1
|
Hassaan HM, Pyle A, Almenabawy N, Robertson FM, Elkhateeb N, Girgis MY, Mahmoud IGED, Amer F, Samaha M, Shaheen Y, ElNaggar W, Abdoh D, Mehaney DA, Meguid IEA, Taylor RW, McFarland R, Selim L. Clinical and Genetic Spectrum of Patients With Mitochondrial Disease in a Pediatric Egyptian Cohort: Novel Variants and Phenotypic Expansion. Am J Med Genet A 2024:e63881. [PMID: 39400921 DOI: 10.1002/ajmg.a.63881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024]
Abstract
Mitochondrial disorders exhibit clinical and genetic diversity. Nearly 400 distinct genes, located in both the mitochondrial and nuclear genomes, harbor pathogenic variants that can produce a broad spectrum of mitochondrial diseases. This work aims to explore the genetic etiology of a cohort of Egyptian pediatric patients who were clinically suspected of having a mitochondrial disorder. A total of 49 patients from 44 unrelated families were studied. Selection criteria included age below 18 years and meeting Morava criteria (a score ≥ 3). The mitochondrial disease criteria (MDC) have been developed to quantify the clinical picture and evaluate the probability of an underlying mitochondrial disorder Exome sequencing, including mitochondrial genome sequencing, was carried out for each participant. Causative variants likely responsible for the phenotypes were identified in 68% of the study population. The mitochondrial subgroup constituted 41% of the studied population with a median age of 4 years. No primary pathogenic variants in mitochondrial DNA were detected. Pathogenic or likely pathogenic variants in eight mitochondrial genes were identified in 78% of the mitochondrial cohort. Additionally, seven novel variants were identified. Nonmitochondrial diagnoses accounted for 27% of the study population. In 32% of cases, disease-causing variants were not identified. The current study underscores the diverse phenotypic and genetic landscape of mitochondrial disorders among Egyptian patients.
Collapse
Affiliation(s)
- Hebatallah M Hassaan
- Pediatric Department, Genetic Division, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nihal Almenabawy
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Fiona M Robertson
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nour Elkhateeb
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marian Y Girgis
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Iman Gamal El Din Mahmoud
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Fawzia Amer
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Mona Samaha
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Yara Shaheen
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Walaa ElNaggar
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Doaa Abdoh
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Ahmed Mehaney
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Laila Selim
- Pediatric Department, Neurology and Metabolic Division, Faculty of Medicine Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Yazdani M. Cellular and Molecular Responses to Mitochondrial DNA Deletions in Kearns-Sayre Syndrome: Some Underlying Mechanisms. Mol Neurobiol 2024; 61:5665-5679. [PMID: 38224444 DOI: 10.1007/s12035-024-03938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Kearns-Sayre syndrome (KSS) is a rare multisystem mitochondrial disorder. It is caused by mitochondrial DNA (mtDNA) rearrangements, mostly large-scale deletions of 1.1-10 kb. These deletions primarily affect energy supply through impaired oxidative phosphorylation and reduced ATP production. This impairment gives rise to dysfunction of several tissues, in particular those with high energy demand like brain and muscles. Over the past decades, changes in respiratory chain complexes and energy metabolism have been emphasized, whereas little attention has been paid to other reports on ROS overproduction, protein synthesis inhibition, myelin vacuolation, demyelination, autophagy, apoptosis, and involvement of lipid raft and oligodendrocytes in KSS. Therefore, this paper draws attention towards these relatively underemphasized findings that might further clarify the pathologic cascades following deletions in the mtDNA.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Oslo, 0027, Norway.
| |
Collapse
|
3
|
Chitara N, Krishan K, Kanchan T. The three-parent baby: Medicolegal, forensic and ethical concerns. MEDICINE, SCIENCE, AND THE LAW 2024:258024241266566. [PMID: 39056221 DOI: 10.1177/00258024241266566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In the recent past, human genetics and in vitro fertilization (IVF) have undergone various advances to combat with several congenital and developmental disorders. These advances are a boon for the families and patients who were restricted from having a child due to one or the other reasons. One such reason is the mitochondrial DNA (mtDNA) mutations, which are definitely transmitted from the mother to the child due to uniparental/maternal inheritance of mitochondria. Depending upon the range of the mutation (mutation loads) present, the mtDNA mutation leads to various devitalizing to fatal disorders, all of which are incurable. Scientists and researchers developed a technique known as mitochondrial donation technique or mitochondrial replacement therapy (MRT) to combat with the mtDNA mutations. The technique relies on the replacement of faulty mitochondria in the mother's egg with the normal wild-type from a donor female resulting in a "three-parent baby." On the other side, forensic scientists and anthropologists continuously explore the mtDNA in various medicolegal cases and in uncoupling the mystery of human origin and migration respectively. In this regard, we explored the genetic, forensic and ethical aspects of a "three-parent baby." The present communication also attempts to highlight the importance and limitations of the MRT technique/three-parent baby in a medicolegal context.
Collapse
Affiliation(s)
- Nandini Chitara
- Department of Anthropology, Panjab University, Chandigarh, India
| | - Kewal Krishan
- Department of Anthropology, Panjab University, Chandigarh, India
| | - Tanuj Kanchan
- Department of Forensic Medicine, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
4
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
5
|
Morcillo P, Kabra K, Velasco K, Cordero H, Jennings S, Yun TD, Larrea D, Akman HO, Schon EA. Aberrant ER-mitochondria communication is a common pathomechanism in mitochondrial disease. Cell Death Dis 2024; 15:405. [PMID: 38858390 PMCID: PMC11164949 DOI: 10.1038/s41419-024-06781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Genetic mutations causing primary mitochondrial disease (i.e those compromising oxidative phosphorylation [OxPhos]) resulting in reduced bioenergetic output display great variability in their clinical features, but the reason for this is unknown. We hypothesized that disruption of the communication between endoplasmic reticulum (ER) and mitochondria at mitochondria-associated ER membranes (MAM) might play a role in this variability. To test this, we assayed MAM function and ER-mitochondrial communication in OxPhos-deficient cells, including cybrids from patients with selected pathogenic mtDNA mutations. Our results show that each of the various mutations studied indeed altered MAM functions, but notably, each disorder presented with a different MAM "signature". We also found that mitochondrial membrane potential is a key driver of ER-mitochondrial connectivity. Moreover, our findings demonstrate that disruption in ER-mitochondrial communication has consequences for cell survivability that go well beyond that of reduced ATP output. The findings of a "MAM-OxPhos" axis, the role of mitochondrial membrane potential in controlling this process, and the contribution of MAM dysfunction to cell death, reveal a new relationship between mitochondria and the rest of the cell, as well as providing new insights into the diagnosis and treatment of these devastating disorders.
Collapse
Affiliation(s)
- Patricia Morcillo
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Khushbu Kabra
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Kevin Velasco
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hector Cordero
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Immunology Group, Department of Physiology, Faculty of Veterinary, University of Extremadura, Caceres, 10003, Spain
| | - Sarah Jennings
- Stony Brook University, Stony Brook, New York, NY, 11794, USA
| | - Taekyung D Yun
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
6
|
Peron C, Cavaliere A, Fasano C, Iannielli A, Spagnolo M, Legati A, Nicol Colombo M, Rizzo A, Sciacca FL, Carelli V, Broccoli V, Lamperti C, Tiranti V. Generation of iPSCs from identical twin, one affected by LHON and one unaffected, both carrying a combination of two mitochondrial variants: m.14484 T>C and m.10680G>A. Stem Cell Res 2024; 77:103406. [PMID: 38552355 DOI: 10.1016/j.scr.2024.103406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 06/03/2024] Open
Abstract
Leber hereditary optic neuropathy (LHON) is one of the most common mitochondrial illness, causing retinal ganglion cell degeneration and central vision loss. It stems from point mutations in mitochondrial DNA (mtDNA), with key mutations being m.3460G > A, m.11778G > A, and m.14484 T > C. Fibroblasts from identical twins, sharing m.14484 T > C and m.10680G > A variants each with 70 % heteroplasmy, were used to generate iPSC lines. Remarkably, one twin, a LHON patient, displayed symptoms, while the other, a carrier, remained asymptomatic. These iPSCs offer a valuable tool for studying factors influencing disease penetrance and unravelling the role of m.10680G > A, which is still debated.
Collapse
Affiliation(s)
- Camille Peron
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Andrea Cavaliere
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Chiara Fasano
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Angelo Iannielli
- IRCCS San Raffaele Scientific Institute, Milan, Italy; National Research Council (CNR), Institute of Neuroscience, Milan, Italy
| | - Manuela Spagnolo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maria Nicol Colombo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Ambra Rizzo
- Laboratory of Clinical Investigation, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Francesca L Sciacca
- Laboratory of Clinical Investigation, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Vania Broccoli
- IRCCS San Raffaele Scientific Institute, Milan, Italy; National Research Council (CNR), Institute of Neuroscience, Milan, Italy
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.
| |
Collapse
|
7
|
Burr SP, Chinnery PF. Origins of tissue and cell-type specificity in mitochondrial DNA (mtDNA) disease. Hum Mol Genet 2024; 33:R3-R11. [PMID: 38779777 PMCID: PMC11112380 DOI: 10.1093/hmg/ddae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 05/25/2024] Open
Abstract
Mutations of mitochondrial (mt)DNA are a major cause of morbidity and mortality in humans, accounting for approximately two thirds of diagnosed mitochondrial disease. However, despite significant advances in technology since the discovery of the first disease-causing mtDNA mutations in 1988, the comprehensive diagnosis and treatment of mtDNA disease remains challenging. This is partly due to the highly variable clinical presentation linked to tissue-specific vulnerability that determines which organs are affected. Organ involvement can vary between different mtDNA mutations, and also between patients carrying the same disease-causing variant. The clinical features frequently overlap with other non-mitochondrial diseases, both rare and common, adding to the diagnostic challenge. Building on previous findings, recent technological advances have cast further light on the mechanisms which underpin the organ vulnerability in mtDNA diseases, but our understanding is far from complete. In this review we explore the origins, current knowledge, and future directions of research in this area.
