1
|
McKinnon S, Qiang Z, Keerie A, Wells T, Shaw PJ, Alix JJP, Mead RJ. Maximizing the translational potential of neurophysiology in amyotrophic lateral sclerosis: a study on compound muscle action potentials. Amyotroph Lateral Scler Frontotemporal Degener 2025; 26:322-330. [PMID: 39840885 DOI: 10.1080/21678421.2024.2448540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 01/23/2025]
Abstract
Mouse models of amyotrophic lateral sclerosis (ALS) enable testing of novel therapeutic interventions. However, treatments that have extended survival in mice have often failed to translate into human benefit in clinical trials. Compound muscle action potentials (CMAPs) are a simple neurophysiological test that measures the summation of muscle fiber depolarization in response to maximal stimulation of the innervating nerve. CMAPs can be measured in both mice and humans and decline with motor axon loss in ALS, making them a potential translational read-out of disease progression. We assessed the translational potential of CMAPs and ascertained time points when human and mouse data aligned most closely. We extracted data from 18 human studies and compared with results generated from SOD1G93A and control mice at different ages across different muscles. The relative CMAP amplitude difference between SOD1G93A and control mice in tibialis anterior (TA) and gastrocnemius muscles at 70 days of age was most similar to the relative difference between baseline ALS patient CMAP measurements and healthy controls in the abductor pollicis brevis (APB) muscle. We also found that the relative decline in SOD1G93A TA CMAP amplitude between 70 and 140 days was similar to that observed in 12 month human longitudinal studies in APB. Our findings suggest CMAP amplitudes can provide a "translational window", from which to make comparisons between the SOD1G93A model and human ALS patients. CMAPs are easy to perform and can help determine the most clinically relevant starting/end points for preclinical studies and provide a basis for predicting potential clinical effect sizes.
Collapse
Affiliation(s)
- Scott McKinnon
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and
| | - Zekai Qiang
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and
| | - Amy Keerie
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and
| | - Tyler Wells
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and
- Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, UK
| | - James J P Alix
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and
- Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, UK
| | - Richard J Mead
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and
- Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
2
|
Salomon-Zimri S, Kerem N, Linares GR, Russek-Blum N, Ichida JK, Tracik F. Elucidating the Synergistic Effect of the PrimeC Combination for Amyotrophic Lateral Sclerosis in Human Induced Pluripotent Stem Cell-Derived Motor Neurons and Mouse Models. Pharmaceuticals (Basel) 2025; 18:524. [PMID: 40283960 PMCID: PMC12030000 DOI: 10.3390/ph18040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterized by the involvement of multiple pathways and mechanisms. The complexity of its pathophysiology is reflected in the diverse hypotheses relating to its underlying causes. Given this intricate interplay of processes, a combination therapy approach offers a promising strategy. Combination therapies have demonstrated significant success in treating complex diseases, where they aim to achieve synergistic therapeutic effects and reduce drug dosage. PrimeC is an oral combination treatment composed of a patented novel formulation consisting of specific and unique doses of two well-characterized drugs (ciprofloxacin and celecoxib). It aims to synergistically inhibit the progression of ALS by addressing key elements of its pathophysiology. Objectives: Demonstrating the synergistic effect of the PrimeC combination compared to each of its individual components, celecoxib and ciprofloxacin, and assessing its ability to improve the drug concentration profile and efficacy. Methods: The efficacy of the PrimeC combination was assessed in a survival assay using human induced pluripotent stem cell (iPSC)-derived motor neurons. Additionally, a drug profiling study was conducted, measuring drug levels in the brain and serum of C57BL mice treated with a single compound versus the combination. Results: Motor neurons modeling ALS treated with the PrimeC combination exhibited better survival rates compared to treatment with either individual compound alone. The enhanced efficacy of the combination was further supported by a drug concentration profiling study in rodents, demonstrating that the PrimeC combination resulted in increased ciprofloxacin concentrations in both brain tissue and serum-highlighting the optimized interaction and synergistic potential of its two comprising agents. Conclusions: Our findings support the potential of combination therapy as an effective strategy for ALS treatment. Specifically, the PrimeC combination demonstrated promising therapeutic effects, providing a strong rationale for its ongoing development as a targeted treatment for ALS.
Collapse
Affiliation(s)
- Shiran Salomon-Zimri
- NeuroSense Therapeutics, Ltd., Ha-Menofim 11, Herzliya 4672562, Israel; (N.K.); (N.R.-B.); (F.T.)
| | - Nitai Kerem
- NeuroSense Therapeutics, Ltd., Ha-Menofim 11, Herzliya 4672562, Israel; (N.K.); (N.R.-B.); (F.T.)
| | - Gabriel R. Linares
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.R.L.); (J.K.I.)
| | - Niva Russek-Blum
- NeuroSense Therapeutics, Ltd., Ha-Menofim 11, Herzliya 4672562, Israel; (N.K.); (N.R.-B.); (F.T.)
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.R.L.); (J.K.I.)
| | - Ferenc Tracik
- NeuroSense Therapeutics, Ltd., Ha-Menofim 11, Herzliya 4672562, Israel; (N.K.); (N.R.-B.); (F.T.)
| |
Collapse
|
3
|
Masood S, Almas MS, Hassan SSU, Tahira S, Fiaz MH, Minhas UEA, Zafar HMQ, Masood M. Safety and efficacy of arimoclomol in amyotrophic lateral sclerosis: a systematic review and meta-analysis. Neurol Sci 2025:10.1007/s10072-025-08062-5. [PMID: 40024955 DOI: 10.1007/s10072-025-08062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVES Amyotrophic Lateral Sclerosis (ALS) is a debilitating motor neuron disorder characterized by muscle weakness, atrophy, and spasticity. This meta-analysis aims to assess the safety and efficacy of Arimoclomol in patients with ALS. METHOD A comprehensive literature search was conducted on 3 databases to discover articles published up to August 2024. Included studies were randomized controlled trials (RCTs). Data was analysed using Review Manager (v5.4). Cochrane Risk of Bias-2 (RoB-2) was adopted to assess the quality of RCTs. RESULTS A total of 359 patients were analysed, with 239 individuals in the Arimoclomol group and 120 individuals in the placebo group. The pooled analysis of the primary outcome, change in Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) score from baseline, did not demonstrate a statistically significant difference favoring the Arimoclomol group (MD = 0.4495; 95% CI: -0.39, 1.27; p = 0.30). Similarly, secondary outcomes, including the Combined Assessment of Function and Survival (CAFS) rank score (MD = 1.00; 95% CI: -2.68, 4.67; p = 0.60), increase in transaminases (RR = 1.05; 95% CI: 0.19, 5.70; p = 0.95), mortality rate (RR = 0.86; 95% CI: 0.55, 1.34; p = 0.50), and adverse events (RR = 0.86; 95% CI: 0.55, 1.34; p = 0.50), showed no statistically significant differences between the groups. CONCLUSION This study does not conclusively demonstrate that Arimoclomol has beneficial effects on ALS patients' physical functionality but shows promise for safety. Further clinical trials are needed to explore the neuroprotective effects of Arimoclomol in the treatment of ALS.
Collapse
Affiliation(s)
- Saad Masood
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | | | | | - Sameen Tahira
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | | | | | | | - Musa Masood
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| |
Collapse
|
4
|
Giannakou M, Akrani I, Tsoka A, Myrianthopoulos V, Mikros E, Vorgias C, Hatzinikolaou DG. Discovery of Novel Inhibitors against ALS-Related SOD1(A4V) Aggregation through the Screening of a Chemical Library Using Differential Scanning Fluorimetry (DSF). Pharmaceuticals (Basel) 2024; 17:1286. [PMID: 39458929 PMCID: PMC11510448 DOI: 10.3390/ph17101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful effects through a gain of function mechanism, rather than a loss of function. Despite extensive research, the mechanism causing selective motor neuron death still remains unclear. A defining feature of ALS pathogenesis is protein misfolding and aggregation, evidenced by ubiquitinated protein inclusions containing SOD1 in affected motor neurons. This work aims to identify compounds countering SOD1(A4V) misfolding and aggregation, which could potentially aid in ALS treatment. METHODS The approach employed was in vitro screening of a library comprising 1280 pharmacologically active compounds (LOPAC®) in the context of drug repurposing. Using differential scanning fluorimetry (DSF), these compounds were tested for their impact on SOD1(A4V) thermal stability. RESULTS AND CONCLUSIONS Dimer stability was the parameter chosen as the criterion for screening, since the dissociation of the native SOD1 dimer is the step prior to its in vitro aggregation. The screening revealed one compound raising protein-ligand Tm by 6 °C, eleven inducing a higher second Tm, suggesting a stabilization effect, and fourteen reducing Tm from 10 up to 26 °C, suggesting possible interactions or non-specific binding.
Collapse
Affiliation(s)
- Maria Giannakou
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Ifigeneia Akrani
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Angeliki Tsoka
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Vassilios Myrianthopoulos
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Emmanuel Mikros
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Constantinos Vorgias
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| |
Collapse
|
5
|
Wang Q, Gu X, Yang L, Jiang Y, Zhang J, He J. Emerging perspectives on precision therapy for Parkinson's disease: multidimensional evidence leading to a new breakthrough in personalized medicine. Front Aging Neurosci 2024; 16:1417515. [PMID: 39026991 PMCID: PMC11254646 DOI: 10.3389/fnagi.2024.1417515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
PD is a prevalent and progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Genes play a significant role in the onset and progression of the disease. While the complexity and pleiotropy of gene expression networks have posed challenges for gene-targeted therapies, numerous pathways of gene variant expression show promise as therapeutic targets in preclinical studies, with some already in clinical trials. With the recognition of the numerous genes and complex pathways that can influence PD, it may be possible to take a novel approach to choose a treatment for the condition. This approach would be based on the symptoms, genomics, and underlying mechanisms of the disease. We discuss the utilization of emerging genetic and pathological knowledge of PD patients to categorize the disease into subgroups. Our long-term objective is to generate new insights for the therapeutic approach to the disease, aiming to delay and treat it more effectively, and ultimately reduce the burden on individuals and society.
