1
|
Laureyssen C, Küçükali F, Van Dongen J, Gawor K, Tomé SO, Ronisz A, Otto M, von Arnim CAF, Van Damme P, Vandenberghe R, Thal DR, Sleegers K. Hypothesis-based investigation of known AD risk variants reveals the genetic underpinnings of neuropathological lesions observed in Alzheimer's-type dementia. Acta Neuropathol 2024; 148:55. [PMID: 39424714 PMCID: PMC11489263 DOI: 10.1007/s00401-024-02815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Besides neurofibrillary tangles and amyloid beta (Aβ) plaques, a wide range of co-morbid neuropathological features can be observed in AD brains. Since AD has a very strong genetic background and displays a wide phenotypic heterogeneity, this study aims at investigating the genetic underpinnings of co-morbid and hallmark neuropathological lesions. This was realized by obtaining the genotypes for 75 AD risk variants from low-coverage whole-genome sequencing data for 325 individuals from the Leuven Brain Collection. Association testing with deeply characterized neuropathological lesions revealed a strong and likely direct effect of rs117618017, a SNP in exon 1 of APH1B, with tau-related pathology. Second, a relation between APOE and granulovacuolar degeneration, a proxy for necroptosis, was also discovered in addition to replication of the well-known association of APOE with AD hallmark neuropathological lesions. Additionally, several nominal associations with AD risk genes were detected for pTDP pathology, α-synuclein lesions and pTau-related pathology. These findings were confirmed in a meta-analysis with three independent cohorts. For example, we replicated a prior association between TPCN1 (rs6489896) and LATE-NC risk. Furthermore, we identified new putative LATE-NC-linked SNPs, including rs7068231, located upstream of ANK3. We found association between BIN1 (rs6733839) and α-synuclein pathology, and replicated a prior association between USP6NL (rs7912495) and Lewy body pathology. Additionally, we also found that UMAD1 (rs6943429) was nominally associated with Lewy body pathology. Overall, these results contribute to a broader general understanding of how AD risk variants discovered in large-scale clinical genome-wide association studies are involved in the pathological mechanisms of AD and indicate the importance of downstream elimination of phenotypic heterogeneity introduced in these studies.
Collapse
Affiliation(s)
- Celeste Laureyssen
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jasper Van Dongen
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Alicja Ronisz
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Philip Van Damme
- Laboratory for Neurobiology, VIB-KU Leuven, Louvain, Belgium
- Department of Neurology, UZ Leuven, Louvain, Belgium
| | - Rik Vandenberghe
- Department of Neurology, UZ Leuven, Louvain, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Louvain, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU Leuven, Louvain, Belgium
- Department of Pathology, University Hospital Leuven, Louvain, Belgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Hou SS, Ikegawa Y, Kwon Y, Wieckiewicz N, Houser MCQ, Lundin B, Bacskai BJ, Berezovska O, Maesako M. Recording γ-secretase activity in living mouse brains. eLife 2024; 13:RP96848. [PMID: 39360803 PMCID: PMC11449482 DOI: 10.7554/elife.96848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Förster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture. Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here, we employ the near-infrared (NIR) C99 720-670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential 'cell non-autonomous' regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.
Collapse
Affiliation(s)
- Steven S Hou
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Yuya Ikegawa
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Yeseo Kwon
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Natalia Wieckiewicz
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Mei CQ Houser
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Brianna Lundin
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Brian J Bacskai
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| |
Collapse
|
3
|
Hou SS, Ikegawa Y, Kwon Y, Wieckiewicz N, Houser MCQ, Lundin B, Bacskai BJ, Berezovska O, Maesako M. Recording γ-secretase activity in living mouse brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578105. [PMID: 38352497 PMCID: PMC10862803 DOI: 10.1101/2024.01.31.578105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Forster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture. Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here we employ the near-infrared (NIR) C99 720-670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential "cell non-autonomous" regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.
Collapse
|
4
|
Langerscheidt F, Wied T, Al Kabbani MA, van Eimeren T, Wunderlich G, Zempel H. Genetic forms of tauopathies: inherited causes and implications of Alzheimer's disease-like TAU pathology in primary and secondary tauopathies. J Neurol 2024; 271:2992-3018. [PMID: 38554150 PMCID: PMC11136742 DOI: 10.1007/s00415-024-12314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Collapse
Affiliation(s)
- Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tamara Wied
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
5
|
Iaccarino L, Llibre-Guerra JJ, McDade E, Edwards L, Gordon B, Benzinger T, Hassenstab J, Kramer JH, Li Y, Miller BL, Miller Z, Morris JC, Mundada N, Perrin RJ, Rosen HJ, Soleimani-Meigooni D, Strom A, Tsoy E, Wang G, Xiong C, Allegri R, Chrem P, Vazquez S, Berman SB, Chhatwal J, Masters CL, Farlow MR, Jucker M, Levin J, Salloway S, Fox NC, Day GS, Gorno-Tempini ML, Boxer AL, La Joie R, Bateman R, Rabinovici GD. Molecular neuroimaging in dominantly inherited versus sporadic early-onset Alzheimer's disease. Brain Commun 2024; 6:fcae159. [PMID: 38784820 PMCID: PMC11114609 DOI: 10.1093/braincomms/fcae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Approximately 5% of Alzheimer's disease patients develop symptoms before age 65 (early-onset Alzheimer's disease), with either sporadic (sporadic early-onset Alzheimer's disease) or dominantly inherited (dominantly inherited Alzheimer's disease) presentations. Both sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease are characterized by brain amyloid-β accumulation, tau tangles, hypometabolism and neurodegeneration, but differences in topography and magnitude of these pathological changes are not fully elucidated. In this study, we directly compared patterns of amyloid-β plaque deposition and glucose hypometabolism in sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease individuals. Our analysis included 134 symptomatic sporadic early-onset Alzheimer's disease amyloid-Positron Emission Tomography (PET)-positive cases from the University of California, San Francisco, Alzheimer's Disease Research Center (mean ± SD age 59.7 ± 5.6 years), 89 symptomatic dominantly inherited Alzheimer's disease cases (age 45.8 ± 9.3 years) and 102 cognitively unimpaired non-mutation carriers from the Dominantly Inherited Alzheimer Network study (age 44.9 ± 9.2). Each group underwent clinical and cognitive examinations, 11C-labelled Pittsburgh Compound B-PET and structural MRI. 18F-Fluorodeoxyglucose-PET was also available for most participants. Positron Emission Tomography scans from both studies were uniformly processed to obtain a standardized uptake value ratio (PIB50-70 cerebellar grey reference and FDG30-60 pons reference) images. Statistical analyses included pairwise global and voxelwise group comparisons and group-independent component analyses. Analyses were performed also adjusting for covariates including age, sex, Mini-Mental State Examination, apolipoprotein ε4 status and average composite cortical of standardized uptake value ratio. Compared with dominantly inherited Alzheimer's disease, sporadic early-onset Alzheimer's disease participants were older at age of onset (mean ± SD, 54.8 ± 8.2 versus 41.9 ± 8.2, Cohen's d = 1.91), with more years of education (16.4 ± 2.8 versus 13.5 ± 3.2, d = 1) and more likely to be apolipoprotein ε4 carriers (54.6% ε4 versus 28.1%, Cramer's V = 0.26), but similar Mini-Mental State Examination (20.6 ± 6.1 versus 21.2 ± 7.4, d = 0.08). Sporadic early-onset Alzheimer's disease had higher global cortical Pittsburgh Compound B-PET binding (mean ± SD standardized uptake value ratio, 1.92 ± 0.29 versus 1.58 ± 0.44, d = 0.96) and greater global cortical 18F-fluorodeoxyglucose-PET hypometabolism (mean ± SD standardized uptake value ratio, 1.32 ± 0.1 versus 1.39 ± 0.19, d = 0.48) compared with dominantly inherited Alzheimer's disease. Fully adjusted comparisons demonstrated relatively higher Pittsburgh Compound B-PET standardized uptake value ratio in the medial occipital, thalami, basal ganglia and medial/dorsal frontal regions in dominantly inherited Alzheimer's disease versus sporadic early-onset Alzheimer's disease. Sporadic early-onset Alzheimer's disease showed relatively greater 18F-fluorodeoxyglucose-PET hypometabolism in Alzheimer's disease signature temporoparietal regions and caudate nuclei, whereas dominantly inherited Alzheimer's disease showed relatively greater hypometabolism in frontal white matter and pericentral regions. Independent component analyses largely replicated these findings by highlighting common and unique Pittsburgh Compound B-PET and 18F-fluorodeoxyglucose-PET binding patterns. In summary, our findings suggest both common and distinct patterns of amyloid and glucose hypometabolism in sporadic and dominantly inherited early-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jorge J Llibre-Guerra
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Eric McDade
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Brian Gordon
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Tammie Benzinger
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Jason Hassenstab
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yan Li
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - John C Morris
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Richard J Perrin
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - David Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elena Tsoy
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Guoqiao Wang
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Chengjie Xiong
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Ricardo Allegri
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Patricio Chrem
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Silvia Vazquez
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Colin L Masters
- Department of Neuroscience, Florey Institute, The University of Melbourne, Melbourne 3052, Australia
| | - Martin R Farlow
- Neuroscience Center, Indiana University School of Medicine at Indianapolis, Indiana, IN 46202, USA
| | - Mathias Jucker
- DZNE-German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich 80539, Germany
- German Center for Neurodegenerative Diseases, Munich 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Stephen Salloway
- Memory & Aging Program, Butler Hospital, Brown University in Providence, RI 02906, USA
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, UK
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 33224, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Randall Bateman
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Banerjee R, Gunawardena S. Glycogen synthase kinase 3β (GSK3β) and presenilin (PS) are key regulators of kinesin-1-mediated cargo motility within axons. Front Cell Dev Biol 2023; 11:1202307. [PMID: 37363727 PMCID: PMC10288942 DOI: 10.3389/fcell.2023.1202307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
It has been a quarter century since the discovery that molecular motors are phosphorylated, but fundamental questions still remain as to how specific kinases contribute to particular motor functions, particularly in vivo, and to what extent these processes have been evolutionarily conserved. Such questions remain largely unanswered because there is no cohesive strategy to unravel the likely complex spatial and temporal mechanisms that control motility in vivo. Since diverse cargoes are transported simultaneously within cells and along narrow long neurons to maintain intracellular processes and cell viability, and disruptions in these processes can lead to cancer and neurodegeneration, there is a critical need to better understand how kinases regulate molecular motors. Here, we review our current understanding of how phosphorylation can control kinesin-1 motility and provide evidence for a novel regulatory mechanism that is governed by a specific kinase, glycogen synthase kinase 3β (GSK3β), and a scaffolding protein presenilin (PS).