Collapse
Affiliation(s)
- Stephen P Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|
8
|
Saha D, Kothari S, Kulkarni SD, Thambiraja M, Yennamalli RM, Das DK. Genetic heterogeneity and respiratory chain enzyme analysis in pediatric Indian patients with mitochondrial disorder: Report of novel variants in POLG1 gene and their functional implication using molecular dynamic simulation. Mitochondrion 2024; 76:101870. [PMID: 38471579 DOI: 10.1016/j.mito.2024.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Mitochondrial disorders are a heterogeneous group of disorders caused by mutations in the mitochondrial DNA or in nuclear genes encoding the mitochondrial proteins and subunits. Polymerase Gamma (POLG) is a nuclear gene and mutation in the POLG gene are one of the major causes of inherited mitochondrial disorders. In this study, 15 pediatric patients, with a wide spectrum of clinical phenotypes were screened using blood samples (n = 15) and muscle samples (n = 4). Respiratory chain enzyme analysis in the muscle samples revealed multi-complex deficiencies with Complex I deficiency present in (1/4) patients, Complex II (2/4), Complex III (3/4) and Complex IV (2/4) patients. Multiple large deletions were observed in 4/15 patients using LR-PCR. Whole exome sequencing (WES) revealed a compound heterozygous mutation consisting of a POLG1 novel variant (NP_002684.1:p.Trp261X) and a missense variant (NP_002684.1:p. Leu304Arg) in one patient and another patient harboring a novel homozygous POLG1 variant (NP_002684.1:p. Phe750Val). These variants (NP_002684.1:p. Leu304Arg) and (NP_002684.1:p. Phe750Val) and their interactions with DNA were modelled using molecular docking and molecular dynamics (MD) simulation studies. The protein conformation was analyzed as root mean square deviation (RMSD), root mean square fluctuation (RMSF) which showed local fluctuations in the mutants compared to the wildtype. However, Solvent Accessible Surface Area (SASA) significantly increased for NP_002684.1:p.Leu304Arg and decreased in NP_002684.1:p.Phe750Val mutants. Further, Contact Order analysis indicated that the Aromatic-sulfur interactions were destabilizing in the mutants. Overall, these in-silico analysis has revealed a destabilizing mutations suggesting pathogenic variants in POLG1 gene.
Collapse
Affiliation(s)
- Debolina Saha
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, JM Street, Parel, Mumbai 400012, India
| | - Sonam Kothari
- Department of Pediatric Neurology, Bai Jerbai Wadia Hospital for Children, Acharya Donde Marg, Parel, Mumbai, Maharashtra 400012, India
| | - Shilpa Duttaprasanna Kulkarni
- Department of Pediatric Neurology, Bai Jerbai Wadia Hospital for Children, Acharya Donde Marg, Parel, Mumbai, Maharashtra 400012, India
| | - Menaka Thambiraja
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamilnadu 613401, India
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamilnadu 613401, India.
| | - Dhanjit K Das
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, JM Street, Parel, Mumbai 400012, India.
| |
Collapse
|
9
|
Bacman SR, Barrera-Paez JD, Pinto M, Van Booven D, Stewart JB, Griswold AJ, Moraes CT. mitoTALEN reduces the mutant mtDNA load in neurons. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102132. [PMID: 38404505 PMCID: PMC10883830 DOI: 10.1016/j.omtn.2024.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Mutations within mtDNA frequently give rise to severe encephalopathies. Given that a majority of these mtDNA defects exist in a heteroplasmic state, we harnessed the precision of mitochondrial-targeted TALEN (mitoTALEN) to selectively eliminate mutant mtDNA within the CNS of a murine model harboring a heteroplasmic mutation in the mitochondrial tRNA alanine gene (m.5024C>T). This targeted approach was accomplished by the use of AAV-PHP.eB and a neuron-specific synapsin promoter for effective neuronal delivery and expression of mitoTALEN. We found that most CNS regions were effectively transduced and showed a significant reduction in mutant mtDNA. This reduction was accompanied by an increase in mitochondrial tRNA alanine levels, which are drastically reduced by the m.5024C>T mutation. These results showed that mitochondrial-targeted gene editing can be effective in reducing CNS-mutant mtDNA in vivo, paving the way for clinical trials in patients with mitochondrial encephalopathies.
Collapse
Affiliation(s)
- Sandra R. Bacman
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jose Domingo Barrera-Paez
- Graduate Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Milena Pinto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James B. Stewart
- Biosciences Institute, Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos T. Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
10
|
Missen S, Wilson C, Potter H, Vincent AL, Murphy R, Roxburgh R, Rodrigues M, Poke G, Robertson SP, Thorburn DR, Glamuzina E. Mitochondrial disease in New Zealand: a nationwide prevalence study. Intern Med J 2024; 54:388-397. [PMID: 37732891 DOI: 10.1111/imj.16211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND The complexities of mitochondrial disease make epidemiological studies challenging, yet this information is important in understanding the healthcare burden and addressing service and educational needs. Existing studies are limited to quaternary centres or focus on a single genotype or phenotype and estimate disease prevalence at 12.5 per 100 000. New Zealand's (NZ) size and partially integrated national healthcare system make it amenable to a nationwide prevalence study. AIM To estimate the prevalence of molecularly confirmed and suspected mitochondrial disease on 31 December 2015 in NZ. METHODS Cases were identified from subspecialists and laboratory databases and through interrogation of the Ministry of Health National Minimum Dataset with a focus on presentations between 2000 and 2015. Patient records were reviewed, and those with a diagnosis of 'mitochondrial disease' who were alive and residing in NZ on the prevalence date were included. These were divided into molecularly confirmed and clinically suspected cases. Official NZ estimated resident population data were used to calculate prevalence. RESULTS Seven hundred twenty-three unique national health index numbers were identified. Five hundred five were excluded. The minimum combined prevalence for mitochondrial disease was 4.7 per 100 000 (95% confidence interval (CI): 4.1-5.4). The minimum prevalence for molecularly confirmed and suspected disease was 2.9 (95% CI 2.4-3.4) and 1.8 (95% CI 1.4-2.2) cases per 100 000 respectively. CONCLUSIONS Within the limitations of this study, comparison to similar prevalence studies performed by specialist referral centres suggests mitochondrial disease is underdiagnosed in NZ. This highlights a need for improved education and referral pathways for mitochondrial disease in NZ.
Collapse
Affiliation(s)
- Sarah Missen
- Child Health Service, Whangarei Hospital, Te Whatu Ora - Health New Zealand, Te Tai Tokerau, Whangarei, New Zealand
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Callum Wilson
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Adult and Paediatric National Metabolic Service, Te Whatu Ora - Health New Zealand, Te Toka Tumai, Auckland, New Zealand
| | - Howard Potter
- Canterbury Health Labs, Te Whatu Ora - Health New Zealand, Waitaha Canterbury, Christchurch, New Zealand
| | - Andrea L Vincent
- Greenlane Eye Clinic, Greenlane Clinical Centre, Te Whatu Ora - Health New Zealand, Te Toka Tumai, Auckland, New Zealand
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- Auckland Diabetes Centre, Te Whatu Ora - Health New Zealand, Te Toka Tumai, Auckland, New Zealand
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Te Mana Ki Tua, Specialist Weight Management Service, Middlemore Hospital, Te Whatu Ora - Health New Zealand, Counties Manukau, Auckland, New Zealand
| | - Richard Roxburgh
- Department of Neurology, Auckland City Hospital, Te Whatu Ora - Health New Zealand, Te Toka Tumai, Auckland, New Zealand
- Centre for Brain Research, Neurogenetics Clinics, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Miriam Rodrigues
- Department of Neurology, Auckland City Hospital, Te Whatu Ora - Health New Zealand, Te Toka Tumai, Auckland, New Zealand
- Centre for Brain Research, Neurogenetics Clinics, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Gemma Poke
- Central Hub, Genetic Health Service New Zealand, Te Whatu Ora - Health New Zealand, Wellington, New Zealand
| | | | - David R Thorburn
- Genomic Medicine Theme, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Emma Glamuzina
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Adult and Paediatric National Metabolic Service, Te Whatu Ora - Health New Zealand, Te Toka Tumai, Auckland, New Zealand
| |
Collapse
|
11
|
Citrigno L, Qualtieri A, Cerantonio A, De Benedittis S, Gallo O, Di Palma G, Spadafora P, Cavalcanti F. Genomics landscape of mitochondrial DNA variations in patients from South Italy affected by mitochondriopathies. J Neurol Sci 2024; 457:122869. [PMID: 38215527 DOI: 10.1016/j.jns.2024.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Mitochondrial DNA (mtDNA) is a 16,569 base pairs, double-stranded, circular molecule that contains 37 genes coding for 13 subunits of the respiratory chain plus 2 rRNAs and 22 tRNAs. Mutations in these genes have been identified in patients with a variety of disorders affecting every system in the body. The advent of next generation sequencing technologies has provided the possibility to perform the whole mitochondrial DNA sequencing, allowing the identification of disease-causing pathogenic variants in a single platform. In this study, the whole mtDNA of 100 patients from South Italy affected by mitochondrial diseases was analyzed by using an amplicon-based approach and then the enriched libraries were deeply sequenced on the ION Torrent platform (Thermofisher Scientific Waltham, MA, USA). After bioinformatics analysis and filtering, we were able to find 26 nonsynonymous variants with a MAF <1% that were associated with different pathological phenotypes, expanding the mutational spectrum of these diseases. Moreover, among the new mutations found, we have also analyzed the 3D structure of the MT-ATP6 A200T gene variation in order to confirm suspected functional alterations. This work brings light on new variants possibly associated with several mitochondriopathies in patients from South Italy and confirms that deep sequencing approach, compared to the standard methods, is a reliable and time-cost reducing strategy to detect all the variants present in the mitogenome, making the possibility to create a genomics landscape of mitochondrial DNA variations in human diseases.