Collapse
Affiliation(s)
- Qiaoli Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuan Gu
- Department of Trauma center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Yang
- Department of Endocrinology, The People’s Hospital of Jilin Province, Changchun, China
| | - Yan Jiang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiao Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Wei Y, Zhong S, Yang H, Wang X, Lv B, Bian Y, Pei Y, Xu C, Zhao Q, Wu Y, Luo D, Wang F, Sun H, Chen Y. Current therapy in amyotrophic lateral sclerosis (ALS): A review on past and future therapeutic strategies. Eur J Med Chem 2024; 272:116496. [PMID: 38759454 DOI: 10.1016/j.ejmech.2024.116496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the first and second motoneurons (MNs), associated with muscle weakness, paralysis and finally death. The exact etiology of the disease still remains unclear. Currently, efforts to develop novel ALS treatments which target specific pathomechanisms are being studied. The mechanisms of ALS pathogenesis involve multiple factors, such as protein aggregation, glutamate excitotoxicity, oxidative stress, mitochondrial dysfunction, apoptosis, inflammation etc. Unfortunately, to date, there are only two FDA-approved drugs for ALS, riluzole and edavarone, without curative treatment for ALS. Herein, we give an overview of the many pathways and review the recent discovery and preclinical characterization of neuroprotective compounds. Meanwhile, drug combination and other therapeutic approaches are also reviewed. In the last part, we analyze the reasons of clinical failure and propose perspective on the treatment of ALS in the future.
Collapse
Affiliation(s)
- Yuqing Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng Zhong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huajing Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xueqing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Daying Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Li X, Bedlack R. Evaluating emerging drugs in phase II & III for the treatment of amyotrophic lateral sclerosis. Expert Opin Emerg Drugs 2024; 29:93-102. [PMID: 38516735 DOI: 10.1080/14728214.2024.2333420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis is a rapidly progressive motor neuron disorder causing severe disability and premature death. Owing to the advances in uncovering ALS pathophysiology, efficient clinical trial design and research advocacy program, several disease-modifying drugs have been approved for treating ALS. Despite this progress, ALS remains a rapidly disabling and life shortening condition. There is a critical need for more effective therapies. AREAS COVERED Here, we reviewed the emerging ALS therapeutics undergoing phase II & III clinical trials. To identify the investigational drugs, we searched ALS and phase II/III trials that are active and recruiting or not yet recruiting on clinicaltrials.gov and Pharmaprojects database. EXPERT OPINION The current pipeline is larger and more diverse than ever, with drugs targeting potential genetic and retroviral causes of ALS and drugs targeting a wide array of downstream pathways, including RNA metabolism, protein aggregation, integrated stress response and neuroinflammation.We remain most excited about those that target direct causes of ALS, e.g. antisense oligonucleotides targeting causative genes. Drugs that eliminate abnormal protein aggregates are also up-and-coming. Eventually, because of the heterogeneity of ALS pathophysiology, biomarkers that determine which biological events are most important for an individual ALS patient are needed.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Neurology, Duke University, Durham, NC, USA
| | | |
Collapse
|
8
|
Din Abdul Jabbar MA, Guo L, Nag S, Guo Y, Simmons Z, Pioro EP, Ramasamy S, Yeo CJJ. Predicting amyotrophic lateral sclerosis (ALS) progression with machine learning. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:242-255. [PMID: 38052485 DOI: 10.1080/21678421.2023.2285443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE To predict ALS progression with varying observation and prediction window lengths, using machine learning (ML). METHODS We used demographic, clinical, and laboratory parameters from 5030 patients in the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database to model ALS disease progression as fast (at least 1.5 points decline in ALS Functional Rating Scale-Revised (ALSFRS-R) per month) or non-fast, using Extreme Gradient Boosting (XGBoost) and Bayesian Long Short Term Memory (BLSTM). XGBoost identified predictors of progression while BLSTM provided a confidence level for each prediction. RESULTS ML models achieved area under receiver-operating-characteristics curve (AUROC) of 0.570-0.748 and were non-inferior to clinician assessments. Performance was similar with observation lengths of a single visit, 3, 6, or 12 months and on a holdout validation dataset, but was better for longer prediction lengths. 21 important predictors were identified, with the top 3 being days since disease onset, past ALSFRS-R and forced vital capacity. Nonstandard predictors included phosphorus, chloride and albumin. BLSTM demonstrated higher performance for the samples about which it was most confident. Patient screening by models may reduce hypothetical Phase II/III clinical trial sizes by 18.3%. CONCLUSION Similar accuracies across ML models using different observation lengths suggest that a clinical trial observation period could be shortened to a single visit and clinical trial sizes reduced. Confidence levels provided by BLSTM gave additional information on the trustworthiness of predictions, which could aid decision-making. The identified predictors of ALS progression are potential biomarkers and therapeutic targets for further research.
Collapse
Affiliation(s)
- Muzammil Arif Din Abdul Jabbar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ling Guo
- Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sonakshi Nag
- Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yang Guo
- Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zachary Simmons
- Department of Neurology, Pennsylvania State University College of Medicine, State College, PA, USA
| | - Erik P Pioro
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Savitha Ramasamy
- Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Crystal Jing Jing Yeo
- Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Lee Kong Chien School of Medicine, Imperial College London and Nanyang Technological University Singapore, Singapore, Singapore
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
9
|
Genge A, Wainwright S, Vande Velde C. Amyotrophic lateral sclerosis: exploring pathophysiology in the context of treatment. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:225-236. [PMID: 38001557 DOI: 10.1080/21678421.2023.2278503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex, neurodegenerative disorder in which alterations in structural, physiological, and metabolic parameters act synergistically. Over the last decade there has been a considerable focus on developing drugs to slow the progression of the disease. Despite this, only four disease-modifying therapies are approved in North America. Although additional research is required for a thorough understanding of ALS, we have accumulated a large amount of knowledge that could be better integrated into future clinical trials to accelerate drug development and provide patients with improved treatment options. It is likely that future, successful ALS treatments will take a multi-pronged therapeutic approach, targeting different pathways, akin to personalized medicine in oncology. In this review, we discuss the link between ALS pathophysiology and treatments, looking at the therapeutic failures as learning opportunities that can help us refine and optimize drug development.
Collapse
Affiliation(s)
- Angela Genge
- Clinical Research Unit Director, ALS Clinic, Montreal, Quebec, Canada
| | - Steven Wainwright
- Amylyx Pharmaceuticals, Inc, Vancouver, British Columbia, Canada, and
| | - Christine Vande Velde
- CHUM Research Center, Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Giri PM, Banerjee A, Ghosal A, Layek B. Neuroinflammation in Neurodegenerative Disorders: Current Knowledge and Therapeutic Implications. Int J Mol Sci 2024; 25:3995. [PMID: 38612804 PMCID: PMC11011898 DOI: 10.3390/ijms25073995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Neurodegenerative disorders (NDs) have become increasingly common during the past three decades. Approximately 15% of the total population of the world is affected by some form of NDs, resulting in physical and cognitive disability. The most common NDs include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Although NDs are caused by a complex interaction of genetic, environmental, and lifestyle variables, neuroinflammation is known to be associated with all NDs, often leading to permanent damage to neurons of the central nervous system. Furthermore, numerous emerging pieces of evidence have demonstrated that inflammation not only supports the progression of NDs but can also serve as an initiator. Hence, various medicines capable of preventing or reducing neuroinflammation have been investigated as ND treatments. While anti-inflammatory medicine has shown promising benefits in several preclinical models, clinical outcomes are often questionable. In this review, we discuss various NDs with their current treatment strategies, the role of neuroinflammation in the pathophysiology of NDs, and the use of anti-inflammatory agents as a potential therapeutic option.
Collapse
Affiliation(s)
- Paras Mani Giri
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Anurag Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Arpita Ghosal
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
11
|
Wang X, Ni X, Ouyang X, Zhang Y, Xu T, Wang L, Qi W, Sun M, Zeng Q, Wang Z, Liao H, Gao X, Li D, Zhao L. Modulatory effects of acupuncture on raphe nucleus-related brain circuits in patients with chronic neck pain: A randomized neuroimaging trial. CNS Neurosci Ther 2024; 30:e14335. [PMID: 37408438 PMCID: PMC10945396 DOI: 10.1111/cns.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
OBJECTIVE Acupuncture has shown promise in treating neck pain. Clinical trials have shown mixed results, possibly due to heterogeneous methodologies and the lack of knowledge regarding underlying brain circuit mechanism of action. In this study, we investigated the specific contribution of the serotonergic system in treating neck pain, and the specific brain circuits involved. METHODS A total of 99 patients with chronic neck pain (CNP) were randomized to receive true acupuncture (TA) or sham acupuncture (SA) 3 times weekly for 4 weeks. Patients with CNP in each group were assessed for primary outcomes by measuring the Visual Analog Scale (VAS) and the duration of each attack; secondary outcomes were measured using the Neck Disability Index (NDI), Northwick Park Neck Pain Questionnaire (NPQ), McGill Pain Questionnaire (MPQ), Self-rating Anxiety Scale (SAS), Self-rating Depression Scale (SDS) and the 12-item Short Form Quality Life Scale (SF-12); levels of functional circuits connectivity were assessed using resting-state functional magnetic resonance imaging in the dorsal (DR) and median (MR) raphe nucleus, before and after undergoing acupuncture. RESULTS Patients receiving TA showed more extensive symptom improvement compared with SA. Regarding the primary outcomes, changes observed in the TA group were as follows: VAS = 16.9 mm (p < 0.001) and the duration of each attack = 4.30 h (p < 0.001); changes in the SA group: VAS = 5.41 mm (p = 0.138) and the duration of each attack = 2.06 h (p = 0.058). Regarding the secondary outcomes, changes in the TA group: NDI = 7.99 (p < 0.001), NPQ = 10.82 (p < 0.001), MPQ = 4.23 (p < 0.001), SAS = 5.82 (p < 0.001), SDS = 3.67 (p = 0.003), and SF-12 = 3.04 (p < 0.001); changes in the SA group: NDI = 2.97 (p = 0.138), NPQ = 5.24 (p = 0.035) and MPQ = 2.90 (p = 0.039), SAS = 1.48 (p = 0.433), SDS = 2.39 (p = 0.244), and SF-12 = 2.19 (p = 0.038). The modulatory effect of TA exhibited increased functional connectivity (FC) between the DR and thalamus, between the MR and parahippocampal gyrus, amygdala, and insula, with decreased FC between the DR and lingual gyrus and middle frontal gyrus, between the MR and middle frontal gyrus. Furthermore, changes in the DR-related circuit were specifically associated with the intensity and duration of pain, and the MR-related circuit was correlated with the quality of life with CNP. CONCLUSION These results demonstrated the effectiveness of TA in treating neck pain and suggested that it regulates CNP by reconfiguring the function of the raphe nucleus-related serotonergic system.
