abstract
Hypertriglyceridemia is increasingly identified in children and adolescents, owing to improved screening and higher prevalence of childhood obesity. Hypertriglyceridemia can result from either increased triglyceride (TG) production or reduced TG clearance. The etiologic origin can be primary (genetic) or secondary, but it is often multifactorial. Management is challenging because of the interplay of genetic and secondary causes and lack of evidence-based guidelines. Lifestyle changes and dietary interventions are most important, especially in hypertriglyceridemia associated with obesity. Dietary restriction of fat remains the mainstay of management in primary hypertriglyceridemia. When fasting TG concentration is increased above 500 mg/dL (5.65 mmol/L), fibrates may be used to prevent pancreatitis. Omega-3 fatty acids are often used as an adjunctive therapy. When the fasting TG concentration is less than 500 mg/dL (5.65 mmol/L) and if the non-high-density lipoprotein cholesterol level is above 145 mg/dL (3.76 mmol/L), statin treatment can be considered.
Collapse
Affiliation(s)
- Badhma Valaiyapathi
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL
| | - Bhuvana Sunil
- Department of Pediatrics, Harlem Hospital Center, New York, NY
| | - Ambika P Ashraf
- Division of Pediatric Endocrinology and Metabolism, Department of Pediatrics, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
12
|
Jiang J, Wang Y, Ling Y, Kayoumu A, Liu G, Gao X. A novel APOC2 gene mutation identified in a Chinese patient with severe hypertriglyceridemia and recurrent pancreatitis. Lipids Health Dis 2016; 15:12. [PMID: 26772541 PMCID: PMC4715280 DOI: 10.1186/s12944-015-0171-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The severe forms of hypertriglyceridemia are usually caused by genetic defects. In this study, we described a Chinese female with severe hypertriglyceridemia caused by a novel homozygous mutation in the APOC2 gene. METHODS Lipid profiles of the pedigree were studied in detail. LPL and HL activity were also measured. The coding regions of 5 candidate genes (namely LPL, APOC2, APOA5, LMF1, and GPIHBP1) were sequenced using genomic DNA from peripheral leucocytes. The ApoE gene was also genotyped. RESULTS Serum triglyceride level was extremely high in the proband, compared with other family members. Plasma LPL activity was also significantly reduced in the proband. Serum ApoCII was very low in the proband as well as in the heterozygous mutation carriers. A novel mutation (c.86A > CC) was identified on exon 3 [corrected] of the APOC2 gene, which converted the Asp [corrected] codon at position 29 into Ala, followed by a termination codon (TGA). CONCLUSIONS This study presented the first case of ApoCII deficiency in the Chinese population, with a novel mutation c.86A > CC in the APOC2 gene identified. Serum ApoCII protein might be a useful screening test for identifying mutation carriers.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuhui Wang
- Institute of Cardiovascular Science, Peking University and Key laborotory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yan Ling
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Abudurexiti Kayoumu
- Institute of Cardiovascular Science, Peking University and Key laborotory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - George Liu
- Institute of Cardiovascular Science, Peking University and Key laborotory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Sakurai T, Sakurai A, Vaisman BL, Amar MJ, Liu C, Gordon SM, Drake SK, Pryor M, Sampson ML, Yang L, Freeman LA, Remaley AT. Creation of Apolipoprotein C-II (ApoC-II) Mutant Mice and Correction of Their Hypertriglyceridemia with an ApoC-II Mimetic Peptide. J Pharmacol Exp Ther 2015; 356:341-53. [PMID: 26574515 DOI: 10.1124/jpet.115.229740] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/11/2015] [Indexed: 12/31/2022] Open