Collapse
Affiliation(s)
- Luigi Citrigno
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy.
| | - Antonio Qualtieri
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Annamaria Cerantonio
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Selene De Benedittis
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Olivier Gallo
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Gemma Di Palma
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Patrizia Spadafora
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Francesca Cavalcanti
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| |
Collapse
|
12
|
Martikainen MH, Majamaa K. Incidence and prevalence of mtDNA-related adult mitochondrial disease in Southwest Finland, 2009-2022: an observational, population-based study. BMJ Neurol Open 2024; 6:e000546. [PMID: 38361968 PMCID: PMC10868302 DOI: 10.1136/bmjno-2023-000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Background Mitochondrial diseases are common inherited metabolic disorders. Due to improved case ascertainment and diagnosis methods, the detection of new diagnoses of mitochondrial disease can be expected to increase. In December 2009, the prevalence of mitochondrial DNA (mtDNA)-related mitochondrial disease was 4.6/100 000 (95% CI, 2.7 to 7.2) in the adult population of Southwest Finland. We investigated the number of new diagnoses and the incidence of mitochondrial disease in Southwest Finland between December 2009 and December 2022. Methods We collected data on all adult patients from Southwest Finland diagnosed with mitochondrial disease on 31 December 2009 and 31 December 2022. Most patients had been diagnosed at the Turku University Hospital (TUH) neurology outpatient clinic. Patients were also identified by searching the TUH electronic patient database for relevant International Classification of Diseases, Tenth Revision codes and conducted mtDNA analyses. Results 42 new patients were diagnosed giving a mean annual rate of 3.2 new diagnoses. In 2022, the minimum prevalence estimate of adult mtDNA-related mitochondrial disease was 9.2/100 000 (95% CI, 6.5 to 12.7). The prevalence of adult mtDNA disease associated with m.3243A>G was 4.2/100 000 (95% CI, 2.5 to 6.7), and that with large-scale mtDNA deletions was 1.3/100 000 (95% CI, 0.4 to 2.9). During the 13-year period, the annual incidence of adult mtDNA disease was 0.6/100 000 and that of adult m.3243A>G-related disease 0.3/100 000. Conclusion Our results suggest that improved means of diagnostics and dedicated effort increase the detection of mitochondrial disease.
Collapse
Affiliation(s)
- Mika H Martikainen
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Neurocenter and Medical Research Center, Oulu University Hospital, Oulu, Finland
- Clinical Neurosciences, Dept. of Clinical Medicine, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Kari Majamaa
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Neurocenter and Medical Research Center, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
13
|
Cardon I, Grobecker S, Kücükoktay S, Bader S, Jahner T, Nothdurfter C, Koschitzki K, Berneburg M, Weber BHF, Stöhr H, Höring M, Liebisch G, Braun F, Rothammer-Hampl T, Riemenschneider MJ, Rupprecht R, Milenkovic VM, Wetzel CH. Mitochondrial and Cellular Function in Fibroblasts, Induced Neurons, and Astrocytes Derived from Case Study Patients: Insights into Major Depression as a Mitochondria-Associated Disease. Int J Mol Sci 2024; 25:963. [PMID: 38256041 PMCID: PMC10815943 DOI: 10.3390/ijms25020963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The link between mitochondria and major depressive disorder (MDD) is increasingly evident, underscored both by mitochondria's involvement in many mechanisms identified in depression and the high prevalence of MDD in individuals with mitochondrial disorders. Mitochondrial functions and energy metabolism are increasingly considered to be involved in MDD's pathogenesis. This study focused on cellular and mitochondrial (dys)function in two atypical cases: an antidepressant non-responding MDD patient ("Non-R") and another with an unexplained mitochondrial disorder ("Mito"). Skin biopsies from these patients and controls were used to generate various cell types, including astrocytes and neurons, and cellular and mitochondrial functions were analyzed. Similarities were observed between the Mito patient and a broader MDD cohort, including decreased respiration and mitochondrial function. Conversely, the Non-R patient exhibited increased respiratory rates, mitochondrial calcium, and resting membrane potential. In conclusion, the Non-R patient's data offered a new perspective on MDD, suggesting a detrimental imbalance in mitochondrial and cellular processes, rather than simply reduced functions. Meanwhile, the Mito patient's data revealed the extensive effects of mitochondrial dysfunctions on cellular functions, potentially highlighting new MDD-associated impairments. Together, these case studies enhance our comprehension of MDD.
Collapse
Affiliation(s)
- Iseline Cardon
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Sonja Grobecker
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Selin Kücükoktay
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Tatjana Jahner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Kevin Koschitzki
- Department of Dermatology, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
- Institute of Clinical Human Genetics, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Frank Braun
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Tanja Rothammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany
| | | | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Vladimir M. Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| |
Collapse
|
14
|
Magner M. On the way to early diagnosis. Eur J Paediatr Neurol 2024; 48:A4. [PMID: 38403569 DOI: 10.1016/j.ejpn.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Affiliation(s)
- Martin Magner
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| |
Collapse
|
15
|
Wang Y, Wang Y, Chen Y, Yan Q, Lin A. Research progress in mitochondrial gene editing technology. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:460-472. [PMID: 37643980 PMCID: PMC10495247 DOI: 10.3724/zdxbyxb-2023-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations result in a variety of genetic diseases. As an emerging therapeutic method, mtDNA editing technology recognizes targets more based on the protein and less on the nucleic acid. Although the protein recognition type mtDNA editing technology represented by zinc finger nuclease technology, transcription activator like effector nuclease technology and base editing technology has made some progress, the disadvantages of complex recognition sequence design hinder further popularization. Gene editing based on nucleic acid recognition by the CRISPR system shows superiority due to the simple structure, easy design and modification. However, the lack of effective means to deliver nucleic acids into mitochondria limits application in the field of mtDNA editing. With the advances in the study of endogenous and exogenous import pathways and the deepening understanding of DNA repair mechanisms, growing evidence shows the feasibility of nucleic acid delivery and the broad application prospects of nucleic acid recognition type mtDNA editing technology. Based on the classification of recognition elements, this article summarizes the current principles and development of mitochondrial gene editing technology, and discusses its application prospects.
Collapse
Affiliation(s)
- Yichen Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Ying Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Yu Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Qingfeng Yan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for RNA Medicine, International Institutes of Medicine, Zhejiang University, Jinhua 322000, Zhejiang Province, China.
| |
Collapse
|
16
|
Ibayashi K, Fujino Y, Mimaki M, Fujimoto K, Matsuda S, Goto YI. Estimation of the Number of Patients With Mitochondrial Diseases: A Descriptive Study Using a Nationwide Database in Japan. J Epidemiol 2023; 33:68-75. [PMID: 33907064 PMCID: PMC9794447 DOI: 10.2188/jea.je20200577] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To provide a better healthcare system for patients with mitochondrial diseases, it is important to understand the basic epidemiology of these conditions, including the number of patients affected. However, little information about them has appeared in Japan to date. METHODS To gather data of patients with mitochondrial diseases, we estimated the number of patients with mitochondrial diseases from April 2018 through March 2019 using a national Japanese health care claims database, the National Database (NDB). Further, we calculated the prevalence of patients, and sex ratio, age class, and geographical distribution. RESULTS From April 2018 through March 2019, the number of patients with mitochondrial diseases was 3,629, and the prevalence was 2.9 (95% confidence interval [CI], 2.8-3.0) per 100,000 general population. The ratio of females and males was 53 to 47, and the most frequent age class was 40-49 years old. Tokyo had the greatest number of patients with mitochondrial diseases, at 477, whereas Yamanashi had the fewest, at 13. Kagoshima had the highest prevalence of patients with mitochondrial diseases, 8.4 (95% CI, 7.1-10.0) per 100,000 population, whereas Yamanashi had the lowest, 1.6 (95% CI, 0.8-2.7). CONCLUSION The number of patients with mitochondrial diseases estimated by this study, 3,269, was more than double that indicated by the Japanese government. This result may imply that about half of all patients are overlooked for reasons such as low severity of illness, suggesting that the Japanese healthcare system needs to provide additional support for these patients.
Collapse
Affiliation(s)
- Koki Ibayashi
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Yoshihisa Fujino
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Masakazu Mimaki
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Kenji Fujimoto
- Department of Public Health, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Shinya Matsuda
- Department of Public Health, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Yu-ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
17
|
Watson EC, Davis RL, Ravishankar S, Copty J, Kummerfeld S, Sue CM. Low disease risk and penetrance in Leber hereditary optic neuropathy. Am J Hum Genet 2023; 110:166-169. [PMID: 36565700 PMCID: PMC9892766 DOI: 10.1016/j.ajhg.2022.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
The risk of Leber hereditary optic neuropathy (LHON) has largely been extrapolated from disease cohorts, which underestimate the population prevalence of pathogenic primary LHON variants as a result of incomplete disease penetrance. Understanding the true population prevalence of primary LHON variants, alongside the rate of clinical disease, provides a better understanding of disease risk and variant penetrance. We identified pathogenic primary LHON variants in whole-genome sequencing data of a well-characterized population-based control cohort and found that the prevalence is far greater than previously estimated, as it occurs in approximately 1 in 800 individuals. Accordingly, we were able to more accurately estimate population risk and disease penetrance in LHON variant carriers, validating our findings by using other large control datasets. These findings will inform accurate counseling in relation to the risk of vision loss in LHON variant carriers and disease manifestation in their family. This Matters Arising paper is in response to Lopez Sanchez et al. (2021), published in The American Journal of Human Genetics. See also the response by Mackey et al. (2022), published in this issue.
Collapse
Affiliation(s)
- Eloise C. Watson
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, Reserve Rd, St Leonards, NSW, Australia,Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia,Department of Neurology, Wellington Hospital, Capital and Coast District Health Board, Newtown, Wellington, New Zealand
| | - Ryan L. Davis
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, Reserve Rd, St Leonards, NSW, Australia
| | | | - Joseph Copty
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Sarah Kummerfeld
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,St Vincents Clinical School, UNSW, Sydney, NSW, Australia
| | - Carolyn M. Sue
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, Reserve Rd, St Leonards, NSW, Australia,Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia,Corresponding author
| |
Collapse
|
18
|
Björkman K, Vissing J, Østergaard E, Bindoff LA, de Coo IFM, Engvall M, Hikmat O, Isohanni P, Kollberg G, Lindberg C, Majamaa K, Naess K, Uusimaa J, Tulinius M, Darin N. Phenotypic spectrum and clinical course of single large-scale mitochondrial DNA deletion disease in the paediatric population: a multicentre study. J Med Genet 2023; 60:65-73. [PMID: 34872991 PMCID: PMC9811091 DOI: 10.1136/jmedgenet-2021-108006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Large-scale mitochondrial DNA deletions (LMD) are a common genetic cause of mitochondrial disease and give rise to a wide range of clinical features. Lack of longitudinal data means the natural history remains unclear. This study was undertaken to describe the clinical spectrum in a large cohort of patients with paediatric disease onset. METHODS A retrospective multicentre study was performed in patients with clinical onset <16 years of age, diagnosed and followed in seven European mitochondrial disease centres. RESULTS A total of 80 patients were included. The average age at disease onset and at last examination was 10 and 31 years, respectively. The median time from disease onset to death was 11.5 years. Pearson syndrome was present in 21%, Kearns-Sayre syndrome spectrum disorder in 50% and progressive external ophthalmoplegia in 29% of patients. Haematological abnormalities were the hallmark of the disease in preschool children, while the most common presentations in older patients were ptosis and external ophthalmoplegia. Skeletal muscle involvement was found in 65% and exercise intolerance in 25% of the patients. Central nervous system involvement was frequent, with variable presence of ataxia (40%), cognitive involvement (36%) and stroke-like episodes (9%). Other common features were pigmentary retinopathy (46%), short stature (42%), hearing impairment (39%), cardiac disease (39%), diabetes mellitus (25%) and renal disease (19%). CONCLUSION Our study provides new insights into the phenotypic spectrum of childhood-onset, LMD-associated syndromes. We found a wider spectrum of more prevalent multisystem involvement compared with previous studies, most likely related to a longer time of follow-up.