Collapse
Affiliation(s)
- Xiao Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Xixiu Ni
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Xu Ouyang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Yutong Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Tao Xu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Linjia Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Wenchuan Qi
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Mingsheng Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
- Acupuncture and Moxibustion Clinical Medical Research Center of Sichuan ProvinceChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Qian Zeng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Ziwen Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
- Acupuncture and Moxibustion Clinical Medical Research Center of Sichuan ProvinceChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Huaqiang Liao
- Hospital of Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Xiaoyu Gao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Dehua Li
- Hospital of Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
- Acupuncture and Moxibustion Clinical Medical Research Center of Sichuan ProvinceChengdu University of Traditional Chinese MedicineChengduSichuanChina
| |
Collapse
|
12
|
Shefner JM, Bunte T, Kittle G, Genge A, van den Berg LH. Harmonized standard operating procedures for administering the ALS functional rating scale-revised. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:26-33. [PMID: 37728307 DOI: 10.1080/21678421.2023.2260832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
The ALS Functional Rating Scale-Revised is the most commonly used primary outcome measure in current ALS clinical trials. While rigorous training and certification is generally recognized as critical to reliable performance, differences have existed between training in the two groups responsible for most training in ALS outcome measures. We present a harmonized standard operating procedure which is intended to further reduce response variability by the use of identical training in North America and Europe.
Collapse
Affiliation(s)
- Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Tommy Bunte
- Department of Neurology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands, and
| | - Gale Kittle
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Angela Genge
- Department of Neurology, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Leonard H van den Berg
- Department of Neurology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands, and
| |
Collapse
|
13
|
Rezvykh A, Shteinberg D, Bronovitsky E, Ustyugov A, Funikov S. Animal Models of FUS-Proteinopathy: A Systematic Review. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S34-S56. [PMID: 38621743 DOI: 10.1134/s0006297924140037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 04/17/2024]
Abstract
Mutations that disrupt the function of the DNA/RNA-binding protein FUS could cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. One of the key features in ALS pathogenesis is the formation of insoluble protein aggregates containing aberrant isoforms of the FUS protein in the cytoplasm of upper and lower motor neurons. Reproduction of human pathology in animal models is the main tool for studying FUS-associated pathology and searching for potential therapeutic agents for ALS treatment. In this review, we provide a systematic analysis of the role of FUS protein in ALS pathogenesis and an overview of the results of modelling FUS-proteinopathy in animals.
Collapse
Affiliation(s)
- Alexander Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Daniil Shteinberg
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | | | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Sergei Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
14
|
Maragakis NJ, de Carvalho M, Weiss MD. Therapeutic targeting of ALS pathways: Refocusing an incomplete picture. Ann Clin Transl Neurol 2023; 10:1948-1971. [PMID: 37641443 PMCID: PMC10647018 DOI: 10.1002/acn3.51887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Numerous potential amyotrophic lateral sclerosis (ALS)-relevant pathways have been hypothesized and studied preclinically, with subsequent translation to clinical trial. However, few successes have been observed with only modest effects. Along with an improved but incomplete understanding of ALS as a neurodegenerative disease is the evolution of more sophisticated and diverse in vitro and in vivo preclinical modeling platforms, as well as clinical trial designs. We highlight proposed pathological pathways that have been major therapeutic targets for investigational compounds. It is likely that the failures of so many of these therapeutic compounds may not have occurred because of lack of efficacy but rather because of a lack of preclinical modeling that would help define an appropriate disease pathway, as well as a failure to establish target engagement. These challenges are compounded by shortcomings in clinical trial design, including lack of biomarkers that could predict clinical success and studies that are underpowered. Although research investments have provided abundant insights into new ALS-relevant pathways, most have not yet been developed more fully to result in clinical study. In this review, we detail some of the important, well-established pathways, the therapeutics targeting them, and the subsequent clinical design. With an understanding of some of the shortcomings in translational efforts over the last three decades of ALS investigation, we propose that scientists and clinicians may choose to revisit some of these therapeutic pathways reviewed here with an eye toward improving preclinical modeling, biomarker development, and the investment in more sophisticated clinical trial designs.
Collapse
Affiliation(s)
| | - Mamede de Carvalho
- Faculdade de MedicinaInsqatituto de Medicina Molecular João Lobo Antunes, Centro Académico de Medicina de Lisboa, Universidade de LisboaLisbonPortugal
| | - Michael D. Weiss
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
15
|
Noh MY, Kwon MS, Oh KW, Nahm M, Park J, Kim YE, Ki CS, Jin HK, Bae JS, Kim SH. Role of NCKAP1 in the Defective Phagocytic Function of Microglia-Like Cells Derived from Rapidly Progressing Sporadic ALS. Mol Neurobiol 2023; 60:4761-4777. [PMID: 37154887 PMCID: PMC10293423 DOI: 10.1007/s12035-023-03339-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Microglia plays a key role in determining the progression of amyotrophic lateral sclerosis (ALS), yet their precise role in ALS has not been identified in humans. This study aimed to identify a key factor related to the functional characteristics of microglia in rapidly progressing sporadic ALS patients using the induced microglia model, although it is not identical to brain resident microglia. After confirming that microglia-like cells (iMGs) induced by human monocytes could recapitulate the main signatures of brain microglia, step-by-step comparative studies were conducted to delineate functional differences using iMGs from patients with slowly progressive ALS [ALS(S), n = 14] versus rapidly progressive ALS [ALS(R), n = 15]. Despite an absence of significant differences in the expression of microglial homeostatic genes, ALS(R)-iMGs preferentially showed defective phagocytosis and an exaggerated pro-inflammatory response to LPS stimuli compared to ALS(S)-iMGs. Transcriptome analysis revealed that the perturbed phagocytosis seen in ALS(R)-iMGs was closely associated with decreased NCKAP1 (NCK-associated protein 1)-mediated abnormal actin polymerization. NCKAP1 overexpression was sufficient to rescue impaired phagocytosis in ALS(R)-iMGs. Post-hoc analysis indicated that decreased NCKAP1 expression in iMGs was correlated with the progression of ALS. Our data suggest that microglial NCKAP1 may be an alternative therapeutic target in rapidly progressive sporadic ALS.
Collapse
Affiliation(s)
- Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute of Basic Medical Science, School of Medicine, CHA University, CHA Bio Complex, 335 Pangyo, Gyeonggi-Do 13488 Republic of Korea
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Chang-Seok Ki
- GC Genome Corporation, Yongin, 16924 Republic of Korea
| | - Hee Kyung Jin
- KNU Alzheimer’s Disease Research Institute, Kyungpook National University, Daegu, 41566 Republic of Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jae-sung Bae
- KNU Alzheimer’s Disease Research Institute, Kyungpook National University, Daegu, 41566 Republic of Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944 Republic of Korea
- Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Wangsimniro 222-1, Daegu, 41944 Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
- Cell Therapy Center, Hanyang University Hospital, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| |
Collapse
|
16
|
Nango H, Tsuruta K, Miyagishi H, Aono Y, Saigusa T, Kosuge Y. Update on the pathological roles of prostaglandin E 2 in neurodegeneration in amyotrophic lateral sclerosis. Transl Neurodegener 2023; 12:32. [PMID: 37337289 DOI: 10.1186/s40035-023-00366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of upper and lower motor neurons. The pathogenesis of ALS remains largely unknown; however, inflammation of the spinal cord is a focus of ALS research and an important pathogenic process in ALS. Prostaglandin E2 (PGE2) is a major lipid mediator generated by the arachidonic-acid cascade and is abundant at inflammatory sites. PGE2 levels are increased in the postmortem spinal cords of ALS patients and in ALS model mice. Beneficial therapeutic effects have been obtained in ALS model mice using cyclooxygenase-2 inhibitors to inhibit the biosynthesis of PGE2, but the usefulness of this inhibitor has not yet been proven in clinical trials. In this review, we present current evidence on the involvement of PGE2 in the progression of ALS and discuss the potential of microsomal prostaglandin E synthase (mPGES) and the prostaglandin receptor E-prostanoid (EP) 2 as therapeutic targets for ALS. Signaling pathways involving prostaglandin receptors mediate toxic effects in the central nervous system. In some situations, however, the receptors mediate neuroprotective effects. Our recent studies demonstrated that levels of mPGES-1, which catalyzes the final step of PGE2 biosynthesis, are increased at the early-symptomatic stage in the spinal cords of transgenic ALS model mice carrying the G93A variant of superoxide dismutase-1. In addition, in an experimental motor-neuron model used in studies of ALS, PGE2 induces the production of reactive oxygen species and subsequent caspase-3-dependent cytotoxicity through activation of the EP2 receptor. Moreover, this PGE2-induced EP2 up-regulation in motor neurons plays a role in the death of motor neurons in ALS model mice. Further understanding of the pathophysiological role of PGE2 in neurodegeneration may provide new insights to guide the development of novel therapies for ALS.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Komugi Tsuruta
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Yuri Aono
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Tadashi Saigusa
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan.
| |
Collapse
|
17
|
Gao J, Wang N, Zong F, Dong J, Lin Y, Zhang H, Zhang F. TIPE2 regulates the response of BV2 cells to lipopolysaccharide by the crosstalk between PI3K/AKT signaling and microglia M1/M2 polarization. Int Immunopharmacol 2023; 120:110389. [PMID: 37245300 DOI: 10.1016/j.intimp.2023.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Tumor necrosis factor (TNF)-α-induced protein 8-like 2 (TIPE2) is a crucial negative regulator of both adaptive and innate immunity, which helps maintain the dynamic balance of the immune system by negatively regulating the signaling of T-cell receptors (TCR) and Toll-like receptors (TLR). In this study, we aimed to investigate the role and molecular mechanism of TIPE2 using a lipopolysaccharide (LPS)-induced inflammatory injury model in BV2 cells. Specifically, we constructed a BV2 cell line of TIPE2-overexpression or TIPE2-knockdown via lentiviral transfection. Our results demonstrated that overexpression of TIPE2 downregulated the expression of pro-inflammatory cytokines IL-1β and IL-6, which was reversed by knockdown of TIPE2 in the inflammation model of BV2 cells. In addition, overexpression of TIPE2 resulted in the conversion of BV2 cells to the M2 phenotype, while the knockdown of TIPE2 promoted the transformation of BV2 cells to the M1 phenotype. Notably, our co-culture experiments with neuronal cells SH-SY5Y showed that the overexpression of TIPE2 in inflammation-injured BV2 cells exhibited a protective effect on the neuronal cells. Finally, western blot analysis demonstrated that TIPE2 significantly reduced the expression of p-PI3K, p-AKT, p-p65, and p-IκBα in LPS treated BV2 cells, and inhibited the activation of NF-κB through the dephosphorylation of PI3K/AKT. These results suggest that TIPE2 plays an important role in mediating neuroinflammatory responses and may be involved in neuroprotection by modulating the phenotypic changes of BV2 cells and regulating the pro-inflammatory responses through the PI3K/AKT and NF-κB signaling pathways. In conclusion, our study provides new insights into the crucial role of TIPE2 in regulating neuroinflammatory responses and highlights its potential as a therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China.