Abstract
Apolipoprotein C-II (apoC-II) is a cofactor for lipoprotein lipase, a plasma enzyme that hydrolyzes triglycerides (TGs). ApoC-II deficiency in humans results in hypertriglyceridemia. We used zinc finger nucleases to create Apoc2 mutant mice to investigate the use of C-II-a, a short apoC-II mimetic peptide, as a therapy for apoC-II deficiency. Mutant mice produced a form of apoC-II with an uncleaved signal peptide that preferentially binds high-density lipoproteins (HDLs) due to a 3-amino acid deletion at the signal peptide cleavage site. Homozygous Apoc2 mutant mice had increased plasma TG (757.5 ± 281.2 mg/dl) and low HDL cholesterol (31.4 ± 14.7 mg/dl) compared with wild-type mice (TG, 55.9 ± 13.3 mg/dl; HDL cholesterol, 55.9 ± 14.3 mg/dl). TGs were found in light (density < 1.063 g/ml) lipoproteins in the size range of very-low-density lipoprotein and chylomicron remnants (40-200 nm). Intravenous injection of C-II-a (0.2, 1, and 5 μmol/kg) reduced plasma TG in a dose-dependent manner, with a maximum decrease of 90% occurring 30 minutes after the high dose. Plasma TG did not return to baseline until 48 hours later. Similar results were found with subcutaneous or intramuscular injections. Plasma half-life of C-II-a is 1.33 ± 0.72 hours, indicating that C-II-a only acutely activates lipolysis, and the sustained TG reduction is due to the relatively slow rate of new TG-rich lipoprotein synthesis. In summary, we describe a novel mouse model of apoC-II deficiency and show that an apoC-II mimetic peptide can reverse the hypertriglyceridemia in these mice, and thus could be a potential new therapy for apoC-II deficiency.
Collapse
Affiliation(s)
- Toshihiro Sakurai
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute (T.S., A.S., B.L.V., M.J.A., C.L., S.M.G., M.P., L.A.F., A.T.R.), Transgenic Core Facility, National Heart, Lung, and Blood Institute (C.L.), Department of Laboratory Medicine, Clinical Center (M.L.S., A.T.R.), Critical Care Medicine Department, Clinical Center (S.K.D.), and Laboratory of Obesity and Metabolic Diseases, National Heart, Lung, and Blood Institute (L.Y.), National Institutes of Health, Bethesda, Maryland
| | - Akiko Sakurai
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute (T.S., A.S., B.L.V., M.J.A., C.L., S.M.G., M.P., L.A.F., A.T.R.), Transgenic Core Facility, National Heart, Lung, and Blood Institute (C.L.), Department of Laboratory Medicine, Clinical Center (M.L.S., A.T.R.), Critical Care Medicine Department, Clinical Center (S.K.D.), and Laboratory of Obesity and Metabolic Diseases, National Heart, Lung, and Blood Institute (L.Y.), National Institutes of Health, Bethesda, Maryland
| | - Boris L Vaisman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute (T.S., A.S., B.L.V., M.J.A., C.L., S.M.G., M.P., L.A.F., A.T.R.), Transgenic Core Facility, National Heart, Lung, and Blood Institute (C.L.), Department of Laboratory Medicine, Clinical Center (M.L.S., A.T.R.), Critical Care Medicine Department, Clinical Center (S.K.D.), and Laboratory of Obesity and Metabolic Diseases, National Heart, Lung, and Blood Institute (L.Y.), National Institutes of Health, Bethesda, Maryland
| | - Marcelo J Amar
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute (T.S., A.S., B.L.V., M.J.A., C.L., S.M.G., M.P., L.A.F., A.T.R.), Transgenic Core Facility, National Heart, Lung, and Blood Institute (C.L.), Department of Laboratory Medicine, Clinical Center (M.L.S., A.T.R.), Critical Care Medicine Department, Clinical Center (S.K.D.), and Laboratory of Obesity and Metabolic Diseases, National Heart, Lung, and Blood Institute (L.Y.), National Institutes of Health, Bethesda, Maryland
| | - Chengyu Liu