Collapse
Affiliation(s)
- Kristoffer Björkman
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - John Vissing
- Copenhagen Neuromuscular Centre, Rigshospitalet, Kobenhavn, Denmark
| | - Elsebet Østergaard
- Department of Clinical Genetics, Rigshospitalet, Kobenhavn, Denmark,Department of Clinical Medicine, University of Copenhagen, Kobenhavn, Denmark
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway,Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Irenaeus F M de Coo
- Department of Toxicogenomics, Unit Clinical Genomics, Maastricht University, Maastricht, The Netherlands,Maastricht University School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Martin Engvall
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden,Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Omar Hikmat
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Pirjo Isohanni
- Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland,University of Helsinki Children's Hospital, Helsinki, Finland
| | - Gittan Kollberg
- Department of Clinical Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Lindberg
- Department of Neurology, Neuromuscular Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kari Majamaa
- Medical Research Center, Oulu University Faculty of Medicine, Oulu, Finland,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Karin Naess
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden,Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Johanna Uusimaa
- PEDEGO Research Unit, Oulu University Faculty of Medicine, Oulu, Finland,Clinic for Children and Adolescents and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Mar Tulinius
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
19
|
Bharathidasan K, Evans A, Fernandez FMAO, Motes AT, Nugent K. Mitochondrial Myopathy in a 21-Year-Old Man Presenting With Bilateral Lower Extremity Weakness and Swelling. J Prim Care Community Health 2023; 14:21501319231172697. [PMID: 37162197 PMCID: PMC10184240 DOI: 10.1177/21501319231172697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Bilateral lower extremity weakness and swelling can have several causes. Although often underdiagnosed, mitochondrial myopathy is more prevalent in the general population than more commonly suspected diseases, such as Guillain-Barre syndrome. The clinical manifestations of mitochondrial disease can be broadly classified into 3 categories: chronic progressive external ophthalmoplegia, skeletal muscle-central nervous system syndromes, or pure myopathy. Cardiac abnormalities occur in 30% to 32% of cases, mostly in the form of hypertrophic cardiomyopathy, dilated cardiomyopathy, or conduction abnormalities. We report a case of a 21-year-old student who developed bilateral lower limb weakness, pain, and swelling diagnosed with mitochondrial myopathy on muscle biopsy. Initial laboratory tests revealed elevated creatinine kinase, brain natriuretic peptide, troponin, myoglobin, and lactic acid and reduced serum bicarbonate. Cardiac workup revealed systolic heart failure with a reduced ejection fraction. Endomyocardial biopsy revealed punctate foci of lymphocytic myocarditis. However, cardiac magnetic resonance imaging did not reveal either myocarditis or an infiltrative cardiac disease. An extensive autoimmune and infection work-up was negative. A muscle biopsy from the patient's rectus femoris revealed scattered ragged-blue fibers (stained with NADH dehydrogenase), scattered ragged-red fibers on modified Gomori trichrome stain, and cytochrome-c oxidase negative fibers with increased perimysial and endomysial connective tissue, consistent with active and chronic primary mitochondrial myopathy. The patient was treated successfully with furosemide, metoprolol, and methylprednisolone. Adult-onset mitochondrial myopathy is a rare clinical disorder, and our experience stresses the importance of using an inter-disciplinary team approach to diagnose uncommon clinical disorders with widely variable multisystem involvement.
Collapse
Affiliation(s)
| | - Abbie Evans
- Texas Tech University Health Science Center, Lubbock, TX, USA
| | | | | | - Kenneth Nugent
- Texas Tech University Health Science Center, Lubbock, TX, USA
| |
Collapse
|
20
|
Chang X, Yin Z, Zhang W, Shi J, Pu C, Shi Q, Wang J, Zhang J, Yan L, Yang W, Guo J. Data-independent acquisition-based quantitative proteomic analysis of m.3243A>G MELAS reveals novel potential pathogenesis and therapeutic targets. Medicine (Baltimore) 2022; 101:e30938. [PMID: 36254078 PMCID: PMC9575705 DOI: 10.1097/md.0000000000030938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The pathogenesis of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke like episodes (MELAS) syndrome has not been fully elucidated. The m.3243A > G mutation which is responsible for 80% MELAS patients affects proteins with undetermined functions. Therefore, we performed quantitative proteomic analysis on skeletal muscle specimens from MELAS patients. We recruited 10 patients with definitive MELAS and 10 age- and gender- matched controls. Proteomic analysis based on nanospray liquid chromatography-mass spectrometry (LC-MS) was performed using data-independent acquisition (DIA) method and differentially expressed proteins were revealed by bioinformatics analysis. We identified 128 differential proteins between MELAS and controls, including 68 down-regulated proteins and 60 up-regulated proteins. The differential proteins involved in oxidative stress were identified, including heat shock protein beta-1 (HSPB1), alpha-crystallin B chain (CRYAB), heme oxygenase 1 (HMOX1), glucose-6-phosphate dehydrogenase (G6PD) and selenoprotein P. Gene ontology and kyoto encyclopedia of genes and genomes pathway analysis showed significant enrichment in phagosome, ribosome and peroxisome proliferator-activated receptors (PPAR) signaling pathway. The imbalance between oxidative stress and antioxidant defense, the activation of autophagosomes, and the abnormal metabolism of mitochondrial ribosome proteins (MRPs) might play an important role in m.3243A > G MELAS. The combination of proteomic and bioinformatics analysis could contribute potential molecular networks to the pathogenesis of MELAS in a comprehensive manner.
Collapse
Affiliation(s)
- Xueli Chang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhaoxu Yin
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wei Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiaying Shi
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chuanqiang Pu
- Department of Neurology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Qiang Shi
- Department of Neurology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Juan Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Yan
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenqu Yang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Taiyuan, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- *Correspondence: Junhong Guo, Department of Neurology, First Hospital, Shanxi Medical University, No. 85, Jiefang South Road, Taiyuan, 030001, Shanxi, China (e-mail: )
| |
Collapse
|
21
|
Next generation sequencing of Tunisian Leigh syndrome patients reveals novel variations: impact for diagnosis and treatment. Biosci Rep 2022; 42:231779. [PMID: 36093993 PMCID: PMC9508526 DOI: 10.1042/bsr20220194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial cytopathies, among which the Leigh syndrome (LS), are caused by variants either in the mitochondrial or the nuclear genome, affecting the oxidative phosphorylation process. The aim of the present study consisted in defining the molecular diagnosis of a group of Tunisian patients with LS. Six children, belonging to five Tunisian families, with clinical and imaging presentations suggestive of LS were recruited. Whole mitochondrial DNA and targeted next-generation sequencing of a panel of 281 nuclear genes involved in mitochondrial physiology were performed. Bioinformatic analyses were achieved in order to identify deleterious variations. A single m.10197G>A (p.Ala47Thr) variant was found in the mitochondrial MT-ND3 gene in one patient, while the others were related to autosomal homozygous variants: two c.1412delA (p.Gln471ArgfsTer42) and c.1264A>G (p.Thr422Ala) in SLC19A3, one c.454C>G (p.Pro152Ala) in SLC25A19 and one c.122G>A (p.Gly41Asp) in ETHE1. Our findings demonstrate the usefulness of genomic investigations to improve LS diagnosis in consanguineous populations and further allow for treating the patients harboring variants in SLC19A3 and SLC25A19 that contribute to thiamine transport, by thiamine and biotin supplementation. Considering the Tunisian genetic background, the newly identified variants could be screened in patients with similar clinical presentation in related populations.
Collapse
|
22
|
Campbell T, Slone J, Huang T. Mitochondrial Genome Variants as a Cause of Mitochondrial Cardiomyopathy. Cells 2022; 11:cells11182835. [PMID: 36139411 PMCID: PMC9496904 DOI: 10.3390/cells11182835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are small double-membraned organelles responsible for the generation of energy used in the body in the form of ATP. Mitochondria are unique in that they contain their own circular mitochondrial genome termed mtDNA. mtDNA codes for 37 genes, and together with the nuclear genome (nDNA), dictate mitochondrial structure and function. Not surprisingly, pathogenic variants in the mtDNA or nDNA can result in mitochondrial disease. Mitochondrial disease primarily impacts tissues with high energy demands, including the heart. Mitochondrial cardiomyopathy is characterized by the abnormal structure or function of the myocardium secondary to genetic defects in either the nDNA or mtDNA. Mitochondrial cardiomyopathy can be isolated or part of a syndromic mitochondrial disease. Common manifestations of mitochondrial cardiomyopathy are a phenocopy of hypertrophic cardiomyopathy, dilated cardiomyopathy, and cardiac conduction defects. The underlying pathophysiology of mitochondrial cardiomyopathy is complex and likely involves multiple abnormal processes in the cell, stemming from deficient oxidative phosphorylation and ATP depletion. Possible pathophysiology includes the activation of alternative metabolic pathways, the accumulation of reactive oxygen species, dysfunctional mitochondrial dynamics, abnormal calcium homeostasis, and mitochondrial iron overload. Here, we highlight the clinical assessment of mtDNA-related mitochondrial cardiomyopathy and offer a novel hypothesis of a possible integrated, multivariable pathophysiology of disease.
