1
|
Yang Y, Tuo J, Zhang J, Xu Z, Luo Z. Pathogenic genes implicated in sleep-related hypermotor epilepsy: a research progress update. Front Neurol 2024; 15:1416648. [PMID: 38966089 PMCID: PMC11222571 DOI: 10.3389/fneur.2024.1416648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is a focal epilepsy syndrome characterized by a variable age of onset and heterogeneous etiology. Current literature suggests a prevalence rate of approximately 1.8 per 100,000 persons. The discovery of additional pathogenic genes associated with SHE in recent years has significantly expanded the knowledge and understanding of its pathophysiological mechanisms. Identified SHE pathogenic genes include those related to neuronal ligand- and ion-gated channels (CHRNA4, CHRNB2, CHRNA2, GABRG2, and KCNT1), genes upstream of the mammalian target of rapamycin complex 1 signal transduction pathway (DEPDC5, NPRL2, NPRL3, TSC1, and TSC2), and other genes (CRH, CaBP4, STX1B, and PRIMA1). These genes encode proteins associated with ion channels, neurotransmitter receptors, cell signal transduction, and synaptic transmission. Mutations in these genes can result in the dysregulation of encoded cellular functional proteins and downstream neuronal dysfunction, ultimately leading to epileptic seizures. However, the associations between most genes and the SHE phenotype remain unclear. This article presents a literature review on the research progress of SHE-related pathogenic genes to contribute evidence to genotype-phenotype correlations in SHE and establish the necessary theoretical basis for future SHE treatments.
Collapse
Affiliation(s)
- Yufang Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhong Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Fukuyama K, Motomura E, Okada M. Age-Dependent Activation of Purinergic Transmission Contributes to the Development of Epileptogenesis in ADSHE Model Rats. Biomolecules 2024; 14:204. [PMID: 38397441 PMCID: PMC10886636 DOI: 10.3390/biom14020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
To explore the developmental processes of epileptogenesis/ictogenesis, this study determined age-dependent functional abnormalities associated with purinergic transmission in a genetic rat model (S286L-TG) of autosomal-dominant sleep-related hypermotor epilepsy (ADSHE). The age-dependent fluctuations in the release of ATP and L-glutamate in the orbitofrontal cortex (OFC) were determined using microdialysis and ultra-high-performance liquid chromatography with mass spectrometry (UHPLC-MS). ATP release from cultured astrocytes was also determined using UHPLC-MS. The expressions of P2X7 receptor (P2X7R), connexin 43, phosphorylated-Akt and phosphorylated-Erk were determined using capillary immunoblotting. No functional abnormalities associated with purinergic transmission could be detected in the OFC of 4-week-old S286L-TG and cultured S286L-TG astrocytes. However, P2X7R expression, as well as basal and P2X7R agonist-induced ATP releases, was enhanced in S286L-TG OFC in the critical ADSHE seizure onset period (7-week-old). Long-term exposure to a modest level of P2X7R agonist, which could not increase astroglial ATP release, for 14 d increased the expressions of P2X7R and connexin 43 and the signaling of Akt and Erk in astrocytes, and it enhanced the sensitivity of P2X7R to its agonists. Akt but not Erk increased P2X7R expression, whereas both Akt and Erk increased connexin 43 expression. Functional abnormalities, enhanced ATP release and P2X7R expression were already seen before the onset of ADSHE seizure in S286L-TG. Additionally, long-term exposure to the P2X7R agonist mimicked the functional abnormalities associated with purinergic transmission in astrocytes, similar to those in S286L-TG OFC. Therefore, these results suggest that long-term modestly enhanced purinergic transmission and/or activated P2X7R are, at least partially, involved in the development of the epileptogenesis of ADSHE, rather than that of ictogenesis.
Collapse
Affiliation(s)
| | | | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (E.M.)
| |
Collapse
|
3
|
Becchetti A, Grandi LC, Cerina M, Amadeo A. Nicotinic acetylcholine receptors and epilepsy. Pharmacol Res 2023; 189:106698. [PMID: 36796465 DOI: 10.1016/j.phrs.2023.106698] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Despite recent advances in understanding the causes of epilepsy, especially the genetic, comprehending the biological mechanisms that lead to the epileptic phenotype remains difficult. A paradigmatic case is constituted by the epilepsies caused by altered neuronal nicotinic acetylcholine receptors (nAChRs), which exert complex physiological functions in mature as well as developing brain. The ascending cholinergic projections exert potent control of forebrain excitability, and wide evidence implicates nAChR dysregulation as both cause and effect of epileptiform activity. First, tonic-clonic seizures are triggered by administration of high doses of nicotinic agonists, whereas non-convulsive doses have kindling effects. Second, sleep-related epilepsy can be caused by mutations on genes encoding nAChR subunits widely expressed in the forebrain (CHRNA4, CHRNB2, CHRNA2). Third, in animal models of acquired epilepsy, complex time-dependent alterations in cholinergic innervation are observed following repeated seizures. Heteromeric nAChRs are central players in epileptogenesis. Evidence is wide for autosomal dominant sleep-related hypermotor epilepsy (ADSHE). Studies of ADSHE-linked nAChR subunits in expression systems suggest that the epileptogenic process is promoted by overactive receptors. Investigation in animal models of ADSHE indicates that expression of mutant nAChRs can lead to lifelong hyperexcitability by altering i) the function of GABAergic populations in the mature neocortex and thalamus, ii) synaptic architecture during synaptogenesis. Understanding the balance of the epileptogenic effects in adult and developing networks is essential to plan rational therapy at different ages. Combining this knowledge with a deeper understanding of the functional and pharmacological properties of individual mutations will advance precision and personalized medicine in nAChR-dependent epilepsy.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Laura Clara Grandi
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Marta Cerina
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Alida Amadeo
- Department of Biosciences, University of Milano, Via Celoria 26, Milano 20133, Italy.