Collapse
Affiliation(s)
- Rupkatha Banerjee
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
8
|
Yang Y, Bagyinszky E, An SSA. Presenilin-1 (PSEN1) Mutations: Clinical Phenotypes beyond Alzheimer's Disease. Int J Mol Sci 2023; 24:8417. [PMID: 37176125 PMCID: PMC10179041 DOI: 10.3390/ijms24098417] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Presenilin 1 (PSEN1) is a part of the gamma secretase complex with several interacting substrates, including amyloid precursor protein (APP), Notch, adhesion proteins and beta catenin. PSEN1 has been extensively studied in neurodegeneration, and more than 300 PSEN1 mutations have been discovered to date. In addition to the classical early onset Alzheimer's disease (EOAD) phenotypes, PSEN1 mutations were discovered in several atypical AD or non-AD phenotypes, such as frontotemporal dementia (FTD), Parkinson's disease (PD), dementia with Lewy bodies (DLB) or spastic paraparesis (SP). For example, Leu113Pro, Leu226Phe, Met233Leu and an Arg352 duplication were discovered in patients with FTD, while Pro436Gln, Arg278Gln and Pro284Leu mutations were also reported in patients with motor dysfunctions. Interestingly, PSEN1 mutations may also impact non-neurodegenerative phenotypes, including PSEN1 Pro242fs, which could cause acne inversa, while Asp333Gly was reported in a family with dilated cardiomyopathy. The phenotypic diversity suggests that PSEN1 may be responsible for atypical disease phenotypes or types of disease other than AD. Taken together, neurodegenerative diseases such as AD, PD, DLB and FTD may share several common hallmarks (cognitive and motor impairment, associated with abnormal protein aggregates). These findings suggested that PSEN1 may interact with risk modifiers, which may result in alternative disease phenotypes such as DLB or FTD phenotypes, or through less-dominant amyloid pathways. Next-generation sequencing and/or biomarker analysis may be essential in clearly differentiating the possible disease phenotypes and pathways associated with non-AD phenotypes.
Collapse
Affiliation(s)
- Youngsoon Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
9
|
Ferrer I. Hypothesis review: Alzheimer's overture guidelines. Brain Pathol 2023; 33:e13122. [PMID: 36223647 PMCID: PMC9836379 DOI: 10.1111/bpa.13122] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/19/2022] [Indexed: 01/21/2023] Open
Abstract
National Institute on Aging-Alzheimer's Association definition and classification of sporadic Alzheimer's disease (sAD) is based on the assumption that β-amyloid drives the pathogenesis of sAD, and therefore, β-amyloid pathology is the sine-qua-non condition for the diagnosis of sAD. The neuropathological diagnosis is based on the concurrence of senile plaques (SPs) and neurofibrillary tangles (NFTs) designated as Alzheimer's disease neuropathological changes. However, NFTs develop in the brain decades before the appearance of SPs, and their distribution does not parallel the distribution of SPs. Moreover, NFTs are found in about 85% of individuals at age 65 and around 97% at age 80. SPs occur in 30% at age 65 and 50%-60% at age 80. More than 70 genetic risk factors have been identified in sAD; the encoded proteins modulate cell membranes, synapses, lipid metabolism, and neuroinflammation. Alzheimer's disease (AD) overture provides a new concept and definition of brain aging and sAD for further discussion. AD overture proposes that sAD is: (i) a multifactorial and progressive neurodegenerative biological process, (ii) characterized by the early appearance of 3R + 4Rtau NFTs, (iii) later deposition of β-amyloid and SPs, (iv) with particular non-overlapped regional distribution of NFTs and SPs, (v) preceded by or occurring in parallel with molecular changes affecting cell membranes, cytoskeleton, synapses, lipid and protein metabolism, energy metabolism, neuroinflammation, cell cycle, astrocytes, microglia, and blood vessels; (vi) accompanied by progressive neuron loss and brain atrophy, (vii) prevalent in human brain aging, and (viii) manifested as pre-clinical AD, and progressing not universally to mild cognitive impairment due to AD, and mild, moderate, and severe AD dementia.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental TherapeuticsUniversity of Barcelona (UB)BarcelonaSpain
- Neuropathology groupInstitute of Biomedical Research of Bellvitge (IDIBELL)BarcelonaSpain
- Network Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos IIIBarcelonaSpain
| |
Collapse
|
10
|
Rossi G, Salvi E, Mehmeti E, Ricci M, Villa C, Prioni S, Moda F, Di Fede G, Tiraboschi P, Redaelli V, Coppola C, Koch G, Canu E, Filippi M, Agosta F, Giaccone G, Caroppo P. Semantic and right temporal variant of FTD: Next generation sequencing genetic analysis on a single-center cohort. Front Aging Neurosci 2022; 14:1085406. [PMID: 36570531 PMCID: PMC9773257 DOI: 10.3389/fnagi.2022.1085406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Semantic and right temporal variant of frontotemporal dementia (svFTD and rtvFTD) are rare clinical phenotypes in which, in most cases, the underlying pathology is TDP-43 proteinopathy. They are usually sporadic disorders, but recent evidences suggest a higher frequency of genetic mutations for the right temporal versus the semantic variant. However, the genetic basis of these forms is not clear. In this study we performed a genetic screening of a single-center cohort of svFTD and rtvFTD patients, aiming at identifying the associated genetic variants. A panel of 73 dementia candidate genes has been analyzed by NGS target sequencing including both causal and risk/modifier genes in 23 patients (15 svFTD and 8 rtvFTD) and 73 healthy age-matched controls. We first performed a single variant analysis considering rare variants and then a gene-based aggregation analysis to evaluate the cumulative effects of multiple rare variants in a single gene. We found 12 variants in nearly 40% of patients (9/23), described as pathogenic or classified as VUS/likely pathogenic. The overall rate was higher in svFTD than in rtvFTD. Three mutations were located in MAPT gene and single mutations in the following genes: SQSTM1, VCP, PSEN1, TBK1, OPTN, CHCHD10, PRKN, DCTN1. Our study revealed the presence of variants in genes involved in pathways relevant for the pathology, especially autophagy and inflammation. We suggest that molecular analysis should be performed in all svFTD and rtvFTD patients, to better understand the genotype-phenotype correlation and the pathogenetic mechanisms that could drive the clinical phenotypes in FTD.
Collapse
Affiliation(s)
- Giacomina Rossi
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy,*Correspondence: Giacomina Rossi,
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elkadia Mehmeti
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Martina Ricci
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cristina Villa
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Prioni
- Clinical Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabio Moda
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pietro Tiraboschi
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Redaelli
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy,Vita-Salute San Raffaele University, Milan, Italy,Unit of Neurorehabilitation, IRCCS San Raffaele Scientific Institute, Milan, Italy,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy,Vita-Salute San Raffaele University, Milan, Italy
| | - Giorgio Giaccone
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Caroppo
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
11
|
Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int J Mol Sci 2022; 23:ijms231810970. [PMID: 36142879 PMCID: PMC9504248 DOI: 10.3390/ijms231810970] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022] Open
Abstract
Presenilin-1 (PSEN1) has been verified as an important causative factor for early onset Alzheimer's disease (EOAD). PSEN1 is a part of γ-secretase, and in addition to amyloid precursor protein (APP) cleavage, it can also affect other processes, such as Notch signaling, β-cadherin processing, and calcium metabolism. Several motifs and residues have been identified in PSEN1, which may play a significant role in γ-secretase mechanisms, such as the WNF, GxGD, and PALP motifs. More than 300 mutations have been described in PSEN1; however, the clinical phenotypes related to these mutations may be diverse. In addition to classical EOAD, patients with PSEN1 mutations regularly present with atypical phenotypic symptoms, such as spasticity, seizures, and visual impairment. In vivo and in vitro studies were performed to verify the effect of PSEN1 mutations on EOAD. The pathogenic nature of PSEN1 mutations can be categorized according to the ACMG-AMP guidelines; however, some mutations could not be categorized because they were detected only in a single case, and their presence could not be confirmed in family members. Genetic modifiers, therefore, may play a critical role in the age of disease onset and clinical phenotypes of PSEN1 mutations. This review introduces the role of PSEN1 in γ-secretase, the clinical phenotypes related to its mutations, and possible significant residues of the protein.