Collapse
|
23
|
Nemoto K, Sano K, Sato S, Maeda Y, Murayama K, Takanashi JI. A child with mitochondrial DNA deletion presenting diabetes mellitus as an initial symptom. Radiol Case Rep 2022; 17:2915-2918. [PMID: 35755118 PMCID: PMC9218280 DOI: 10.1016/j.radcr.2022.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022] Open
Abstract
Children with mitochondrial disease may present with diabetes mellitus (DM) without autoimmune antibodies as an initial manifestation, however, it is difficult to make a precise diagnosis in early stages. We present a 2-year-old male patient with mitochondrial disease who showed insulin-dependent DM without autoimmune antibodies as an initial symptom. He later presented with progressive motor deterioration, hearing disability, ptosis, external ophthalmoplegia, and retinitis pigmentosa at 6 years and 6 months. T2- and diffusion-weighted imaging revealed high signal lesions in the subcortical white matter, anterior thalamus, globus pallidus, and brainstem. MR spectroscopy showed elevated lactate and low N-acetylaspartate in the affected white matter. Genetic analysis revealed a single large-scale mitochondrial DNA deletion at 7117-13994, leading to a diagnosis of mitochondrial DNA deletion syndrome associated with insulin-dependent DM. Although the frequency of DM in pediatric mitochondrial disease is low, mitochondrial disease, especially due to mitochondrial DNA deletion, should be considered as a differential diagnosis in those with insulin-dependent DM without autoimmune antibodies, and MRI and MR spectroscopy are recommended for an early diagnosis.
Collapse
|
24
|
Abstract
Abstract
Mitochondria, the cell powerhouse, are membrane-bound organelles present in the cytoplasm of almost all the eukaryotic cells. Their main function is to generate energy in the form of adenosine triphosphate (ATP). In addition, mitochondria store calcium for the cell signaling activities, generate heat, harbor pathways of intermediate metabolism and mediate cell growth and death. Primary mitochondrial diseases (MDs) form a clinically as well as genetically heterogeneous group of inherited disorders that result from the mitochondrial energetic metabolism malfunctions. The lifetime risk of the MDs development is estimated at 1:1470 of newborns, which makes them one of the most recurrent groups of inherited disorders with an important burden for society.
MDs are progressive with wide range of symptoms of variable severity that can emerge congenitally or anytime during the life. MD can be caused by mutations in the mitochondrial DNA (mtDNA) or nuclear DNA genes. Mutations inducing impairment of mitochondrial function have been found in more than 400 genes. Furthermore, more than 1200 nuclear genes, which could play a role in the MDs’ genetic etiology, are involved in the mitochondrial activities. However, the knowledge regarding the mechanism of the mitochondrial pathogenicity appears to be most essential for the development of effective patient’s treatment suffering from the mitochondrial disease. This is an overview update focused on the mitochondrial biology and the mitochondrial diseases associated genes.
Collapse
|
25
|
Thomas C, Wurzer L, Malle E, Ristow M, Madreiter-Sokolowski CT. Modulation of Reactive Oxygen Species Homeostasis as a Pleiotropic Effect of Commonly Used Drugs. FRONTIERS IN AGING 2022; 3:905261. [PMID: 35821802 PMCID: PMC9261327 DOI: 10.3389/fragi.2022.905261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Age-associated diseases represent a growing burden for global health systems in our aging society. Consequently, we urgently need innovative strategies to counteract these pathological disturbances. Overwhelming generation of reactive oxygen species (ROS) is associated with age-related damage, leading to cellular dysfunction and, ultimately, diseases. However, low-dose ROS act as crucial signaling molecules and inducers of a vaccination-like response to boost antioxidant defense mechanisms, known as mitohormesis. Consequently, modulation of ROS homeostasis by nutrition, exercise, or pharmacological interventions is critical in aging. Numerous nutrients and approved drugs exhibit pleiotropic effects on ROS homeostasis. In the current review, we provide an overview of drugs affecting ROS generation and ROS detoxification and evaluate the potential of these effects to counteract the development and progression of age-related diseases. In case of inflammation-related dysfunctions, cardiovascular- and neurodegenerative diseases, it might be essential to strengthen antioxidant defense mechanisms in advance by low ROS level rises to boost the individual ROS defense mechanisms. In contrast, induction of overwhelming ROS production might be helpful to fight pathogens and kill cancer cells. While we outline the potential of ROS manipulation to counteract age-related dysfunction and diseases, we also raise the question about the proper intervention time and dosage.
Collapse
Affiliation(s)
- Carolin Thomas
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Lia Wurzer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Ristow
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | | |
Collapse
|
26
|
Leaffer EB, De Vivo DC, Engelstad K, Fryer RH, Gu Y, Shungu DC, Hirano M, DiMauro S, Hinton VJ. Visual memory failure presages conversion to MELAS phenotype. Ann Clin Transl Neurol 2022; 9:841-852. [PMID: 35522125 PMCID: PMC9186137 DOI: 10.1002/acn3.51564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To examine the correlation between verbal and visual memory function and correlation with brain metabolites (lactate and N-Acetylaspartate, NAA) in individuals with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). METHODS Memory performance and brain metabolites (ventricular lactate, occipital lactate, and occipital NAA) were examined in 18 MELAS, 58 m.3243A > G carriers, and 20 familial controls. Measures included the Selective Reminding Test (verbal memory), Benton Visuospatial Retention Test (visual memory), and MR Spectroscopy (NAA, Lactate). ANOVA, chi-squared/Fisher's exact tests, paired t-tests, Pearson correlations, and Spearman correlations were used. RESULTS When compared to carriers and controls, MELAS patients had the: (1) most impaired memory functions (Visual: p = 0.0003; Verbal: p = 0.02), (2) greatest visual than verbal memory impairment, (3) highest brain lactate levels (p < 0.0001), and (4) lowest brain NAA levels (p = 0.0003). Occipital and ventricular lactate to NAA ratios correlated significantly with visual memory performance (p ≤ 0.001). Higher lactate levels (p ≤ 0.01) and lower NAA levels (p = 0.0009) correlated specifically with greater visual memory dysfunction in MELAS. There was little or no correlation with verbal memory. INTERPRETATION Individuals with MELAS are at increased risk for impaired memory. Although verbal and visual memory are both affected, visual memory is preferentially affected and more clearly associated with brain metabolite levels. Preferential involvement of posterior brain regions is a distinctive clinical signature of MELAS. We now report a distinctive cognitive phenotype that targets visual memory more prominently and earlier than verbal memory. We speculate that this finding in carriers presages a conversion to the MELAS phenotype.
Collapse
Affiliation(s)
- Emily B Leaffer
- Sergievsky Center & Department of Neurology, Columbia University, New York City, New York, USA.,Department of Psychology, Queens College & The Graduate Center, City University of New York, New York City, New York, USA.,Northeast Cognitive Assessment, Rye Brook, New York, USA
| | - Darryl C De Vivo
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Kristin Engelstad
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Robert H Fryer
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Yian Gu
- Taub Institute, Department of Neurology, Department of Epidemiology, Columbia University, New York City, New York, USA
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medical College, New York City, New York, USA
| | - Michio Hirano
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Salvatore DiMauro
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Veronica J Hinton
- Sergievsky Center & Department of Neurology, Columbia University, New York City, New York, USA.,Department of Psychology, Queens College & The Graduate Center, City University of New York, New York City, New York, USA
| |
Collapse
|
27
|
Buajitti E, Rosella LC, Zabzuni E, Young LT, Andreazza AC. Prevalence and health care costs of mitochondrial disease in Ontario, Canada: A population-based cohort study. PLoS One 2022; 17:e0265744. [PMID: 35395012 PMCID: PMC8993002 DOI: 10.1371/journal.pone.0265744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/07/2022] [Indexed: 11/21/2022] Open
Abstract
Background Mitochondrial disease prevalence has been estimated at 1 in 4000 in the United States, and 1 in 5000 worldwide. Prevalence in Canada has not been established, though multi-linked health administrative data resources present a unique opportunity to establish robust population-based estimates in a single-payer health system. This study used administrative data for the Ontario, Canada population between April 1988 and March 2019 to measure mitochondrial disease prevalence and describe patient characteristics and health care costs. Results 3069 unique individuals were hospitalized with mitochondrial disease in Ontario and eligible for the study cohort, representing a period prevalence of 2.51 per 10,000 or 1 in 3989. First hospitalization was most common between ages 0–9 or 50–69. The mitochondrial disease population experiences a high need for health care and incurred high costs (mean = CAD$24,023 in 12 months before first hospitalization) within the single-payer Ontario health care system. Conclusions This study provides needed insight into mitochondrial disease in Canada, and demonstrates the high health burden on patients. The methodology used can be adapted across jurisdictions with similar routine collection of health data, such as in other Canadian provinces. Future work should seek to validate this approach via record linkage of existing disease cohorts in Ontario, and identify specific comorbidities with mitochondrial disease that may contribute to high health resource utilization.
Collapse
Affiliation(s)
- Emmalin Buajitti
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
| | - Laura C. Rosella
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Institute for Better Health, Trillium Health Partners, Mississauga, Ontario, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - Ersi Zabzuni
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - L. Trevor Young
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ana C. Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Mahmud S, Biswas S, Afrose S, Mita MA, Hasan MR, Shimu MSS, Paul GK, Chung S, Saleh MA, Alshehri S, Ghoneim MM, Alruwaily M, Kim B. Use of Next-Generation Sequencing for Identifying Mitochondrial Disorders. Curr Issues Mol Biol 2022; 44:1127-1148. [PMID: 35723297 PMCID: PMC8947152 DOI: 10.3390/cimb44030074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/06/2022] Open
Abstract
Mitochondria are major contributors to ATP synthesis, generating more than 90% of the total cellular energy production through oxidative phosphorylation (OXPHOS): metabolite oxidation, such as the β-oxidation of fatty acids, and the Krebs's cycle. OXPHOS inadequacy due to large genetic lesions in mitochondrial as well as nuclear genes and homo- or heteroplasmic point mutations in mitochondrially encoded genes is a characteristic of heterogeneous, maternally inherited genetic disorders known as mitochondrial disorders that affect multisystemic tissues and organs with high energy requirements, resulting in various signs and symptoms. Several traditional diagnostic approaches, including magnetic resonance imaging of the brain, cardiac testing, biochemical screening, variable heteroplasmy genetic testing, identifying clinical features, and skeletal muscle biopsies, are associated with increased risks, high costs, a high degree of false-positive or false-negative results, or a lack of precision, which limits their diagnostic abilities for mitochondrial disorders. Variable heteroplasmy levels, mtDNA depletion, and the identification of pathogenic variants can be detected through genetic sequencing, including the gold standard Sanger sequencing. However, sequencing can be time consuming, and Sanger sequencing can result in the missed recognition of larger structural variations such as CNVs or copy-number variations. Although each sequencing method has its own limitations, genetic sequencing can be an alternative to traditional diagnostic methods. The ever-growing roster of possible mutations has led to the development of next-generation sequencing (NGS). The enhancement of NGS methods can offer a precise diagnosis of the mitochondrial disorder within a short period at a reasonable expense for both research and clinical applications.