| |
Collapse
|
4
|
Rodent Models of Audiogenic Epilepsy: Genetic Aspects, Advantages, Current Problems and Perspectives. Biomedicines 2022; 10:biomedicines10112934. [PMID: 36428502 PMCID: PMC9687921 DOI: 10.3390/biomedicines10112934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.
Collapse
|
5
|
Villa C, Arrigoni F, Rivellini E, Lavitrano M, De Gioia L, Ferini-Strambi L, Combi R. Exome Sequencing in an ADSHE Family: VUS Identification and Limits. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12548. [PMID: 36231847 PMCID: PMC9565017 DOI: 10.3390/ijerph191912548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Autosomal dominant sleep-related hypermotor epilepsy (ADSHE) is the familial form of a focal epilepsy characterized by hyperkinetic focal seizures, mainly arising during non-rapid eye movements (NREM) sleep. Mutations associated with ADSHE account for a small proportion of the genetically determined cases, suggesting the existence of other disease-causing genes. Here, we reported the results obtained by performing trio-based whole-exome sequencing (WES) in an Italian family showing ADSHE and investigated the structural impact of putative variants by in silico modeling analysis. We identified a p.(Trp276Gly) variant in MOXD1 gene encoding the monooxigenase DBH like 1 protein, cosegregating with the disease and annotated as VUS under the ACMG recommendations. Structural bioinformatic analysis predicted a high destabilizing effect of this variant, due to the loss of important hydrophilic bonds and an expansion of cavity volume in the protein hydrophobic core. Although our data support a functional effect of the p.(Trp276Gly) variant, we highlight the need to identify additional families carrying MOXD1 mutations or functional analyses in suitable models to clarify its role in ADSHE pathogenesis. Moreover, we discuss the importance of VUS reporting due to the low rate of pathogenic variant identification by NGS in epilepsy and for future reinterpretation studies.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Eleonora Rivellini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
- Department of Clinical Neurosciences, Vita-Salute San Raffaele University, 20127 Milan, Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
6
|
High frequency oscillations play important roles in development of epileptogenesis/ictogenesis via activation of astroglial signallings. Biomed Pharmacother 2022; 149:112846. [PMID: 35325849 DOI: 10.1016/j.biopha.2022.112846] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
To explore developmental processes of epileptogenesis/ictogenesis and pathophysiology of carbamazepine-resistant epilepsy, we determined effects of high-frequency-oscillation (HFO) on glutamatergic tripartite-synaptic transmission, astroglial expression of connexin43, and intracellular Erk- and Akt-signalling, using genetic rat model (S286L-TG) of autosomal-dominant sleep-related hypermotor epilepsy(ADSHE), which bears rat S286L-mutant Chrna4(corresponding to human S284L-mutant CHRNA4). Artificial physiological ripple- and pathological fast-ripple-burst stimulations use-dependently increased L-glutamate release through connexin43-containing hemichannels by enhancing Erk-signalling alone or both ERK- and Akt-signalling together, respectively. Stimulatory effects of HFO-bursts on astroglial L-glutamate release were enhanced by increasing extracellular K+ levels, Akt- and Erk-signalling-dependently. HFO-bursts also activated connexin43 expression and Akt- and Erk-signallings use-dependently. Extracellular pH elevation enhanced HFO-burst-evoked astroglial L-glutamate release, which was suppressed by therapeutically-relevant concentration of zonisamide via possible carbonic-anhydrase inhibition, but not by that of carbamazepine. Unexpectedly, these responses of S286L-TG to HFO-bursts were almost equal to those of wild-type astrocytes. These results indicated that candidate pathomechanism/pathophysiology of carbamazepine-resistant ADSHE, which enhanced HFO-bursts in S286L-TG neurons may contribute to epileptogenesis/ictogenesis development via activation of connexin43-associated astroglial transmission, which was directly unaffected by mutation, and induced through activated Erk-signalling, followed by Akt-signalling. Therefore, suppression of overexpressed Erk-signalling probably prevents ADSHE onset via indirect inhibition of mutant CHRNA4-associated pathomechanistic developments.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW This article reviews the clinical features, typical EEG findings, treatment, prognosis, and underlying molecular etiologies of the more common genetic epilepsy syndromes. Genetic generalized epilepsy, self-limited focal epilepsy of childhood, self-limited neonatal and infantile epilepsy, select developmental and epileptic encephalopathies, progressive myoclonus epilepsies, sleep-related hypermotor epilepsy, photosensitive occipital lobe epilepsy, and focal epilepsy with auditory features are discussed. Also reviewed are two familial epilepsy syndromes: genetic epilepsy with febrile seizures plus and familial focal epilepsy with variable foci. RECENT FINDINGS Recent years have seen considerable advances in our understanding of the genetic factors underlying genetic epilepsy syndromes. New therapies are emerging for some of these conditions; in some cases, these precision medicine approaches may dramatically improve the prognosis. SUMMARY Many recognizable genetic epilepsy syndromes exist, the identification of which is a crucial skill for neurologists, particularly those who work with children. Proper diagnosis of the electroclinical syndrome allows for appropriate treatment choices and counseling regarding prognosis and possible comorbidities.