Collapse
|
12
|
Kovacs GG, Ghetti B, Goedert M. Classification of Diseases with Accumulation of Tau Protein. Neuropathol Appl Neurobiol 2022; 48:e12792. [PMID: 35064600 PMCID: PMC9352145 DOI: 10.1111/nan.12792] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indiana, USA
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| |
Collapse
|
13
|
Libard S, Giedraitis V, Kilander L, Ingelsson M, Alafuzoff I. Mixed Pathologies in a Subject with a Novel PSEN1 G206R Mutation. J Alzheimers Dis 2022; 90:1601-1614. [PMID: 36314207 PMCID: PMC9789486 DOI: 10.3233/jad-220655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND There are more than 300 presenilin-1 (PSEN1) mutations identified but a thorough postmortem neuropathological assessment of the mutation carriers is seldom performed. OBJECTIVE To assess neuropathological changes (NC) in a 73-year-old subject with the novel PSEN1 G206R mutation suffering from cognitive decline in over 20 years. To compare these findings with an age- and gender-matched subject with sporadic Alzheimer's disease (sAD). METHODS The brains were assessed macro- and microscopically and the proteinopathies were staged according to current recommendations. RESULTS The AD neuropathological change (ADNC) was more extensive in the mutation carrier, although both individuals reached a high level of ADNC. The transactive DNA binding protein 43 pathology was at the end-stage in the index subject, a finding not previously described in familial AD. This pathology was moderate in the sAD subject. The PSEN1 G206R subject displayed full-blown alpha-synuclein pathology, while this proteinopathy was absent in the sAD case. Additionally, the mutation carrier displayed pronounced neuroinflammation, not previously described in association with PSEN1 mutations. CONCLUSION Our findings are exceptional, as the PSEN1 G206R subject displayed an end-stage pathology of every common proteinopathy. It is unclear whether the observed alterations are caused by the mutation or are related to a cross-seeding mechanisms. The pronounced neuroinflammation in the index patient can be reactive to the extensive NC or a contributing factor to the proteinopathies. Thorough postmortem neuropathological and genetic assessment of subjects with familial AD is warranted, for further understanding of a dementing illness.
Collapse
Affiliation(s)
- Sylwia Libard
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Surgical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Irina Alafuzoff
- Department of Surgical Pathology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
14
|
Soto-Faguás CM, Sanchez-Molina P, Saura CA. Loss of presenilin function enhances tau phosphorylation and aggregation in mice. Acta Neuropathol Commun 2021; 9:162. [PMID: 34593029 PMCID: PMC8482568 DOI: 10.1186/s40478-021-01259-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Mutations in the presenilin (PS/PSEN) genes encoding the catalytic components of γ-secretase accelerate amyloid-β (Aβ) and tau pathologies in familial Alzheimer’s disease (AD). Although the mechanisms by which these mutations affect Aβ are well defined, the precise role PS/γ-secretase on tau pathology in neurodegeneration independently of Aβ is largely unclear. Here we report that neuronal PS deficiency in conditional knockout (cKO) mice results in age-dependent brain atrophy, inflammatory responses and accumulation of pathological tau in neurons and glial cells. Interestingly, genetic inactivation of presenilin 1 (PS1) or both PS genes in mutant human Tau transgenic mice exacerbates memory deficits by accelerating phosphorylation and aggregation of tau in excitatory neurons of vulnerable AD brain regions (e.g., hippocampus, cortex and amygdala). Remarkably, neurofilament (NF) light chain (NF-L) and phosphorylated NF are abnormally accumulated in the brain of Tau mice lacking PS. Synchrotron infrared microspectroscopy revealed aggregated and oligomeric β-sheet structures in amyloid plaque-free PS-deficient Tau mice. Hippocampal-dependent memory deficits are associated with synaptic tau accumulation and reduction of pre- and post-synaptic proteins in Tau mice. Thus, partial loss of PS/γ-secretase in neurons results in temporal- and spatial-dependent tau aggregation associated with memory deficits and neurodegeneration. Our findings show that tau phosphorylation and aggregation are key pathological processes that may underlie neurodegeneration caused by familial AD-linked PSEN mutations.
Collapse
|
15
|
Barthelson K, Dong Y, Newman M, Lardelli M. PRESENILIN 1 Mutations Causing Early-Onset Familial Alzheimer's Disease or Familial Acne Inversa Differ in Their Effects on Genes Facilitating Energy Metabolism and Signal Transduction. J Alzheimers Dis 2021; 82:327-347. [PMID: 34024832 DOI: 10.3233/jad-210128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The most common cause of early-onset familial Alzheimer's disease (EOfAD) is mutations in PRESENILIN 1 (PSEN1) allowing production of mRNAs encoding full-length, but mutant, proteins. In contrast, a single known frameshift mutation in PSEN1 causes familial acne inversa (fAI) without EOfAD. The molecular consequences of heterozygosity for these mutation types, and how they cause completely different diseases, remains largely unexplored. OBJECTIVE To analyze brain transcriptomes of young adult zebrafish to identify similarities and differences in the effects of heterozygosity for psen1 mutations causing EOfAD or fAI. METHODS RNA sequencing was performed on mRNA isolated from the brains of a single family of 6-month-old zebrafish siblings either wild type or possessing a single, heterozygous EOfAD-like or fAI-like mutation in their endogenous psen1 gene. RESULTS Both mutations downregulate genes encoding ribosomal subunits, and upregulate genes involved in inflammation. Genes involved in energy metabolism appeared significantly affected only by the EOfAD-like mutation, while genes involved in Notch, Wnt and neurotrophin signaling pathways appeared significantly affected only by the fAI-like mutation. However, investigation of direct transcriptional targets of Notch signaling revealed possible increases in γ-secretase activity due to heterozygosity for either psen1 mutation. Transcriptional adaptation due to the fAI-like frameshift mutation was evident. CONCLUSION We observed both similar and contrasting effects on brain transcriptomes of the heterozygous EOfAD-like and fAI-like mutations. The contrasting effects may illuminate how these mutation types cause distinct diseases.
Collapse
Affiliation(s)
- Karissa Barthelson
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Yang Dong
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| |
Collapse
|
16
|
Deaton CA, Johnson GVW. Presenilin 1 Regulates Membrane Homeostatic Pathways that are Dysregulated in Alzheimer's Disease. J Alzheimers Dis 2021; 77:961-977. [PMID: 32804090 DOI: 10.3233/jad-200598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in the PSEN1 gene, encoding presenilin 1 (PS1), are the most common cause of familial Alzheimer's disease (fAD). Since the first mutations in the PSEN1 gene were discovered more than 25 years ago, many postulated functions of PS1 have been investigated. The majority of earlier studies focused on its role as the catalytic component of the γ-secretase complex, which in concert with β site amyloid precursor protein cleaving enzyme 1 (BACE1), mediates the formation of Aβ from amyloid-β protein precursor (AβPP). Though mutant PS1 was originally considered to cause AD by promoting Aβ pathology through its protease function, it is now becoming clear that PS1 is a multifunctional protein involved in regulating membrane dynamics and protein trafficking. Therefore, through loss of these abilities, mutant PS1 has the potential to impair numerous cellular functions such as calcium flux, organization of proteins in different compartments, and protein turnover via vacuolar metabolism. Impaired calcium signaling, vacuolar dysfunction, mitochondrial dysfunction, and increased ER stress, among other related membrane-dependent disturbances, have been considered critical to the development and progression of AD. Given that PS1 plays a key regulatory role in all these processes, this review will describe the role of PS1 in different cellular compartments and provide an integrated view of how PS1 dysregulation (due to mutations or other causes) could result in impairment of various cellular processes and result in a "multi-hit", integrated pathological outcome that could contribute to the etiology of AD.
Collapse
Affiliation(s)
- Carol A Deaton
- Cell Biology of Disease Program and the Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Gail V W Johnson
- Cell Biology of Disease Program and the Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
17
|
Eryilmaz IE, Bakar M, Egeli U, Cecener G, Yurdacan B, Colak DK, Tunca B. Evaluation of the Clinical Features Accompanied by the Gene Mutations: The 2 Novel PSEN1 Variants in a Turkish Early-onset Alzheimer Disease Cohort. Alzheimer Dis Assoc Disord 2021; 35:214-222. [PMID: 33769986 DOI: 10.1097/wad.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/03/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Early-onset Alzheimer disease (EOAD) is an earlier Alzheimer disease form which is characterized by the mutations in the amyloid precursor protein, presenilin-1/2 (PSEN1/2), and triggering receptor expressed on myeloid cells 2 (TREM2). However, it is still necessary to report mutational screening in multiethnic groups to improve the genetic background of EOAD due to the variant classification challenge. METHODS We performed targeted sequencing for the amyloid precursor protein, PSEN1, PSEN2, and TREM2 genes in 74 patients and 1 family diagnosed with EOAD. RESULTS Among the detected variants, 8 were coding and 6 were noncoding in 15 of 74 patients. In PSEN1, 2 pathogenic coding variants (T274K and L364P) detected in 2 patients were novel and 3 coding variants (G183V, E318G, and L219P) detected in 2 patients were previously reported. We found 4 patients with the compound heterozygosity for the PSEN2 A23= and N43= and a family with the coexistence of them, and 1 patient with TREM2 Y38C. The coding variation frequency was 12.1%. In silico analysis indicated pathogenic potentials and clinical interpretations of the detected variants. CONCLUSION Our study reveals the rare gene variants including novel ones from the Turkish EOAD cohort and provides to clinicians the list of detected variants in the screened genes, which may also be useful for accurate genetic counseling.
