1
|
Kim S, Kim JS, Lee SH, Kim JM, Na S, Choi JH, Kim HJ. Intellectual Disability in Episodic Ataxia Type 2: Beyond Paroxysmal Vertigo and Ataxia. J Clin Neurol 2024; 20:563-570. [PMID: 39505308 PMCID: PMC11543395 DOI: 10.3988/jcn.2024.0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Episodic ataxia type 2 (EA2) is characterized by recurrent vertigo and ataxia due to mutations in CACNA1A that encodes the α1A-subunit of the P/Q-type voltage-gated calcium channel. This study aimed to determine intellectual function in EA2. METHODS During 2019-2023, 13 patients (6 males, age range=10-52 years, median age=29 years) with a genetically confirmed diagnosis of EA2 had their intellectual function evaluated using the Korean versions of the Wechsler Intelligence Scales (version IV) for adults or children in 3 referral-based university hospitals in South Korea. RESULTS The full-scale intelligence quotients (FSIQs) among the 13 patients were below the average (90-109) in 11, low average (80-89) in 5 (38.5%), borderline (70-79) in 1 (7.7%), and indicated intellectual disability (≤69) in 5 (38.5%). These patterns of cognitive impairments were observed in all four of the following subtests: verbal comprehension, perceptual reasoning, working memory, and processing speed. The FSIQ was not correlated with the ages at onset for vertigo and ataxia (Pearson correlation: p=0.40). CONCLUSIONS Patients with EA2 may have hidden intellectual disabilities even without a history of epilepsy or administration of antiepileptic drugs, and should be considered for genetic counseling and therapeutic interventions. Given the availability of medication to control episodic vertigo and ataxia, early diagnosis and management are important in preventing irreversible brain dysfunction in EA2.
Collapse
Affiliation(s)
- Seoyeon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Ji-Soo Kim
- Department of Neurology, College of Medicine, Seoul National University, Seoul, Korea
- Department of Neurology, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seung-Han Lee
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Jae-Myung Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Seunghee Na
- Department of Neurology, Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Korea
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyo-Jung Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
2
|
Kalyakulina A, Yusipov I, Kondakova E, Bacalini MG, Giuliani C, Sivtseva T, Semenov S, Ksenofontov A, Nikolaeva M, Khusnutdinova E, Zakharova R, Vedunova M, Franceschi C, Ivanchenko M. Epigenetics of the far northern Yakutian population. Clin Epigenetics 2023; 15:189. [PMID: 38053163 PMCID: PMC10699032 DOI: 10.1186/s13148-023-01600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Yakuts are one of the indigenous populations of the subarctic and arctic territories of Siberia characterized by a continental subarctic climate with severe winters, with the regular January average temperature in the regional capital city of Yakutsk dipping below - 40 °C. The epigenetic mechanisms of adaptation to such ecologies and environments and, in particular, epigenetic age acceleration in the local population have not been studied before. RESULTS This work reports the first epigenetic study of the Yakutian population using whole-blood DNA methylation data, supplemented with the comparison to the residents of Central Russia. Gene set enrichment analysis revealed, among others, geographic region-specific differentially methylated regions associated with adaptation to climatic conditions (water consumption, digestive system regulation), aging processes (actin filament activity, cell fate), and both of them (channel activity, regulation of steroid and corticosteroid hormone secretion). Further, it is demonstrated that the epigenetic age acceleration of the Yakutian representatives is significantly higher than that of Central Russia counterparts. For both geographic regions, we showed that epigenetically males age faster than females, whereas no significant sex differences were found between the regions. CONCLUSIONS We performed the first study of the epigenetic data of the Yakutia cohort, paying special attention to region-specific features, aging processes, age acceleration, and sex specificity.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia.
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia.
| | - Igor Yusipov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Elena Kondakova
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | | | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Bologna, Italy
| | - Tatiana Sivtseva
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Sergey Semenov
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Artem Ksenofontov
- State Budgetary Institution of the Republic of Sakha (Yakutia) Republican Center for Public Health and Medical Prevention, Yakutsk, 677001, Russia
| | - Maria Nikolaeva
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia, 450054
| | - Raisa Zakharova
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
3
|
Huang H, Shakkottai VG. Targeting Ion Channels and Purkinje Neuron Intrinsic Membrane Excitability as a Therapeutic Strategy for Cerebellar Ataxia. Life (Basel) 2023; 13:1350. [PMID: 37374132 DOI: 10.3390/life13061350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In degenerative neurological disorders such as Parkinson's disease, a convergence of widely varying insults results in a loss of dopaminergic neurons and, thus, the motor symptoms of the disease. Dopamine replacement therapy with agents such as levodopa is a mainstay of therapy. Cerebellar ataxias, a heterogeneous group of currently untreatable conditions, have not been identified to have a shared physiology that is a target of therapy. In this review, we propose that perturbations in cerebellar Purkinje neuron intrinsic membrane excitability, a result of ion channel dysregulation, is a common pathophysiologic mechanism that drives motor impairment and vulnerability to degeneration in cerebellar ataxias of widely differing genetic etiologies. We further propose that treatments aimed at restoring Purkinje neuron intrinsic membrane excitability have the potential to be a shared therapy in cerebellar ataxia akin to levodopa for Parkinson's disease.
Collapse
Affiliation(s)
- Haoran Huang
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Vikram G Shakkottai
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Burgunder JM. Mechanisms underlying phenotypic variation in neurogenetic disorders. Nat Rev Neurol 2023:10.1038/s41582-023-00811-4. [PMID: 37202496 DOI: 10.1038/s41582-023-00811-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/20/2023]
Abstract
Neurological diseases associated with pathogenic variants in a specific gene, or even with a specific pathogenic variant, can show profound phenotypic variation with regard to symptom presentation, age at onset and disease course. Highlighting examples from a range of neurogenetic disorders, this Review explores emerging mechanisms that are involved in this variability, including environmental, genetic and epigenetic factors that influence the expressivity and penetrance of pathogenic variants. Environmental factors, some of which can potentially be modified to prevent disease, include trauma, stress and metabolic changes. Dynamic patterns of pathogenic variants might explain some of the phenotypic variations, for example, in the case of disorders caused by DNA repeat expansions such as Huntington disease (HD). An important role for modifier genes has also been identified in some neurogenetic disorders, including HD, spinocerebellar ataxia and X-linked dystonia-parkinsonism. In other disorders, such as spastic paraplegia, the basis for most of the phenotypic variability remains unclear. Epigenetic factors have been implicated in disorders such as SGCE-related myoclonus-dystonia and HD. Knowledge of the mechanisms underlying phenotypic variation is already starting to influence management strategies and clinical trials for neurogenetic disorders.
Collapse
|
5
|
Complex effects on Ca V2.1 channel gating caused by a CACNA1A variant associated with a severe neurodevelopmental disorder. Sci Rep 2022; 12:9186. [PMID: 35655070 PMCID: PMC9163077 DOI: 10.1038/s41598-022-12789-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/16/2022] [Indexed: 01/25/2023] Open
Abstract
P/Q-type Ca2+ currents mediated by CaV2.1 channels are essential for active neurotransmitter release at neuromuscular junctions and many central synapses. Mutations in CACNA1A, the gene encoding the principal CaV2.1 α1A subunit, cause a broad spectrum of neurological disorders. Typically, gain-of-function (GOF) mutations are associated with migraine and epilepsy while loss-of-function (LOF) mutations are causative for episodic and congenital ataxias. However, a cluster of severe CaV2.1 channelopathies have overlapping presentations which suggests that channel dysfunction in these disorders cannot always be defined bimodally as GOF or LOF. In particular, the R1667P mutation causes focal seizures, generalized hypotonia, dysarthria, congenital ataxia and, in one case, cerebral edema leading ultimately to death. Here, we demonstrate that the R1667P mutation causes both channel GOF (hyperpolarizing voltage-dependence of activation, slowed deactivation) and LOF (slowed activation kinetics) when expressed heterologously in tsA-201 cells. We also observed a substantial reduction in Ca2+ current density in this heterologous system. These changes in channel gating and availability/expression manifested in diminished Ca2+ flux during action potential-like stimuli. However, the integrated Ca2+ fluxes were no different when normalized to tail current amplitude measured upon repolarization from the reversal potential. In summary, our findings indicate a complex functional effect of R1667P and support the idea that pathological missense mutations in CaV2.1 may not represent exclusively GOF or LOF.