Collapse
|
8
|
Guo Y, Miao Q, Zhang Y, Wang C, Liang M, Li X, Qiu W, Shi G, Zhai Q, Chen Z. A novel missense creatine mutant of CaBP4, c.464G>A (p.G155D), associated with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), reduces the expression of CaBP4. Transl Pediatr 2022; 11:396-402. [PMID: 35378956 PMCID: PMC8976675 DOI: 10.21037/tp-22-54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/10/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND CaBP4 encodes Ca2+-binding protein 4, a neuronal Ca2+-binding protein that participates in many cellular processes by regulating the concentration of free Ca2+ ions. De novo CaBP4 variants have been identified as a cause of congenital stationary night blindness (CSNB). However, we recently reported a 4-generation pedigree with 11 individuals diagnosed with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) that were validated with only one novel missense mutation, c.464G>A (p.G155D), in CaBP4. De novo CaBP4 variants have never been reported to be related with ADNFLE. This study aimed to identify whether c.464G>A (p.G155D) in CaBP4 reduced the expression of CaBP4. METHODS In vitro experiments using recombinant protein expressed in human neuron cells were utilized in this study. Real-time polymerase chain reaction (RT-PCR) was performed to evaluate the effect of c.464G>A on CaBP4 mRNA expression. Western blot was performed to assess the effect of c.464G>A on CaBP4 protein expression. RESULTS According to the RT-PCR and Western blot results, c.464G>A (p.G155D) was associated with an increased expression of CaBP4 mRNA and a reduced expression of CaBP4 protein. CONCLUSIONS These results reveal that c.464G>A (p.G155D) in CaBP4 reduced the expression of CaBP4 by reducing the stability of the CaBP4 protein. Mutations in the CaBP4 gene may be associated with ADNFLE.
Collapse
Affiliation(s)
- Yuxiong Guo
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Academy of Neuroscience, Guangzhou, China.,Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qinfei Miao
- Department of Neurology Rehabilitation, Guangdong Maternal and Child Hospital, Guangzhou, China
| | - Yuxin Zhang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Academy of Neuroscience, Guangzhou, China
| | - Chun Wang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Academy of Neuroscience, Guangzhou, China
| | - Mingjuan Liang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Academy of Neuroscience, Guangzhou, China.,Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xueping Li
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Academy of Neuroscience, Guangzhou, China.,Shantou University, Shantou, China
| | - Weifeng Qiu
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Academy of Neuroscience, Guangzhou, China.,Shantou University, Shantou, China
| | - Gangan Shi
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Academy of Neuroscience, Guangzhou, China.,South China University of Technology, Guangzhou, China
| | - Qiongxiang Zhai
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Academy of Neuroscience, Guangzhou, China.,Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhihong Chen
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Academy of Neuroscience, Guangzhou, China.,Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Pharmacogenetics of Drug-Resistant Epilepsy (Review of Literature). Int J Mol Sci 2021; 22:ijms222111696. [PMID: 34769124 PMCID: PMC8584095 DOI: 10.3390/ijms222111696] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Pharmacogenomic studies in epilepsy are justified by the high prevalence rate of this disease and the high cost of its treatment, frequent drug resistance, different response to the drug, the possibility of using reliable methods to assess the control of seizures and side effects of antiepileptic drugs. Candidate genes encode proteins involved in pharmacokinetic processes (drug transporters, metabolizing enzymes), pharmacodynamic processes (receptors, ion channels, enzymes, regulatory proteins, secondary messengers) and drug hypersensitivity (immune factors). This article provides an overview of the literature on the influence of genetic factors on treatment in epilepsy.
Collapse
|
10
|
Okada M. Can rodent models elucidate the pathomechanisms of genetic epilepsy? Br J Pharmacol 2021; 179:1620-1639. [PMID: 33689168 PMCID: PMC9291625 DOI: 10.1111/bph.15443] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/03/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant sleep-related hypermotor epilepsy (ADSHE; previously autosomal dominant nocturnal frontal lobe epilepsy, ADNFLE), originally reported in 1994, was the first distinct genetic epilepsy shown to be caused by CHNRA4 mutation. In the past two decades, we have identified several functional abnormalities of mutant ion channels and their associated transmissions using several experiments involving single-cell and genetic animal (rodent) models. Currently, epileptologists understand that functional abnormalities underlying epileptogenesis/ictogenesis in humans and rodents are more complicated than previously believed and that the function of mutant molecules alone cannot contribute to the development of epileptogenesis/ictogenesis but play important roles in the development of epileptogenesis/ictogenesis through formation of abnormalities in various other transmission systems before epilepsy onset. Based on our recent findings using genetic rat ADSHE models, harbouring Chrna4 mutant, corresponding to human S284L-mutant CRHNA4, this review proposes a hypothesis associated with tripartite synaptic transmission in ADSHE pathomechanisms induced by mutant ACh receptors.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
11
|
Wan H, Wang X, Chen Y, Jiang B, Chen Y, Hu W, Zhang K, Shao X. Sleep-Related Hypermotor Epilepsy: Etiology, Electro-Clinical Features, and Therapeutic Strategies. Nat Sci Sleep 2021; 13:2065-2084. [PMID: 34803415 PMCID: PMC8598206 DOI: 10.2147/nss.s330986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/21/2021] [Indexed: 12/31/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is a group of clinical syndromes with heterogeneous etiologies. SHE is difficult to diagnose and treat in the early stages due to its diverse clinical manifestations and difficulties in differentiating from non-epileptic events, which seriously affect patients' quality of life and social behavior. The overall prognosis for SHE is unsatisfactory, but different etiologies affect patients' prognoses. Surgical treatment is an effective method for carefully selected patients with refractory SHE; nevertheless, preoperative assessment remains challenging because of the low sensitivity of noninvasive scalp electroencephalogram and imaging to detect abnormalities. However, through a careful analysis of semiology, the clinician can deduce the potential epileptogenic zone. This paper summarizes the research status of the background, etiology, electro-clinical features, diagnostic criteria, prognosis, and treatment of SHE to provide a more in-depth understanding of its pathophysiological mechanism, improve the accuracy in the diagnosis of this group of syndromes, and further explore more targeted therapy plans.