| | - Naidong Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Fangjiao Zong
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China.
| | - Jiahao Dong
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China.
| | - Yuanyuan Lin
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China.
| | - Hanting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China.
| | - Fang Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China.
| |
Collapse
|
18
|
Mead RJ, Shan N, Reiser HJ, Marshall F, Shaw PJ. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat Rev Drug Discov 2023; 22:185-212. [PMID: 36543887 PMCID: PMC9768794 DOI: 10.1038/s41573-022-00612-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease caused by degeneration of motor neurons. As with all major neurodegenerative disorders, development of disease-modifying therapies has proven challenging for multiple reasons. Nevertheless, ALS is one of the few neurodegenerative diseases for which disease-modifying therapies are approved. Significant discoveries and advances have been made in ALS preclinical models, genetics, pathology, biomarkers, imaging and clinical readouts over the last 10-15 years. At the same time, novel therapeutic paradigms are being applied in areas of high unmet medical need, including neurodegenerative disorders. These developments have evolved our knowledge base, allowing identification of targeted candidate therapies for ALS with diverse mechanisms of action. In this Review, we discuss how this advanced knowledge, aligned with new approaches, can enable effective translation of therapeutic agents from preclinical studies through to clinical benefit for patients with ALS. We anticipate that this approach in ALS will also positively impact the field of drug discovery for neurodegenerative disorders more broadly.
Collapse
Affiliation(s)
- Richard J Mead
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Keapstone Therapeutics, The Innovation Centre, Broomhall, Sheffield, UK
| | - Ning Shan
- Aclipse Therapeutics, Radnor, PA, US
| | | | - Fiona Marshall
- MSD UK Discovery Centre, Merck, Sharp and Dohme (UK) Limited, London, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
- Keapstone Therapeutics, The Innovation Centre, Broomhall, Sheffield, UK.
| |
Collapse
|
19
|
Huber RG, Pandey S, Chhangani D, Rincon-Limas DE, Staff NP, Yeo CJJ. Identification of potential pathways and biomarkers linked to progression in ALS. Ann Clin Transl Neurol 2023; 10:150-165. [PMID: 36533811 PMCID: PMC9930436 DOI: 10.1002/acn3.51697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To identify potential diagnostic and prognostic biomarkers for clinical management and clinical trials in amyotrophic lateral sclerosis. METHODS We analysed proteomics data of ALS patient-induced pluripotent stem cell-derived motor neurons available through the AnswerALS consortium. After stratifying patients using clinical ALSFRS-R and ALS-CBS scales, we identified differentially expressed proteins indicative of ALS disease severity and progression rate as candidate ALS-related and prognostic biomarkers. Pathway analysis for identified proteins was performed using STITCH. Protein sets were correlated with the effects of drugs using the Connectivity Map tool to identify compounds likely to affect similar pathways. RNAi screening was performed in a Drosophila TDP-43 ALS model to validate pathological relevance. A statistical classification machine learning model was constructed using ridge regression that uses proteomics data to differentiate ALS patients from controls. RESULTS We identified 76, 21, 71 and 1 candidate ALS-related biomarkers and 22, 41, 27 and 64 candidate prognostic biomarkers from patients stratified by ALSFRS-R baseline, ALSFRS-R progression slope, ALS-CBS baseline and ALS-CBS progression slope, respectively. Nineteen proteins enhanced or suppressed pathogenic eye phenotypes in the ALS fly model. Nutraceuticals, dopamine pathway modulators, statins, anti-inflammatories and antimicrobials were predicted starting points for drug repurposing using the connectivity map tool. Ten diagnostic biomarker proteins were predicted by machine learning to identify ALS patients with high accuracy and sensitivity. INTERPRETATION This study showcases the powerful approach of iPSC-motor neuron proteomics combined with machine learning and biological confirmation in the prediction of novel mechanisms and diagnostic and predictive biomarkers in ALS.
Collapse
Affiliation(s)
- Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Matrix #07-01, 30 Biopolis Street, Singapore, 138671, Singapore
| | - Swapnil Pandey
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, 32611, USA
| | - Deepak Chhangani
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, 32611, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, 32611, USA
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Crystal Jing Jing Yeo
- Agency for Science, Technology and Research (A*STAR), IMCB, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
- Lee Kong Chian School of Medicine, Imperial College London and NTU Singapore, Singapore, 308232, Singapore
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, AB243FX, Scotland, UK
- National Neuroscience Institute, TTSH Campus, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Duke NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| |
Collapse
|
20
|
Takahashi K. Microglial heterogeneity in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2023; 82:140-149. [PMID: 36440536 DOI: 10.1093/jnen/nlac110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable neurodegenerative disease of the central nervous system that is pathologically characterized by motor neuron loss. Although the cause of the disease is still unknown, its pathophysiology is considered heterogeneous. In recent years, there have been a series of reports on the existence of disease-associated microglia (DAM) in the lesions of various neurodegenerative diseases. DAM have also been reported in SOD1-deficient mice, a disease model of ALS. However, the role of DAM in sporadic ALS remains unclear. This study revealed that spinal cord lesions in ALS can be pathologically distinguished into 2 subgroups (TMEM119+ and TMEM119- microglia) according to the type of microglia. Expression of the microglial activation marker CD68 and endothelial activation were also observed in the TMEM119+ microglia group, suggesting the presence of inflammatory processes in ALS lesions. Since DAM suppress the expression of TMEM119, the TMEM119+ microglia group may indicate DAM-independent inflammatory neurodegeneration. These results may explain why, in some clinical trials of anti-inflammatory drugs for ALS, only some cases showed suppression of disease progression.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Department of Medicine, National Hospital Organization Iou National Hospital, Kanazawa, Japan
| |
Collapse
|
21
|
Muzio L, Ghirelli A, Agosta F, Martino G. Novel therapeutic approaches for motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:523-537. [PMID: 37620088 DOI: 10.1016/b978-0-323-98817-9.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the neurodegeneration and death of upper and lower motor neurons (MNs). Although MNs are the main cells involved in the process of neurodegeneration, a growing body of evidence points toward other cell types as concurrent to disease initiation and propagation. Given the current absence of effective therapies, the quest for other therapeutic targets remains open and still challenges the scientific community. Both neuronal and extra-neuronal mechanisms of cellular stress and damage have been studied and have posed the basis for the development of novel therapies that have been investigated on both animal models and humans. In this chapter, a thorough review of the main mechanisms of cellular damage and the respective therapeutic attempts targeting them is reported. The main areas covered include neuroinflammation, protein aggregation, RNA metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Luca Muzio
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy
| | - Alma Ghirelli
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
22
|
Agrawal I, Lim YS, Ng SY, Ling SC. Deciphering lipid dysregulation in ALS: from mechanisms to translational medicine. Transl Neurodegener 2022; 11:48. [DOI: 10.1186/s40035-022-00322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractLipids, defined by low solubility in water and high solubility in nonpolar solvents, can be classified into fatty acids, glycerolipids, glycerophospholipids, sphingolipids, and sterols. Lipids not only regulate integrity and fluidity of biological membranes, but also serve as energy storage and bioactive molecules for signaling. Causal mutations in SPTLC1 (serine palmitoyltransferase long chain subunit 1) gene within the lipogenic pathway have been identified in amyotrophic lateral sclerosis (ALS), a paralytic and fatal motor neuron disease. Furthermore, lipid dysmetabolism within the central nervous system and circulation is associated with ALS. Here, we aim to delineate the diverse roles of different lipid classes and understand how lipid dysmetabolism may contribute to ALS pathogenesis. Among the different lipids, accumulation of ceramides, arachidonic acid, and lysophosphatidylcholine is commonly emerging as detrimental to motor neurons. We end with exploring the potential ALS therapeutics by reducing these toxic lipids.
Collapse
|
23
|
Salomon-Zimri S, Pushett A, Russek-Blum N, Van Eijk RPA, Birman N, Abramovich B, Eitan E, Elgrart K, Beaulieu D, Ennist DL, Berry JD, Paganoni S, Shefner JM, Drory VE. Combination of ciprofloxacin/celecoxib as a novel therapeutic strategy for ALS. Amyotroph Lateral Scler Frontotemporal Degener 2022; 24:263-271. [PMID: 36106817 DOI: 10.1080/21678421.2022.2119868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE This study aimed to evaluate the safety and tolerability of a fixed-dose co-formulation of ciprofloxacin and celecoxib (PrimeC) in patients with amyotrophic lateral sclerosis (ALS), and to examine its effects on disease progression and ALS-related biomarkers. METHODS In this proof of concept, open-label, phase IIa study of PrimeC in 15 patients with ALS, participants were administered PrimeC thrice daily for 12 months. The primary endpoints were safety and tolerability. Exploratory endpoints included disease progression outcomes such as forced vital capacity, revised ALS functional rating scale, and effect on algorithm-predicted survival. In addition, indications of a biological effect were assessed by selected biomarker analyses, including TDP-43 and LC3 levels in neuron-derived exosomes (NDEs), and serum neurofilaments. RESULTS Four participants experienced adverse events (AEs) related to the study drug. None of these AEs were unexpected, and most were mild or moderate (69%). Additionally, no serious AEs were related to the study drug. One participant tested positive for COVID-19 and recovered without complications, and no other abnormal laboratory investigations were found. Participants' survival compared to their predictions showed no safety concerns. Biomarker analyses demonstrated significant changes associated with PrimeC in neural-derived exosomal TDP-43 levels and levels of LC3, a key autophagy marker. INTERPRETATION This study supports the safety and tolerability of PrimeC in ALS. Biomarker analyses suggest early evidence of a biological effect. A placebo-controlled trial is required to disentangle the biomarker results from natural progression and to evaluate the efficacy of PrimeC for the treatment of ALS. Summary for social media if publishedTwitter handles: @NeurosenseT, @ShiranZimri•What is the current knowledge on the topic? ALS is a severe neurodegenerative disease, causing death within 2-5 years from diagnosis. To date there is no effective treatment to halt or significantly delay disease progression.•What question did this study address? This study assessed the safety, tolerability and exploratory efficacy of PrimeC, a fixed dose co-formulation of ciprofloxacin and celecoxib in the ALS population.•What does this study add to our knowledge? This study supports the safety and tolerability of PrimeC in ALS, and exploratory biomarker analyses suggest early insight for disease related-alteration.•How might this potentially impact the practice of neurology? These results set the stage for a larger, placebo-controlled study to examine the efficacy of PrimeC, with the potential to become a new drug candidate for ALS.