Collapse
|
6
|
The complexities of CACNA1A in clinical neurogenetics. J Neurol 2021; 269:3094-3108. [PMID: 34806130 DOI: 10.1007/s00415-021-10897-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/25/2022]
Abstract
Variants in CACNA1A are classically related to episodic ataxia type 2, familial hemiplegic migraine type 1, and spinocerebellar ataxia type 6. Over the years, CACNA1A has been associated with a broader spectrum of phenotypes. Targeted analysis and unbiased sequencing of CACNA1A result not only in clear molecular diagnoses, but also in large numbers of variants of uncertain significance (VUS), or likely pathogenic variants with a phenotype that does not directly match the CACNA1A spectrum. Over the last years, targeted and clinical exome sequencing in our center has identified 41 CACNA1A variants. Ultimately, variants were considered pathogenic or likely pathogenic in 23 cases, with most phenotypes ranging from episodic or progressive ataxia to more complex ataxia syndromes, as well as intellectual disability and epilepsy. In two cases, the causality of the variant was discarded based on non-segregation or an alternative diagnosis. In the remaining 16 cases, the variant was classified as uncertain, due to lack of opportunities for segregation analysis or uncertain association with a non-classic phenotype. Phenotypic variability and the large number of VUS make CACNA1A a challenging gene for neurogenetic diagnostics. Accessible functional read-outs are clearly needed, especially in cases with a non-classic phenotype.
Collapse
|
7
|
Kessi M, Chen B, Peng J, Yan F, Yang L, Yin F. Calcium channelopathies and intellectual disability: a systematic review. Orphanet J Rare Dis 2021; 16:219. [PMID: 33985586 PMCID: PMC8120735 DOI: 10.1186/s13023-021-01850-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcium ions are involved in several human cellular processes including corticogenesis, transcription, and synaptogenesis. Nevertheless, the relationship between calcium channelopathies (CCs) and intellectual disability (ID)/global developmental delay (GDD) has been poorly investigated. We hypothesised that CCs play a major role in the development of ID/GDD and that both gain- and loss-of-function variants of calcium channel genes can induce ID/GDD. As a result, we performed a systematic review to investigate the contribution of CCs, potential mechanisms underlying their involvement in ID/GDD, advancements in cell and animal models, treatments, brain anomalies in patients with CCs, and the existing gaps in the knowledge. We performed a systematic search in PubMed, Embase, ClinVar, OMIM, ClinGen, Gene Reviews, DECIPHER and LOVD databases to search for articles/records published before March 2021. The following search strategies were employed: ID and calcium channel, mental retardation and calcium channel, GDD and calcium channel, developmental delay and calcium channel. MAIN BODY A total of 59 reports describing 159 cases were found in PubMed, Embase, ClinVar, and LOVD databases. Variations in ten calcium channel genes including CACNA1A, CACNA1C, CACNA1I, CACNA1H, CACNA1D, CACNA2D1, CACNA2D2, CACNA1E, CACNA1F, and CACNA1G were found to be associated with ID/GDD. Most variants exhibited gain-of-function effect. Severe to profound ID/GDD was observed more for the cases with gain-of-function variants as compared to those with loss-of-function. CACNA1E, CACNA1G, CACNA1F, CACNA2D2 and CACNA1A associated with more severe phenotype. Furthermore, 157 copy number variations (CNVs) spanning calcium genes were identified in DECIPHER database. The leading genes included CACNA1C, CACNA1A, and CACNA1E. Overall, the underlying mechanisms included gain- and/ or loss-of-function, alteration in kinetics (activation, inactivation) and dominant-negative effects of truncated forms of alpha1 subunits. Forty of the identified cases featured cerebellar atrophy. We identified only a few cell and animal studies that focused on the mechanisms of ID/GDD in relation to CCs. There is a scarcity of studies on treatment options for ID/GDD both in vivo and in vitro. CONCLUSION Our results suggest that CCs play a major role in ID/GDD. While both gain- and loss-of-function variants are associated with ID/GDD, the mechanisms underlying their involvement need further scrutiny.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fangling Yan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China.
| |
Collapse
|
8
|
Jaudon F, Baldassari S, Musante I, Thalhammer A, Zara F, Cingolani LA. Targeting Alternative Splicing as a Potential Therapy for Episodic Ataxia Type 2. Biomedicines 2020; 8:E332. [PMID: 32899500 PMCID: PMC7555146 DOI: 10.3390/biomedicines8090332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Episodic ataxia type 2 (EA2) is an autosomal dominant neurological disorder characterized by paroxysmal attacks of ataxia, vertigo, and nausea that usually last hours to days. It is caused by loss-of-function mutations in CACNA1A, the gene encoding the pore-forming α1 subunit of P/Q-type voltage-gated Ca2+ channels. Although pharmacological treatments, such as acetazolamide and 4-aminopyridine, exist for EA2, they do not reduce or control the symptoms in all patients. CACNA1A is heavily spliced and some of the identified EA2 mutations are predicted to disrupt selective isoforms of this gene. Modulating splicing of CACNA1A may therefore represent a promising new strategy to develop improved EA2 therapies. Because RNA splicing is dysregulated in many other genetic diseases, several tools, such as antisense oligonucleotides, trans-splicing, and CRISPR-based strategies, have been developed for medical purposes. Here, we review splicing-based strategies used for genetic disorders, including those for Duchenne muscular dystrophy, spinal muscular dystrophy, and frontotemporal dementia with Parkinsonism linked to chromosome 17, and discuss their potential applicability to EA2.
Collapse
Affiliation(s)
- Fanny Jaudon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16126 Genoa, Italy
| | - Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16126 Genoa, Italy
| | - Lorenzo A. Cingolani
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy;
| |
Collapse
|
9
|
Rare CACNA1A mutations leading to congenital ataxia. Pflugers Arch 2020; 472:791-809. [DOI: 10.1007/s00424-020-02396-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/03/2023]
|
10
|
Polidoro D, Van Ham L, Santens P, Cornelis I, Charalambous M, Broeckx BJG, Bhatti SFM. Phenotypic characterization of paroxysmal dyskinesia in Maltese dogs. J Vet Intern Med 2020; 34:1541-1546. [PMID: 32415795 PMCID: PMC7379016 DOI: 10.1111/jvim.15804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 01/03/2023] Open
Abstract
Background Paroxysmal dyskinesias (PDs) are a group of central nervous system diseases characterized by episodes of abnormal involuntary hyperkinetic movement without altered consciousness that increasingly have been recognized in dogs. Objectives To present the phenotypical characterization, treatment, and outcome of a PD observed in Maltese dogs. Animals Client‐owned Maltese dogs (n = 19) with presumed diagnosis of PD. Methods Data were collected retrospectively from medical records (2014‐2019), and supporting information was added prospectively by using a questionnaire directed to the owners of the affected dogs. Results The episodes were characterized mainly by sudden dystonia of ≥1 limbs and generalized body tremors with preserved consciousness. The mean age of clinical onset was 5.4 years. Episode frequency varied widely both among and within individuals. Median episode duration was 4.5 minutes. Most episodes were stress‐ or exercise‐induced. Acetazolamide was administered to 6 dogs, and 4 dogs experienced a decrease in episode frequency. In 7 dogs that received a gluten‐free diet, 6 dogs became episode‐free. In 4 dogs, the episodes stopped spontaneously and in 2 dogs no medication or specific diet was given and the episodes continued at the same frequency. Conclusions and Clinical Importance Given the breed predisposition and regional distribution of the disease, additional research should focus on elucidating the underlying genetic cause doing so might advance both our understanding of the pathophysiology and treatment of this disease, not only in dogs, but also in humans. Regardless of the treatment protocol selected, prognosis appears fair to good.
Collapse
Affiliation(s)
- Dakir Polidoro
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Van Ham
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Patrick Santens
- Department of Neurology, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent, Belgium
| | - Ine Cornelis
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marios Charalambous
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart J G Broeckx
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sofie F M Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
11
|
Tyagi S, Ribera AB, Bannister RA. Zebrafish as a Model System for the Study of Severe Ca V2.1 (α 1A) Channelopathies. Front Mol Neurosci 2020; 12:329. [PMID: 32116539 PMCID: PMC7018710 DOI: 10.3389/fnmol.2019.00329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 02/02/2023] Open
Abstract
The P/Q-type CaV2.1 channel regulates neurotransmitter release at neuromuscular junctions (NMJ) and many central synapses. CACNA1A encodes the pore-containing α1A subunit of CaV2.1 channels. In humans, de novo CACNA1A mutations result in a wide spectrum of neurological, neuromuscular, and movement disorders, such as familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2), as well as a more recently discovered class of more severe disorders, which are characterized by ataxia, hypotonia, cerebellar atrophy, and cognitive/developmental delay. Heterologous expression of CaV2.1 channels has allowed for an understanding of the consequences of CACNA1A missense mutations on channel function. In contrast, a mechanistic understanding of how specific CACNA1A mutations lead in vivo to the resultant phenotypes is lacking. In this review, we present the zebrafish as a model to both study in vivo mechanisms of CACNA1A mutations that result in synaptic and behavioral defects and to screen for effective drug therapies to combat these and other CaV2.1 channelopathies.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, United States
| | - Angeles B Ribera
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Roger A Bannister
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Martinez-Ortiz W, Cardozo TJ. An Improved Method for Modeling Voltage-Gated Ion Channels at Atomic Accuracy Applied to Human Ca v Channels. Cell Rep 2019; 23:1399-1408. [PMID: 29719253 PMCID: PMC5957504 DOI: 10.1016/j.celrep.2018.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/01/2017] [Accepted: 04/04/2018] [Indexed: 12/26/2022] Open
Abstract
Voltage-gated ion channels (VGICs) are associated with hundreds of human diseases. To date, 3D structural models of human VGICs have not been reported. We developed a 3D structural integrity metric to rank the accuracy of all VGIC structures deposited in the PDB. The metric revealed inaccuracies in structural models built from recent single-particle, non-crystalline cryo-electron microscopy maps and enabled the building of highly accurate homology models of human Cav channel α1 subunits at atomic resolution. Human Cav Mendelian mutations mostly located to segments involved in the mechanism of voltage sensing and gating within the 3D structure, with multiple mutations targeting equivalent 3D structural locations despite eliciting distinct clinical phenotypes. The models also revealed that the architecture of the ion selectivity filter is highly conserved from bacteria to humans and between sodium and calcium VGICs.