Collapse
Affiliation(s)
- Huijuan Wan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China.,Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Xing Wang
- Department of Neurology, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing, People's Republic of China
| | - Yiyi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China
| | - Bin Jiang
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenhan Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China
| |
Collapse
|
12
|
Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology. Brain Sci 2020; 10:brainsci10120907. [PMID: 33255633 PMCID: PMC7761363 DOI: 10.3390/brainsci10120907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is characterized by hyperkinetic focal seizures, mainly arising in the neocortex during non-rapid eye movements (NREM) sleep. The familial form is autosomal dominant SHE (ADSHE), which can be caused by mutations in genes encoding subunits of the neuronal nicotinic acetylcholine receptor (nAChR), Na+-gated K+ channels, as well as non-channel signaling proteins, such as components of the gap activity toward rags 1 (GATOR1) macromolecular complex. The causative genes may have different roles in developing and mature brains. Under this respect, nicotinic receptors are paradigmatic, as different pathophysiological roles are exerted by distinct nAChR subunits in adult and developing brains. The widest evidence concerns α4 and β2 subunits. These participate in heteromeric nAChRs that are major modulators of excitability in mature neocortical circuits as well as regulate postnatal synaptogenesis. However, growing evidence implicates mutant α2 subunits in ADSHE, which poses interpretive difficulties as very little is known about the function of α2-containing (α2*) nAChRs in the human brain. Planning rational therapy must consider that pharmacological treatment could have different effects on synaptic maturation and adult excitability. We discuss recent attempts towards precision medicine in the mature brain and possible approaches to target developmental stages. These issues have general relevance in epilepsy treatment, as the pathogenesis of genetic epilepsies is increasingly recognized to involve developmental alterations.
Collapse
|
13
|
Villa C, Colombo G, Meneghini S, Gotti C, Moretti M, Ferini-Strambi L, Chisci E, Giovannoni R, Becchetti A, Combi R. CHRNA2 and Nocturnal Frontal Lobe Epilepsy: Identification and Characterization of a Novel Loss of Function Mutation. Front Mol Neurosci 2019; 12:17. [PMID: 30809122 PMCID: PMC6379349 DOI: 10.3389/fnmol.2019.00017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Mutations in genes coding for subunits of the neuronal nicotinic acetylcholine receptor (nAChR) have been involved in familial sleep-related hypermotor epilepsy (also named autosomal dominant nocturnal frontal lobe epilepsy, ADNFLE). Most of these mutations reside in CHRNA4 and CHRNB2 genes, coding for the α4 and β2 nAChR subunits, respectively. Two mutations with contrasting functional effects were also identified in the CHRNA2 gene coding for the α2 subunit. Here, we report the third mutation in the CHRNA2, found in a patient showing ADNFLE. The patient was examined by scalp EEG, contrast-enhanced brain magnetic resonance imaging (MRI), and nocturnal video-polysomnographic recording. All exons and the exon-intron boundaries of CHRNA2, CHRNA4, CHRNB2, CRH, KCNT1 were amplified and Sanger sequenced. In the proband, we found a c.754T>C (p.Tyr252His) missense mutation located in the N-terminal ligand-binding domain and inherited from the mother. Functional studies were performed by transient co-expression of α2 and α2Tyr252His, with either β2 or β4, in human embryonic kidney (HEK293) cells. Equimolar amounts of subunits expression were obtained by using F2A-based multi-cistronic constructs encoding for the genes relative to the nAChR subunits of interest and for the enhanced green fluorescent protein. The mutation reduced the maximal currents by approximately 80% in response to saturating concentrations of nicotine in homo- and heterozygous form, in both the α2β4 and α2β2 nAChR subtypes. The effect was accompanied by a strong right-shift of the concentration-response to nicotine. Similar effects were observed using ACh. Negligible effects were produced by α2Tyr252His on the current reversal potential. Moreover, binding of (±)-[3H]Epibatidine revealed an approximately 10-fold decrease of both Kd and Bmax (bound ligand in saturating conditions), in cells expressing α2Tyr252His. The reduced Bmax and whole-cell currents were not caused by a decrease in mutant receptor expression, as minor effects were produced by α2Tyr252His on the level of transcripts and the membrane expression of α2β4 nAChR. Overall, these results suggest that α2Tyr252His strongly reduced the number of channels bound to the agonist, without significantly altering the overall channel expression. We conclude that mutations in CHRNA2 are more commonly linked to ADNFLE than previously thought, and may cause a loss-of-function phenotype.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Giulia Colombo
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
| | | | - Milena Moretti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, San Raffaele Scientific Institute, Sleep Disorders Center, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Chisci
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| |
Collapse
|
14
|
Myers KA, Johnstone DL, Dyment DA. Epilepsy genetics: Current knowledge, applications, and future directions. Clin Genet 2018; 95:95-111. [PMID: 29992546 DOI: 10.1111/cge.13414] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
Abstract