Collapse
Affiliation(s)
| | | | - Niva Russek-Blum
- NeuroSense Therapeutics, Ltd, Herzliya, Israel
- The Dead Sea Arava Science Center, Auspices of Ben Gurion University, Central Arava, Israel
| | - Ruben P. A. Van Eijk
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Biostatistics and Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nurit Birman
- Neuromuscular Diseases Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Beatrice Abramovich
- Neuromuscular Diseases Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | - James D. Berry
- Department of Neurology Massachusetts General Hospital, Harvard Medical School, Sean M. Healey and AMG Center for ALS at Mass General and Neurological Clinical Research Institute, Boston, MA, USA
| | - Sabrina Paganoni
- Department of Neurology Massachusetts General Hospital, Harvard Medical School, Sean M. Healey and AMG Center for ALS at Mass General and Neurological Clinical Research Institute, Boston, MA, USA
| | | | - Vivian E. Drory
- Neuromuscular Diseases Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
24
|
Malhotra HS, Singh BP, Kumar N, Garg RK, Kirubakaran R, Emsley HCA, Chhetri SK, Mulvaney CA, Villanueva G. Immunomodulatory treatment for amyotrophic lateral sclerosis/motor neuron disease. Hippokratia 2022. [DOI: 10.1002/14651858.cd013945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hardeep S Malhotra
- Department of Neurology; King George's Medical University; Lucknow India
- Cochrane India-King George's Medical University, Lucknow affiliate; Lucknow India
| | - Balendra P Singh
- Cochrane India-King George's Medical University, Lucknow affiliate; Lucknow India
- Department of Prosthodontics; King George's Medical University; Lucknow India
| | - Neeraj Kumar
- Department of Neurology; King George's Medical University; Lucknow India
- Cochrane India-King George's Medical University, Lucknow affiliate; Lucknow India
| | - Ravindra K Garg
- Department of Neurology; King George's Medical University; Lucknow India
| | - Richard Kirubakaran
- Cochrane India-CMC Vellore Affiliate, Prof. BV Moses Centre for Evidence Informed Healthcare and Health Policy; Christian Medical College; Vellore India
| | - Hedley CA Emsley
- Department of Neurology; Lancashire Teaching Hospitals NHS Foundation Trust; Preston UK
- Lancaster Medical School; Lancaster University; Lancaster UK
| | - Suresh Kumar Chhetri
- Department of Neurology; Lancashire Teaching Hospitals NHS Foundation Trust; Preston UK
- Lancaster Medical School; Lancaster University; Lancaster UK
| | | | | |
Collapse
|
25
|
Ahmed N, Baker MR, Bashford J. The landscape of neurophysiological outcome measures in ALS interventional trials: A systematic review. Clin Neurophysiol 2022; 137:132-141. [PMID: 35313253 PMCID: PMC10166714 DOI: 10.1016/j.clinph.2022.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE We collated all interventional clinical trials in amyotrophic lateral sclerosis (ALS), which utilised at least one neurophysiological technique as a primary or secondary outcome measure. By identifying the strengths and limitations of these studies, we aim to guide study design in future trials. METHODS We conducted and reported this systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Eight databases were searched from inception. In total, 703 studies were retrieved for screening and eligibility assessment. RESULTS Dating back to 1986, 32 eligible interventional clinical trials were identified, recruiting a median of 30 patients per completed trial. The most widely employed neurophysiological techniques were electromyography, motor unit number estimation (including motor unit number index), neurophysiological index and transcranial magnetic stimulation (including resting motor threshold and short-interval intracortical inhibition). Almost 40% of trials reported a positive outcome with respect to at least one neurophysiological measure. The interventions targeted either ion channels, immune mechanisms or neuronal metabolic pathways. CONCLUSIONS Neurophysiology offers many promising biomarkers that can be utilised as outcome measures in interventional clinical trials in ALS. When selecting the most appropriate technique, key considerations include methodological standardisation, target engagement and logistical burden. SIGNIFICANCE Future trial design in ALS would benefit from a standardised, updated and easily accessible repository of neurophysiological outcome measures.
Collapse
Affiliation(s)
- N Ahmed
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, UK
| | - M R Baker
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - J Bashford
- UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| |
Collapse
|
26
|
Guo S, Wang H, Yin Y. Microglia Polarization From M1 to M2 in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:815347. [PMID: 35250543 PMCID: PMC8888930 DOI: 10.3389/fnagi.2022.815347] [Citation(s) in RCA: 381] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia-mediated neuroinflammation is a common feature of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Microglia can be categorized into two opposite types: classical (M1) or alternative (M2), though there’s a continuum of different intermediate phenotypes between M1 and M2, and microglia can transit from one phenotype to another. M1 microglia release inflammatory mediators and induce inflammation and neurotoxicity, while M2 microglia release anti-inflammatory mediators and induce anti-inflammatory and neuroprotectivity. Microglia-mediated neuroinflammation is considered as a double-edged sword, performing both harmful and helpful effects in neurodegenerative diseases. Previous studies showed that balancing microglia M1/M2 polarization had a promising therapeutic prospect in neurodegenerative diseases. We suggest that shifting microglia from M1 to M2 may be significant and we focus on the modulation of microglia polarization from M1 to M2, especially by important signal pathways, in neurodegenerative diseases.
Collapse
|
27
|
Chen M, Bashford J, Zhou P. Motor Unit Number Estimation (MUNE) Free of Electrical Stimulation or M Wave Recording: Feasibility and Challenges. Front Aging Neurosci 2022; 14:799676. [PMID: 35221991 PMCID: PMC8873975 DOI: 10.3389/fnagi.2022.799676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maoqi Chen
- Faculty of Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - James Bashford
- Department of Basic and Clinical Neuroscience, UK Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ping Zhou
- Faculty of Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
- *Correspondence: Ping Zhou
| |
Collapse
|
28
|
Lotti F, Przedborski S. Motoneuron Diseases. ADVANCES IN NEUROBIOLOGY 2022; 28:323-352. [PMID: 36066831 DOI: 10.1007/978-3-031-07167-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motoneuron diseases (MNDs) represent a heterogeneous group of progressive paralytic disorders, mainly characterized by the loss of upper (corticospinal) motoneurons, lower (spinal) motoneurons or, often both. MNDs can occur from birth to adulthood and have a highly variable clinical presentation, even within gene-positive forms, suggesting the existence of environmental and genetic modifiers. A combination of cell autonomous and non-cell autonomous mechanisms contributes to motoneuron degeneration in MNDs, suggesting multifactorial pathogenic processes.
Collapse
Affiliation(s)
- Francesco Lotti
- Departments of Neurology, Pathology & Cell Biology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Serge Przedborski
- Departments of Neurology, Pathology & Cell Biology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
29
|
Liu E, Karpf L, Bohl D. Neuroinflammation in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia and the Interest of Induced Pluripotent Stem Cells to Study Immune Cells Interactions With Neurons. Front Mol Neurosci 2022; 14:767041. [PMID: 34970118 PMCID: PMC8712677 DOI: 10.3389/fnmol.2021.767041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.
Collapse
Affiliation(s)
- Elise Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
30
|
De Marchi F, Munitic I, Amedei A, Berry JD, Feldman EL, Aronica E, Nardo G, Van Weehaeghe D, Niccolai E, Prtenjaca N, Sakowski SA, Bendotti C, Mazzini L. Interplay between immunity and amyotrophic lateral sclerosis: Clinical impact. Neurosci Biobehav Rev 2021; 127:958-978. [PMID: 34153344 PMCID: PMC8428677 DOI: 10.1016/j.neubiorev.2021.06.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease. Despite decades of research and many new insights into disease biology over the 150 years since the disease was first described, causative pathogenic mechanisms in ALS remain poorly understood, especially in sporadic cases. Our understanding of the role of the immune system in ALS pathophysiology, however, is rapidly expanding. The aim of this manuscript is to summarize the recent advances regarding the immune system involvement in ALS, with particular attention to clinical translation. We focus on the potential pathophysiologic mechanism of the immune system in ALS, discussing local and systemic factors (blood, cerebrospinal fluid, and microbiota) that influence ALS onset and progression in animal models and people. We also explore the potential of Positron Emission Tomography to detect neuroinflammation in vivo, and discuss ongoing clinical trials of therapies targeting the immune system. With validation in human patients, new evidence in this emerging field will serve to identify novel therapeutic targets and provide realistic hope for personalized treatment strategies.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - James D Berry
- Sean M. Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA, 02114, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Donatienne Van Weehaeghe
- Division of Nuclear Medicine, Department of Imaging and Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Nikolina Prtenjaca
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy.
| |
Collapse
|
31
|
Cappella M, Pradat PF, Querin G, Biferi MG. Beyond the Traditional Clinical Trials for Amyotrophic Lateral Sclerosis and The Future Impact of Gene Therapy. J Neuromuscul Dis 2021; 8:25-38. [PMID: 33074186 PMCID: PMC7902976 DOI: 10.3233/jnd-200531] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and incurable motor neuron (MN) disorder affecting both upper and lower MNs. Despite impressive advances in the understanding of the disease’s pathological mechanism, classical pharmacological clinical trials failed to provide an efficient cure for ALS over the past twenty years. Two different gene therapy approaches were recently approved for the monogenic disease Spinal muscular atrophy, characterized by degeneration of lower MNs. This milestone suggests that gene therapy-based therapeutic solutions could be effective for the treatment of ALS. This review summarizes the possible reasons for the failure of traditional clinical trials for ALS. It provides then a focus on the advent of gene therapy approaches for hereditary forms of ALS. Specifically, it describes clinical use of antisense oligonucleotides in three familial forms of ALS, caused by mutations in SOD1, C9orf72 and FUS genes, respectively.. Clinical and pre-clinical studies based on AAV-mediated gene therapy approaches for both familial and sporadic ALS cases are presented as well. Overall, this overview highlights the potential of gene therapy as a transforming technology that will have a huge impact on treatment perspective for ALS patients and on the design of future clinical trials.