Collapse
Affiliation(s)
| | - Mustafa Bakar
- Neurology Department, Bursa Uludag University, Faculty of Medicine, Gorukle, Bursa
| | | | | | | | | | | |
Collapse
|
18
|
Duran-Aniotz C, Orellana P, Leon Rodriguez T, Henriquez F, Cabello V, Aguirre-Pinto MF, Escobedo T, Takada LT, Pina-Escudero SD, Lopez O, Yokoyama JS, Ibanez A, Parra MA, Slachevsky A. Systematic Review: Genetic, Neuroimaging, and Fluids Biomarkers for Frontotemporal Dementia Across Latin America Countries. Front Neurol 2021; 12:663407. [PMID: 34248820 PMCID: PMC8263937 DOI: 10.3389/fneur.2021.663407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) includes a group of clinically, genetically, and pathologically heterogeneous neurodegenerative disorders, affecting the fronto-insular-temporal regions of the brain. Clinically, FTD is characterized by progressive deficits in behavior, executive function, and language and its diagnosis relies mainly on the clinical expertise of the physician/consensus group and the use of neuropsychological tests and/or structural/functional neuroimaging, depending on local availability. The modest correlation between clinical findings and FTD neuropathology makes the diagnosis difficult using clinical criteria and often leads to underdiagnosis or misdiagnosis, primarily due to lack of recognition or awareness of FTD as a disease and symptom overlap with psychiatric disorders. Despite advances in understanding the underlying neuropathology of FTD, accurate and sensitive diagnosis for this disease is still lacking. One of the major challenges is to improve diagnosis in FTD patients as early as possible. In this context, biomarkers have emerged as useful methods to provide and/or complement clinical diagnosis for this complex syndrome, although more evidence is needed to incorporate most of them into clinical practice. However, most biomarker studies have been performed using North American or European populations, with little representation of the Latin American and the Caribbean (LAC) region. In the LAC region, there are additional challenges, particularly the lack of awareness and knowledge about FTD, even in specialists. Also, LAC genetic heritage and cultures are complex, and both likely influence clinical presentations and may modify baseline biomarker levels. Even more, due to diagnostic delay, the clinical presentation might be further complicated by both neurological and psychiatric comorbidity, such as vascular brain damage, substance abuse, mood disorders, among others. This systematic review provides a brief update and an overview of the current knowledge on genetic, neuroimaging, and fluid biomarkers for FTD in LAC countries. Our review highlights the need for extensive research on biomarkers in FTD in LAC to contribute to a more comprehensive understanding of the disease and its associated biomarkers. Dementia research is certainly reduced in the LAC region, highlighting an urgent need for harmonized, innovative, and cross-regional studies with a global perspective across multiple areas of dementia knowledge.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon Rodriguez
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Victoria Cabello
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Tamara Escobedo
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Stefanie D. Pina-Escudero
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer S. Yokoyama
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
19
|
Moussavi Nik SH, Porter T, Newman M, Bartlett B, Khan I, Sabale M, Eccles M, Woodfield A, Groth D, Dore V, Villemagne VL, Masters CL, Martins RN, Laws SM, Lardelli M, Verdile G. Relevance of a Truncated PRESENILIN 2 Transcript to Alzheimer's Disease and Neurodegeneration. J Alzheimers Dis 2021; 80:1479-1489. [PMID: 33720885 DOI: 10.3233/jad-201133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The PRESENILIN genes (PSEN1, PSEN2) encoding for their respective proteins have critical roles in many aspects of Alzheimer's disease (AD) pathogenesis. The PS2V transcript of PSEN2 encodes a truncated protein and is upregulated in AD brains; however, its relevance to AD and disease progression remains to be determined. OBJECTIVE Assess transcript levels in postmortem AD and non-AD brain tissue and in lymphocytes collected under the Australian Imaging Biomarker and Lifestyle (AIBL) study. METHODS Full length PSEN2 and PS2V transcript levels were assessed by quantitative digital PCR in postmortem brain tissue (frontal cortex and hippocampus) from control, AD, frontotemporal dementia (FTD), and Lewy body dementia (LBD). Transcript levels were also assessed in lymphocytes obtained from the Perth subset of the AIBL study (n = 160). Linear regression analysis was used to assess correlations between transcript copy number and brain volume and neocortical amyloid load. RESULTS PS2V levels increased in AD postmortem brain but PS2V was also present at significant levels in FTD and LBD brains. PS2V transcript was detected in lymphocytes and PS2V/PSEN2 ratios were increased in mild cognitive impairment (p = 0.024) and AD (p = 0.019) groups compared to control group. Increased ratios were significantly correlated with hippocampal volumes only (n = 62, β= -0.269, p = 0.03). CONCLUSION Taken together, these results suggest that PS2V may be a marker of overall neurodegeneration.
Collapse
Affiliation(s)
- Seyyed Hani Moussavi Nik
- University of Adelaide, School of Biological Sciences, Centre for Molecular Pathology, Adelaide, SA, Australia
| | - Tenielle Porter
- Collaborative Genomics and Translation Group, Strategic Research Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Morgan Newman
- University of Adelaide, School of Biological Sciences, Centre for Molecular Pathology, Adelaide, SA, Australia
| | - Benjamin Bartlett
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia.,Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia.,School of Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Imran Khan
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Miheer Sabale
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia.,Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Melissa Eccles
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Amy Woodfield
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - David Groth
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Vincent Dore
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ralph N Martins
- Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia
| | - Simon M Laws
- Collaborative Genomics and Translation Group, Strategic Research Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Michael Lardelli
- University of Adelaide, School of Biological Sciences, Centre for Molecular Pathology, Adelaide, SA, Australia
| | - Giuseppe Verdile
- Collaborative Genomics and Translation Group, Strategic Research Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
20
|
Ayton S, Bush AI. β-amyloid: The known unknowns. Ageing Res Rev 2021; 65:101212. [PMID: 33188924 DOI: 10.1016/j.arr.2020.101212] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) stands out as a major disease without any form of preventative or disease modifying therapy. This is not for lack of trying. 33 phase 3 clinical trials of drugs targeting amyloid beta (Aβ) have failed to slow cognitive decline in AD. The field is at a cross-roads about whether to continue anti-Aβ therapy or more actively pursue alternative targets. With the burden of this disease to patients, families, and healthcare budgets growing yearly, the need for disease modifying AD therapies has become one of the highest priorities in all of medicine. While pathology, genetic and biochemical data offer a popular narrative for the causative role of Aβ, there are alternative explanations, and dissenting findings that, now more than ever, warrant thorough reanalysis. This review questions the major assumptions about Aβ on which therapies for AD were premised, and invites renewed interrogation into AD pathogenesis.
Collapse
Affiliation(s)
- Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
21
|
A Novel NIR-FRET Biosensor for Reporting PS/γ-Secretase Activity in Live Cells. SENSORS 2020; 20:s20215980. [PMID: 33105735 PMCID: PMC7660074 DOI: 10.3390/s20215980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
Presenilin (PS)/γ-secretase plays a pivotal role in essential cellular events via proteolytic processing of transmembrane proteins that include APP and Notch receptors. However, how PS/γ-secretase activity is spatiotemporally regulated by other molecular and cellular factors and how the changes in PS/γ-secretase activity influence signaling pathways in live cells are poorly understood. These questions could be addressed by engineering a new tool that enables multiplexed imaging of PS/γ-secretase activity and additional cellular events in real-time. Here, we report the development of a near-infrared (NIR) FRET-based PS/γ-secretase biosensor, C99 720-670 probe, which incorporates an immediate PS/γ-secretase substrate APP C99 with miRFP670 and miRFP720 as the donor and acceptor fluorescent proteins, respectively. Extensive validation demonstrates that the C99 720-670 biosensor enables quantitative monitoring of endogenous PS/γ-secretase activity on a cell-by-cell basis in live cells (720/670 ratio: 2.47 ± 0.66 (vehicle) vs. 3.02 ± 1.17 (DAPT), ** p < 0.01). Importantly, the C99 720-670 and the previously developed APP C99 YPet-Turquoise-GL (C99 Y-T) biosensors simultaneously report PS/γ-secretase activity. This evidences the compatibility of the C99 720-670 biosensor with cyan (CFP)-yellow fluorescent protein (YFP)-based FRET biosensors for reporting other essential cellular events. Multiplexed imaging using the novel NIR biosensor C99 720-670 would open a new avenue to better understand the regulation and consequences of changes in PS/γ-secretase activity.
Collapse
|
22
|
Kwok JB, Loy CT, Dobson-Stone C, Halliday GM. The complex relationship between genotype, pathology and phenotype in familial dementia. Neurobiol Dis 2020; 145:105082. [PMID: 32927063 DOI: 10.1016/j.nbd.2020.105082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Causative genes involved in familial forms of dementias, including Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) and dementia with Lewy bodies (DLB), as well as amyotrophic lateral sclerosis and prion diseases where dementia is present as a significant clinical feature, are associated with distinct proteinopathies. This review summarizes the relationship between known genetic determinants of these dementia syndromes and variations in key neuropathological proteins in terms of three types of heterogeneity: (i) Locus Heterogeneity, whereby mutations in different genes cause a similar proteinopathy, as exemplified by mutations in APP, PSEN1 and PSEN2 leading to AD neuropathology; (ii) Allelic Heterogeneity, whereby different mutations in the same gene lead to different proteinopathies or neuropathological severity, as exemplified by different mutations in MAPT and PRNP giving rise to protein species that differ in their biochemistry and affected cell types; and (iii) Phenotypic Heterogeneity, where identical gene mutations lead to different proteinopathies, as exemplified by LRRK2 p.G2019S being associated with variable Lewy body presence and alternative AD neuropathology or FTLD-tau. Of note, the perceived homogeneity in histologic phenotypes may arise from laboratory-specific assessment protocols which can differ in the panel of proteins screened. Finally, the understanding of the complex relationship between genotype and phenotype in dementia families is highly relevant in terms of therapeutic strategies which range from targeting specific genes, to a broader strategy of targeting a downstream, common biochemical problem that leads to the histopathology.