The rapid pace of disease gene discovery has resulted in tremendous advances in the field of epilepsy genetics. Clinical testing with comprehensive gene panels, exomes, and genomes are now available and have led to higher diagnostic rates and insights into the underlying disease processes. As such, the contribution to the care of patients by medical geneticists, neurogeneticists and genetic counselors are significant; the dysmorphic examination, the necessary pre- and post-test counseling, the selection of the appropriate next-generation sequencing-based test(s), and the interpretation of sequencing results require a care provider to have a comprehensive working knowledge of the strengths and limitations of the available testing technologies. As the underlying mechanisms of the encephalopathies and epilepsies are better understood, there may be opportunities for the development of novel therapies based on an individual's own specific genotype. Drug screening with in vitro and in vivo models of epilepsy can potentially facilitate new treatment strategies. The future of epilepsy genetics will also probably include other-omic approaches such as transcriptomes, metabolomes, and the expanded use of whole genome sequencing to further improve our understanding of epilepsy and provide better care for those with the disease.
Collapse
Affiliation(s)
- K A Myers
- Department of Pediatrics, University of McGill, Montreal, Canada.,Research Institute of the McGill University Health Centre, Montreal, Canada
| | - D L Johnstone
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - D A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| |
Collapse
|
15
|
Steward CA, Parker APJ, Minassian BA, Sisodiya SM, Frankish A, Harrow J. Genome annotation for clinical genomic diagnostics: strengths and weaknesses. Genome Med 2017; 9:49. [PMID: 28558813 PMCID: PMC5448149 DOI: 10.1186/s13073-017-0441-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Human Genome Project and advances in DNA sequencing technologies have revolutionized the identification of genetic disorders through the use of clinical exome sequencing. However, in a considerable number of patients, the genetic basis remains unclear. As clinicians begin to consider whole-genome sequencing, an understanding of the processes and tools involved and the factors to consider in the annotation of the structure and function of genomic elements that might influence variant identification is crucial. Here, we discuss and illustrate the strengths and weaknesses of approaches for the annotation and classification of important elements of protein-coding genes, other genomic elements such as pseudogenes and the non-coding genome, comparative-genomic approaches for inferring gene function, and new technologies for aiding genome annotation, as a practical guide for clinicians when considering pathogenic sequence variation. Complete and accurate annotation of structure and function of genome features has the potential to reduce both false-negative (from missing annotation) and false-positive (from incorrect annotation) errors in causal variant identification in exome and genome sequences. Re-analysis of unsolved cases will be necessary as newer technology improves genome annotation, potentially improving the rate of diagnosis.
Collapse
Affiliation(s)
- Charles A Steward
- Congenica Ltd, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK. .,The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | - Berge A Minassian
- Department of Pediatrics (Neurology), University of Texas Southwestern, Dallas, TX, USA.,Program in Genetics and Genome Biology and Department of Paediatrics (Neurology), The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, UK.,Chalfont Centre for Epilepsy, Chesham Lane, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK
| | - Adam Frankish
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jennifer Harrow
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Illumina Inc, Great Chesterford, Essex, CB10 1XL, UK
| |
Collapse
|
16
|
Chang HS, Won E, Lee HY, Ham BJ, Lee MS. Association analysis for corticotropin releasing hormone polymorphisms with the risk of major depressive disorder and the response to antidepressants. Behav Brain Res 2015; 292:116-24. [PMID: 26055202 DOI: 10.1016/j.bbr.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 01/02/2023]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis is one of the most consistent neuroendocrine abnormalities observed in patients with major depressive disorder (MDD). The peptide corticotropin-releasing hormone (CRH) is a key mediator for HPA axis function during stress. This study evaluated the associations of CRH polymorphisms with susceptibility to MDD and response to antidepressant treatment, and the gene-environment interaction with stressful life events (SLEs). After screening 31 polymorphisms in the gene encoding CRH, we evaluated the association of polymorphisms with MDD susceptibility in 149 patients with MDD and 193 control subjects; in patients, we also evaluated the response to treatment with antidepressants. Although genotypes and haplotypes were not significantly associated with the risk of MDD, non-remitters were more likely to carry haplotype 1 (ht1) than were remitters (P = 0.019-0.038), when only patients without SLE were included; however, the association was not significant after correction for multiple comparisons. Additionally, after 4 and 8 weeks of treatment in patients who experienced no SLEs, significantly higher 21-item Hamilton Depression Rating scores were found in MDD subjects who were CRH ht1 homozygotes compared to patients carrying one or no ht1 alleles (P = 0.007 and 0.027 at 4 and 8 weeks, respectively). Although these preliminary observations require further confirmation in future studies, these results on the interaction between CRH haplotypes and SLEs, suggest that CRH ht1 which is moderated by SLEs, may be associated with antidepressant treatment outcomes in patients with MDD.