Collapse
Affiliation(s)
- Wilnelly Martinez-Ortiz
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Timothy J Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
13
|
Jiang X, Raju PK, D'Avanzo N, Lachance M, Pepin J, Dubeau F, Mitchell WG, Bello-Espinosa LE, Pierson TM, Minassian BA, Lacaille JC, Rossignol E. Both gain-of-function and loss-of-function de novo CACNA1A mutations cause severe developmental epileptic encephalopathies in the spectrum of Lennox-Gastaut syndrome. Epilepsia 2019; 60:1881-1894. [PMID: 31468518 DOI: 10.1111/epi.16316] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Developmental epileptic encephalopathies (DEEs) are genetically heterogeneous severe childhood-onset epilepsies with developmental delay or cognitive deficits. In this study, we explored the pathogenic mechanisms of DEE-associated de novo mutations in the CACNA1A gene. METHODS We studied the functional impact of four de novo DEE-associated CACNA1A mutations, including the previously described p.A713T variant and three novel variants (p.V1396M, p.G230V, and p.I1357S). Mutant cDNAs were expressed in HEK293 cells, and whole-cell voltage-clamp recordings were conducted to test the impacts on CaV 2.1 channel function. Channel localization and structure were assessed with immunofluorescence microscopy and three-dimensional (3D) modeling. RESULTS We find that the G230V and I1357S mutations result in loss-of-function effects with reduced whole-cell current densities and decreased channel expression at the cell membrane. By contrast, the A713T and V1396M variants resulted in gain-of-function effects with increased whole-cell currents and facilitated current activation (hyperpolarized shift). The A713T variant also resulted in slower current decay. 3D modeling predicts conformational changes favoring channel opening for A713T and V1396M. SIGNIFICANCE Our findings suggest that both gain-of-function and loss-of-function CACNA1A mutations are associated with similarly severe DEEs and that functional validation is required to clarify the underlying molecular mechanisms and to guide therapies.
Collapse
Affiliation(s)
- Xiao Jiang
- Sainte-Justine University Hospital Center, University of Montréal, Montréal, Canada.,Department of Neurosciences, University of Montréal, Montreal, Canada
| | - Praveen K Raju
- Sainte-Justine University Hospital Center, University of Montréal, Montréal, Canada.,Department of Neurosciences, University of Montréal, Montreal, Canada
| | - Nazzareno D'Avanzo
- Department of Pharmacology and Physiology, University of Montréal, Montréal, Canada
| | - Mathieu Lachance
- Sainte-Justine University Hospital Center, University of Montréal, Montréal, Canada
| | - Julie Pepin
- Department of Neurosciences, University of Montréal, Montreal, Canada
| | - François Dubeau
- Department of Neurosciences, The Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Wendy G Mitchell
- Neurology Division, Children's Hospital Los Angeles & Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | | | - Tyler M Pierson
- Departments of Pediatrics and Neurology, The Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | | | | | - Elsa Rossignol
- Sainte-Justine University Hospital Center, University of Montréal, Montréal, Canada.,Department of Neurosciences, University of Montréal, Montreal, Canada
| |
Collapse
|
14
|
Mutation Spectrum in the CACNA1A Gene in 49 Patients with Episodic Ataxia. Sci Rep 2017; 7:2514. [PMID: 28566750 PMCID: PMC5451382 DOI: 10.1038/s41598-017-02554-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/13/2017] [Indexed: 11/08/2022] Open
Abstract
Episodic ataxia is an autosomal dominant ion channel disorder characterized by episodes of imbalance and incoordination. The disease is genetically heterogeneous and is classified as episodic ataxia type 2 (EA2) when it is caused by a mutation in the CACNA1A gene, encoding the α1A subunit of the P/Q-type voltage-gated calcium channel Cav2.1. The vast majority of EA2 disease-causing variants are loss-of-function (LoF) point changes leading to decreased channel currents. CACNA1A exonic deletions have also been reported in EA2 using quantitative approaches. We performed a mutational screening of the CACNA1A gene, including the promoter and 3'UTR regions, in 49 unrelated patients diagnosed with episodic ataxia. When pathogenic variants were not found by sequencing, we performed a copy number variant (CNV) analysis to screen for duplications or deletions. Overall, sequencing screening allowed identification of six different point variants (three nonsense and three missense changes) and two coding indels, one of them found in two unrelated patients. Additionally, CNV analysis identified a deletion in a patient spanning exon 35 as a result of a recombination event between flanking intronic Alu sequences. This study allowed identification of potentially pathogenic alterations in our sample, five of them novel, which cover 20% of the patients (10/49). Our data suggest that most of these variants are disease-causing, although functional studies are required.
Collapse
|
15
|
Mark MD, Schwitalla JC, Groemmke M, Herlitze S. Keeping Our Calcium in Balance to Maintain Our Balance. Biochem Biophys Res Commun 2016; 483:1040-1050. [PMID: 27392710 DOI: 10.1016/j.bbrc.2016.07.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/04/2016] [Indexed: 01/13/2023]
Abstract
Calcium is a key signaling molecule and ion involved in a variety of diverse processes in our central nervous system (CNS) which include gene expression, synaptic transmission and plasticity, neuronal excitability and cell maintenance. Proper control of calcium signaling is not only vital for neuronal physiology but also cell survival. Mutations in fundamental channels, transporters and second messenger proteins involved in orchestrating the balance of our calcium homeostasis can lead to severe neurodegenerative disorders, such as Spinocerebellar (SCA) and Episodic (EA) ataxias. Hereditary ataxias make up a remarkably diverse group of neurological disorders clinically characterized by gait ataxia, nystagmus, dysarthria, trunk and limb ataxia and often atrophy of the cerebellum. The largest family of hereditary ataxias is SCAs which consists of a growing family of 42 members. A relatively smaller family of 8 members compose the EAs. The gene mutations responsible for half of the EA members and over 35 of the SCA subtypes have been identified, and several have been found to be responsible for cerebellar atrophy, abnormal intracellular calcium levels, dysregulation of Purkinje cell pacemaking, altered cerebellar synaptic transmission and/or ataxia in mouse models. Although the genetic diversity and affected cellular pathways of hereditary ataxias are broad, one common theme amongst these genes is their effects on maintaining calcium balance in primarily the cerebellum. There is emerging evidence that the pathogenesis of hereditary ataxias may be caused by imbalances in intracellular calcium due to genetic mutations in calcium-mediating proteins. In this review we will discuss the current evidence supporting the role of deranged calcium as the culprit to neurodegenerative diseases with a primary focus on SCAs and EAs.
Collapse
Affiliation(s)
- Melanie D Mark
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Jan Claudius Schwitalla
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Michelle Groemmke
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
16
|
Spillane J, Kullmann DM, Hanna MG. Genetic neurological channelopathies: molecular genetics and clinical phenotypes. J Neurol Neurosurg Psychiatry 2016; 87:37-48. [PMID: 26558925 PMCID: PMC4717447 DOI: 10.1136/jnnp-2015-311233] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/13/2015] [Indexed: 01/08/2023]
Abstract
Evidence accumulated over recent years has shown that genetic neurological channelopathies can cause many different neurological diseases. Presentations relating to the brain, spinal cord, peripheral nerve or muscle mean that channelopathies can impact on almost any area of neurological practice. Typically, neurological channelopathies are inherited in an autosomal dominant fashion and cause paroxysmal disturbances of neurological function, although the impairment of function can become fixed with time. These disorders are individually rare, but an accurate diagnosis is important as it has genetic counselling and often treatment implications. Furthermore, the study of less common ion channel mutation-related diseases has increased our understanding of pathomechanisms that is relevant to common neurological diseases such as migraine and epilepsy. Here, we review the molecular genetic and clinical features of inherited neurological channelopathies.