Collapse
Affiliation(s)
- John B Kwok
- The Brain and Mind Centre & School of Medical Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, Australia; School of Medical Sciences, the University of New South Wales, Sydney, Australia
| | - Clement T Loy
- The Brain and Mind Centre & School of Medical Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, Australia; Sydney School of Public Health, the University of Sydney, Sydney, Australia; The Garvan Institute of Medical Research, Sydney, Australia
| | - Carol Dobson-Stone
- The Brain and Mind Centre & School of Medical Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, Australia; School of Medical Sciences, the University of New South Wales, Sydney, Australia
| | - Glenda M Halliday
- The Brain and Mind Centre & School of Medical Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, Australia.
| |
Collapse
|
23
|
Perrone F, Bjerke M, Hens E, Sieben A, Timmers M, De Roeck A, Vandenberghe R, Sleegers K, Martin JJ, De Deyn PP, Engelborghs S, van der Zee J, Van Broeckhoven C, Cacace R. Amyloid-β 1-43 cerebrospinal fluid levels and the interpretation of APP, PSEN1 and PSEN2 mutations. ALZHEIMERS RESEARCH & THERAPY 2020; 12:108. [PMID: 32917274 PMCID: PMC7488767 DOI: 10.1186/s13195-020-00676-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023]
Abstract
Background Alzheimer’s disease (AD) mutations in amyloid precursor protein (APP) and presenilins (PSENs) could potentially lead to the production of longer amyloidogenic Aβ peptides. Amongst these, Aβ1–43 is more prone to aggregation and has higher toxic properties than the long-known Aβ1–42. However, a direct effect on Aβ1–43 in biomaterials of individuals carrying genetic mutations in the known AD genes is yet to be determined. Methods N = 1431 AD patients (n = 280 early-onset (EO) and n = 1151 late-onset (LO) AD) and 809 control individuals were genetically screened for APP and PSENs. For the first time, Aβ1–43 levels were analysed in cerebrospinal fluid (CSF) of 38 individuals carrying pathogenic or unclear rare mutations or the common PSEN1 p.E318G variant and compared with Aβ1–42 and Aβ1–40 CSF levels. The soluble sAPPα and sAPPβ species were also measured for the first time in mutation carriers. Results A known pathogenic mutation was identified in 5.7% of EOAD patients (4.6% PSEN1, 1.07% APP) and in 0.3% of LOAD patients. Furthermore, 12 known variants with unclear pathogenicity and 11 novel were identified. Pathogenic and unclear mutation carriers showed a significant reduction in CSF Aβ1–43 levels compared to controls (p = 0.037; < 0.001). CSF Aβ1–43 levels positively correlated with CSF Aβ1–42 in both pathogenic and unclear carriers and controls (all p < 0.001). The p.E318G carriers showed reduced Aβ1–43 levels (p < 0.001), though genetic association with AD was not detected. sAPPα and sAPPβ CSF levels were significantly reduced in the group of unclear (p = 0.006; 0.005) and p.E318G carriers (p = 0.004; 0.039), suggesting their possible involvement in AD. Finally, using Aβ1–43 and Aβ1–42 levels, we could re-classify as “likely pathogenic” 3 of the unclear mutations. Conclusion This is the first time that Aβ1–43 levels were analysed in CSF of AD patients with genetic mutations in the AD causal genes. The observed reduction of Aβ1–43 in APP and PSENs carriers highlights the pathogenic role of longer Aβ peptides in AD pathogenesis. Alterations in Aβ1–43 could prove useful in understanding the pathogenicity of unclear APP and PSENs variants, a critical step towards a more efficient genetic counselling.
Collapse
Affiliation(s)
- Federica Perrone
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Maria Bjerke
- Institute Born-Bunge, Antwerp, Belgium.,Reference Centre for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Laboratory of Neurochemistry and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Elisabeth Hens
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Edegem, Belgium.,Department of Neurology, University Hospital Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anne Sieben
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, Antwerp, Belgium.,Department of Neurology, University Hospital Ghent and University of Ghent, Ghent, Belgium
| | - Maarten Timmers
- Reference Centre for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Janssen Research and Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Arne De Roeck
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences, Faculty of Medicine, KU Leuven, Louvain, Belgium.,Laboratory of Cognitive Neurology, Department of Neurology, University Hospitals Leuven, Louvain, Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Peter P De Deyn
- Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Reference Centre for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium. .,Institute Born-Bunge, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium. .,Institute Born-Bunge, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | |
Collapse
|
24
|
Guerreiro R, Gibbons E, Tábuas-Pereira M, Kun-Rodrigues C, Santo GC, Bras J. Genetic architecture of common non-Alzheimer's disease dementias. Neurobiol Dis 2020; 142:104946. [PMID: 32439597 PMCID: PMC8207829 DOI: 10.1016/j.nbd.2020.104946] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Frontotemporal dementia (FTD), dementia with Lewy bodies (DLB) and vascular dementia (VaD) are the most common forms of dementia after Alzheimer's disease (AD). The heterogeneity of these disorders and/or the clinical overlap with other diseases hinder the study of their genetic components. Even though Mendelian dementias are rare, the study of these forms of disease can have a significant impact in the lives of patients and families and have successfully brought to the fore many of the genes currently known to be involved in FTD and VaD, starting to give us a glimpse of the molecular mechanisms underlying these phenotypes. More recently, genome-wide association studies have also pointed to disease risk-associated loci. This has been particularly important for DLB where familial forms of disease are very rarely described. In this review we systematically describe the Mendelian and risk genes involved in these non-AD dementias in an effort to contribute to a better understanding of their genetic architecture, find differences and commonalities between different dementia phenotypes, and uncover areas that would benefit from more intense research endeavors.
Collapse
Affiliation(s)
- Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| | - Elizabeth Gibbons
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Celia Kun-Rodrigues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Gustavo C Santo
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
25
|
Senanarong V, An SSA, Giau VV, Limwongse C, Bagyinszky E, Kim S. Pathogenic PSEN1 Glu184Gly Mutation in a Family from Thailand with Probable Autosomal Dominant Early Onset Alzheimer's Disease. Diagnostics (Basel) 2020; 10:diagnostics10030135. [PMID: 32121568 PMCID: PMC7151116 DOI: 10.3390/diagnostics10030135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 02/01/2023] Open
Abstract
A pathogenic mutation in PSEN1 p.Glu184Gly was discovered in a Thai family with early onset Alzheimer's disease (EOAD) as the first case in Asia. Proband patient presented memory impairment and anxiety at the age of 41 years. Family history was positive, since several family members were also diagnosed with dementia (father and grandfather). MRI in the patient revealed global cortical atrophy without specific lesions or lacuna infarctions. Extensive genetic profiling for 50 neurodegenerative disease related genes was performed by next generation sequencing (NGS) on the patient. PSEN1 Glu184Gly was previously reported in French families with frontal variant Alzheimer's disease (AD). Interestingly, this mutation is located near the splicing site and could possibly result in abnormal cleavage of PSEN1 transcript. Furthermore, 3D models from protein structural predictions revealed significant structural changes, since glycine may result in increased flexibility of TM-III helix. Inter/intra-helical interactions could also be altered. In the future, functional studies should be performed to verify the probable role PSEN1 Glu184Gly in amyloid beta processing and pathogenicity.
Collapse
Affiliation(s)
- Vorapun Senanarong
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University and Thailand, Bangkok 10700, Thailand; (V.S.); (C.L.)
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea; )
| | - Vo Van Giau
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Korea
| | - Chanin Limwongse
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University and Thailand, Bangkok 10700, Thailand; (V.S.); (C.L.)
| | - Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Korea
- Correspondence: (E.B.); (S.K.); Tel.: +82-31-750-8591 (E.B.); +82-31-787-7462 (S.K.); Fax: +82-31-719-6815 (S.K.)
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seongnam 13620, Korea
- Correspondence: (E.B.); (S.K.); Tel.: +82-31-750-8591 (E.B.); +82-31-787-7462 (S.K.); Fax: +82-31-719-6815 (S.K.)
| |
Collapse
|
26
|
Calcium Signaling in ß-cell Physiology and Pathology: A Revisit. Int J Mol Sci 2019; 20:ijms20246110. [PMID: 31817135 PMCID: PMC6940736 DOI: 10.3390/ijms20246110] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic beta (β) cell dysfunction results in compromised insulin release and, thus, failed regulation of blood glucose levels. This forms the backbone of the development of diabetes mellitus (DM), a disease that affects a significant portion of the global adult population. Physiological calcium (Ca2+) signaling has been found to be vital for the proper insulin-releasing function of β-cells. Calcium dysregulation events can have a dramatic effect on the proper functioning of the pancreatic β-cells. The current review discusses the role of calcium signaling in health and disease in pancreatic β-cells and provides an in-depth look into the potential role of alterations in β-cell Ca2+ homeostasis and signaling in the development of diabetes and highlights recent work that introduced the current theories on the connection between calcium and the onset of diabetes.
Collapse
|
27
|
Abstract
β-amyloid is regarded by some scientists to be the cause of Alzheimer’s disease (AD). One of the strongest arguments against this hypothesis is the presence of hundreds of AD-causing mutations in presenilin, but none in the other three components of γ-secretase. This observation implies a γ-secretase–independent function of presenilin. To understand such a putative function, discovery of presenilin-binding proteins represents an important first step. In this study, we report the identification of Bax-inhibitor 1 (BI1) as a stable interacting partner of presenilin 1 (PS1), but not the intact γ-secretase. Our results link PS1 to BI1, a protein thought to play a role in apoptosis and calcium channel regulation. This finding opens a range of possibilities for the investigation of PS1 function and AD genesis. Presenilin is the catalytic subunit of γ-secretase, a four-component intramembrane protease responsible for the generation of β-amyloid (Aβ) peptides. Over 200 Alzheimer’s disease-related mutations have been identified in presenilin 1 (PS1) and PS2. Here, we report that Bax-inhibitor 1 (BI1), an evolutionarily conserved transmembrane protein, stably associates with PS1. BI1 specifically interacts with PS1 in isolation, but not with PS1 in the context of an assembled γ-secretase. The PS1–BI1 complex exhibits no apparent proteolytic activity, as judged by the inability to produce Aβ40 and Aβ42 from the substrate APP-C99. At an equimolar concentration, BI1 has no impact on the proteolytic activity of γ-secretase; at a 200-fold molar excess, BI1 reduces γ-secretase activity nearly by half. Our biochemical study identified BI1 as a PS1-interacting protein, suggesting additional functions of PS1 beyond its involvement in γ-secretase.