Collapse
Affiliation(s)
- Hun Soo Chang
- Department of Medical Bioscience, Graduated School, Soonchunhyang University, Bucheon 420-767, Republic of Korea
| | - Eunsoo Won
- Phamacogenetic Research Center for Psychotropic Drugs, Korea University, Seoul 136-705, Republic of Korea; Department of Psychiatry, College of Medicine, Korea University, Seoul 136-705, Republic of Korea; Department of Psychiatry, Korea University Anam Hospital, Seoul 136-705, Republic of Korea
| | - Hwa-Young Lee
- Department of Psychiatry, College of Medicine, Soonchunhyang University, Cheonan 330-721, Republic of Korea
| | - Byung-Joo Ham
- Phamacogenetic Research Center for Psychotropic Drugs, Korea University, Seoul 136-705, Republic of Korea; Department of Psychiatry, College of Medicine, Korea University, Seoul 136-705, Republic of Korea; Department of Psychiatry, Korea University Anam Hospital, Seoul 136-705, Republic of Korea
| | - Min-Soo Lee
- Phamacogenetic Research Center for Psychotropic Drugs, Korea University, Seoul 136-705, Republic of Korea; Department of Psychiatry, College of Medicine, Korea University, Seoul 136-705, Republic of Korea; Department of Psychiatry, Korea University Anam Hospital, Seoul 136-705, Republic of Korea.
| |
Collapse
|
17
|
Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 2015; 6:22. [PMID: 25717303 PMCID: PMC4324070 DOI: 10.3389/fphys.2015.00022] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Brusco
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Alida Amadeo
- Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
18
|
|
19
|
Abstract
BACKGROUND Nocturnal frontal lobe epilepsy (NFLE) is an idiopathic partial epilepsy characterized by a wide spectrum of stereotyped motor manifestations, mostly occurring during non rapid eye movements sleep. NFLE is underdiagnosed since semiological similarities make it difficult to distinguish NFLE from parasomnias. In 1994, authors reported families with NFLE inherited as an autosomal dominant trait and they introduced the term of autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). A family history of possible NFLE is found in about 25% of cases. The genetic bases of the disease have been detected in a minority of cases. Mutations causing a gain of function of the neuronal nicotinic acetylcholine receptors were reported in 3 different subunits. REVIEW SUMMARY This review discusses the clinical aspects of NFLE and the diagnostic procedures. Furthermore, the genetic aspects are outlined. The main differentiating features characterizing NFLE are: (a) several attacks per night at any time during the night; (b) brief duration of the attacks; (c) stereotyped motor pattern. Nocturnal video-polysomnography is crucial for the diagnosis. Neurological examination in NFLE/ADNFLE is normal. About 30% of NFLE cases are resistant to antiepileptic drugs. Concerning the genetics, putative susceptibility nucleotide variations affecting the promoter of the CRH gene and altering the corticotrophin-releasing hormone levels have been reported in some NFLE patients. CONCLUSIONS Distinguishing NFLE seizures from paroxysmal nonepileptic sleep disorders is often difficult and sometimes impossible on clinical grounds alone. Nocturnal video-polysomnography is mandatory. Further genetic studies could help the diagnosis and treatment in NFLE patients.
Collapse
|
20
|
Sansoni V, Forcella M, Mozzi A, Fusi P, Ambrosini R, Ferini-Strambi L, Combi R. Functional characterization of a CRH missense mutation identified in an ADNFLE family. PLoS One 2013; 8:e61306. [PMID: 23593457 PMCID: PMC3623861 DOI: 10.1371/journal.pone.0061306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
Nocturnal frontal lobe epilepsy has been historically considered a channelopathy caused by mutations in subunits of the neuronal nicotinic acetylcholine receptor or in a recently reported potassium channel. However, these mutations account for only a minority of patients, and the existence of at least a new locus for the disease has been demonstrated. In 2005, we detected two nucleotide variations in the promoter of the CRH gene coding for the corticotropin releasing hormone in 7 patients. These variations cosegregated with the disease and were demonstrated to alter the cellular levels of this hormone. Here, we report the identification in an Italian affected family of a novel missense mutation (hpreproCRH p.Pro30Arg) located in the region of the CRH coding for the protein pro-sequence. The mutation was detected in heterozygosity in the two affected individuals. In vitro assays demonstrated that this mutation results in reduced levels of protein secretion in the short time thus suggesting that mutated people could present an altered capability to respond immediately to stress agents.