Collapse
Affiliation(s)
- J Spillane
- Royal Free Hospital Foundation Trust London, London, UK MRC Centre for Neuromuscular Disease, UCL, London, UK
| | - D M Kullmann
- MRC Centre for Neuromuscular Disease, UCL, London, UK UCL, Institute of Neurology, London, UK
| | - M G Hanna
- MRC Centre for Neuromuscular Disease, UCL, London, UK UCL, Institute of Neurology, London, UK
| |
Collapse
|
17
|
Bahamonde MI, Serra SA, Drechsel O, Rahman R, Marcé-Grau A, Prieto M, Ossowski S, Macaya A, Fernández-Fernández JM. A Single Amino Acid Deletion (ΔF1502) in the S6 Segment of CaV2.1 Domain III Associated with Congenital Ataxia Increases Channel Activity and Promotes Ca2+ Influx. PLoS One 2015; 10:e0146035. [PMID: 26716990 PMCID: PMC4696675 DOI: 10.1371/journal.pone.0146035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023] Open
Abstract
Mutations in the CACNA1A gene, encoding the pore-forming CaV2.1 (P/Q-type) channel α1A subunit, result in heterogeneous human neurological disorders, including familial and sporadic hemiplegic migraine along with episodic and progressive forms of ataxia. Hemiplegic Migraine (HM) mutations induce gain-of-channel function, mainly by shifting channel activation to lower voltages, whereas ataxia mutations mostly produce loss-of-channel function. However, some HM-linked gain-of-function mutations are also associated to congenital ataxia and/or cerebellar atrophy, including the deletion of a highly conserved phenylalanine located at the S6 pore region of α1A domain III (ΔF1502). Functional studies of ΔF1502 CaV2.1 channels, expressed in Xenopus oocytes, using the non-physiological Ba2+ as the charge carrier have only revealed discrete alterations in channel function of unclear pathophysiological relevance. Here, we report a second case of congenital ataxia linked to the ΔF1502 α1A mutation, detected by whole-exome sequencing, and analyze its functional consequences on CaV2.1 human channels heterologously expressed in mammalian tsA-201 HEK cells, using the physiological permeant ion Ca2+. ΔF1502 strongly decreases the voltage threshold for channel activation (by ~ 21 mV), allowing significantly higher Ca2+ current densities in a range of depolarized voltages with physiological relevance in neurons, even though maximal Ca2+ current density through ΔF1502 CaV2.1 channels is 60% lower than through wild-type channels. ΔF1502 accelerates activation kinetics and slows deactivation kinetics of CaV2.1 within a wide range of voltage depolarization. ΔF1502 also slowed CaV2.1 inactivation kinetic and shifted the inactivation curve to hyperpolarized potentials (by ~ 28 mV). ΔF1502 effects on CaV2.1 activation and deactivation properties seem to be of high physiological relevance. Thus, ΔF1502 strongly promotes Ca2+ influx in response to either single or trains of action potential-like waveforms of different durations. Our observations support a causative role of gain-of-function CaV2.1 mutations in congenital ataxia, a neurodevelopmental disorder at the severe-most end of CACNA1A-associated phenotypic spectrum.
Collapse
Affiliation(s)
- Maria Isabel Bahamonde
- Laboratori de Fisiologia Molecular i Canalopaties, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Selma Angèlica Serra
- Laboratori de Fisiologia Molecular i Canalopaties, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oliver Drechsel
- Genomic and Epigenomic Variation in Disease Group, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Rubayte Rahman
- Genomic and Epigenomic Variation in Disease Group, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Marcé-Grau
- Pediatric Neurology Research Group, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Prieto
- Laboratori de Fisiologia Molecular i Canalopaties, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Stephan Ossowski
- Genomic and Epigenomic Variation in Disease Group, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Alfons Macaya
- Pediatric Neurology Research Group, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José M. Fernández-Fernández
- Laboratori de Fisiologia Molecular i Canalopaties, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
18
|
Royaux E, Bhatti S, Harvey R, Garosi L, Shelton GD, Van Ham L. Acetazolamide-responsive paroxysmal dyskinesia in a 12-week-old female golden retriever dog. Vet Q 2015; 36:45-9. [DOI: 10.1080/01652176.2015.1123822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Aoyagi K, Rossignol E, Hamdan FF, Mulcahy B, Xie L, Nagamatsu S, Rouleau GA, Zhen M, Michaud JL. A Gain-of-Function Mutation inNALCNin a Child with Intellectual Disability, Ataxia, and Arthrogryposis. Hum Mutat 2015; 36:753-7. [DOI: 10.1002/humu.22797] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/08/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Kyota Aoyagi
- Department of Biochemistry; Kyorin University School of Medicine; Tokyo Japan
| | - Elsa Rossignol
- CHU Sainte-Justine Research Center; Montreal Canada
- Department of Neurosciences; University of Montreal; Montreal Canada
- Department of Pediatrics; University of Montreal; Montreal Canada
| | | | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute and Institute of Medical Science; Department of Molecular Genetics; University of Toronto; Ontario Canada
| | - Lin Xie
- Lunenfeld-Tanenbaum Research Institute and Institute of Medical Science; Department of Molecular Genetics; University of Toronto; Ontario Canada
| | - Shinya Nagamatsu
- Department of Biochemistry; Kyorin University School of Medicine; Tokyo Japan
| | - Guy A. Rouleau
- Montreal Neurological Institute; McGill University; Montreal Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute and Institute of Medical Science; Department of Molecular Genetics; University of Toronto; Ontario Canada
| | - Jacques L. Michaud
- CHU Sainte-Justine Research Center; Montreal Canada
- Department of Neurosciences; University of Montreal; Montreal Canada
- Department of Pediatrics; University of Montreal; Montreal Canada
| |
Collapse
|
20
|
Abnormal excitability and episodic low-frequency oscillations in the cerebral cortex of the tottering mouse. J Neurosci 2015; 35:5664-79. [PMID: 25855180 DOI: 10.1523/jneurosci.3107-14.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Ca(2+) channelopathies caused by mutations of the CACNA1A gene that encodes the pore-forming subunit of the human Cav2.1 (P/Q-type) voltage-gated Ca(2+) channel include episodic ataxia type 2 (EA2). Although, in EA2 the emphasis has been on cerebellar dysfunction, patients also exhibit episodic, nonmotoric abnormalities involving the cerebral cortex. This study demonstrates episodic, low-frequency oscillations (LFOs) throughout the cerebral cortex of tottering (tg/tg) mice, a widely used model of EA2. Ranging between 0.035 and 0.11 Hz, the LFOs in tg/tg mice can spontaneously develop very high power, referred to as a high-power state. The LFOs in tg/tg mice are mediated in part by neuronal activity as tetrodotoxin decreases the oscillations and cortical neuron discharge contain the same low frequencies. The high-power state involves compensatory mechanisms because acutely decreasing P/Q-type Ca(2+) channel function in either wild-type (WT) or tg/tg mice does not induce the high-power state. In contrast, blocking l-type Ca(2+) channels, known to be upregulated in tg/tg mice, reduces the high-power state. Intriguingly, basal excitatory glutamatergic neurotransmission constrains the high-power state because blocking ionotropic or metabotropic glutamate receptors results in high-power LFOs in tg/tg but not WT mice. The high-power LFOs are decreased markedly by acetazolamide and 4-aminopyridine, the primary treatments for EA2, suggesting disease relevance. Together, these results demonstrate that the high-power LFOs in the tg/tg cerebral cortex represent a highly abnormal excitability state that may underlie noncerebellar symptoms that characterize CACNA1A mutations.
Collapse
|
21
|
|
22
|
Bashir A, Saleem S, Wani M, Rasool R, Wani IY, Gulnar A, Verma S. Association of single nucleotide polymorphisms of CACNA1A gene in migraine. INDIAN JOURNAL OF HUMAN GENETICS 2014; 20:59-63. [PMID: 24959015 PMCID: PMC4065480 DOI: 10.4103/0971-6866.132757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION: Migraine is a chronic, neurovascular polygenic disease where genetic and environmental factors are involved in its etiology. Dysfunction of neuronal ion transportation can provide a model for predisposition for common forms of migraine. Mutations in genes encoding ion channels disturb the rhythmic function of exposed tissue that may also explain the episodic nature of migraine. Our aim was to study the single nucleotide polymorphisms of CACNA1A gene in migraine patients. MATERIALS AND METHODS: The subjects were the patients of migraine, in the age range of 18-80 years, diagnosed by a Neurologist, as per the diagnostic criteria of International Headache Society (IHS) Classification 2004 after excluding other causes of headache by clinical examination and relevant investigations. The controls were the age and sex matched healthy persons from the same population excluding the relatives of patients. Only those patients and the controls, who voluntarily participated in the study, were taken and their blood samples were taken for the study. Deoxyribonucleic acid (DNA) extraction was performed according to the manufacturer's protocol for Qiagen DNA extraction kits (Qiagen, Hilden, NRW, Germany). DNA content was quantified by spectrophotometric absorption (Nanodrop Spectrophotometer, BioLab, Scoresby, VIC, Australia). Polymerase chain reaction was performed using an iCycler Thermal Cycler (Bio.Rad, Hercules, CA, USA). The polymorphic analysis of CACNA1A gene was carried out by two methods: Restriction fragment length polymorphism and sequencing. RESULTS: The study included a total of 25 patients of migraine, diagnosed on out-patient department basis as per IHS Classification 2004 and compared with age and sex matched 25 healthy controls. Most of the patients 23 (92%) were below the age of 50 years. 20 of the patients (80%) were females and 5 (20%) were males. The polymorphic analysis of CACNA1A gene revealed the presence of only the wild form of the gene for the codon E993V in both case and control groups. CONCLUSION: In our study, we could not find any polymorphism of CACNA1A gene in the selected patients. Instead the wild type of genotype was found in both patients and controls. This negative result presented here, implies that if the CACNA1A gene is involved in typical migraine (with and without aura), its contribution is very modest and therefore difficult to discern. Nevertheless, there are other genes that could be considered potential candidates for typical migraine susceptibility for which further research is needed.