Collapse
Affiliation(s)
- Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mst. Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Gobindo Kumar Paul
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Momammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Maha Alruwaily
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
29
|
Li C, Lin L, Tsai H, Wen Z, Tsui K. Phosphoglycerate mutase family member 5 maintains oocyte quality via mitochondrial dynamic rearrangement during aging. Aging Cell 2022; 21:e13546. [PMID: 34995407 PMCID: PMC8844125 DOI: 10.1111/acel.13546] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 11/28/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Decline in ovarian reserve with aging is associated with reduced fertility and the development of metabolic abnormalities. Once mitochondrial homeostasis is imbalanced, it may lead to poor reproductive cell quality and aging. However, Phosphoglycerate translocase 5 (PGAM5), located in the mitochondrial membrane, is associated with necroptosis, apoptosis, and mitophagy, although the underlying mechanisms associated with ovarian aging remain unknown. Therefore, we attempted to uncover whether the high phosphoglycerate mutant enzyme family member 5 (PGAM5) expression is associated with female infertility in cumulus cells, and aims to find out the underlying mechanism of action of PGAM5. We found that PGAM5 is highly expressed and positively associated with aging, and has the potential to help maintain and regulate mitochondrial dynamics and metabolic reprogramming in aging granulosa cells, ovaries of aged female mice, and elderly patients. PGAM5 undergoes activation in the aging group and translocated to the outer membrane of mitochondria, co‐regulating DRP1; thereby increasing mitochondrial fission. A significant reduction in the quality of mitochondria in the aging group, a serious imbalance, and a significant reduction in energy, causing metabolism shift toward glycolysis, were also reported. Since PGAM5 is eliminated, the mitochondrial function and metabolism of aging cells are partially reversed. A total of 70 patients undergoing in vitro fertilization (IVF) treatment were recruited in this clinical study. The high expression of PGAM5 in the cumulus cells is negatively correlated with the pregnancy rate of infertile patients. Hence, PGAM5 has immense potential to be used as a diagnostic marker.
Collapse
Affiliation(s)
- Chia‐Jung Li
- Department of Obstetrics and Gynaecology Kaohsiung Veterans General Hospital Kaohsiung Taiwan
- Institute of Biopharmaceutical Sciences National Sun Yat‐sen University Kaohsiung Taiwan
| | - Li‐Te Lin
- Department of Obstetrics and Gynaecology Kaohsiung Veterans General Hospital Kaohsiung Taiwan
- Institute of Biopharmaceutical Sciences National Sun Yat‐sen University Kaohsiung Taiwan
- Department of Obstetrics and Gynaecology National Yang‐Ming University School of Medicine Taipei Taiwan
| | - Hsiao‐Wen Tsai
- Department of Obstetrics and Gynaecology Kaohsiung Veterans General Hospital Kaohsiung Taiwan
- Institute of Biopharmaceutical Sciences National Sun Yat‐sen University Kaohsiung Taiwan
- Department of Obstetrics and Gynaecology National Yang‐Ming University School of Medicine Taipei Taiwan
| | - Zhi‐Hong Wen
- Department of Marine Biotechnology and Resources National Sun Yat‐sen University Kaohsiung Taiwan
| | - Kuan‐Hao Tsui
- Department of Obstetrics and Gynaecology Kaohsiung Veterans General Hospital Kaohsiung Taiwan
- Institute of Biopharmaceutical Sciences National Sun Yat‐sen University Kaohsiung Taiwan
- Department of Obstetrics and Gynaecology National Yang‐Ming University School of Medicine Taipei Taiwan
- Department of Obstetrics and Gynecology Taipei Veterans General Hospital Taipei Taiwan
- Department of Pharmacy and Master Program College of Pharmacy and Health Care Tajen University Pingtung County Taiwan
| |
Collapse
|
30
|
Wuri L, Arosh JA, Wu JZ, Banu SK. Exposure to hexavalent chromium causes infertility by disrupting cytoskeletal machinery and mitochondrial function of the metaphase II oocytes in superovulated rats. Toxicol Rep 2022; 9:219-229. [DOI: 10.1016/j.toxrep.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 10/19/2022] Open
|
31
|
Yoshida K, Sato H, Kimura S, Tanaka T, Kasai K. A case of sudden cardiac death due to mitochondrial disease. Leg Med (Tokyo) 2022; 55:102026. [DOI: 10.1016/j.legalmed.2022.102026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/25/2022]
|
32
|
Nishida H, Nawano T, Fukuhara H, Takai S, Narisawa T, Kanno H, Yagi M, Yamagishi A, Sakurai T, Naito S, Kato T, Tsuchiya N. Outcomes of Living Kidney Transplantation for Mitochondrial Disease Patients: A Case Series. Transplant Proc 2022; 54:267-271. [DOI: 10.1016/j.transproceed.2021.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023]
|
33
|
Therapeutic applications of mitochondrial transplantation. Biochimie 2022; 195:1-15. [DOI: 10.1016/j.biochi.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
|
34
|
Canavero I, Rifino N, Montano V, Pantoni L, Gatti L, Pollaci G, Potenza A, Carrozzini T, Finsterer J, Bersano A. Cognitive aspects of MELAS and CARASAL. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100139. [PMID: 36324419 PMCID: PMC9616374 DOI: 10.1016/j.cccb.2022.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/18/2022]
Abstract
MELAS and CARASAL have been associated with clinical evidence of cognitive impairment and should be considered as possible causes of early onset Vascular Dementia (VaD), particularly in patients with a familial history of dementia or cerebrovascular disease. Cognitive deterioration in MELAS involves executive function, attention, language, memory, visuospatial, and motor functioning and may correlate with the total Stroke-like episodes (SLEs) lesion load. CARASIL is characterized by late and slow cognition disorders, involving episodic memory, executive functions and facial recognition.
Monogenic diseases, although rare, should be always considered in the diagnostic work up of vascular dementia (VaD), particularly in patients with early onset and a familial history of dementia or cerebrovascular disease. They include, other than CADASIL, Fabry disease, Col4A1-A2 related disorders, which are well recognized causes of VaD, other heritable diseases such as mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and cathepsin-A related arteriopathy strokes and leukoencephalopathy (CARASAL). MELAS, caused by mtDNA (80% of adult cases m.3243A>G mutations) and more rarely POLG1 mutations, has minimum prevalence of 3.5/100,000. CARASAL, which is caused by mutations in the CTSA gene, has been described in about 19 patients so far. In both these two disorders cognitive features have not been fully explored and are described only in case series or families. This review paper is aimed at providing an update on the clinical manifestations, with particular focus on cognitive aspects, but also neuroradiological and genetic features of these less frequent monogenic diseases associated with VaD.
Collapse
Affiliation(s)
- I Canavero
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - N Rifino
- University of Milano-Bicocca, Milan, Italy
| | - V Montano
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Italy
| | - L Pantoni
- Luigi Sacco Department of Biomedical and Clinical Sciences, Stroke and Dementia Lab, University of Milan, Italy
| | - L Gatti
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - G Pollaci
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A Potenza
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - T Carrozzini
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - J Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria
| | - A Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Corresponding author.
| |
Collapse
|
35
|
Tetsuka S, Ogawa T, Hashimoto R, Kato H. Clinical features, pathogenesis, and management of stroke-like episodes due to MELAS. Metab Brain Dis 2021; 36:2181-2193. [PMID: 34118021 DOI: 10.1007/s11011-021-00772-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) is a disease that should be considered as a differential diagnosis to acute ischemic stroke taking into account its onset pattern and neurological symptoms, which are similar to those of an ischemic stroke. Technological advancements in neuroimaging modalities have greatly facilitated differential diagnosis between stroke and MELAS on diagnostic imaging. Stroke-like episodes in MELAS have the following features: (1) symptoms are neurolocalized according to lesion site; (2) epileptic seizures are often present; (3) lesion distribution is inconsistent with vascular territory; (4) lesions are common in the posterior brain regions; (5) lesions continuously develop in adjacent sites over several weeks or months; (6) neurological symptoms and stroke-like lesions tend to be reversible, as presented on magnetic resonance imaging; (7) the rate of recurrence is high; and; (8) brain dysfunction and atrophy are slowly progressive. The m.3243ANG mutation in the MT-TL1 gene encoding the mitochondrial tRNALeu(UUR) is most commonly associated with MELAS. Although the precise pathophysiology is still unclear, one possible hypothesis for these episodes is a neuronal hyperexcitability theory, including neuron-astrocyte uncoupling. Supplementation, such as with L-arginine or taurine, has been proposed as preventive treatments for stroke-like episodes. As this disease is still untreatable and devastating, numerous drugs are being tested, and new gene therapies hold great promise for the future. This article contributes to the understanding of MELAS and its implications for clinical practice, by deepening their insight into the latest pathophysiological hypotheses and therapeutic developments.
Collapse
Affiliation(s)
- Syuichi Tetsuka
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan.
| | - Tomoko Ogawa
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| | - Ritsuo Hashimoto
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| | - Hiroyuki Kato
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| |
Collapse
|
36
|
Abstract
Mitochondrial diseases (MD) include an heterogenous group of systemic disorders caused by sporadic or inherited mutations in nuclear or mitochondrial DNA (mtDNA), causing impairment of oxidative phosphorylation system. Hypertrophic cardiomyopathy is the dominant pattern of cardiomyopathy in all forms of mtDNA disease, being observed in almost 40% of the patients. Dilated cardiomyopathy, left ventricular noncompaction, and conduction system disturbances have been also reported. In this article, the authors discuss the current clinical knowledge on MD, focusing on diagnosis and management of mitochondrial diseases caused by mtDNA mutations.
Collapse
|
37
|
Yang Z, Slone J, Wang X, Zhan J, Huang Y, Namjou B, Kaufman KM, Pauciulo M, Harley JB, Muglia LJ, Chepelev I, Huang T. Validation of low-coverage whole-genome sequencing for mitochondrial DNA variants suggests mitochondrial DNA as a genetic cause of preterm birth. Hum Mutat 2021; 42:1602-1614. [PMID: 34467602 PMCID: PMC9290920 DOI: 10.1002/humu.24279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/17/2021] [Accepted: 08/29/2021] [Indexed: 01/06/2023]
Abstract
Preterm birth (PTB), or birth that occurs earlier than 37 weeks of gestational age, is a major contributor to infant mortality and neonatal hospitalization. Mutations in the mitochondrial genome (mtDNA) have been linked to various rare mitochondrial disorders and may be a contributing factor in PTB given that maternal genetic factors have been strongly linked to PTB. However, to date, no study has found a conclusive connection between a particular mtDNA variant and PTB. Given the high mtDNA copy number per cell, an automated pipeline was developed for detecting mtDNA variants using low‐coverage whole‐genome sequencing (lcWGS) data. The pipeline was first validated against samples of known heteroplasmy, and then applied to 929 samples from a PTB cohort from diverse ethnic backgrounds with an average gestational age of 27.18 weeks (range: 21–30). Our new pipeline successfully identified haplogroups and a large number of mtDNA variants in this large PTB cohort, including 8 samples carrying known pathogenic variants and 47 samples carrying rare mtDNA variants. These results confirm that lcWGS can be utilized to reliably identify mtDNA variants. These mtDNA variants may make a contribution toward preterm birth in a small proportion of live births.