Collapse
Affiliation(s)
- Marisa Cappella
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France
| | - Pierre-François Pradat
- INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France.,APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France.,Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, United Kingdom
| | - Giorgia Querin
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France.,Association Institut de Myologie, Plateforme Essais Cliniques Adultes, Paris, France.,APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Maria Grazia Biferi
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France
| |
Collapse
|
32
|
Sharma A, Sane H, Paranjape A, Varghese R, Nair V, Biju H, Sawant D, Gokulchandran N, Badhe P. Improved survival in amyotrophic lateral sclerosis patients following autologous bone marrow mononuclear cell therapy: a long term 10-year retrospective study. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background: Promising results from previous studies using cell therapy have paved the way for an innovative treatment option for amyotrophic lateral sclerosis (ALS). There is considerable evidence of immune and inflammatory abnormalities in ALS. Bone marrow mononuclear cells (BMMNCs) possess immunomodulatory properties and could contribute to slowing of disease progression. Objective: Aim of our study was to evaluate the long-term effect of autologous BMMNCs combined with standard treatment on survival duration in a large population and to evaluate effect of type of onset and hormonal status on survival duration in the intervention group. Methods: This controlled, retrospective study spanned over 10 years, 5 months; included 216 patients with probable or definite ALS, 150 in intervention group receiving autologous BMMNCs and standard treatment, and 66 in control group receiving only standard treatment. The estimated survival duration of control group and intervention group was computed and compared using Kaplan Meier analysis. Survival duration of patients with different types of onset and hormonal status was compared within the intervention group. Results: None of the patients reported any major adverse events related to cell administration or the procedure. Kaplan Meier analysis estimated survival duration in the intervention group to be 91.7 months while 49.7 months in the control group (p = 0.008). Within the intervention group, estimated survival was significantly higher (p = 0.013) in patients with limb onset (102.3 months) vs. bulbar onset (49.9 months); premenopausal women (93.1 months) vs. postmenopausal women (57.6 months) (p = 0.002); and preandropausal men (153.7 months) vs. postandropausal males (56.5 months) (p = 0.006). Conclusion: Cell therapy using autologous BMMNCs along with standard treatment offers a promising and safe option for ALS with the potential of long term beneficial effect and increased survival. Limb onset patients, premenopausal women and men ≤ 40 years of age demonstrated better treatment efficacy.
Collapse
|
33
|
The pathogenesis of age-related macular degeneration is not inflammatory mediated but is instead due to immunosenescence-related failure of tissue repair. Med Hypotheses 2020; 146:110392. [PMID: 33246696 DOI: 10.1016/j.mehy.2020.110392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 01/13/2023]
Abstract
A natural consequence of everyday tissue metabolism is cell injury or stress. This injury activates a canonical immune-mediated inflammatory response in order to achieve tissue repair so that homeostasis is maintained. With aging there is increased tissue injury and therefore increasing demands placed on an immune system, which itself is aging (immunosenescence). Thus, the increased reparative demands are reflected by an increased inflammatory load both locally and systemically. Eventually, if the reparative demands are excessive, the aging immune system is overwhelmed and disease ensues. In the macula this age-related failure in repair gives rise to age-related macular degeneration (AMD). The hypothesis proposed herein is therefore, that AMD is due to age-related failure of tissue repair and the chronic inflammation associated with this failure ('inflammaging') is both a surrogate and biomarker of this reparative failure and not in itself the primary cause of disease. Such a hypothesis can be applied to all the diseases of aging and by extension suggests that effective therapies should be aimed at facilitating repair through immunotherapy, possibly and perhaps controversially, through the promotion of inflammation rather than the current approach of its inhibition (anti-inflammatory strategies), the latter which can ultimately only hinder the repair process and thereby lead to the persistence of disease.
Collapse
|
34
|
Goldshtein H, Muhire A, Petel Légaré V, Pushett A, Rotkopf R, Shefner JM, Peterson RT, Armstrong GAB, Russek‐ Blum N. Efficacy of Ciprofloxacin/Celecoxib combination in zebrafish models of amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2020; 7:1883-1897. [PMID: 32915525 PMCID: PMC7545590 DOI: 10.1002/acn3.51174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy of a fixed-dose combination of two approved drugs, Ciprofloxacin and Celecoxib, as a potential therapeutic treatment for amyotrophic lateral sclerosis (ALS). METHODS Toxicity and efficacy of Ciprofloxacin and Celecoxib were tested, each alone and in distinct ratio combinations in SOD1 G93R transgenic zebrafish model for ALS. Quantification of swimming measures following stimuli, measurements of axonal projections from the spinal cord, neuromuscular junction structure and morphometric analysis of microglia cells were performed in the combination- treated vs nontreated mutant larvae. Additionally, quantifications of touch-evoked locomotor escape response were conducted in treated vs nontreated zebrafish expressing the TARDBP G348C ALS variant. RESULTS When administered individually, Ciprofloxacin had a mild effect and Celecoxib had no therapeutic effect. However, combined Ciprofloxacin and Celecoxib (Cipro/Celecox) treatment caused a significant increase of ~ 84% in the distance the SOD1 G93R transgenic larvae swam. Additionally, Cipro/Celecox elicited recovery of impaired motor neurons morphology and abnormal neuromuscular junction structure and preserved the ramified morphology of microglia cells in the SOD1 mutants. Furthermore, larvae expressing the TDP-43 mutation displayed evoked touch responses that were significantly longer in swim distance (110% increase) and significantly higher in maximal swim velocity (~44% increase) when treated with Cipro/Celecox combination. INTERPRETATION Cipro/Celecox combination improved locomotor and cellular deficits of ALS zebrafish models. These results identify this novel combination as effective, and may prove promising for the treatment of ALS.
Collapse
Affiliation(s)
- Hagit Goldshtein
- The Dead Sea Arava Science CenterAuspices of Ben Gurion UniversityCentral Arava86815Israel
| | - Alexandre Muhire
- The Dead Sea Arava Science CenterAuspices of Ben Gurion UniversityCentral Arava86815Israel
| | - Virginie Petel Légaré
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteFaculty of MedicineMcGill UniversityMontrealQCH3A 0G4Canada
| | - Avital Pushett
- NeuroSense Therapeutics LtdMedinat Hayehudim 85Herzeliya4676670Israel
| | - Ron Rotkopf
- Bioinformatics and Biological Computing UnitLife Sciences Core FacilitiesWeizmann Institute of ScienceRehovot7610001Israel
| | - Jeremy M. Shefner
- Barrow Neurological Institute, University of Arizona College of Medicine Phoenix, Creighton University College of Medicine PhoenixPhoenixAZ85013USA
| | | | - Gary A. B. Armstrong
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteFaculty of MedicineMcGill UniversityMontrealQCH3A 0G4Canada
| | - Niva Russek‐ Blum
- The Dead Sea Arava Science CenterAuspices of Ben Gurion UniversityCentral Arava86815Israel
| |
Collapse
|
35
|
Volonté C, Morello G, Spampinato AG, Amadio S, Apolloni S, D’Agata V, Cavallaro S. Omics-based exploration and functional validation of neurotrophic factors and histamine as therapeutic targets in ALS. Ageing Res Rev 2020; 62:101121. [PMID: 32653439 DOI: 10.1016/j.arr.2020.101121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
A plethora of genetic and molecular mechanisms have been implicated in the pathophysiology of the heterogeneous and multifactorial amyotrophic lateral sclerosis (ALS) disease, and hence the conventional "one target-one drug" paradigm has failed so far to provide effective therapeutic solutions, precisely because of the complex nature of ALS. This review intends to highlight how the integration of emerging "omics" approaches may provide a rational foundation for the comprehensive exploration of molecular pathways and dynamic interactions involved in ALS, for the identification of candidate targets and biomarkers that will assist in the rapid diagnosis and prognosis, lastly for the stratification of patients into different subgroups with the aim of personalized therapeutic strategies. To this purpose, particular emphasis will be placed on some potential therapeutic targets, including neurotrophic factors and histamine signaling that both have emerged as dysregulated at different omics levels in specific subgroups of ALS patients, and have already shown promising results in in vitro and in vivo models of ALS. To conclude, we will discuss about the utility of using integrated omics coupled with network-based approaches to provide additional guidance for personalization of medicine applications in ALS.
Collapse
|
36
|
Kukharsky MS, Skvortsova VI, Bachurin SO, Buchman VL. In a search for efficient treatment for amyotrophic lateral sclerosis: Old drugs for new approaches. Med Res Rev 2020; 41:2804-2822. [DOI: 10.1002/med.21725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Michail S. Kukharsky
- Faculty of Medical Biology Pirogov Russian National Research Medical University Moscow Russian Federation
- Institute of Physiologically Active Compounds Russian Academy of Sciences Moscow Region Russian Federation
| | - Veronika I. Skvortsova
- Faculty of Medical Biology Pirogov Russian National Research Medical University Moscow Russian Federation
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds Russian Academy of Sciences Moscow Region Russian Federation
| | - Vladimir L. Buchman
- Institute of Physiologically Active Compounds Russian Academy of Sciences Moscow Region Russian Federation
- School of Biosciences Cardiff University Cardiff United Kingdom
| |
Collapse
|
37
|
Béland LC, Markovinovic A, Jakovac H, De Marchi F, Bilic E, Mazzini L, Kriz J, Munitic I. Immunity in amyotrophic lateral sclerosis: blurred lines between excessive inflammation and inefficient immune responses. Brain Commun 2020; 2:fcaa124. [PMID: 33134918 PMCID: PMC7585698 DOI: 10.1093/braincomms/fcaa124] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Despite wide genetic, environmental and clinical heterogeneity in amyotrophic lateral sclerosis, a rapidly fatal neurodegenerative disease targeting motoneurons, neuroinflammation is a common finding. It is marked by local glial activation, T cell infiltration and systemic immune system activation. The immune system has a prominent role in the pathogenesis of various chronic diseases, hence some of them, including some types of cancer, are successfully targeted by immunotherapeutic approaches. However, various anti-inflammatory or immunosuppressive therapies in amyotrophic lateral sclerosis have failed. This prompted increased scrutiny over the immune-mediated processes underlying amyotrophic lateral sclerosis. Perhaps the biggest conundrum is that amyotrophic lateral sclerosis pathogenesis exhibits features of three otherwise distinct immune dysfunctions-excessive inflammation, autoimmunity and inefficient immune responses. Epidemiological and genome-wide association studies show only minimal overlap between amyotrophic lateral sclerosis and autoimmune diseases, so excessive inflammation is usually thought to be secondary to protein aggregation, mitochondrial damage or other stresses. In contrast, several recently characterized amyotrophic lateral sclerosis-linked mutations, including those in TBK1, OPTN, CYLD and C9orf72, could lead to inefficient immune responses and/or damage pile-up, suggesting that an innate immunodeficiency may also be a trigger and/or modifier of this disease. In such cases, non-selective immunosuppression would further restrict neuroprotective immune responses. Here we discuss multiple layers of immune-mediated neuroprotection and neurotoxicity in amyotrophic lateral sclerosis. Particular focus is placed on individual patient mutations that directly or indirectly affect the immune system, and the mechanisms by which these mutations influence disease progression. The topic of immunity in amyotrophic lateral sclerosis is timely and relevant, because it is one of the few common and potentially malleable denominators in this heterogenous disease. Importantly, amyotrophic lateral sclerosis progression has recently been intricately linked to patient T cell and monocyte profiles, as well as polymorphisms in cytokine and chemokine receptors. For this reason, precise patient stratification based on immunophenotyping will be crucial for efficient therapies.