Collapse
Affiliation(s)
- Aadil Bashir
- Department of Neurology, SKIMS, Soura, Srinagar, Jammu and Kashmir, India
| | - Shiekh Saleem
- Department of Neurology, SKIMS, Soura, Srinagar, Jammu and Kashmir, India
| | - Maqbool Wani
- Department of Neurology, SKIMS, Soura, Srinagar, Jammu and Kashmir, India
| | - Roohi Rasool
- Department of Immunology, SKIMS, Soura, Srinagar, Jammu and Kashmir, India
| | - Irfan Yousuf Wani
- Department of Neurology, SKIMS, Soura, Srinagar, Jammu and Kashmir, India
| | - Azhara Gulnar
- Department of Neurology, SKIMS, Soura, Srinagar, Jammu and Kashmir, India
| | - Sawan Verma
- Department of Neurology, SKIMS, Soura, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
23
|
Abstract
OPINION STATEMENT Ataxia can originate from many genetic defects, but also from nongenetic causes. To be able to provide treatment, the first step is to establish the right diagnosis. Once the cause of the ataxia is defined, some specific treatments may be available. For example, the nongenetic ataxias that arise from vitamin deficiencies can improve following treatment. In most cases, however, therapies do not cure the disease and are purely symptomatic. Physiotherapy and occupational therapy are effective in all type of ataxias and often remain the most efficient treatment option for these patients to maximize their quality of life.
Collapse
|
24
|
Gupta VK. CSD, BBB and MMP-9 elevations: animal experiments versus clinical phenomena in migraine. Expert Rev Neurother 2014; 9:1595-614. [DOI: 10.1586/ern.09.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Rajakulendran S, Kaski D, Hanna MG. Neuronal P/Q-type calcium channel dysfunction in inherited disorders of the CNS. Nat Rev Neurol 2012; 8:86-96. [PMID: 22249839 DOI: 10.1038/nrneurol.2011.228] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The past two decades have witnessed the emergence of a new and expanding field of neurological diseases--the genetic ion channelopathies. These disorders arise from mutations in genes that encode ion channel subunits, and manifest as paroxysmal attacks involving the brain or spinal cord, and/or muscle. The voltage-gated P/Q-type calcium channel (P/Q channel) is highly expressed in the cerebellum, hippocampus and cortex of the mammalian brain. The P/Q channel has a fundamental role in mediating fast synaptic transmission at central and peripheral nerve terminals. Autosomal dominant mutations in the CACNA1A gene, which encodes voltage-gated P/Q-type calcium channel subunit α(1) (the principal pore-forming subunit of the P/Q channel) are associated with episodic and progressive forms of cerebellar ataxia, familial hemiplegic migraine, vertigo and epilepsy. This Review considers, from both a clinical and genetic perspective, the various neurological phenotypes arising from inherited P/Q channel dysfunction, with a focus on recent advances in the understanding of the pathogenetic mechanisms underlying these disorders.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- Medical Research Council Center for Neuromuscular Diseases, Box 102, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | | | | |
Collapse
|
26
|
Gazquez I, Lopez-Escamez JA. Genetics of recurrent vertigo and vestibular disorders. Curr Genomics 2011; 12:443-50. [PMID: 22379397 PMCID: PMC3178912 DOI: 10.2174/138920211797248600] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 11/22/2022] Open
Abstract
We present recent advances in the genetics of recurrent vertigo, including familial episodic ataxias, migraneous vertigo, bilateral vestibular hypofunction and Meniere's disease.Although several vestibular disorders are more common within families, the genetics of vestibulopathies is largely not known. Genetic loci and clinical features of familial episodic ataxias have been defined in linkage disequilibrium studies with mutations in neuronal genes KCNA1 and CACNA1A. Migrainous vertigo is a clinical disorder with a high comorbidity within families much more common in females with overlapping features with episodic ataxia and migraine. Bilateral vestibular hypofunction is a heterogeneous clinical group defined by episodes of vertigo leading to progressive loss of vestibular function which also can include migraine. Meniere's disease is a clinical syndrome characterized by spontaneous episodes of recurrent vertigo, sensorineural hearing loss, tinnitus and aural fullness and familial Meniere's disease in around 10-20% of cases. An international collaborative effort to define the clinical phenotype and recruiting patients with migrainous vertigo and Meniere's disease is ongoing for genome-wide association studies.
Collapse
Affiliation(s)
- Irene Gazquez
- Otology & Neurotology Group, CTS495, Centro de Genómica e Investigación Oncológica –GENyO Pfizer-Universidad de Granada- Junta de Andalucia, Granada
| | - Jose A Lopez-Escamez
- Otology & Neurotology Group, CTS495, Centro de Genómica e Investigación Oncológica –GENyO Pfizer-Universidad de Granada- Junta de Andalucia, Granada
- Department of Otolaryngology, Hospital de Poniente, El Ejido, Almería, Spain
| |
Collapse
|
27
|
Helmich RC, Siebner HR, Giffin N, Bestmann S, Rothwell JC, Bloem BR. The dynamic regulation of cortical excitability is altered in episodic ataxia type 2. ACTA ACUST UNITED AC 2011; 133:3519-29. [PMID: 21126994 DOI: 10.1093/brain/awq315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Episodic ataxia type 2 and familial hemiplegic migraine are two rare hereditary disorders that are linked to dysfunctional ion channels and are characterized clinically by paroxysmal neurological symptoms. Impaired regulation of cerebral excitability is thought to play a role in the occurrence of these paroxysms, but the underlying mechanisms are poorly understood. Normal ion channels are crucial for coordinating neuronal firing in response to facilitatory input. Thus, we hypothesized that channel dysfunction in episodic ataxia type 2 and familial hemiplegic migraine may impair the ability to adjust cerebral excitability after facilitatory events. We tested this hypothesis in patients with episodic ataxia type 2 (n = 6), patients with familial hemiplegic migraine (n = 7) and healthy controls (n = 13). All subjects received a high-frequency burst (10 pulses at 20 Hz) of transcranial magnetic stimulation to transiently increase the excitability of the motor cortex. Acute burst-induced excitability changes were probed at 50, 250, 500 and 1000 ms after the end of the burst. This was done using single-pulse transcranial magnetic stimulation to assess corticospinal excitability, and paired-pulse transcranial magnetic stimulation at an interstimulus interval of 2 and 10 ms to assess intracortical inhibition and facilitation, respectively. The time course of burst-induced excitability changes differed between groups. Healthy controls showed a short-lived increase in excitability that was only present 50 ms after the burst. In contrast, patients with episodic ataxia type 2 showed an abnormally prolonged increase in corticospinal excitability that was still present 250 ms after the transcranial magnetic stimulation burst. Furthermore, while controls showed a decrease in intracortical facilitation during the 1 s period following the transcranial magnetic stimulation burst, patients with episodic ataxia type 2 had increased intracortical facilitation 1000 ms after the burst. Intracortical inhibition was unaltered between groups. Patients with familial hemiplegic migraine were not significantly different from either controls or patients with episodic ataxia type 2. Together, these findings indicate that patients with episodic ataxia type 2 have an excessive increase in motor cortex excitability following a strong facilitatory input. We argue that this deficient control of cortical excitability may set the stage for the emergence of paroxysmal neural dysfunction in this disorder.
Collapse
Affiliation(s)
- Rick C Helmich
- Radboud University Nijmegen Medical Center, Department of Neurology, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Mutations in the CACNA1A gene that encodes the pore-forming alpha1 subunit of human voltage-gated CaV2.1 (P/Q-type) Ca2+ channels cause several autosomal-dominant neurologic disorders, including familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2, and spinocerebellar ataxia type 6 (SCA6). For each channelopathy, the review describes the disease phenotype as well as the functional consequences of the disease-causing mutations on recombinant human CaV2.1 channels and, in the case of FHM1 and SCA6, on neuronal CaV2.1 channels expressed at the endogenous physiological level in knockin mouse models. The effects of FHM1 mutations on cortical spreading depression, the phenomenon underlying migraine aura, and on cortical excitatory and inhibitory synaptic transmission in FHM1 knockin mice are also described, and their implications for the disease mechanism discussed. Moreover, the review describes different ataxic spontaneous cacna1a mouse mutants and the important insights into the cerebellar mechanisms underlying motor dysfunction caused by mutant CaV2.1 channels that were obtained from their functional characterization.