Collapse
|
28
|
Genetic Complexity of Early-Onset Alzheimer’s Disease. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
29
|
Jayne T, Newman M, Verdile G, Sutherland G, Münch G, Musgrave I, Moussavi Nik SH, Lardelli M. Evidence For and Against a Pathogenic Role of Reduced γ-Secretase Activity in Familial Alzheimer's Disease. J Alzheimers Dis 2017; 52:781-99. [PMID: 27060961 DOI: 10.3233/jad-151186] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The majority of mutations causing familial Alzheimer's disease (fAD) have been found in the gene PRESENILIN1 (PSEN1) with additional mutations in the related gene PRESENILIN2 (PSEN2). The best characterized function of PRESENILIN (PSEN) proteins is in γ-secretase enzyme activity. One substrate of γ-secretase is encoded by the gene AMYLOID BETA A4 PRECURSOR PROTEIN (AβPP/APP) that is a fAD mutation locus. AβPP is the source of the amyloid-β (Aβ) peptide enriched in the brains of people with fAD or the more common, late onset, sporadic form of AD, sAD. These observations have resulted in a focus on γ-secretase activity and Aβ as we attempt to understand the molecular basis of AD pathology. In this paper we briefly review some of the history of research on γ-secretase in AD. We then discuss the main ideas regarding the role of γ-secretase and the PSEN genes in this disease. We examine the significance of the "fAD mutation reading frame preservation rule" that applies to PSEN1 and PSEN2 (and AβPP) and look at alternative roles for AβPP and Aβ in fAD. We present a case for an alternative interpretation of published data on the role of γ-secretase activity and fAD-associated mutations in AD pathology. Evidence supports a "PSEN holoprotein multimer hypothesis" where PSEN fAD mutations generate mutant PSEN holoproteins that multimerize with wild type holoprotein and dominantly interfere with an AD-critical function(s) such as autophagy or secretion of Aβ. Holoprotein multimerization may be required for the endoproteolysis that activates PSENs' γ-secretase activity.
Collapse
Affiliation(s)
- Tanya Jayne
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Giuseppe Verdile
- School of Biomedical Sciences, Curtin Health Innovation Research Institute - Biosciences, Faculty of Health Sciences, Curtin University, Kent Street, Bentley, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,McCusker Alzheimer's Disease Research Foundation, Hollywood Private Hospital, Hollywood Medical Centre, Nedlands, WA, Australia
| | - Greg Sutherland
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Gerald Münch
- Molecular Medicine Research Group & School of Medicine, Western Sydney University, Campbelltown NSW, Australia
| | - Ian Musgrave
- Discipline of Pharmacology, School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Seyyed Hani Moussavi Nik
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| |
Collapse
|
30
|
Hinz FI, Geschwind DH. Molecular Genetics of Neurodegenerative Dementias. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023705. [PMID: 27940516 DOI: 10.1101/cshperspect.a023705] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative dementias are clinically heterogeneous, progressive diseases with frequently overlapping symptoms, such as cognitive impairments and behavior and movement deficits. Although a majority of cases appear to be sporadic, there is a large genetic component that has yet to be fully explained. Here, we review the recent genetic and genomic findings pertaining to Alzheimer's disease, frontotemporal dementia, Lewy body dementia, and prion dementia. In this review, we describe causal and susceptibility genes identified for these dementias and discuss recent research pertaining to the molecular function of these genes. Of particular interest, there is a large overlap in clinical phenotypes, genes, and/or aggregating protein products involved in these diseases, as well as frequent comorbid presentation, indicating that these dementias may represent a continuum of syndromes rather than individual diseases.
Collapse
Affiliation(s)
- Flora I Hinz
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095.,Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California 90024
| |
Collapse
|
31
|
Yang J, Zhao H, Ma Y, Shi G, Song J, Tang Y, Li S, Li T, Liu N, Tang F, Gu J, Zhang L, Zhang Z, Zhang X, Jin Y, Le W. Early pathogenic event of Alzheimer's disease documented in iPSCs from patients with PSEN1 mutations. Oncotarget 2017; 8:7900-7913. [PMID: 27926491 PMCID: PMC5352369 DOI: 10.18632/oncotarget.13776] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-related dementia characterized by progressive neuronal loss. However, the molecular mechanisms for the neuronal loss is still debated. Here, we used induced pluripotent stem cells (iPSCs) derived from somatic cells of familial AD patients carrying PSEN1 mutations to study the early pathogenic event of AD. We found that premature neuronal differentiation with decreased proliferation and increased apoptosis occured in AD-iPSC-derived neural progenitor cells (AD-NPCs) once neuronal differentiation was initiated, together with higher levels of Aβ42 and phosphorylated tau. Premature neuronal differentiation in AD-NPCs was caused by PSEN1 mutations and might be correlated to multiple dysregulated processes including but not limited to Wnt-Notch pathway. Our study documented previously unappreciated early NPC dysfunction in AD-NPCs, providing valuable new insights into the early mechanisms underlying AD pathogenesis.
Collapse
Affiliation(s)
- Juan Yang
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031, China
| | - Hanzhi Zhao
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031, China
| | - Yu Ma
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031, China
- Shanghai Stem Cell Institute, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Guilai Shi
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031, China
| | - Jian Song
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031, China
| | - Yu Tang
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Ting Li
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031, China
| | - Nan Liu
- Institute of Neuroscience, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fan Tang
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031, China
- Shanghai Stem Cell Institute, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Junjie Gu
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031, China
- Shanghai Stem Cell Institute, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Lingling Zhang
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031, China
| | - Zhuohua Zhang
- Institute of Precision Medicine, The Xiangya Hospital, State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China
| | - Xiaohui Zhang
- Institute of Neuroscience, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031, China
- Shanghai Stem Cell Institute, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Weidong Le
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031, China
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Institute of Neurology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
- Collaborative Innovation Center for Brain Science, the First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| |
Collapse
|
32
|
Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proc Natl Acad Sci U S A 2016; 114:E476-E485. [PMID: 27930341 DOI: 10.1073/pnas.1618657114] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A hallmark of Alzheimer's disease (AD) is the aggregation of β-amyloid peptides (Aβ) into amyloid plaques in patient brain. Cleavage of amyloid precursor protein (APP) by the intramembrane protease γ-secretase produces Aβ of varying lengths, of which longer peptides such as Aβ42 are thought to be more harmful. Increased ratios of longer Aβs over shorter ones, exemplified by the ratio of Aβ42 over Aβ40, may lead to formation of amyloid plaques and consequent development of AD. In this study, we analyzed 138 reported mutations in human presenilin-1 (PS1) by individually reconstituting the mutant PS1 proteins into anterior-pharynx-defective protein 1 (APH-1)aL-containing γ-secretases and examining their abilities to produce Aβ42 and Aβ40 in vitro. About 90% of these mutations lead to reduced production of Aβ42 and Aβ40. Notably, 10% of these mutations result in decreased Aβ42/Aβ40 ratios. There is no statistically significant correlation between the Aβ42/Aβ40 ratio produced by a γ-secretase variant containing a specific PS1 mutation and the mean age at onset of patients from whom the mutation was isolated.
Collapse
|
33
|
Bagyinszky E, Park SA, Kim HJ, Choi SH, An SSA, Kim SY. PSEN1 L226F mutation in a patient with early-onset Alzheimer's disease in Korea. Clin Interv Aging 2016; 11:1433-1440. [PMID: 27785004 PMCID: PMC5066688 DOI: 10.2147/cia.s111821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this study, we report a first 226leucine (Leu) mutation to phenylalanine (Phe) in (PSEN1, CTC>TTC, L226F) in Asia from a Korean early-onset Alzheimer's disease (EOAD) patient. Polymerase chain reaction (PCR)-single strand conformation polymorphism, sequencing, and in silico predictions were performed. Previously, L226F was reported in EOAD patients by Zekanowski et al and Gómez-Tortosa et al. Disease phenotypes appeared in their thirties, and family history was positive in both cases. In our patient, age of onset was similar (37 years of age), but the mutation seemed to be de novo, since no affected family member was found. This leucine to phenylalanine substitution may cause additional stresses inside the transmembrane region due to large aromatic side chain and increased hydrophobic interactions with hydrocarbon chains in the membrane and its binding partners. Clinical phenotype of the mutation was aggressive progression into neurodegeneration, resulting in rapid cognitive decline. One of the patients was initially diagnosed with frontotemporal dementia, but the diagnosis was revised to AD upon postmortem studies in which Aβ plaques were seen. A second mutation, L226R, was found for the L226 residue. Similar to L226F, the patient with L226R also developed the first symptoms in his 30s, but EOAD was diagnosed in his 40s. These findings suggested that L226 might be an important residue in PSEN1, since mutations could result in neurodegenerative disease phenotypes at relatively young ages. There are mutations, such as L226F, which may not present clear clinical symptoms for the definitive diagnosis between frontotemporal dementia and AD. In addition, the similarities in the phenotypes could also be possible between AD and frontotemporal dementia, suggesting difficulties in differential diagnosis of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of BioNano Technology, Gachon University, Seongnam-si
| | - Sun Ah Park
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Bucheon
| | - Hyung Jun Kim
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Bucheon
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Seongnam-si
| | - Sang Yun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| |
Collapse
|
34
|
Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer's disease revisited. Alzheimers Dement 2016; 12:733-48. [DOI: 10.1016/j.jalz.2016.01.012] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Rita Cacace
- Neurodegenerative Brain Diseases group; Department of Molecular Genetics; VIB; Antwerp Belgium
- Laboratory of Neurogenetics; Institute Born-Bunge, University of Antwerp; Antwerp Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases group; Department of Molecular Genetics; VIB; Antwerp Belgium
- Laboratory of Neurogenetics; Institute Born-Bunge, University of Antwerp; Antwerp Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases group; Department of Molecular Genetics; VIB; Antwerp Belgium
- Laboratory of Neurogenetics; Institute Born-Bunge, University of Antwerp; Antwerp Belgium
| |
Collapse
|
35
|
Li N, Liu K, Qiu Y, Ren Z, Dai R, Deng Y, Qing H. Effect of Presenilin Mutations on APP Cleavage; Insights into the Pathogenesis of FAD. Front Aging Neurosci 2016; 8:51. [PMID: 27014058 PMCID: PMC4786568 DOI: 10.3389/fnagi.2016.00051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
Alzheimer disease (AD) is characterized by progressive memory loss, reduction in cognitive functions, and damage to the brain. The β-amyloid precursor protein can be sequentially cleaved by β- secretase and γ-secretase. Mutations in the presenilin1(PS1) are the most common cause of Familial Alzheimer’s disease (FAD). PS1 mutations can alter the activity of γ-secretase on the cleavage of the β-amyloid precursor protein, causing increased Aβ production. Previous studies show that the βAPP-C-terminal fragment is first cleaved by β-scretase, primarily generating long fragments of Aβ48 and Aβ49, followed by the stepwise cleavage of every three amino acid residues at the C terminus, resulting in Aβ48-, 45-, 42 line and Aβ49-, 46-, 43-, 40 line. Here, we used LC-MS/MS to analyze unique peptides IAT, VVIA, ITL, TVI, IVI through sequential cleavage, combined with ELISA to test the level of Aβ42 and Aβ40 for validation. The results show that most FAD mutant PS1 can alter the level of Aβ42 and Aβ40 monitored by the Aβ42/Aβ40 ratio. Among them, six mutants (I143T, H163P, S170F, Q223R, M233V, and G384A) affect the Aβ42/40 ratio through both Aβ49-40 and Aβ48-38 lines; L166P through decreasing the Aβ49-40 line, six mutants (I143V, M146V, G217A, E280A, L381V, and L392V) through increasing the Aβ48-42 line. More importantly, we found some mutations can affect the γ-secretase cleavage preference of α-CTF and β-CTF. In conclusion, we found that the FAD PS1 mutations mainly increase the generation of Aβ42 by decreasing the cleavage of Aβ42–Aβ38 and Aβ43–Aβ40.