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute (T.S., A.S., B.L.V., M.J.A., C.L., S.M.G., M.P., L.A.F., A.T.R.), Transgenic Core Facility, National Heart, Lung, and Blood Institute (C.L.), Department of Laboratory Medicine, Clinical Center (M.L.S., A.T.R.), Critical Care Medicine Department, Clinical Center (S.K.D.), and Laboratory of Obesity and Metabolic Diseases, National Heart, Lung, and Blood Institute (L.Y.), National Institutes of Health, Bethesda, Maryland
| | - Scott M Gordon
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute (T.S., A.S., B.L.V., M.J.A., C.L., S.M.G., M.P., L.A.F., A.T.R.), Transgenic Core Facility, National Heart, Lung, and Blood Institute (C.L.), Department of Laboratory Medicine, Clinical Center (M.L.S., A.T.R.), Critical Care Medicine Department, Clinical Center (S.K.D.), and Laboratory of Obesity and Metabolic Diseases, National Heart, Lung, and Blood Institute (L.Y.), National Institutes of Health, Bethesda, Maryland
| | - Steven K Drake
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute (T.S., A.S., B.L.V., M.J.A., C.L., S.M.G., M.P., L.A.F., A.T.R.), Transgenic Core Facility, National Heart, Lung, and Blood Institute (C.L.), Department of Laboratory Medicine, Clinical Center (M.L.S., A.T.R.), Critical Care Medicine Department, Clinical Center (S.K.D.), and Laboratory of Obesity and Metabolic Diseases, National Heart, Lung, and Blood Institute (L.Y.), National Institutes of Health, Bethesda, Maryland
| | - Milton Pryor
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute (T.S., A.S., B.L.V., M.J.A., C.L., S.M.G., M.P., L.A.F., A.T.R.), Transgenic Core Facility, National Heart, Lung, and Blood Institute (C.L.), Department of Laboratory Medicine, Clinical Center (M.L.S., A.T.R.), Critical Care Medicine Department, Clinical Center (S.K.D.), and Laboratory of Obesity and Metabolic Diseases, National Heart, Lung, and Blood Institute (L.Y.), National Institutes of Health, Bethesda, Maryland
| | - Maureen L Sampson
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute (T.S., A.S., B.L.V., M.J.A., C.L., S.M.G., M.P., L.A.F., A.T.R.), Transgenic Core Facility, National Heart, Lung, and Blood Institute (C.L.), Department of Laboratory Medicine, Clinical Center (M.L.S., A.T.R.), Critical Care Medicine Department, Clinical Center (S.K.D.), and Laboratory of Obesity and Metabolic Diseases, National Heart, Lung, and Blood Institute (L.Y.), National Institutes of Health, Bethesda, Maryland
| | - Ling Yang
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute (T.S., A.S., B.L.V., M.J.A., C.L., S.M.G., M.P., L.A.F., A.T.R.), Transgenic Core Facility, National Heart, Lung, and Blood Institute (C.L.), Department of Laboratory Medicine, Clinical Center (M.L.S., A.T.R.), Critical Care Medicine Department, Clinical Center (S.K.D.), and Laboratory of Obesity and Metabolic Diseases, National Heart, Lung, and Blood Institute (L.Y.), National Institutes of Health, Bethesda, Maryland
| | - Lita A Freeman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute (T.S., A.S., B.L.V., M.J.A., C.L., S.M.G., M.P., L.A.F., A.T.R.), Transgenic Core Facility, National Heart, Lung, and Blood Institute (C.L.), Department of Laboratory Medicine, Clinical Center (M.L.S., A.T.R.), Critical Care Medicine Department, Clinical Center (S.K.D.), and Laboratory of Obesity and Metabolic Diseases, National Heart, Lung, and Blood Institute (L.Y.), National Institutes of Health, Bethesda, Maryland
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute (T.S., A.S., B.L.V., M.J.A., C.L., S.M.G., M.P., L.A.F., A.T.R.), Transgenic Core Facility, National Heart, Lung, and Blood Institute (C.L.), Department of Laboratory Medicine, Clinical Center (M.L.S., A.T.R.), Critical Care Medicine Department, Clinical Center (S.K.D.), and Laboratory of Obesity and Metabolic Diseases, National Heart, Lung, and Blood Institute (L.Y.), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Brunham LR, Hayden MR. Human genetics of HDL: Insight into particle metabolism and function. Prog Lipid Res 2015; 58:14-25. [DOI: 10.1016/j.plipres.2015.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