Collapse
|
29
|
Rajakulendran S, Schorge S, Kullmann DM, Hanna MG. Dysfunction of the Ca(V)2.1 calcium channel in cerebellar ataxias. F1000 BIOLOGY REPORTS 2010; 2. [PMID: 20948794 PMCID: PMC2948357 DOI: 10.3410/b2-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the CACNA1A gene are associated with episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6). CACNA1A encodes the α-subunit of the P/Q-type calcium channel or CaV2.1, which is highly enriched in the cerebellum. It is one of the main channels linked to synaptic transmission throughout the human central nervous system. Here, we compare recent advances in the understanding of the genetic changes that underlie EA2 and SCA6 and what these new findings suggest about the mechanism of the disease.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London Queen Square, London WC1N 3BG UK
| | | | | | | |
Collapse
|
30
|
Van Den Maagdenberg AMJM, Terwindt GM, Haan J, Frants RR, Ferrari MD. Genetics of headaches. HANDBOOK OF CLINICAL NEUROLOGY 2010; 97:85-97. [PMID: 20816412 DOI: 10.1016/s0072-9752(10)97006-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Insight into the molecular mechanisms involved in primary headaches is important to identify drug targets for improving treatment of patients, but essentially lacking. Genetic research is increasingly successful in pinpointing these mechanisms. Most progress has been made for Familial Hemiplegic Migraine, a rare subtype of migraine with aura. Three genes (CACNA1A, ATP1A2 and SCN1A) have been identified that all encode ion transporters. Cellular and transgenic mouse studies suggest that neuronal hyperexcitability and increased susceptibility to cortical spreading depression, the correlate of migraine aura, are important molecular mechanisms in migraine. Investigating monogenic diseases in which migraine is a prominent feature such as CADASIL, which is caused by mutations in the NOTCH3 gene, can help understanding the pathology of migraine. Candidate gene association studies and linkage studies in the common forms of migraine were less successful. Except for the MTHFR gene no gene variant has been identified yet. Convincingly demonstrated genetic findings in other primary headaches such as cluster headache and tension-type headache are even rarer. However, with current technical possibilities of massive genotyping and international efforts to collect large well-phenotyped patient cohorts, the first gene variants for various primary headache types are likely to be discovered in the coming decade.
Collapse
|
31
|
Giacomotto J, Pertl C, Borrel C, Walter MC, Bulst S, Johnsen B, Baillie DL, Lochmüller H, Thirion C, Ségalat L. Evaluation of the therapeutic potential of carbonic anhydrase inhibitors in two animal models of dystrophin deficient muscular dystrophy. Hum Mol Genet 2009; 18:4089-101. [PMID: 19648295 DOI: 10.1093/hmg/ddp358] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Duchenne Muscular Dystrophy is an inherited muscle degeneration disease for which there is still no efficient treatment. However, compounds active on the disease may already exist among approved drugs but are difficult to identify in the absence of cellular models. We used the Caenorhabditis elegans animal model to screen a collection of 1000 already approved compounds. Two of the most active hits obtained were methazolamide and dichlorphenamide, carbonic anhydrase inhibitors widely used in human therapy. In C. elegans, these drugs were shown to interact with CAH-4, a putative carbonic anhydrase. The therapeutic efficacy of these compounds was further validated in long-term experiments on mdx mice, the mouse model of Duchenne Muscular Dystrophy. Mice were treated for 120 days with food containing methazolamide or dichlorphenamide at two doses each. Musculus tibialis anterior and diaphragm muscles were histologically analyzed and isometric muscle force was measured in M. extensor digitorum longus. Both substances increased the tetanic muscle force in the treated M. extensor digitorum longus muscle group, dichlorphenamide increased the force significantly by 30%, but both drugs failed to increase resistance of muscle fibres to eccentric contractions. Histological analysis revealed a reduction of centrally nucleated fibers in M. tibialis anterior and diaphragm in the treated groups. These studies further demonstrated that a C. elegans-based screen coupled with a mouse model validation strategy can lead to the identification of potential pharmacological agents for rare diseases.
Collapse
Affiliation(s)
- Jean Giacomotto
- Centre de Génétique Moléculaire et Cellulaire, UMR 5534, Université Lyon 1, 69622 Villeurbanne Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Emotional behavior in heterozygous rolling mouse Nagoya Ca v 2.1 channel mutant mice. Neurobiol Aging 2009; 32:486-96. [PMID: 19345443 DOI: 10.1016/j.neurobiolaging.2009.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 02/08/2009] [Accepted: 03/02/2009] [Indexed: 11/20/2022]
Abstract
Although rolling mouse Nagoya, a Ca(v)2.1α(1) mutant, exhibits ataxia and elevated serotonin concentrations, heterozygous mice have not been examined in detail. Patients with heterozygous mutations in this orthologous gene exhibit neurological disorders. To examine the emotional behavior of heterozygous mice, we used behavioral tasks and examined Ca(v)2.1α(1) message levels, tryptophan hydroxylase expression patterns, and monoamine concentrations in 2- and 22-month-old mice. Reduced anxiety in the elevated plus maze, light-dark exploration, and marble-burying behavioral tests and reduced depression in the forced swimming and tail suspension tests were observed in 22-month-old heterozygous mice compared to aged-matched wild-type mice. The levels of mutant-type Ca(v)2.1α(1) message, phosphorylation of tryptophan hydroxylase, and serotonin increased in the brainstems of 22-month-old heterozygous mice. No difference was observed between 2-month-old heterozygous and wild-type mice in these analyses. These findings suggest that heterozygous mice show age-related emotional changes due to alterations in the serotonin system associated with mutant-type Ca(v)2.1α(1), and that heterozygous mice may represent a novel model to delineate the interaction between Ca(v)2.1 function and synaptic transmission.
Collapse
|
33
|
Miki T, Zwingman TA, Wakamori M, Lutz CM, Cook SA, Hosford DA, Herrup K, Fletcher CF, Mori Y, Frankel WN, Letts VA. Two novel alleles of tottering with distinct Ca(v)2.1 calcium channel neuropathologies. Neuroscience 2008; 155:31-44. [PMID: 18597946 DOI: 10.1016/j.neuroscience.2008.05.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/06/2008] [Accepted: 05/22/2008] [Indexed: 11/26/2022]
Abstract
The calcium channel CACNA1A gene encodes the pore-forming, voltage-sensitive subunit of the voltage-dependent calcium Ca(v)2.1 type channel. Mutations in this gene have been linked to several human disorders, including familial hemiplegic migraine, episodic ataxia 2 and spinocerebellar ataxia type 6. The mouse homologue, Cacna1a, is associated with the tottering, Cacna1a(tg), mutant series. Here we describe two new missense mutant alleles, Cacna1a(tg-4J) and Cacna1a(Tg-5J). The Cacna1a(tg-4J) mutation is a valine to alanine mutation at amino acid 581, in segment S5 of domain II. The recessive Cacna1a(tg-4J) mutant exhibited the ataxia, paroxysmal dyskinesia and absence seizures reminiscent of the original tottering mouse. The Cacna1a(tg-4J) mutant also showed altered activation and inactivation kinetics of the Ca(v)2.1 channel, not previously reported for other tottering alleles. The semi-dominant Cacna1a(Tg-5J) mutation changed a conserved arginine residue to glutamine at amino acid 1252 within segment S4 of domain III. The heterozygous mouse was ataxic and homozygotes rarely survived. The Cacna1a(Tg-5J) mutation caused a shift in both voltage activation and inactivation to lower voltages, showing that this arginine residue is critical for sensing Ca(v)2.1 voltage changes. These two tottering mouse models illustrate how novel allelic variants can contribute to functional studies of the Ca(v)2.1 calcium channel.
Collapse
Affiliation(s)
- T Miki
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Alviña K, Khodakhah K. Selective regulation of spontaneous activity of neurons of the deep cerebellar nuclei by N-type calcium channels in juvenile rats. J Physiol 2008; 586:2523-38. [PMID: 18372310 DOI: 10.1113/jphysiol.2007.148197] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The cerebellum coordinates movement and maintains body posture. The main output of the cerebellum is formed by three deep nuclei, which receive direct inhibitory inputs from cerebellar Purkinje cells, and excitatory collaterals from mossy and climbing fibres. Neurons of deep cerebellar nuclei (DCN) are spontaneously active, and disrupting their activity results in severe cerebellar ataxia. It is suggested that voltage-gated calcium channels make a significant contribution to the spontaneous activity of DCN neurons, although the exact identity of these channels is not known. We sought to delineate the functional role and identity of calcium channels that contribute to pacemaking in DCN neurons of juvenile rats. We found that in the majority of cells blockade of calcium currents results in avid high-frequency bursting, consistent with the notion that the net calcium-dependent current in DCN neurons is outward. We showed that the bursting seen in these neurons after block of calcium channels is the consequence of reduced activation of small-conductance calcium-activated (SK) potassium channels. With the use of selective pharmacological blockers we showed that L-, P/Q-, R- and T-type calcium channels do not contribute to the spontaneous activity of DCN neurons. In contrast, blockade of high-threshold N-type calcium channels increased the firing rate and caused the cells to burst. Our results thus suggest a selective coupling of N-type voltage-gated calcium channels with calcium-activated potassium channels in DCN neurons. In addition, we demonstrate the presence of a cadmium-sensitive calcium conductance coupled with SK channels, that is pharmacologically distinct from L-, N-, P/Q-, R- and T-type calcium channels.