Collapse
Affiliation(s)
- Zeyu Yang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jesse Slone
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xinjian Wang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jack Zhan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yongbo Huang
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Michael Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Louis J Muglia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Burroughs Wellcome Fund, Research Triangle Park, North Carolina, USA
| | - Iouri Chepelev
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
38
|
van der Reest J, Nardini Cecchino G, Haigis MC, Kordowitzki P. Mitochondria: Their relevance during oocyte ageing. Ageing Res Rev 2021; 70:101378. [PMID: 34091076 DOI: 10.1016/j.arr.2021.101378] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
The oocyte is recognised as the largest cell in mammalian species and other multicellular organisms. Mitochondria represent a high proportion of the cytoplasm in oocytes and mitochondrial architecture is different in oocytes than in somatic cells, characterised by a rounder appearance and fragmented network. Although the number of mitochondria per oocyte is higher than in any other mammalian cell, their number and activity decrease with advancing age. Mitochondria integrate numerous processes essential for cellular function, such as metabolic processes related to energy production, biosynthesis, and waste removal, as well as Ca2+ signalling and reactive oxygen species (ROS) homeostasis. Further, mitochondria are responsible for the cellular adaptation to different types of stressors such as oxidative stress or DNA damage. When these stressors outstrip the adaptive capacity of mitochondria to restore homeostasis, it leads to mitochondrial dysfunction. Decades of studies indicate that mitochondrial function is multifaceted, which is reflected in the oocyte, where mitochondria support numerous processes during oocyte maturation, fertilization, and early embryonic development. Dysregulation of mitochondrial processes has been consistently reported in ageing and age-related diseases. In this review, we describe the functions of mitochondria as bioenergetic powerhouses and signal transducers in oocytes, how dysfunction of mitochondrial processes contributes to reproductive ageing, and whether mitochondria could be targeted to promote oocyte rejuvenation.
Collapse
|
39
|
St John JC. Epigenetic Regulation of the Nuclear and Mitochondrial Genomes: Involvement in Metabolism, Development, and Disease. Annu Rev Anim Biosci 2021; 9:203-224. [PMID: 33592161 DOI: 10.1146/annurev-animal-080520-083353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our understanding of the interactions between the nuclear and mitochondrial genomes is becoming increasingly important as they are extensively involved in establishing early development and developmental progression. Evidence from various biological systems indicates the interdependency between the genomes, which requires a high degree of compatibility and synchrony to ensure effective cellular function throughout development and in the resultant offspring. During development, waves of DNA demethylation, de novo methylation, and maintenance methylation act on the nuclear genome and typify oogenesis and pre- and postimplantation development. At the same time, significant changes in mitochondrial DNA copy number influence the metabolic status of the developing organism in a typically cell-type-specific manner. Collectively, at any given stage in development, these actions establish genomic balance that ensures each developmental milestone is met and that the organism's program for life is established.
Collapse
Affiliation(s)
- Justin C St John
- Mitochondrial Genetics Group, Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia;
| |
Collapse
|
40
|
Kishita Y, Shimura M, Kohda M, Fushimi T, Nitta KR, Yatsuka Y, Hirose S, Ideguchi H, Ohtake A, Murayama K, Okazaki Y. Genome sequencing and RNA-seq analyses of mitochondrial complex I deficiency revealed Alu insertion-mediated deletion in NDUFV2. Hum Mutat 2021; 42:1422-1428. [PMID: 34405929 DOI: 10.1002/humu.24274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 11/08/2022]
Abstract
Isolated complex I deficiency is the most common cause of pediatric mitochondrial disease. Exome sequencing (ES) has revealed many complex I causative genes. However, there are limitations associated with identifying causative genes by ES analysis. In this study, we performed multiomics analysis to reveal the causal variants. We here report two cases with mitochondrial complex I deficiency. In both cases, ES identified a novel c.580G>A (p.Glu194Lys) variant in NDUFV2. One case additionally harbored c.427C>T (p.Arg143*), but no other variants were observed in the other case. RNA sequencing showed aberrant exon splicing of NDUFV2 in the unsolved case. Genome sequencing revealed a novel heterozygous deletion in NDUFV2, which included one exon and resulted in exon skipping. Detailed examination of the breakpoint revealed that an Alu insertion-mediated rearrangement caused the deletion. Our report reveals that combined use of transcriptome sequencing and GS was effective for diagnosing cases that were unresolved by ES.
Collapse
Affiliation(s)
- Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Masaru Shimura
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Masakazu Kohda
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takuya Fushimi
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Kazuhiro R Nitta
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Shinichi Hirose
- General Medical Research Center, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hiroshi Ideguchi
- Department of Pediatrics, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan.,Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Kei Murayama
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Metabolism, Chiba Children's Hospital, Chiba, Japan.,Center for Medical Genetics, Chiba Children's Hospital, Chiba, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Laboratory for Comprehensive Genomic Analysis, RIKEN Centre for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
41
|
Lundquist AA, Farholt S, Børresen ML, Dunø M, Wibrand F, Witting N, Østergaard E. A novel homoplasmic mt-tRNA Glu m.14701C>T variant presenting with a partially reversible infantile respiratory chain deficiency. Eur J Med Genet 2021; 64:104306. [PMID: 34400372 DOI: 10.1016/j.ejmg.2021.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/16/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial disorder associated with variable penetrance and partial to full remission of symptoms. OBJECTIVE To describe features of maternally related individuals with a novel variant associated with RIRCD. MATERIALS AND METHODS Nine maternally related individuals aged 23 months to 64 years are described through physical examinations, muscle biopsies, histochemical and biochemical analyses, genome sequencing, and cerebral imaging. RESULTS A homoplasmic mitochondrial transfer ribonucleic acid for glutamic acid (mt-tRNAGlu) m.14701C>T variant was identified in eight tested individuals out of nine maternally related individuals. Two individuals presented with hypotonia, muscle weakness, feeding difficulties and lactic acidosis at age 3-4 months, and improvement around age 15-23 months with mild residual symptoms at last examination. One individual with less severe symptoms had unknown age at onset and improved around age 4-5 years. Five individuals developed lipoma on the upper back, and one adult individual developed ataxia, while one was unaffected. CONCLUSIONS We have identified a novel homoplasmic mt-tRNAGlu m.14701C>T variant presenting with phenotypic and paraclinical features associated with RIRCD as well as ataxia and lipomas, which to our knowledge are new features associated to RIRCD.
Collapse
Affiliation(s)
- Alberte A Lundquist
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Stense Farholt
- Centre for Rare Diseases, Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Centre for Rare Diseases, Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Malene L Børresen
- Centre for Rare Diseases, Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Morten Dunø
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Flemming Wibrand
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Nanna Witting
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
42
|
Experimental and Clinical Evidence of the Effectiveness of Riboflavin on Migraines. Nutrients 2021; 13:nu13082612. [PMID: 34444772 PMCID: PMC8401857 DOI: 10.3390/nu13082612] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023] Open
Abstract
Riboflavin, a water-soluble member of the B-vitamin family, plays a vital role in producing energy in mitochondria and reducing inflammation and oxidative stress. Migraine pathogenesis includes neuroinflammation, oxidative stress, and mitochondrial dysfunction. Therefore, riboflavin is increasingly being recognized for its preventive effects on migraines. However, there is no concrete evidence supporting its use because the link between riboflavin and migraines and the underlying mechanisms remains obscure. This review explored the current experimental and clinical evidence of conditions involved in migraine pathogenesis and discussed the role of riboflavin in inhibiting these conditions. Experimental research has demonstrated elevated levels of various oxidative stress markers and pro-inflammatory cytokines in migraines, and riboflavin’s role in reducing these marker levels. Furthermore, clinical research in migraineurs showed increased marker levels and observed riboflavin’s effectiveness in reducing migraines. These findings suggest that inflammation and oxidative stress are associated with migraine pathogenesis, and riboflavin may have neuroprotective effects through its clinically useful anti-inflammatory and anti-oxidative stress properties. Riboflavin’s safety and efficacy suggests its usefulness in migraine prophylaxis; however, insufficient evidence necessitates further study.
Collapse
|
43
|
Colnaghi M, Pomiankowski A, Lane N. The need for high-quality oocyte mitochondria at extreme ploidy dictates mammalian germline development. eLife 2021; 10:69344. [PMID: 34279226 PMCID: PMC8337077 DOI: 10.7554/elife.69344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
Selection against deleterious mitochondrial mutations is facilitated by germline processes, lowering the risk of genetic diseases. How selection works is disputed: experimental data are conflicting and previous modeling work has not clarified the issues; here, we develop computational and evolutionary models that compare the outcome of selection at the level of individuals, cells and mitochondria. Using realistic de novo mutation rates and germline development parameters from mouse and humans, the evolutionary model predicts the observed prevalence of mitochondrial mutations and diseases in human populations. We show the importance of organelle-level selection, seen in the selective pooling of mitochondria into the Balbiani body, in achieving high-quality mitochondria at extreme ploidy in mature oocytes. Alternative mechanisms debated in the literature, bottlenecks and follicular atresia, are unlikely to account for the clinical data, because neither process effectively eliminates mitochondrial mutations under realistic conditions. Our findings explain the major features of female germline architecture, notably the longstanding paradox of over-proliferation of primordial germ cells followed by massive loss. The near-universality of these processes across animal taxa makes sense in light of the need to maintain mitochondrial quality at extreme ploidy in mature oocytes, in the absence of sex and recombination.