Collapse
Affiliation(s)
- Nuomin Li
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Kefu Liu
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Yunjie Qiu
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Zehui Ren
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Rongji Dai
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology Beijing, China
| |
Collapse
|
36
|
Šimić G, Babić Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, de Silva R, Di Giovanni G, Wischik C, Hof PR. Tau Protein Hyperphosphorylation and Aggregation in Alzheimer's Disease and Other Tauopathies, and Possible Neuroprotective Strategies. Biomolecules 2016; 6:6. [PMID: 26751493 PMCID: PMC4808800 DOI: 10.3390/biom6010006] [Citation(s) in RCA: 430] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022] Open
Abstract
Abnormal deposition of misprocessed and aggregated proteins is a common final pathway of most neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized by the extraneuronal deposition of the amyloid β (Aβ) protein in the form of plaques and the intraneuronal aggregation of the microtubule-associated protein tau in the form of filaments. Based on the biochemically diverse range of pathological tau proteins, a number of approaches have been proposed to develop new potential therapeutics. Here we discuss some of the most promising ones: inhibition of tau phosphorylation, proteolysis and aggregation, promotion of intra- and extracellular tau clearance, and stabilization of microtubules. We also emphasize the need to achieve a full understanding of the biological roles and post-translational modifications of normal tau, as well as the molecular events responsible for selective neuronal vulnerability to tau pathology and its propagation. It is concluded that answering key questions on the relationship between Aβ and tau pathology should lead to a better understanding of the nature of secondary tauopathies, especially AD, and open new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia.
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia.
| | - Selina Wray
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK.
| | - Charles Harrington
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston 02118, MA, USA.
| | - Nataša Jovanov-Milošević
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia.
| | - Danira Bažadona
- Department of Neurology, University Hospital Center Zagreb, Zagreb 10000, Croatia.
| | - Luc Buée
- Laboratory Alzheimer & Tauopathies, Université Lille and INSERM U1172, Jean-Pierre Aubert Research Centre, Lille 59045, France.
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK.
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, MSD 2080, Malta.
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| | - Claude Wischik
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
37
|
Ferrer I, Legati A, García-Monco JC, Gomez-Beldarrain M, Carmona M, Blanco R, Seeley WW, Coppola G. Familial behavioral variant frontotemporal dementia associated with astrocyte-predominant tauopathy. J Neuropathol Exp Neurol 2015; 74:370-9. [PMID: 25756587 PMCID: PMC4366320 DOI: 10.1097/nen.0000000000000180] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A familial behavioral variant frontotemporal dementia associated with astrocyte-predominant tauopathy is described in 2 sisters born from consanguineous parents. The neuropathologic examination revealed massive accumulation of abnormally hyperphosphorylated, conformational, truncated tau at aspartic acid 421, ubiquitinated and nitrated tau at Tyr29 in cortical astrocyte (including their perivascular foot processes), and Bergmann glia. Smaller amounts of abnormal tau were observed in neurons and rarely in oligodendrocytes. There was decreased expression of glial glutamate transporter in the majority of tau-positive astrocytes. Gel electrophoresis of sarkosyl-insoluble fractions showed 2 bands of 64 and 60 kDa and a doublet of 67 to 70 kDa (which are different from those seen in Alzheimer disease and in typical 4R and 3R tauopathies) together with several bands of lower molecular weight indicative of truncated tau. Analysis of the expression of MAPT isoforms further revealed altered splicing and representation of tau isoforms involving exons 2, 3, and 10. Genetic testing revealed no known mutations in PSEN1, PSEN2, APP, MAPT, GRN, FUS, and TARDBP and no pathologic expansion in C9ORF72. However, a novel rare heterozygous sequence variant(p.Q140H) of uncertain significance was identified in FUS in both siblings.
Collapse
Affiliation(s)
- Isidre Ferrer
- Institute of Neuropathology, IDIBELL-Bellvitge University Hospital, University of Barcelona, Hospitalet de Llobregat; CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Spain
| | - Andrea Legati
- Department of Neurology and Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California
| | | | | | - Margarita Carmona
- Institute of Neuropathology, IDIBELL-Bellvitge University Hospital, University of Barcelona, Hospitalet de Llobregat; CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Spain
| | - Rosa Blanco
- Institute of Neuropathology, IDIBELL-Bellvitge University Hospital, University of Barcelona, Hospitalet de Llobregat; CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Spain
| | - William W. Seeley
- Department of Neurology and Pathology, Memory and Aging Center, University of California, San Francisco, California
| | - Giovanni Coppola
- Department of Neurology and Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
38
|
Morris GP, Clark IA, Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer's disease. Acta Neuropathol Commun 2014; 2:135. [PMID: 25231068 PMCID: PMC4207354 DOI: 10.1186/s40478-014-0135-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 12/16/2022] Open
Abstract
The amyloid hypothesis has driven drug development strategies for Alzheimer's disease for over 20 years. We review why accumulation of amyloid-beta (Aβ) oligomers is generally considered causal for synaptic loss and neurodegeneration in AD. We elaborate on and update arguments for and against the amyloid hypothesis with new data and interpretations, and consider why the amyloid hypothesis may be failing therapeutically. We note several unresolved issues in the field including the presence of Aβ deposition in cognitively normal individuals, the weak correlation between plaque load and cognition, questions regarding the biochemical nature, presence and role of Aβ oligomeric assemblies in vivo, the bias of pre-clinical AD models toward the amyloid hypothesis and the poorly explained pathological heterogeneity and comorbidities associated with AD. We also illustrate how extensive data cited in support of the amyloid hypothesis, including genetic links to disease, can be interpreted independently of a role for Aβ in AD. We conclude it is essential to expand our view of pathogenesis beyond Aβ and tau pathology and suggest several future directions for AD research, which we argue will be critical to understanding AD pathogenesis.
Collapse
Affiliation(s)
- Gary P Morris
- />Garvan Institute of Medical Research, Neuroscience Department, Neurodegenerative Disorders Laboratory, 384 Victoria Street, Darlinghurst, NSW 2010 Australia
- />Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ian A Clark
- />Research School of Biology, Australian National University, Canberra, Australia
| | - Bryce Vissel
- />Garvan Institute of Medical Research, Neuroscience Department, Neurodegenerative Disorders Laboratory, 384 Victoria Street, Darlinghurst, NSW 2010 Australia
- />Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
39
|
Abstract
Alzheimer’s disease (AD) is a complex and heterogeneous neurodegenerative disorder, classified as either early onset (under 65 years of age), or late onset (over 65 years of age). Three main genes are involved in early onset AD: amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2). The apolipoprotein E (APOE) E4 allele has been found to be a main risk factor for late-onset Alzheimer’s disease. Additionally, genome-wide association studies (GWASs) have identified several genes that might be potential risk factors for AD, including clusterin (CLU), complement receptor 1 (CR1), phosphatidylinositol binding clathrin assembly protein (PICALM), and sortilin-related receptor (SORL1). Recent studies have discovered additional novel genes that might be involved in late-onset AD, such as triggering receptor expressed on myeloid cells 2 (TREM2) and cluster of differentiation 33 (CD33). Identification of new AD-related genes is important for better understanding of the pathomechanisms leading to neurodegeneration. Since the differential diagnoses of neurodegenerative disorders are difficult, especially in the early stages, genetic testing is essential for diagnostic processes. Next-generation sequencing studies have been successfully used for detecting mutations, monitoring the epigenetic changes, and analyzing transcriptomes. These studies may be a promising approach toward understanding the complete genetic mechanisms of diverse genetic disorders such as AD.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of BioNano Technology Gachon University, Gyeonggi-do, South Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Seong Soo A An
- Department of BioNano Technology Gachon University, Gyeonggi-do, South Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Budang Hospital, Gyeonggi-do, South Korea
| |
Collapse
|
40
|
Abstract
25% of all people aged 55 years and older have a family history of dementia. For most, the family history is due to genetically complex disease, where many genetic variations of small effect interact to increase risk of dementia. The lifetime risk of dementia for these families is about 20%, compared with 10% in the general population. A small proportion of families have an autosomal dominant family history of early-onset dementia, which is often due to mendelian disease, caused by a mutation in one of the dementia genes. Each family member has a 50% chance of inheriting the mutation, which confers a lifetime dementia risk of over 95%. In this Review, we focus on the evidence for, and the approach to, genetic testing in Alzheimer's disease (APP, PSEN1, and PSEN2 genes), frontotemporal dementia (MAPT, GRN, C9ORF72, and other genes), and other familial dementias. We conclude by discussing the practical aspects of genetic counselling.