Collapse
Affiliation(s)
- Karina Alviña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
35
|
Axonal function in a family with episodic ataxia type 2 due to a novel mutation. J Neurol 2008; 255:750-5. [DOI: 10.1007/s00415-008-0794-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/19/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
|
36
|
Barrett CF, van den Maagdenberg AM, Frants RR, Ferrari MD. Chapter 3 Familial Hemiplegic Migraine. ADVANCES IN GENETICS 2008; 63:57-83. [DOI: 10.1016/s0065-2660(08)01003-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
37
|
Kaja S, Van De Ven RCG, Frants RR, Ferrari MD, Van Den Maagdenberg AMJM, Plomp JJ. Reduced ACh release at neuromuscular synapses of heterozygousleaner Cav2.1-mutant mice. Synapse 2008; 62:337-44. [DOI: 10.1002/syn.20490] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
38
|
Steinlein OK. Human disorders caused by the disruption of the regulation of excitatory neurotransmission. Results Probl Cell Differ 2008; 44:223-42. [PMID: 17589814 DOI: 10.1007/400_2007_034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The nicotinic acetylcholine receptors (nAChRs) are members of the large family of ligand-gated ion channels, and are constituted by the assembly of five subunits arranged pseudosymmetrically around the central axis that forms a cation-selective ion pore. They are widely distributed in both the nervous system and non-neuronal tissues, and can be activated by endogenous agonists such as acetylcholine or exogenous ligands such as nicotine. Mutations in neuronal nAChRs are found in a rare form of familial nocturnal frontal lobe epilepsy (ADNFLE), while mutations in the neuromuscular subtype of the nAChR are responsible for either congenital myasthenia syndromes (adult subtype of neuromuscular nAChR) or a form of arthrogryposis multiplex congenita type Escobar (fetal subtype of neuromuscular nAChR).
Collapse
Affiliation(s)
- Ortrud K Steinlein
- Institute of Human Genetics, Ludwig-Maximilians-University, School of Medicine, Goethestr. 29, 80336 München, Germany.
| |
Collapse
|
39
|
Abstract
Since the initial identification of native calcium currents, significant progress has been made towards our understanding of the molecular and cellular contributions of voltage-gated calcium channels in multiple physiological processes. Moreover, we are beginning to comprehend their pathophysiological roles through both naturally occurring channelopathies in humans and mice and through targeted gene deletions. The data illustrate that small perturbations in voltage-gated calcium channel function induced by genetic alterations can affect a wide variety of mammalian developmental, physiological and behavioral functions. At least in those instances wherein the channelopathies can be attributed to gain-of-function mechanisms, the data point towards new therapeutic strategies for developing highly selective calcium channel antagonists.
Collapse
|
40
|
Abstract
Clinical and pathophysiological evidences connect migraine and the cerebellum. Literature on documented cerebellar abnormalities in migraine, however, is relatively sparse. Cerebellar involvement may be observed in 4 types of migraines: in the widespread migraine with aura (MWA) and migraine without aura (MWoA) forms; in particular subtypes of migraine such as basilar-type migraine (BTM); and in the genetically driven autosomal dominant familial hemiplegic migraine (FHM) forms. Cerebellar dysfunction in migraineurs varies largely in severity, and may be subclinical. Purkinje cells express calcium channels that are related to the pathophysiology of both inherited forms of migraine and primary ataxias, mostly spinal cerebellar ataxia type 6 (SCA-6) and episodic ataxia type 2 (EA-2). Genetically driven ion channels dysfunction leads to hyperexcitability in the brain and cerebellum, possibly facilitating spreading depression waves in both locations. This review focuses on the cerebellar involvement in migraine, the relevant ataxias and their association with this primary headache, and discusses some of the pathophysiological processes putatively underlying these diseases.
Collapse
Affiliation(s)
- Maurice Vincent
- Hospital Universitário Clementino Fraga Filho, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | | |
Collapse
|
41
|
Abstract
Episodic ataxia type 2 (EA 2) is a rare neurological disorder of autosomal dominant inheritance resulting from dysfunction of a voltage-gated calcium channel. It manifests with recurrent disabling attacks of imbalance, vertigo, and ataxia, and can be provoked by physical exertion or emotional stress. In the spell-free interval, patients present with central ocular motor dysfunction, mainly downbeat nystagmus. A slow progression of cerebellar signs accompanied by a slight atrophy of midline cerebellar structures is commonly observed during the course of the disease. EA 2 is caused most often by the loss of function mutations of the calcium channel gene CACNA1A, which encodes the Ca(v)2.1 subunit of the P/Q-type calcium channel and is primarily expressed in Purkinje cells. To date, more than 30 mutations have been described. Two effective treatment options have been established for EA 2: acetazolamide (ACTZ), which probably changes the intracellular pH and thereby the transmembraneous potential, and 4-aminopyridine (4-AP), a potassium channel blocker. Approximately 70% of all patients respond to treatment with ACTZ, but the effect is often only transient. In an open trial, 4-AP prevented attacks in five of six patients with EA 2, most likely by increasing the resting activity and excitability of the Purkinje cells. These findings were confirmed by experiments in animal models of EA 2. Many aspects of the pathophysiology (e.g., induction of the attacks) and treatment of EA 2 (e.g., mode of action of ACTZ and 4-AP) still remain unclear and need to be addressed in further animal and clinical studies.
Collapse
Affiliation(s)
- Michael Strupp
- Department of Neurology, University of Munich, Munich, Germany.
| | | | | |
Collapse
|
42
|
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disorder caused by abnormal expansions of a trinucleotide CAG repeat in exon 47 of the CACNA1A gene, which encodes the alpha1A subunit of the P/Q-type voltage-gated calcium channel. The CAG repeat expansion is translated into an elongated polyglutamine tract in the carboxyl terminus of the alpha1A subunit. The alpha1A subunit is the main pore-forming subunit of the P/Q-type calcium channel. Patients with SCA6 suffer from a severe form of progressive ataxia and cerebellar dysfunction. Design of treatments for this disorder will depend on better definition of the mechanism of disease. As a disease arising from a mutation in an ion channel gene, SCA6 may behave as an ion channelopathy, and may respond to attempts to modulate or correct ion channel function. Alternatively, as a disease in which the mutant protein contains an expanded polyglutamine tract, SCA6 may respond to the targets of drug therapies developed for Huntington's disease and other polyglutamine disorders. In this review we will compare SCA6 to other polyglutamine diseases and channelopathies, and we will highlight recent advances in our understanding of alpha1A subunits and SCA6 pathology. We also propose a mechanism for how two seemingly divergent hypotheses can be combined into a cohesive model for disease progression.
Collapse
Affiliation(s)
- Holly B Kordasiewicz
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
43
|
Abstract
Because ion channels are involved in many cellular processes, drugs acting on ion channels have long been used for the treatment of many diseases, especially those affecting electrically excitable tissues. The present review discusses the pharmacology of voltage-gated and neurotransmitter-gated ion channels involved in neurologic diseases, with emphasis on neurologic channelopathies. With the discovery of ion channelopathies, the therapeutic value of many basic drugs targeting ion channels has been confirmed. The understanding of the genotype-phenotype relationship has highlighted possible action mechanisms of other empirically used drugs. Moreover, other ion channels have been pinpointed as potential new drug targets. With regards to therapy of channelopathies, experimental investigations of the intimate drug-channel interactions have demonstrated that channel mutations can either increase or decrease affinity for the drug, modifying its potential therapeutic effect. Together with the discovery of channel gene polymorphisms that may affect drug pharmacodynamics, these findings highlight the need for pharmacogenetic research to allow identification of drugs with more specific effects on channel isoforms or mutants, to increase efficacy and reduce side effects. With a greater understanding of channel genetics, structure, and function, together with the identification of novel primary and secondary channelopathies, the number of ion channel drugs for neurologic channelopathies will increase substantially.