15
|
Chokshi N, Blumenschein SD, Ahmad Z, Garg A. Genotype-phenotype relationships in patients with type I hyperlipoproteinemia. J Clin Lipidol 2014; 8:287-95. [PMID: 24793350 DOI: 10.1016/j.jacl.2014.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/07/2014] [Accepted: 02/12/2014] [Indexed: 12/17/2022]
Abstract
CONTEXT Type I hyperlipoproteinemia (T1HLP) is a rare, autosomal recessive disorder characterized by extreme hypertriglyceridemia that fails to respond to lipid-lowering agents, predisposing to frequent attacks of acute pancreatitis. Mutations in lipoprotein lipase (LPL), apolipoprotein CII (APOC2), lipase maturation factor 1 (LMF1), glycosyl-phosphatidylinositol anchored high-density lipoprotein-binding protein 1 (GPIHBP1), and apolipoprotein AV (APOA5) cause T1HLP, but we lack data on phenotypic variations among the different genetic subtypes. OBJECTIVE To study genotype-phenotype relationships among subtypes of T1HLP patients. DESIGN/INTERVENTION Genetic screening for mutations in LPL, APOC2, GPIHBP1, LMF1, and APOA5. SETTING Tertiary referral center. PATIENTS Ten patients (7 female, 3 male) with chylomicronemia, serum triglyceride levels about 2000 mg/dL, and no secondary causes of hypertriglyceridemia. MAIN OUTCOME MEASURES Genotyping and phenotypic features. RESULTS Four patients harbored homozygous or compound heterozygous mutations in LPL, 3 had homozygous mutations in GPIHBP1, and 1 had a heterozygous APOA5 mutation. We failed to fully identify the genetic etiology in 2 cases: 1 had a heterozygous LPL mutation only and another did not have any mutations. We identified 2 interesting phenotypic features: the patient with heterozygous APOA5 mutation normalized triglyceride levels with weight loss and fish oil therapy, and all 7 female patients were anemic. CONCLUSIONS Our data suggest the possibility of novel loci for T1HLP. We observed that heterozygous APOA5 mutation can cause T1HLP but such patients may unexpectedly respond to therapy, and females with T1HLP suffer from anemia. Further studies of larger cohorts may elucidate more phenotype-genotypes relationships among T1HLP subtypes.
Collapse
Affiliation(s)
- Neema Chokshi
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition
| | - Sarah D Blumenschein
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390
| | - Zahid Ahmad
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition.
| |
Collapse
|
16
|
|
17
|
Li Z, Du B, Li S, Lv X, Zhou S, Yu Y, Wang W, Zheng Z. Cloning and characterization of an apolipoprotein C2 promoter in the mouse central nervous system. Neural Regen Res 2013; 8:156-61. [PMID: 25206486 PMCID: PMC4107507 DOI: 10.3969/j.issn.1673-5374.2013.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 07/03/2012] [Indexed: 11/24/2022] Open
Abstract
Apolipoprotein C2 is an important member of the apolipoprotein C family, and is a potent activator of lipoprotein lipase. In the central nervous system, apolipoprotein C2 plays an important role in the catabolism of triglyceride-rich lipoproteins. Studies into the exact regulatory mechanism of mouse apolipoprotein C2 expression have not been reported. In this study, seven luciferase expression vectors, which contained potential mouse apolipoprotein C2 gene promoters, were constructed and co-transfected with pRL-TK into HEK293T cells to investigate apolipoprotein C2 promoter activity. Luciferase assays indicated that the apolipoprotein C2 promoter region was mainly located in the +104 bp to +470 bp region. The activity of the different lengths of apolipoprotein C2 promoter region varied. This staggered negative-positive-negative arrangement indicates the complex regulation of apolipoprotein C2 expression and provides important clues for elucidating the regulatory mechanism of apolipoprotein C2 gene transcription.
