1
|
Montagnani M, Bottalico L, Potenza MA, Charitos IA, Topi S, Colella M, Santacroce L. The Crosstalk between Gut Microbiota and Nervous System: A Bidirectional Interaction between Microorganisms and Metabolome. Int J Mol Sci 2023; 24:10322. [PMID: 37373470 DOI: 10.3390/ijms241210322] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have shown that the gut microbiota influences behavior and, in turn, changes in the immune system associated with symptoms of depression or anxiety disorder may be mirrored by corresponding changes in the gut microbiota. Although the composition/function of the intestinal microbiota appears to affect the central nervous system (CNS) activities through multiple mechanisms, accurate epidemiological evidence that clearly explains the connection between the CNS pathology and the intestinal dysbiosis is not yet available. The enteric nervous system (ENS) is a separate branch of the autonomic nervous system (ANS) and the largest part of the peripheral nervous system (PNS). It is composed of a vast and complex network of neurons which communicate via several neuromodulators and neurotransmitters, like those found in the CNS. Interestingly, despite its tight connections to both the PNS and ANS, the ENS is also capable of some independent activities. This concept, together with the suggested role played by intestinal microorganisms and the metabolome in the onset and progression of CNS neurological (neurodegenerative, autoimmune) and psychopathological (depression, anxiety disorders, autism) diseases, explains the large number of investigations exploring the functional role and the physiopathological implications of the gut microbiota/brain axis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lucrezia Bottalico
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Division, Maugeri Clinical Scientific Research Institutes (IRCCS), 70124 Bari, Italy
| | - Skender Topi
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Marica Colella
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
2
|
Libner CD, Salapa HE, Levin MC. The Potential Contribution of Dysfunctional RNA-Binding Proteins to the Pathogenesis of Neurodegeneration in Multiple Sclerosis and Relevant Models. Int J Mol Sci 2020; 21:E4571. [PMID: 32604997 PMCID: PMC7369711 DOI: 10.3390/ijms21134571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Neurodegeneration in multiple sclerosis (MS) is believed to underlie disease progression and permanent disability. Many mechanisms of neurodegeneration in MS have been proposed, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, and RNA-binding protein dysfunction. The purpose of this review is to highlight mechanisms of neurodegeneration in MS and its models, with a focus on RNA-binding protein dysfunction. Studying RNA-binding protein dysfunction addresses a gap in our understanding of the pathogenesis of MS, which will allow for novel therapies to be generated to attenuate neurodegeneration before irreversible central nervous system damage occurs.
Collapse
Affiliation(s)
- Cole D. Libner
- Department of Health Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
- Office of Saskatchewan Multiple Sclerosis Clinical Research Chair, CMSNRC (Cameco MS Neuroscience. Research Center), University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
| | - Hannah E. Salapa
- Office of Saskatchewan Multiple Sclerosis Clinical Research Chair, CMSNRC (Cameco MS Neuroscience. Research Center), University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Michael C. Levin
- Office of Saskatchewan Multiple Sclerosis Clinical Research Chair, CMSNRC (Cameco MS Neuroscience. Research Center), University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| |
Collapse
|
3
|
Human retrovirus pHEV-W envelope protein and the pathogenesis of multiple sclerosis. Proc Natl Acad Sci U S A 2019; 116:14791-14793. [PMID: 31289223 DOI: 10.1073/pnas.1909786116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Rahmanzadeh R, Sahraian MA, Rahmanzade R, Rodriguez M. Demyelination with preferential MAG loss: A complex message from MS paraffin blocks. J Neurol Sci 2017; 385:126-130. [PMID: 29406891 DOI: 10.1016/j.jns.2017.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 01/03/2023]
Abstract
Multiple sclerosis (MS) is generally considered to be a demyelinating autoimmune disorder. However, neuropathological examinations of MS lesions do not support this concept. Demyelination with preferential loss of myelin-associated glycoprotein (MAG) is a common finding in MS tissues and has been reported by several groups. As MAG is located in ad-axonal myelin layers and is not accessible to infiltrating immune cells, demyelination with preferred loss of MAG may be suggestive of a primary oligodendrocytopathy in MS. Moreover, it has been shown that oligodendrocytopathy may precede the infiltration of inflammatory cells at the lesion site. In this paper, we review studies of neuropathology of MS tissues that reported this type of demyelination and then we discuss three emerging explanations that are trying to interpret this mismatched observation.
Collapse
Affiliation(s)
- Reza Rahmanzadeh
- MS Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Ali Sahraian
- MS Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Ramin Rahmanzade
- MS Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
5
|
Wekerle H. Nature, nurture, and microbes: The development of multiple sclerosis. Acta Neurol Scand 2017; 136 Suppl 201:22-25. [PMID: 29068487 DOI: 10.1111/ane.12843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
This paper argues that multiple sclerosis (MS) is the result of an autoimmune attack against components of the central nervous system (CNS). The effector cells involved in the pathogenic process are CNS-autoreactive T cells present in the healthy immune system in a resting state. Upon activation, these cells cross the blood-brain barrier and attack the CNS target tissue. Recent evidence indicates that autoimmune activation may happen in the intestine, following an interaction of bacterial components of the gut flora with local CNS autoreactive T cells. The consequences of this concept are discussed.