Collapse
Affiliation(s)
- Diana Conte Camerino
- Pharmacology Division, Department of Pharmacobiology, School of Pharmacy, University of Bari, Bari, Italy.
| | | | | |
Collapse
|
44
|
Felix R. Calcium channelopathies. Neuromolecular Med 2007; 8:307-18. [PMID: 16775382 DOI: 10.1385/nmm:8:3:307] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 11/30/1999] [Accepted: 01/20/2006] [Indexed: 11/11/2022]
Abstract
Intracellular calcium ([Ca2+]i) is highly regulated in eukaryotic cells. The free [Ca2+]i is approximately four orders of magnitude less than that in the extracellular environment. It is, therefore, an electrochemical gradient favoring Ca2+ entry, and transient cellular activation increasing Ca2+ permeability will lead to a transient increase in [Ca2+]i. These transient rises of [Ca2+]i trigger or regulate diverse intracellular events, including metabolic processes, muscle contraction, secretion of hormones and neurotransmitters, cell differentiation, and gene expression. Hence, changes in [Ca2+]i act as a second messenger system coordinating modifications in the external environment with intracellular processes. Notably, information on the molecular genetics of the membrane channels responsible for the influx of Ca2+ ions has led to the discovery that mutations in these proteins are linked to human disease. Ca2+ channel dysfunction is now known to be the basis for several neurological and muscle disorders such as migraine, ataxia, and periodic paralysis. In contrast to other types of genetic diseases, Ca2+ channelopathies can be studied with precision by electrophysiological methods, and in some cases, the results have been highly rewarding with a biophysical phenotype that correlates with the ultimate clinical phenotype. This review outlines recent advances in genetic, molecular, and pathophysiological aspects of human Ca2+ channelopathies.
Collapse
Affiliation(s)
- Ricardo Felix
- Department of Cell Biology, Center for Research and Advanced Studies, National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico.
| |
Collapse
|
45
|
Jeng CJ, Sun MC, Chen YW, Tang CY. Dominant-negative effects of episodic ataxia type 2 mutations involve disruption of membrane trafficking of human P/Q-type Ca2+ channels. J Cell Physiol 2007; 214:422-33. [PMID: 17654512 DOI: 10.1002/jcp.21216] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Episodic ataxia type 2 (EA2) is an autosomal dominant neurological disorder associated with mutations in the gene encoding pore-forming alpha(1A) subunits of human P/Q-type calcium (Ca(V)2.1) channels. The exact mechanism of how mutant channels cause such clinical EA2 features as cerebellar dysfunctions, however, remains unclear. Our previous functional studies in Xenopus oocytes support the idea that EA2 mutants may exert prominent dominant-negative effects on wild-type Ca(V)2.1 channels. To further pursue the mechanism underlying this dominant-negative effect, we examined the effects of EA2 mutants on the subcellular localization pattern of GFP-tagged wild-type Ca(V)2.1 channels in HEK293T cells. In the presence of EA2 mutants, wild-type channels displayed a significant deficiency in membrane targeting and a concurrent increase in cytoplasm retention. Moreover, the cytoplasmic fraction of wild-type channels co-localized with an endoplasmic reticulum (ER) marker, suggesting that a significant amount of wild-type Ca(V)2.1 channels was trapped in the ER. This EA2 mutant-induced ER retention pattern was reversed by lowering the cell incubation temperature from 37 to 27 degrees C. We also inspected the effects of untagged EA2 mutants on the functional expression of GFP-tagged wild-type Ca(V)2.1 channels in HEK293T cells. Whole-cell current density of wild-type channels was diminished in the presence of EA2 mutants, which was also reversed by 27 degrees C incubation. Finally, biochemical analyses indicated that EA2 mutants did not significantly affect the protein expression level of wild-type channels. Taken together, our data suggest that EA2 mutants induce significant ER retention of their wild-type counterparts, thereby suppressing the functional expression of Ca(V)2.1 channels.
Collapse
Affiliation(s)
- Chung-Jiuan Jeng
- Institute of Anatomy and Cell biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
46
|
|
47
|
Raike RS, Kordasiewicz HB, Thompson RM, Gomez CM. Dominant-negative suppression of Cav2.1 currents by alpha(1)2.1 truncations requires the conserved interaction domain for beta subunits. Mol Cell Neurosci 2006; 34:168-77. [PMID: 17161621 PMCID: PMC3236250 DOI: 10.1016/j.mcn.2006.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 10/11/2006] [Accepted: 10/19/2006] [Indexed: 11/20/2022] Open
Abstract
Episodic ataxia type 2 (EA2) is an autosomal dominant disorder arising from CACNA1A mutations, which commonly predict heterozygous expression of Ca(v)2.1 calcium channels with truncated alpha(1)2.1 pore subunits. We hypothesized that alpha(1)2.1 truncations in EA2 exert dominant-negative effects on the function of wild-type subunits. Wild-type and truncated alpha(1)2.1 subunits with fluorescent protein tags were transiently co-expressed in cells stably expressing Ca(v) auxiliary beta subunits, which facilitate alpha1 subunit functional expression through high-affinity interactions with the alpha interaction domain (AID). Co-expression of wild-type subunits with truncations often resulted in severely reduced whole-cell currents compared to expression of wild-type subunits alone. Cellular image analyses revealed that current suppression was not due to reduced wild-type expression levels. Instead, the current suppression depended on truncations terminating distal to the AID. Moreover, only AID-bearing alpha(1)2.1 proteins co-immunoprecipitated with Ca(v) beta subunits. These results indicate that Ca(v) beta subunits may play a prominent role in EA2 disease pathogenesis.
Collapse
Affiliation(s)
- Robert S. Raike
- Departments of Neurology and Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Holly B. Kordasiewicz
- Departments of Neurology and Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Randall M. Thompson
- Departments of Neurology and Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Christopher M. Gomez
- Departments of Neurology and Neuroscience, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
48
|
McKeown L, Robinson P, Jones OT. Molecular basis of inherited calcium channelopathies: role of mutations in pore-forming subunits. Acta Pharmacol Sin 2006; 27:799-812. [PMID: 16787562 DOI: 10.1111/j.1745-7254.2006.00394.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pore-forming alpha subunits of voltage-gated calcium channels contain the essential biophysical machinery that underlies calcium influx in response to cell depolarization. In combination with requisite auxiliary subunits, these pore subunits form calcium channel complexes that are pivotal to the physiology and pharmacology of diverse cells ranging from sperm to neurons. Not surprisingly, mutations in the pore subunits generate diverse pathologies, termed channelopathies, that range from failures in excitation-contraction coupling to night blindness. Over the last decade, major insights into the mechanisms of pathogenesis have been derived from animals showing spontaneous or induced mutations. In parallel, there has been considerable growth in our understanding of the workings of voltage-gated ion channels from a structure-function, regulation and cell biology perspective. Here we document our current understanding of the mutations underlying channelopathies involving the voltage-gated calcium channel alpha subunits in humans and other species.
Collapse
Affiliation(s)
- Lynn McKeown
- Faculty of Life Sciences, the University of Manchester, Manchester, UK
| | | | | |
Collapse
|
49
|
Scoggan KA, Friedman JH, Bulman DE. CACNA1A mutation in a EA-2 patient responsive to acetazolamide and valproic acid. Can J Neurol Sci 2006; 33:68-72. [PMID: 16583725 DOI: 10.1017/s0317167100004728] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Episodic ataxia type-2 (EA-2) is an autosomal dominant neurological disorder that has been shown to result from mutations in the CACNA1A gene encoding the P/Q-type calcium channel. Affected individuals experience episodes of cerebellar ataxia usually associated with migraine symptoms, interictal nystagmus, mild residual and in some cases a progressive cerebellar incoordination and respond to acetazolamide treatment. We identified a patient with a positive family history for episodic ataxia, who was originally diagnosed with epilepsy and treated with valproic acid. Subsequent examination revealed that the symptoms were consistent with a diagnosis of EA-2. The patient responded positively to a combination of acetazolamide and valproic acid. Molecular genetic analysis of the CACNA1A gene was performed in order to confirm a diagnosis of EA-2. METHODS The CACNA1A gene was evaluated for mutations using single strand conformational polymorphism analysis and direct DNA sequencing. Allele specific oligo hybridization was used to confirm that the mutation was segregating with only affected family members and was not present in the control group. RESULTS In this study we identified a new missense mutation in exon 12 of the CACNA1A gene from a patient with EA-2 whose symptoms could be controlled with a combination of acetazolamide and valproic acid. This G to A transition changes a highly conserved glutamic acid residue to a lysine residue in domain II S2 of the P/Q-type calcium channel alpha1A subunit. CONCLUSIONS The use of valproic acid in treating patients with EA-2 is not well documented. Here we describe a patient with a novel mutation in the CACNA1A gene who responded positively to a combination of acetazolamide and valproic acid.
Collapse
|
50
|
Gupta VK. Topiramate for migraine prophylaxis: addressing the blood-brain barrier-related pharmacokinetic-pathophysiological disconnect. Int J Clin Pract 2006; 60:367-8; author reply 368-9. [PMID: 16494657 DOI: 10.1111/j.1368-5031.2006.0796a.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|