Collapse
Affiliation(s)
- Zhaoyang Li
- Key Laboratory of Transgenetic Animal Research, Department of Laboratory Animal, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Du
- Key Laboratory of Transgenetic Animal Research, Department of Laboratory Animal, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Shengyang Li
- Key Laboratory of Transgenetic Animal Research, Department of Laboratory Animal, China Medical University, Shenyang 110001, Liaoning Province, China ; College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Xiangchuan Lv
- Key Laboratory of Transgenetic Animal Research, Department of Laboratory Animal, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Shenglai Zhou
- Key Laboratory of Transgenetic Animal Research, Department of Laboratory Animal, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yang Yu
- Key Laboratory of Transgenetic Animal Research, Department of Laboratory Animal, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Wei Wang
- Key Laboratory of Transgenetic Animal Research, Department of Laboratory Animal, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Zhihong Zheng
- Key Laboratory of Transgenetic Animal Research, Department of Laboratory Animal, China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
18
|
Familial chylomicronemia syndrome- an uncommon cause of acute pancreatitis with encephalopathy. Indian J Gastroenterol 2012; 31:277-9. [PMID: 23081844 DOI: 10.1007/s12664-012-0261-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Two case reports of familial chylomicronemia syndrome. Case Rep Pediatr 2012; 2012:384719. [PMID: 22606533 PMCID: PMC3350137 DOI: 10.1155/2012/384719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/04/2012] [Indexed: 11/17/2022] Open
Abstract
Familial chylomicronemia is a rare autosomal recessive disorder which is also called Hyperlipoproteinemia type I. Here we report two cases with this rare disorder that were admitted to our hospital in recent years.
Collapse
|
20
|
Koral K, McMenamy J, Hauser N, Rollins N. Hyperlipidemia resulting in abnormal density and signal intensity of blood in a neonate with lipoprotein lipase deficiency. AJNR Am J Neuroradiol 2009; 31:1999-2000. [PMID: 20037129 DOI: 10.3174/ajnr.a1933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present the imaging findings in an 8-week-old infant with LPL deficiency. Due to markedly increased lipoproteins in the serum, abnormal hypodensity and abnormal T1-weighted hyperintensity were identified in the dural venous sinuses and medullary veins.
Collapse
Affiliation(s)
- K Koral
- Department of Radiology, University of Texas Southwestern Medical Center at Dallas, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
Lipoprotein lipase (LPL) is a multifunctional enzyme produced by many tissues, including adipose tissue, cardiac and skeletal muscle, islets, and macrophages. LPL is the rate-limiting enzyme for the hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins, chylomicrons, and very low-density lipoproteins (VLDL). LPL-catalyzed reaction products, fatty acids, and monoacylglycerol are in part taken up by the tissues locally and processed differentially; e.g., they are stored as neutral lipids in adipose tissue, oxidized, or stored in skeletal and cardiac muscle or as cholesteryl ester and TG in macrophages. LPL is regulated at transcriptional, posttranscriptional, and posttranslational levels in a tissue-specific manner. Nutrient states and hormonal levels all have divergent effects on the regulation of LPL, and a variety of proteins that interact with LPL to regulate its tissue-specific activity have also been identified. To examine this divergent regulation further, transgenic and knockout murine models of tissue-specific LPL expression have been developed. Mice with overexpression of LPL in skeletal muscle accumulate TG in muscle, develop insulin resistance, are protected from excessive weight gain, and increase their metabolic rate in the cold. Mice with LPL deletion in skeletal muscle have reduced TG accumulation and increased insulin action on glucose transport in muscle. Ultimately, this leads to increased lipid partitioning to other tissues, insulin resistance, and obesity. Mice with LPL deletion in the heart develop hypertriglyceridemia and cardiac dysfunction. The fact that the heart depends increasingly on glucose implies that free fatty acids are not a sufficient fuel for optimal cardiac function. Overall, LPL is a fascinating enzyme that contributes in a pronounced way to normal lipoprotein metabolism, tissue-specific substrate delivery and utilization, and the many aspects of obesity and other metabolic disorders that relate to energy balance, insulin action, and body weight regulation.