Collapse
Affiliation(s)
| | - Andrea Markovinovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- ENCALS Center Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Jakovac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Fabiola De Marchi
- Department of Neurology, ALS Centre, University of Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Ervina Bilic
- Department of Neurology, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
- ENCALS Center Zagreb, 10000 Zagreb, Croatia
| | - Letizia Mazzini
- Department of Neurology, ALS Centre, University of Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Jasna Kriz
- CERVO Research Centre, Laval University, Quebec City, Quebec G1J 2G3, Canada
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
38
|
Ashford BA, Boche D, Cooper-Knock J, Heath PR, Simpson JE, Highley JR. Review: Microglia in motor neuron disease. Neuropathol Appl Neurobiol 2020; 47:179-197. [PMID: 32594542 DOI: 10.1111/nan.12640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
Motor Neuron Disease (MND) is a fatal neurodegenerative condition, which is characterized by the selective loss of the upper and lower motor neurons. At the sites of motor neuron injury, accumulation of activated microglia, the primary immune cells of the central nervous system, is commonly observed in both human post mortem studies and animal models of MND. Microglial activation has been found to correlate with many clinical features and importantly, the speed of disease progression in humans. Both anti-inflammatory and pro-inflammatory microglial responses have been shown to influence disease progression in humans and models of MND. As such, microglia could both contribute to and protect against inflammatory mechanisms of pathogenesis in MND. While murine models have characterized the microglial response to MND, these studies have painted a complex and often contradictory picture, indicating a need for further characterization in humans. This review examines the potential role microglia play in MND in human and animal studies. Both the pro-inflammatory and anti-inflammatory responses will be addressed, throughout the course of disease, followed by the potential of microglia as a target in the development of disease-modifying treatments for MND.
Collapse
Affiliation(s)
| | - D Boche
- University of Southampton, Southampton, UK
| | | | - P R Heath
- University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
39
|
Shefner JM, Cudkowicz ME, Hardiman O, Cockcroft BM, Lee JH, Malik FI, Meng L, Rudnicki SA, Wolff AA, Andrews JA. A phase III trial of tirasemtiv as a potential treatment for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 0:1-11. [PMID: 31081694 DOI: 10.1080/21678421.2019.1612922] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective To assess the efficacy of tirasemtiv, a fast skeletal muscle troponin activator, vs. placebo in patients with amyotrophic lateral sclerosis. Methods: VITALITY-ALS (NCT02496767) was a multinational, double-blind, randomized, placebo-controlled clinical trial. Participants tolerating 2 weeks of open-label tirasemtiv (125 mg twice daily) were randomized 3:2:2:2 to placebo or one of three target tirasemtiv dose levels, using an escalating dosage protocol lasting 28 days. The primary outcome measure was changed in slow vital capacity (SVC) at 24 weeks. Secondary endpoints included a change in muscle strength and time to respiratory milestones of disease progression. Results Of 744 participants, 565 tolerated open-label tirasemtiv and received randomized treatment. By 24 weeks, 23 (12.2%) placebo-treated participants discontinued study treatment vs. 129 (34.2%) randomized to tirasemtiv. SVC declined by 14.4% (95% CI: −16.8, −11.9) in the placebo group and 13.4% (95% CI: −15.3, −11.6) in the tirasemtiv group (p = 0.56). Secondary endpoints did not show significant differences. However, participants who tolerated tirasemtiv at their randomized dose showed a numeric trend toward a dose-related slowing of decline in SVC (p = 0.11). Dizziness, fatigue, nausea, weight loss, and insomnia occurred more frequently on tirasemtiv. Serious adverse events were similar across groups. Conclusions Tirasemtiv did not alter the decline of SVC or significantly impact secondary outcome measures. Poor tolerability of tirasemtiv may have contributed to this result. However, participants tolerating their intended dose exhibited a trend toward treatment benefit on SVC, suggesting the underlying mechanism of action may still hold promise, as is being tested with a different fast skeletal muscle troponin activator (NCT03160898).
Collapse
Affiliation(s)
- Jeremy M Shefner
- Barrow Neurological Institute, Phoenix, Arizona.,Department of Neurology, University of Arizona, Phoenix, AZ, USA
| | - Merit E Cudkowicz
- Department of Neurology, Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | | | | | - Fady I Malik
- Cytokinetics, Inc., South San Francisco, California, USA
| | - Lisa Meng
- Cytokinetics, Inc., South San Francisco, California, USA
| | | | - Andrew A Wolff
- Cytokinetics, Inc., South San Francisco, California, USA
| | - Jinsy A Andrews
- The Neurological Institute, Columbia University, New York, NY, USA
| | | |
Collapse
|
40
|
Wobst HJ, Mack KL, Brown DG, Brandon NJ, Shorter J. The clinical trial landscape in amyotrophic lateral sclerosis-Past, present, and future. Med Res Rev 2020; 40:1352-1384. [PMID: 32043626 PMCID: PMC7417284 DOI: 10.1002/med.21661] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/08/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease marked by progressive loss of muscle function. It is the most common adult-onset form of motor neuron disease, affecting about 16 000 people in the United States alone. The average survival is about 3 years. Only two interventional drugs, the antiglutamatergic small-molecule riluzole and the more recent antioxidant edaravone, have been approved for the treatment of ALS to date. Therapeutic strategies under investigation in clinical trials cover a range of different modalities and targets, and more than 70 different drugs have been tested in the clinic to date. Here, we summarize and classify interventional therapeutic strategies based on their molecular targets and phenotypic effects. We also discuss possible reasons for the failure of clinical trials in ALS and highlight emerging preclinical strategies that could provide a breakthrough in the battle against this relentless disease.
Collapse
Affiliation(s)
- Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Merck & Co, Inc, Kenilworth, New Jersey
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Nicholas J Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Giovannelli I, Heath P, Shaw PJ, Kirby J. The involvement of regulatory T cells in amyotrophic lateral sclerosis and their therapeutic potential. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:435-444. [PMID: 32484719 DOI: 10.1080/21678421.2020.1752246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroinflammation, meaning the establishment of a diffuse inflammatory condition in the CNS, is one of the main hallmarks of amyotrophic lateral sclerosis (ALS). Recently, a crucial role of regulatory T cells (Tregs) in this disease has been outlined. Tregs are a T cell subpopulation with immunomodulatory properties. In this review, we discuss the physiology of Tregs and their role in ALS disease onset and progression. Evidence has demonstrated that in ALS patients Tregs are dramatically and progressively reduced in number and are less effective in promoting immune suppression. In addition, Tregs levels correlate with the rate of disease progression and patient survival. For this reason, Tregs are now considered a promising therapeutic target for neuroprotection in ALS. In this review, the clinical impact of these cells will be discussed and an overview of the current clinical trials targeting Tregs is also provided.
Collapse
Affiliation(s)
- I Giovannelli
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - P Heath
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - P J Shaw
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - J Kirby
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
42
|
McCombe PA, Lee JD, Woodruff TM, Henderson RD. The Peripheral Immune System and Amyotrophic Lateral Sclerosis. Front Neurol 2020; 11:279. [PMID: 32373052 PMCID: PMC7186478 DOI: 10.3389/fneur.2020.00279] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that is defined by loss of upper and lower motor neurons, associated with accumulation of protein aggregates in cells. There is also pathology in extra-motor areas of the brain, Possible causes of cell death include failure to deal with the aggregated proteins, glutamate toxicity and mitochondrial failure. ALS also involves abnormalities of metabolism and the immune system, including neuroinflammation in the brain and spinal cord. Strikingly, there are also abnormalities of the peripheral immune system, with alterations of T lymphocytes, monocytes, complement and cytokines in the peripheral blood of patients with ALS. The precise contribution of the peripheral immune system in ALS pathogenesis is an active area of research. Although some trials of immunomodulatory agents have been negative, there is strong preclinical evidence of benefit from immune modulation and further trials are currently underway. Here, we review the emerging evidence implicating peripheral immune alterations contributing to ALS, and their potential as future therapeutic targets for clinical intervention.