Collapse
Affiliation(s)
- Veronica Sansoni
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Monza, Italy
| | - Matilde Forcella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Alessandra Mozzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Roberto Ambrosini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Romina Combi
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Monza, Italy
- * E-mail:
| |
Collapse
|
21
|
|
22
|
Becchetti A. Neuronal nicotinic receptors in sleep-related epilepsy: studies in integrative biology. ISRN BIOCHEMISTRY 2012; 2012:262941. [PMID: 25969754 PMCID: PMC4392997 DOI: 10.5402/2012/262941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/21/2012] [Indexed: 11/23/2022]
Abstract
Although Mendelian diseases are rare, when considered one by one, overall they constitute a significant social burden. Besides the medical aspects, they propose us one of the most general biological problems. Given the simplest physiological perturbation of an organism, that is, a single gene mutation, how do its effects percolate through the hierarchical biological levels to determine the pathogenesis? And how robust is the physiological system to this perturbation? To solve these problems, the study of genetic epilepsies caused by mutant ion channels presents special advantages, as it can exploit the full range of modern experimental methods. These allow to extend the functional analysis from single channels to whole brains. An instructive example is autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), which can be caused by mutations in neuronal nicotinic acetylcholine receptors. In vitro, such mutations often produce hyperfunctional receptors, at least in heterozygous condition. However, understanding how this leads to sleep-related frontal epilepsy is all but straightforward. Several available animal models are helping us to determine the effects of ADNFLE mutations on the mammalian brain. Because of the complexity of the cholinergic regulation in both developing and mature brains, several pathogenic mechanisms are possible, which also present different therapeutic implications.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
23
|
Poza JJ. The genetics of focal epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2012; 107:153-161. [PMID: 22938969 DOI: 10.1016/b978-0-444-52898-8.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Juan José Poza
- Department of Neurology, Hospital Donostia, San Sebastian, Spain.
| |
Collapse
|
24
|
Sansoni V, Nobili L, Proserpio P, Ferini-Strambi L, Combi R. A de novo mutation in an Italian sporadic patient affected by nocturnal frontal lobe epilepsy. J Sleep Res 2011; 21:352-3. [DOI: 10.1111/j.1365-2869.2011.00986.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Neubauer B, Hahn A. Genetik der Epilepsien. Monatsschr Kinderheilkd 2011. [DOI: 10.1007/s00112-011-2395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Affiliation(s)
- Marco Zucconi
- Department of Clinical Neurosciences, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
27
|
Genetic basis in epilepsies caused by malformations of cortical development and in those with structurally normal brain. Hum Genet 2009; 126:173-93. [PMID: 19536565 DOI: 10.1007/s00439-009-0702-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 06/02/2009] [Indexed: 01/10/2023]
Abstract
Epilepsy is the most common neurological disorder affecting young people. The etiologies are multiple and most cases are sporadic. However, some rare families with Mendelian inheritance have provided evidence of genes' important role in epilepsy. Two important but apparently different groups of disorders have been extensively studied: epilepsies associated with malformations of cortical development (MCDs) and epilepsies associated with a structurally normal brain (or with minimal abnormalities only). This review is focused on clinical and molecular aspects of focal cortical dysplasia, polymicrogyria, periventricular nodular heterotopia, subcortical band heterotopia, lissencephaly and schizencephaly as examples of MCDs. Juvenile myoclonic epilepsy, childhood absence epilepsy, some familial forms of focal epilepsy and epilepsies associated with febrile seizures are discussed as examples of epileptic conditions in (apparently) structurally normal brains.
Collapse
|
28
|
Abstract
OBJECTIVE This article aimed to review the latest genes associated with idiopathic focal and generalized epilepsies. METHODS PubMed and Entrez Gene searches pertaining to this work was conducted using specific keyword search terms related to genes and various listed subtopics related to idiopathic epilepsy syndromes. RESULTS Mutations in the cholinergic receptor, neuronal nicotinic, alpha2, alpha4 and beta2 subunit genes have been found in autosomal dominant nocturnal frontal lobe epilepsy. Mutations of potassium voltage-gated channel, KQT-like subfamily, members 2 and 3 genes were identified to be responsible for benign familial neonatal seizures. The voltage-gated sodium channel genes and gamma-aminobutyric acid receptor alpha subunit genes may be involved in the pathogenesis of generalized epilepsy with febrile seizure plus. Mutations of gamma-aminobutyric acid receptor alpha1, gamma-aminobutyric acid receptor delta, calcium channel voltage-dependent beta4 subunit and chloride channel 2 gene are associated with juvenile myoclonic epilepsy. In addition, mutations of leucine-rich, glioma-inactivated 1 gene leads to genetic abnormalities of familial lateral temporal lobe epilepsy. EF-hand domain (C-terminal)-containing 1 gene can cause some patterns of juvenile myoclonic and juvenile absence epilepsies. DISCUSSION Genetic factors play an important role in idiopathic epilepsy syndromes. Ion channel genes and some non-ion channel genes contribute to the pathogenesis of idiopathic epilepsies. Based on these findings, genetic diagnosis and new treatment strategies to part of idiopathic epilepsies become possible in the future.