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | |
Collapse
|
22
|
Rahalkar AR, Hegele RA. Monogenic pediatric dyslipidemias: classification, genetics and clinical spectrum. Mol Genet Metab 2008; 93:282-94. [PMID: 18023224 DOI: 10.1016/j.ymgme.2007.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/09/2007] [Accepted: 10/09/2007] [Indexed: 12/20/2022]
Abstract
Monogenic disorders that cause abnormal levels of plasma cholesterol and triglycerides have received much attention due to their role in metabolic dysfunction and cardiovascular disease. While these disorders often present clinically during adulthood, some present most commonly in the pediatric population and can have serious consequences if misdiagnosed or untreated. This review provides an overview of monogenic lipid disorders that present with unusually high or low levels of plasma cholesterol and/or triglycerides during infancy, childhood and adolescence. Biochemical and genetic findings, clinical presentation and treatment options are discussed with an emphasis upon recent advances in our understanding and management of these monogenic disorders.
Collapse
Affiliation(s)
- Amit R Rahalkar
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ont., Canada
| | | |
Collapse
|
23
|
Priore Oliva C, Pisciotta L, Li Volti G, Sambataro MP, Cantafora A, Bellocchio A, Catapano A, Tarugi P, Bertolini S, Calandra S. Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2004; 25:411-7. [PMID: 15591215 DOI: 10.1161/01.atv.0000153087.36428.dd] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mutations in LPL or APOC2 genes are recognized causes of inherited forms of severe hypertriglyceridemia. However, some hypertrigliceridemic patients do not have mutations in either of these genes. Because inactivation or hyperexpression of APOA5 gene, encoding apolipoprotein A-V (apoA-V), causes a marked increase or decrease of plasma triglycerides in mice, and because some common polymorphisms of this gene affect plasma triglycerides in humans, we have hypothesized that loss of function mutations in APOA5 gene might cause hypertriglyceridemia. METHODS AND RESULTS We sequenced APOA5 gene in 10 hypertriglyceridemic patients in whom mutations in LPL and APOC2 genes had been excluded. One of them was found to be homozygous for a mutation in APOA5 gene (c.433 C>T, Q145X), predicted to generate a truncated apoA-V devoid of key functional domains. The plasma of this patient was found to activate LPL in vitro less efficiently than control plasma, thus suggesting that apoA-V might be an activator of LPL. Ten carriers of Q145X mutation were found in the patient's family; 5 of them had mild hypertriglyceridemia. CONCLUSIONS As predicted from animal studies, apoA-V deficiency is associated with severe hypertriglyceridemia in humans. This observation suggests that apoA-V regulates the secretion and/or catabolism of triglyceride-rich lipoproteins. Mutations in APOA5 gene might be the cause of severe hypertriglyceridemia in subjects in whom mutations in LPL or APOC2 genes have been excluded. We detected a nonsense mutation in APOA5 gene (Q145X) in a boy with hyperchylomicronemia syndrome. This is the first observation of a complete apoA-V deficiency in humans.
Collapse
Affiliation(s)
- Claudio Priore Oliva
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Millichap JG. Apolipoprotein C-II Deficiency with Encephalopathy. Pediatr Neurol Briefs 2003. [DOI: 10.15844/pedneurbriefs-17-7-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|