Collapse
Affiliation(s)
- Marco Colnaghi
- CoMPLEX, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Andrew Pomiankowski
- CoMPLEX, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Nick Lane
- CoMPLEX, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
44
|
Gonçalves FG, Alves CAPF, Heuer B, Peterson J, Viaene AN, Reis Teixeira S, Martín-Saavedra JS, Andronikou S, Goldstein A, Vossough A. Primary Mitochondrial Disorders of the Pediatric Central Nervous System: Neuroimaging Findings. Radiographics 2021; 40:2042-2067. [PMID: 33136487 DOI: 10.1148/rg.2020200052] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Primary mitochondrial disorders (PMDs) constitute the most common cause of inborn errors of metabolism in children, and they frequently affect the central nervous system. Neuroimaging findings of PMDs are variable, ranging from unremarkable and nonspecific to florid and highly suggestive. An overview of PMDs, including a synopsis of the basic genetic concepts, main clinical symptoms, and neuropathologic features, is presented. In addition, eight of the most common PMDs that have a characteristic imaging phenotype in children are reviewed in detail. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Fabrício Guimarães Gonçalves
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - César Augusto Pinheiro Ferreira Alves
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Beth Heuer
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - James Peterson
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Angela N Viaene
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Sara Reis Teixeira
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Juan Sebastián Martín-Saavedra
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Savvas Andronikou
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Amy Goldstein
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Arastoo Vossough
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| |
Collapse
|
45
|
Fukunaga H. Mitochondrial DNA Copy Number and Developmental Origins of Health and Disease (DOHaD). Int J Mol Sci 2021; 22:ijms22126634. [PMID: 34205712 PMCID: PMC8235559 DOI: 10.3390/ijms22126634] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is known to contribute to mitochondrial diseases, as well as to a variety of aging-based pathologies. Mitochondria have their own genomes (mitochondrial DNA (mtDNA)) and the abnormalities, such as point mutations, deletions, and copy number variations, are involved in mitochondrial dysfunction. In recent years, several epidemiological studies and animal experiments have supported the Developmental Origin of Health and Disease (DOHaD) theory, which states that the environment during fetal life influences the predisposition to disease and the risk of morbidity in adulthood. Mitochondria play a central role in energy production, as well as in various cellular functions, such as apoptosis, lipid metabolism, and calcium metabolism. In terms of the DOHaD theory, mtDNA copy number may be a mediator of health and disease. This paper summarizes the results of recent epidemiological studies on the relationship between environmental factors and mtDNA copy number during pregnancy from the perspective of DOHaD theory. The results of these studies suggest a hypothesis that mtDNA copy number may reflect environmental influences during fetal life and possibly serve as a surrogate marker of health risks in adulthood.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, N12 W7 Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
46
|
Mkaouar-Rebai E, Ammar M, Sfaihi L, Alila-Fersi O, Maalej M, Felhi R, Hachicha M, Fakhfakh F. Mitochondrial disease patients with novel ND4 12058A > C and ND1 m.3911A > G variations: implications for a role in the phenotype following a bioinformatic investigation. Mol Biol Rep 2021; 48:4373-4382. [PMID: 34089464 DOI: 10.1007/s11033-021-06452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Mitochondrial diseases include a wide group of clinically heterogeneous disorders caused by a dysfunction of the mitochondrial respiratory chain and can be related to mutations in nuclear or mitochondrial DNA genes. In the present report, we performed a whole mitochondrial genome screening in two patients with clinical features of mitochondrial diseases. Mutational analysis revealed the presence of two undescribed heteroplasmic mitochondrial variations, the m.3911A > G (E202G) variant in the MT-ND1 gene found in two patients (P1 and P2) and the m.12058A > C (E433D) pathogenic variant in the MT-ND4 gene present only in patient P2 who had a more severe phenotype. These two substitutions were predicted to be damaging by several bioinformatics tools and lead to amino acid changes in two conserved residues localized in two important functional domains of the mitochondrial subunits of complex I. Furthermore, the 3D modeling suggested that the two amino acid changes could therefore alter the structure of the two subunits and may decrease the stability and the function of complex I. The two described pathogenic variants found in patient P2 could act synergically and alter the complex I function by affecting the proton pumping processes and the energy production and then could explain the severe phenotype compared to patient P1 presenting only the E202G substitution in ND1.
Collapse
Affiliation(s)
- Emna Mkaouar-Rebai
- Molecular and Functional Genetics Laboratory, Department of Life Science, Faculty of Sciences of Sfax, The University of Sfax, Sfax, Tunisia.
| | - Marwa Ammar
- Molecular and Functional Genetics Laboratory, Department of Life Science, Faculty of Sciences of Sfax, The University of Sfax, Sfax, Tunisia
| | - Lamia Sfaihi
- Department of Pediatrics, C.H.U. Hedi Chaker, Sfax, Tunisia
| | - Olfa Alila-Fersi
- Molecular and Functional Genetics Laboratory, Department of Life Science, Faculty of Sciences of Sfax, The University of Sfax, Sfax, Tunisia
| | - Marwa Maalej
- Molecular and Functional Genetics Laboratory, Department of Life Science, Faculty of Sciences of Sfax, The University of Sfax, Sfax, Tunisia
| | - Rahma Felhi
- Molecular and Functional Genetics Laboratory, Department of Life Science, Faculty of Sciences of Sfax, The University of Sfax, Sfax, Tunisia
| | | | - Faiza Fakhfakh
- Molecular and Functional Genetics Laboratory, Department of Life Science, Faculty of Sciences of Sfax, The University of Sfax, Sfax, Tunisia
| |
Collapse
|
47
|
Zhang J, Wang L, Ding H, Fan K, Tian Q, Liang M, Sun Z, Shi D, Qin W. Abnormal large-scale structural rich club organization in Leber's hereditary optic neuropathy. NEUROIMAGE-CLINICAL 2021; 30:102619. [PMID: 33752075 PMCID: PMC8010853 DOI: 10.1016/j.nicl.2021.102619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
LHON patients suffered large-scale structural network disruption. Non-rich club connections may be more vulnerable in the LHON. Both primary and secondary connectivity damage may coexist in the LHON.
Objective The purpose of this study was to investigate whether the large-scale structural rich club organization was abnormal in patients with Leber's hereditary optic neuropathy (LHON) using diffusion tensor imaging (DTI), and the associations among disrupted brain structural connectivity, disease duration, and neuro-ophthalmological impairment. Methods Nineteen acute, 34 chronic LHON patients, and 36 healthy controls (HC) underwent DTI and neuro-ophthalmological measurements. The brain structural network and rich club organization were constructed based on deterministic fiber tracking at the individual level. Then intergroup differences among the acute, chronic LHON patients and healthy controls (HC) in three types of structural connections, including rich club, feeder, and local ones, were compared. Network-based Statistics (NBS) was also used to test the intergroup connectivity differences for each fiber. Several linear and nonlinear curve fit models were applied to explore the associations among large-scale brain structural connectivity, disease duration, and neuro-ophthalmological metrics. Results Compared to the HC, both the acute and chronic LHON patients had consistently significantly lower fractional anisotropy (FA) and higher radial diffusion (RD) for feeder connections (p < 0.05, FDR correction). Acute LHON patients had significantly lower FA and higher RD for local connections (p < 0.05, FDR correction). There was no significant difference in large-scale brain structural connectivity between acute and chronic LHON (p > 0.05, FDR correction). NBS also identified reduced FA of three feeder connections and five local ones linking visual, auditory, and basal ganglia areas in LHON patients (p < 0.05, FDR correction). No structural connections showed linear or nonlinear association with either disease duration or neuro-ophthalmological indicators (p > 0.05, FDR correction). A significant negative correlation was shown between the retinal nerve fiber layer (RNFL) thickness and disease duration (p < 0.05, FDR correction). Conclusions Abnormal rich club organization of the structural network was identified in both the acute and chronic LHON. Furthermore, our findings suggest the coexistence of both primary and secondary connectivity damage in the LHON.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ling Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Hao Ding
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China; School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Ke Fan
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Qin Tian
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Meng Liang
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China; School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Zhihua Sun
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Dapeng Shi
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Wen Qin
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
48
|
Mitochondrial DNA A3243G variant-associated retinopathy: Current perspectives and clinical implications. Surv Ophthalmol 2021; 66:838-855. [PMID: 33610586 DOI: 10.1016/j.survophthal.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Cellular function and survival are critically dependent on the proper functionality of the mitochondrion. Neurodegenerative cellular processes including cellular adenosine triphosphate production, intermediary metabolism control, and apoptosis regulation are all mitochondrially mediated. The A to G transition at position 3243 in the mitochondrial MTTL1 gene that encodes for the leucine transfer RNA (m.3243A>G) causes a variety of diseases, including maternally inherited loss of hearing and diabetes syndrome (MIDD), mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS). Ophthalmological findings-including posterior sub-capsular cataract, ptosis, external ophthalmoplegia, and pigmentary retinopathy- have all been associated with the m.3243A>G variant. Pigmentary retinopathy is, however, the most common ocular finding, occurring in 38% to 86% of cases. To date, little is known about the pathogenesis, natural history, and heteroplasmic and phenotypic correlations of m.3243A>G-associated pigmentary retinopathy. We summarize the current understanding of mitochondrial genetics and pathogenesis of some associated diseases. We then review the pathophysiology, histology, clinical features, treatment, and important ocular and systemic phenotypic manifestations of m.3243A>G variant associated retinopathy. Mitochondrial diseases require a multidisciplinary team approach to ensure effective treatment, regular follow-up, and accurate genetic counseling.
Collapse
|
49
|
Antipova VN. A New Deletion of Mitochondrial DNA of a BALB/c Mouse. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Abstract
This chapter reviews common applications of visual electrophysiology relevant to neuro-ophthalmology practice. The use of standard tests and extended protocols are described including the cortical visual evoked potential and pattern and full-field electroretinogram (PERG; ERG) methods, the latter including the photopic negative response. Abnormalities of these recordings are rarely specific but provide valuable diagnostic guidance and an objective measure of visual pathway function, difficult or impossible to infer by other methods. The electrophysiological phenotypes associated with Leber hereditary optic neuropathy, OPA1- and SSBP1-associated dominant optic atrophy, and WFS1-related syndromes are described. Typical changes in retinal and optic nerve function tests associated with acquired disease are highlighted, including those related to demyelination, ischemic, compressive, nutritional and toxic, and nonorganic etiologies. The importance of complementary testing using different electrophysiological techniques is emphasized, for the purposes of differential diagnosis and in disorders that may masquerade as optic nerve pathology.
Collapse
Affiliation(s)
- Neringa Jurkute
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Genetics Department, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Anthony G Robson
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Department of Electrophysiology, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|