Collapse
Affiliation(s)
- Clement T Loy
- School of Public Health, University of Sydney, Sydney, NSW, Australia; Neuroscience Research Australia, Randwick, NSW, Australia; Huntington Disease Service, Westmead Hospital, Westmead, NSW, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, NSW, Australia; University of New South Wales, Kensington, NSW, Australia
| | - Anne M Turner
- Department of Medical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - John B J Kwok
- Neuroscience Research Australia, Randwick, NSW, Australia; University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
41
|
|
42
|
|
43
|
Newman M, Wilson L, Verdile G, Lim A, Khan I, Moussavi Nik SH, Pursglove S, Chapman G, Martins RN, Lardelli M. Differential, dominant activation and inhibition of Notch signalling and APP cleavage by truncations of PSEN1 in human disease. Hum Mol Genet 2013; 23:602-17. [DOI: 10.1093/hmg/ddt448] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Riudavets MA, Bartoloni L, Troncoso JC, Pletnikova O, St. George‐Hyslop P, Schultz M, Sevlever G, Allegri RF. Familial dementia with frontotemporal features associated with M146V presenilin-1 mutation. Brain Pathol 2013; 23:595-600. [PMID: 23489366 PMCID: PMC4007155 DOI: 10.1111/bpa.12051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/02/2013] [Indexed: 12/28/2022] Open
Abstract
Most of the mutations in the presenilin-1 gene (PS-1) are associated with familial Alzheimer's disease (AD). However, certain examples can be associated with frontotemporal dementia (FTD). We performed a clinical evaluation of individuals belonging to a family with the FTD phenotype, and additional molecular studies and neuropathological assessment of the proband. The PS-1 M146V mutation was found in the 50-year-old subject (the proband) with family history of early-onset FTD. Neuropathological examination showed abundant amyloid plaques, widespread neurofibrillary pathology, Pick bodies in the hippocampus and cortex, cortical globose tangles and ubiquitin-positive nuclear inclusions in white matter oligodendrocytes. We report a kindred with clinical features of FTD, whose proband bore the PS-1 M146V mutation and showed diffuse Alzheimer's type pathology and Pick bodies on post-mortem neuropathological examination. As with other mutations within the same codon, this substitution may predispose to both diseases by affecting APP and/or tau processing.
Collapse
Affiliation(s)
| | - Leonardo Bartoloni
- Department of Internal MedicineHospital ZubizarretaBuenos AiresArgentina
| | - Juan C. Troncoso
- Neuropathology DivisionPathology DepartmentJohns Hopkins University School of MedicineBaltimoreMD
| | - Olga Pletnikova
- Neuropathology DivisionPathology DepartmentJohns Hopkins University School of MedicineBaltimoreMD
| | | | | | | | | |
Collapse
|
45
|
Abstract
In the search for new genes in Alzheimer's disease, classic linkage-based and candidate-gene-based association studies have been supplanted by exome sequencing, genome-wide sequencing (for mendelian forms of Alzheimer's disease), and genome-wide association studies (for non-mendelian forms). The identification of new susceptibility genes has opened new avenues for exploration of the underlying disease mechanisms. In addition to detecting novel risk factors in large samples, next-generation sequencing approaches can deliver novel insights with even small numbers of patients. The shift in focus towards translational studies and sequencing of individual patients places each patient's biomaterials as the central unit of genetic studies. The notional shift needed to make the patient central to genetic studies will necessitate strong collaboration and input from clinical neurologists.
Collapse
Affiliation(s)
- Karolien Bettens
- Neurodegenerative Brain Diseases Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
46
|
Beldarrain MG, Ojeda JR, Ferrer I, Garcia-Monco JC. Aprosodic speech with insular hyperintensities and 4R Tau pathology on autopsy. Neurocase 2013; 19:583-6. [PMID: 22992154 DOI: 10.1080/13554794.2012.713489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We describe a 46-year-old woman who presented with a 2-year history of aprosodic speech together with apathy and disinhibition. Brain magnetic resonance imaging showed subcortical hyperintensities over both insular regions that later extended to both frontal and temporal cortices. The post-mortem exam showed a massive tau protein deposition throughout the brain. No mutation in the gene MAPT was detected. This case illustrates an atypical clinical-radiological presentation of a frontotemporal dementia with an unusual speech and abnormal signal of both insulae. Furthermore, it reinforces the crucial role of the insula in the development of symptoms in frontotemporal dementia.
Collapse
|
47
|
Ishizuka T, Nakamura M, Ichiba M, Fujita S, Takeuchi K, Fujimoto T, Sano A. Different clinical phenotypes in siblings with a presenilin-1 P264L mutation. Dement Geriatr Cogn Disord 2012; 33:132-40. [PMID: 22572737 DOI: 10.1159/000338394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mutations in the presenilin-1 gene (PSEN1) have been identified in autosomal dominant early-onset cases of Alzheimer's disease (AD). AIMS To investigate different clinical phenotypes of siblings possessing the same heterozygous P264L mutation in the PSEN1 gene. METHODS We evaluated clinical features, neuroimaging results, and neuropsychological examinations. The PSEN1 gene and other dementia-related gene mutations were screened. RESULTS We clinically diagnosed the proband as atypical AD with frontotemporal dementia features and diagnosed the elder brother of the proband as typical AD, based on neuropsychological symptoms and a brain imaging examination including amyloid imaging data. A heterozygous P264L mutation in the PSEN1 gene was identified in both siblings. CONCLUSION This study is one of few reports of AD siblings possessing the same mutation but exhibiting different clinical phenotypes in a Japanese family possessing a P264L mutation in the PSEN1 gene. The current results suggest that unknown modifiers, including both genetic and epigenetic factors, may alter the pathological and clinical phenotypes of a genetically predetermined disease.
Collapse
Affiliation(s)
- Takanori Ishizuka
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Bibl M, Esselmann H, Wiltfang J. Neurochemical biomarkers in Alzheimer's disease and related disorders. Ther Adv Neurol Disord 2012; 5:335-48. [PMID: 23139704 PMCID: PMC3487531 DOI: 10.1177/1756285612455367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neurochemical biomarkers for diagnosing dementias are currently under intensive investigation and the field is rapidly expanding. The main protagonists and the best defined among them are cerebrospinal fluid levels of Aβ42, tau and its phosphorylated forms (p-tau). In addition, novel cerebrospinal fluid biomarkers are emerging and their multiparametric assessment seems most promising for increasing the accuracy in neurochemical dementia diagnostics. The combined assessment of Aβ42 and p-tau has recently shown value for diagnosing prodromal states of Alzheimer's dementia, that is, mild cognitive impairment. Disease-specific biomarkers for other degenerative dementias are still missing, but some progress has recently been made. As lumbar puncture is an additional burden for the patient, blood-based neurochemical biomarkers are definitely warranted and promising new discoveries have been made in this direction. These diagnostic developments have implicit therapeutic consequences and give rise to new requirements for future neurochemical dementia diagnostics.
Collapse
Affiliation(s)
- Mirko Bibl
- Department of Psychiatry, Psychotherapy and Addiction Medicine, Kliniken Essen-Mitte; University of Duisburg-Essen, Essen, Germany
| | | | | |
Collapse
|
49
|
Dong S, Duan Y, Hu Y, Zhao Z. Advances in the pathogenesis of Alzheimer's disease: a re-evaluation of amyloid cascade hypothesis. Transl Neurodegener 2012; 1:18. [PMID: 23210692 PMCID: PMC3526416 DOI: 10.1186/2047-9158-1-18] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/13/2012] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a common neurodegenerative disease characterized clinically by progressive deterioration of memory, and pathologically by histopathological changes including extracellular deposits of amyloid-beta (A-beta) peptides forming senile plaques (SP) and the intracellular neurofibrillary tangles (NFT) of hyperphosphorylated tau in the brain. This review focused on the new developments of amyloid cascade hypothesis with details on the production, metabolism and clearance of A-beta, and the key roles of some important A-beta-related genes in the pathological processes of AD. The most recent research advances in genetics, neuropathology and pathogenesis of the disease were also discussed.
Collapse
Affiliation(s)
- Suzhen Dong
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, 3663 Zhongshan Road (N), Shanghai, 200062, China.
| | | | | | | |
Collapse
|
50
|
Cohn-Hokke PE, Elting MW, Pijnenburg YAL, van Swieten JC. Genetics of dementia: update and guidelines for the clinician. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:628-43. [PMID: 22815225 DOI: 10.1002/ajmg.b.32080] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/28/2012] [Indexed: 12/12/2022]
Abstract
With increased frequency, clinical geneticists are asked for genetic advice on the heredity of dementia in families. Alzheimer's disease is in most cases a complex disease, but may be autosomal dominant inherited. Mutations in the PSEN1 gene are the most common genetic cause of early onset Alzheimer's disease, whereas APP and PSEN2 gene mutations are less frequent. Familial frontotemporal dementia may be associated with a mutation in the MAPT or GRN gene, or with a repeat expansion in the C9orf72 gene. All these genes show autosomal dominant inheritance with a high penetrance. Although Alzheimer's disease and frontotemporal dementia are clinically distinguishable entities, phenotypical overlap may occur. Rarely, dementia is caused by mutations in other autosomal dominant genes or by genetic defects with autosomal recessive, X-linked dominant or mitochondrial inheritance. The inherited forms of frontotemporal dementia and Alzheimer's disease show a large phenotypic variability also within families, resulting in many remaining uncertainties for mutation carriers. Therefore, genetic counseling before performing genetic testing is essential in both symptomatic individuals and healthy at risk relatives. This review provides an overview of the genetic causes of dementia and discusses all aspects relevant for genetic counseling and testing. Furthermore, based on current knowledge, we provide algorithms for genetic testing in patients with early onset Alzheimer's disease or frontotemporal dementia.
Collapse
Affiliation(s)
- Petra E Cohn-Hokke
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|