Collapse
Affiliation(s)
- Pamela A. McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- Wesley Medical Research, The Wesley Hospital, Brisbane, QLD, Australia
| | - John D. Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Trent M. Woodruff
- Wesley Medical Research, The Wesley Hospital, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
43
|
Filipi T, Hermanova Z, Tureckova J, Vanatko O, Anderova M. Glial Cells-The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment. J Clin Med 2020; 9:E261. [PMID: 31963681 PMCID: PMC7020059 DOI: 10.3390/jcm9010261] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease, which is characterized by the degeneration of motor neurons in the motor cortex and the spinal cord and subsequently by muscle atrophy. To date, numerous gene mutations have been linked to both sporadic and familial ALS, but the effort of many experimental groups to develop a suitable therapy has not, as of yet, proven successful. The original focus was on the degenerating motor neurons, when researchers tried to understand the pathological mechanisms that cause their slow death. However, it was soon discovered that ALS is a complicated and diverse pathology, where not only neurons, but also other cell types, play a crucial role via the so-called non-cell autonomous effect, which strongly deteriorates neuronal conditions. Subsequently, variable glia-based in vitro and in vivo models of ALS were established and used for brand-new experimental and clinical approaches. Such a shift towards glia soon bore its fruit in the form of several clinical studies, which more or less successfully tried to ward the unfavourable prognosis of ALS progression off. In this review, we aimed to summarize current knowledge regarding the involvement of each glial cell type in the progression of ALS, currently available treatments, and to provide an overview of diverse clinical trials covering pharmacological approaches, gene, and cell therapies.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| |
Collapse
|
44
|
Trageser KJ, Smith C, Herman FJ, Ono K, Pasinetti GM. Mechanisms of Immune Activation by c9orf72-Expansions in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Neurosci 2019; 13:1298. [PMID: 31920478 PMCID: PMC6914852 DOI: 10.3389/fnins.2019.01298] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders with overlapping pathomechanisms, neurobehavioral features, and genetic etiologies. Individuals diagnosed with either disorder exhibit symptoms within a clinical spectrum. Symptoms of ALS involve neuromusculature deficits, reflecting upper and lower motor neurodegeneration, while the primary clinical features of FTD are behavioral and cognitive impairments, reflecting frontotemporal lobar degeneration. An intronic G4C2 hexanucleotide repeat expansion (HRE) within the promoter region of chromosome 9 open reading frame 72 (C9orf72) is the predominant monogenic cause of both ALS and FTD. While the heightened risk to develop ALS/FTD in response to C9orf72 expansions is well-established, studies continue to define the precise mechanisms by which this mutation elicits neurodegeneration. Studies show that G4C2 expansions undergo repeat-associated non-ATG dependent (RAN) translation, producing dipeptide repeat proteins (DRPs) with varying toxicities. Accumulation of DRPs in neurons, in particular arginine containing DRPs, have neurotoxic effects by potently impairing nucleocytoplasmic transport, nucleotide metabolism, lysosomal processes, and cellular metabolic pathways. How these pathophysiological effects of C9orf72 expansions engage and elicit immune activity with additional neurobiological consequences is an important line of future investigations. Immunoreactive microglia and elevated levels of peripheral inflammatory cytokines noted in individuals with C9orf72 ALS/FTD provide evidence that persistent immune activation has a causative role in the progression of each disorder. This review highlights the current understanding of the cellular, proteomic and genetic substrates through which G4C2 HREs may elicit detrimental immune activity, facilitating region-specific neurodegeneration in C9orf72 mediated ALS/FTD. We in particular emphasize interactions between intracellular pathways induced by C9orf72 expansions and innate immune inflammasome complexes, intracellular receptors responsible for eliciting inflammation in response to cellular stress. A further understanding of the intricate, reciprocal relationship between the cellular and molecular pathologies resulting from C9orf72 HREs and immune activation may yield novel therapeutics for ALS/FTD, which currently have limited treatment strategies.
Collapse
Affiliation(s)
- Kyle J Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chad Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Francis J Herman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Geriatrics Research, Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, United States
| |
Collapse
|
45
|
Babu S, Macklin EA, Jackson KE, Simpson E, Mahoney K, Yu H, Walker J, Simmons Z, David WS, Barkhaus PE, Simionescu L, Dimachkie MM, Pestronk A, Salameh JS, Weiss MD, Brooks BR, Schoenfeld D, Shefner J, Aggarwal S, Cudkowicz ME, Atassi N. Selection design phase II trial of high dosages of tamoxifen and creatine in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2019; 21:15-23. [DOI: 10.1080/21678421.2019.1672750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Suma Babu
- Department of Neurology, Sean M Healey & AMG Center for ALS at Massachusetts General Hospital, Neurological Clinical Research Institute, Boston, MA, USA,
| | - Eric A. Macklin
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,
| | - Katherine E. Jackson
- Office of the Prescription Drug Monitoring Program, Maryland Department of Health, Baltimore, MD, USA,
| | - Elizabeth Simpson
- McCance Center for Brain Health at Massachusetts General Hospital, Boston, MA, USA,
| | - Katy Mahoney
- Department of Neurology, Sean M Healey & AMG Center for ALS at Massachusetts General Hospital, Neurological Clinical Research Institute, Boston, MA, USA,
| | - Hong Yu
- Department of Neurology, Sean M Healey & AMG Center for ALS at Massachusetts General Hospital, Neurological Clinical Research Institute, Boston, MA, USA,
| | - Jason Walker
- Department of Neurology, Sean M Healey & AMG Center for ALS at Massachusetts General Hospital, Neurological Clinical Research Institute, Boston, MA, USA,
| | | | - William S. David
- Department of Neurology, Sean M Healey & AMG Center for ALS at Massachusetts General Hospital, Neurological Clinical Research Institute, Boston, MA, USA,
| | | | | | | | - Alan Pestronk
- Washington University School of Medicine, St. Louis, MO, USA,
| | | | | | - Benjamin Rix Brooks
- Atrium Health Neurosciences Institute, Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte, NC, USA, and
| | - David Schoenfeld
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,
| | - Jeremy Shefner
- Barrow Neurological Institute and University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Swati Aggarwal
- Department of Neurology, Sean M Healey & AMG Center for ALS at Massachusetts General Hospital, Neurological Clinical Research Institute, Boston, MA, USA,
| | - Merit E. Cudkowicz
- Department of Neurology, Sean M Healey & AMG Center for ALS at Massachusetts General Hospital, Neurological Clinical Research Institute, Boston, MA, USA,
| | - Nazem Atassi
- Department of Neurology, Sean M Healey & AMG Center for ALS at Massachusetts General Hospital, Neurological Clinical Research Institute, Boston, MA, USA,
| |
Collapse
|
46
|
Schoenfeld DA, Finkelstein DM, Macklin E, Zach N, Ennist DL, Taylor AA, Atassi N. Design and analysis of a clinical trial using previous trials as historical control. Clin Trials 2019; 16:531-538. [PMID: 31256630 DOI: 10.1177/1740774519858914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS For single arm trials, a treatment is evaluated by comparing an outcome estimate to historically reported outcome estimates. Such a historically controlled trial is often analyzed as if the estimates from previous trials were known without variation and there is no trial-to-trial variation in their estimands. We develop a test of treatment efficacy and sample size calculation for historically controlled trials that considers these sources of variation. METHODS We fit a Bayesian hierarchical model, providing a sample from the posterior predictive distribution of the outcome estimand of a new trial, which, along with the standard error of the estimate, can be used to calculate the probability that the estimate exceeds a threshold. We then calculate criteria for statistical significance as a function of the standard error of the new trial and calculate sample size as a function of difference to be detected. We apply these methods to clinical trials for amyotrophic lateral sclerosis using data from the placebo groups of 16 trials. RESULTS We find that when attempting to detect the small to moderate effect sizes usually assumed in amyotrophic lateral sclerosis clinical trials, historically controlled trials would require a greater total number of patients than concurrently controlled trials, and only when an effect size is extraordinarily large is a historically controlled trial a reasonable alternative. We also show that utilizing patient level data for the prognostic covariates can reduce the sample size required for a historically controlled trial. CONCLUSION This article quantifies when historically controlled trials would not provide any sample size advantage, despite dispensing with a control group.
Collapse
Affiliation(s)
| | | | - Eric Macklin
- MGH Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | - Nazem Atassi
- MGH Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
47
|
Tauber D, Parker R. 15-Deoxy-Δ 12,14-prostaglandin J2 promotes phosphorylation of eukaryotic initiation factor 2α and activates the integrated stress response. J Biol Chem 2019; 294:6344-6352. [PMID: 30723157 PMCID: PMC6484127 DOI: 10.1074/jbc.ra118.007138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/15/2019] [Indexed: 01/08/2023] Open
Abstract
Stress granules (SGs) are cytoplasmic RNA–protein aggregates formed in response to inhibition of translation initiation. SGs contribute to the stress response and are implicated in a variety of diseases, including cancer and some forms of neurodegeneration. Neurodegenerative diseases often involve chronic phosphorylation of eukaryotic initiation factor 2α (eIF2α), with deletions of eIF2α kinases or treatment with eIF2α kinase inhibitors being protective in some animal models of disease. However, how and why the integrated stress response (ISR) is activated in different forms of neurodegeneration remains unclear. Because neuroinflammation is common to many neurodegenerative diseases, we hypothesized that inflammatory factors contribute to ISR activation in a cell-nonautonomous manner. Using fluorescence microscopy and immunoblotting, we show here that the endogenously produced product of inflammation, 15-deoxy-Δ12,14-prostaglandin J2 (15-d-PGJ2), triggers eIF2α phosphorylation, thereby activating the ISR, repressing bulk translation, and triggering SG formation. Our findings define a mechanism by which inflammation activates the ISR in a cell-nonautonomous manner and suggest that inhibition of 15-d-PGJ2 production might be a useful therapeutic strategy in some neuroinflammatory contexts.
Collapse
Affiliation(s)
- Devin Tauber
- From the Department of Biochemistry, University of Colorado, Boulder, Colorado 80309 and
| | - Roy Parker
- From the Department of Biochemistry, University of Colorado, Boulder, Colorado 80309 and .,the Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789
| |
Collapse
|
48
|
Abstract
ALS is a neurodegenerative disease in which the primary symptoms result in progressive neuromuscular weakness. Recent studies have highlighted that there is significant heterogeneity with regard to anatomical and temporal disease progression. Importantly, more recent advances in genetics have revealed new causative genes to the disease. New efforts have focused on the development of biomarkers that could aid in diagnosis, prognosis, and serve as pharmacodynamics markers. Although traditional pharmaceuticals continue to undergo trials for ALS, new therapeutic strategies including stem cell transplantation studies, gene therapies, and antisense therapies targeting some of the familial forms of ALS are gaining momentum.
Collapse
|
49
|
Wosiski-Kuhn M, Lyon MS, Caress J, Milligan C. Inflammation, immunity, and amyotrophic lateral sclerosis: II. immune-modulating therapies. Muscle Nerve 2018; 59:23-33. [PMID: 29979478 DOI: 10.1002/mus.26288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
With the emerging popularity of immune-modulatory therapies to treat human diseases there is a need to step back from hypotheses aimed at assessing a condition in a single-system context and instead take into account the disease pathology as a whole. In complex diseases, such as amyotrophic lateral sclerosis (ALS), the use of these therapies to treat patients has been largely unsuccessful and likely premature given our lack of understanding of how the immune system influences disease progression and initiation. In addition, we still have an incomplete understanding of the role of these responses in our model systems and how this may translate clinically to human patients. In this review we discuss preclinical evidence and clinical trial results for a selection of recently conducted studies in ALS. We provide evidence-based reasoning for the failure of these trials and offer suggestions to improve the design of future investigations. Muscle Nerve 59:23-33, 2019.
Collapse
Affiliation(s)
- Marlena Wosiski-Kuhn
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, 27157, USA
| | - Miles S Lyon
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, 27157, USA
| | - James Caress
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Carol Milligan
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, 27157, USA
| |
Collapse
|
50
|
Taga A, Maragakis NJ. Current and emerging ALS biomarkers: utility and potential in clinical trials. Expert Rev Neurother 2018; 18:871-886. [DOI: 10.1080/14737175.2018.1530987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Arens Taga
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|