Collapse
Affiliation(s)
- Yang Lu
- The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
29
|
Combi R, Grioni D, Contri M, Redaelli S, Redaelli F, Bassi MT, Barisani D, Lavitrano ML, Tredici G, Tenchini ML, Bertolini M, Dalprà L. Clinical and genetic familial study of a large cohort of Italian children with idiopathic epilepsy. Brain Res Bull 2009; 79:89-96. [PMID: 19200853 DOI: 10.1016/j.brainresbull.2009.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 12/19/2008] [Accepted: 01/16/2009] [Indexed: 12/13/2022]
|
30
|
Combi R, Ferini-Strambi L, Tenchini ML. Compound heterozygosity with dominance in the Corticotropin Releasing Hormone (CRH) promoter in a case of nocturnal frontal lobe epilepsy. J Sleep Res 2009; 17:361-2. [PMID: 18844820 DOI: 10.1111/j.1365-2869.2008.00674.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Derry CP, Heron SE, Phillips F, Howell S, MacMahon J, Phillips HA, Duncan JS, Mulley JC, Berkovic SF, Scheffer IE. Severe autosomal dominant nocturnal frontal lobe epilepsy associated with psychiatric disorders and intellectual disability. Epilepsia 2008; 49:2125-9. [PMID: 18479385 DOI: 10.1111/j.1528-1167.2008.01652.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a relatively benign epilepsy syndrome with few comorbidities. Here we describe two families with unusually severe ADNFLE, with associated psychiatric, behavioral, and cognitive features. Detailed clinical data on 17 affected individuals were obtained, and genotyping of microsatellite markers, linkage analysis, and sequencing of candidate genes was performed. The severe ADNFLE phenotype in these families was often refractory to treatment, with status epilepticus occurring in 24% of subjects. Psychiatric or behavioral disorders occurred in 53%, with intellectual disability in 24%, and developmental regression in two individuals. No mutations were identified in alpha4, alpha2, or beta2 nAChR subunits. In one family there was evidence of linkage to a region of 15q24 without nAChR subunit genes. In conclusion, severe ADNFLE has significant medical, psychiatric, and intellectual morbidity. The molecular basis of severe ADNFLE is unknown but may involve non-nAChR-related mechanisms.
Collapse
Affiliation(s)
- Christopher P Derry
- Department of Medicine (Neurology), Epilepsy Research Centre, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Díaz-Otero F, Quesada M, Morales-Corraliza J, Martínez-Parra C, Gómez-Garre P, Serratosa JM. Autosomal dominant nocturnal frontal lobe epilepsy with a mutation in theCHRNB2gene. Epilepsia 2008; 49:516-20. [PMID: 17900292 DOI: 10.1111/j.1528-1167.2007.01328.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE; MIM 600513) has been associated with mutations in the genes coding for the alfa-4 (CHRNA4), beta-2 (CHRNB2), and alpha-2 (CHRNA2) subunits of the neuronal nicotinic acetylcholine receptor (nAChR) and for the corticotropin-releasing hormone (CRH). A four-generation ADNFLE family with six affected members was identified. All affected members presented the clinical characteristics of ADNFLE. Interictal awake and sleep EEG recordings showed no epileptiform abnormalities. Ictal video-EEG recordings showed focal seizures with frontal lobe semiology. Mutation analysis of the CHRNB2 gene revealed a c.859G>A transition (Val287Met) within the second transmembrane domain, identical to that previously described in a Scottish ADNFLE family. To our knowledge, this is the third family reported presenting a mutation in CHRNB2. The clinical phenotype appears similar to that described with mutations in CHRNA4, suggesting that mutations in these two subunits lead to similar functional alterations of the nAChR.
Collapse
|
34
|
Montagna P, Provini F, Bisulli F, Tinuper P. Nocturnal epileptic seizures versus the arousal parasomnias. SOMNOLOGIE 2008. [DOI: 10.1007/s11818-008-0333-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
De Marco EV, Gambardella A, Annesi F, Labate A, Carrideo S, Forabosco P, Civitelli D, Candiano ICC, Tarantino P, Annesi G, Quattrone A. Further evidence of genetic heterogeneity in families with autosomal dominant nocturnal frontal lobe epilepsy. Epilepsy Res 2007; 74:70-3. [PMID: 17324557 DOI: 10.1016/j.eplepsyres.2006.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 12/05/2006] [Accepted: 12/23/2006] [Indexed: 11/23/2022]
Abstract
PURPOSE Mutations in the genes encoding the alfa(2), alfa(4) and beta(2) subunits of the neuronal nicotinic acetylcholine receptor (nAChR) play a causative role in autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Moreover, variations in the promoter of the corticotropic-releasing hormone gene (CRH) were also associated with ADNFLE. Here, we investigated whether nine brain-expressed genes (CHRNA2, CHRNA3, CHRNA4, CHRNA5, CHRNA6, CHRNA7, CHRNB2, CHRNB3, CHRNB4), encoding distinct nAChR subunits, and CRH are associated with the disease in three distinct ADNFLE families from Southern Italy. METHODS There were 14 living affected individuals (9 women), ranging in age from 14 to 57 years, pertaining to three unrelated families. Age at onset of seizures clustered around 9 years of age (range from 7 and 16 years, mean: 9.1 years+/-3.8). All affected individuals manifested nocturnal partial seizures of frontal lobe origin, which were well controlled by medications. Exon 5 of CHRNA4 and CHRNB2 genes, harboring all the known mutations, was sequenced in the probands. Then, we performed a linkage study on 13 affected and 26 non-affected individuals belonging to the three families with microsatellite markers and an intragenic polymorphisms encompassing the chromosome localization of the nAChR subunit genes and of the CRH gene. RESULTS Mutational and linkage analyses allowed us to exclude the involvement of all known nAChR subunit genes and of the CRH gene in ADNFLE in our families. CONCLUSION Our results further illustrate the considerable genetic heterogeneity for such a syndrome, despite the quite homogeneous clinical picture. It is therefore reasonable to hypothesize that at least another gene not belonging to the nAChR gene family, in addition to CRH, is involved in the pathogenesis of ADNFLE.
Collapse
Affiliation(s)
- Elvira V De Marco
- Institute of Neurological Sciences, National Research Council, Mangone (CS), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|