Collapse
Affiliation(s)
- H. Wekerle
- Max-Planck-Institute of Neurobiology; Martinsried Germany
| |
Collapse
|
6
|
Savarin C, Bergmann CC. Viral-induced suppression of self-reactive T cells: Lessons from neurotropic coronavirus-induced demyelination. J Neuroimmunol 2017; 308:12-16. [PMID: 28108025 PMCID: PMC5474352 DOI: 10.1016/j.jneuroim.2017.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022]
Abstract
Genetic and environmental factors, i.e. infections, have been proposed to contribute to disease induction and relapsing events in multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system (CNS). While research has mainly focused on virus associated autoimmune activation, less is known about prevention of autoimmunity, especially following resolving infections associated with CNS tissue damage. This review discusses novel insights on control of self-reactive (SR) T cells activated during neurotropic coronavirus-induced demyelination. A new concept is introduced that SR T cells can be dampened by distinct regulatory mechanisms in the periphery and the CNS, thereby preventing autoimmune disease. Virus-induced demyelination activates myelin specific T cells. Virus-induced regulatory mechanisms limit pathogenic self-reactive R CD4 T cells. Self-reactive CD4 T cells are controlled by distinct mechanisms in the CLN and CNS.
Collapse
Affiliation(s)
- Carine Savarin
- Lerner Research Institute, Cleveland Clinic, Neuroscience Department NC-30, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Cornelia C Bergmann
- Lerner Research Institute, Cleveland Clinic, Neuroscience Department NC-30, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
7
|
Ramadan A, Lucca LE, Carrié N, Desbois S, Axisa PP, Hayder M, Bauer J, Liblau RS, Mars LT. In situ expansion of T cells that recognize distinct self-antigens sustains autoimmunity in the CNS. Brain 2016; 139:1433-46. [PMID: 27000832 DOI: 10.1093/brain/aww032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/15/2016] [Indexed: 01/22/2023] Open
Abstract
Polyspecific T cells recognizing multiple distinct self-antigens have been identified in multiple sclerosis and other organ-specific autoimmune diseases, but their pathophysiological relevance remains undetermined. Using a mouse model of multiple sclerosis, we show that autoimmune encephalomyelitis induction is strictly dependent on reactivation of pathogenic T cells by a peptide (35-55) derived from myelin oligodendrocyte glycoprotein (MOG). This disease-inducing response wanes after onset. Strikingly, the progression of disease is driven by the in situ activation and expansion of a minority of MOG35-55-specific T cells that also recognize neurofilament-medium (NF-M)15-35, an intermediate filament protein expressed in neurons. This mobilization of bispecific T cells is critical for disease progression as adoptive transfer of NF-M15-35/MOG35-55 bispecific T cell lines caused full-blown disease in wild-type but not NF-M-deficient recipients. Moreover, specific tolerance through injection of NF-M15-35 peptide at the peak of disease halted experimental autoimmune encephalomyelitis progression. Our findings highlight the importance of polyspecific autoreactive T cells in the aggravation and perpetuation of central nervous system autoimmunity.
Collapse
Affiliation(s)
- Abdulraouf Ramadan
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Liliana E Lucca
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Nadège Carrié
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Sabine Desbois
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Pierre-Paul Axisa
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Myriam Hayder
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Jan Bauer
- Center for Brain Research, Department of Neuroimmunology, Medical University of Vienna, Vienna, Austria
| | - Roland S Liblau
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Lennart T Mars
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France INSERM UMR995, LIRIC, F-59000 Lille, France Université de Lille, centre d'excellence LICEND and FHU IMMINeNT, F-59000 Lille, France
| |
Collapse
|
8
|
Perlejewski K, Bukowska-Ośko I, Nakamura S, Motooka D, Stokowy T, Płoski R, Rydzanicz M, Zakrzewska-Pniewska B, Podlecka-Piętowska A, Nojszewska M, Gogol A, Caraballo Cortés K, Demkow U, Stępień A, Laskus T, Radkowski M. Metagenomic Analysis of Cerebrospinal Fluid from Patients with Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 935:89-98. [PMID: 27311319 DOI: 10.1007/5584_2016_25] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of central nervous system of unknown etiology. However, some infectious agents have been suggested to play a significant role in its pathogenesis. Next-generation sequencing (NGS) and metagenomics can be employed to characterize microbiome of MS patients and to identify potential causative pathogens. In this study, 12 patients with idiopathic inflammatory demyelinating disorders (IIDD) of the central nervous system were studied: one patient had clinically isolated syndrome, one patient had recurrent optic neuritis, and ten patients had multiple sclerosis (MS). In addition, there was one patient with other non-inflammatory neurological disease. Cerebrospinal fluid (CSF) was sampled from all patients. RNA was extracted from CSF and subjected to a single-primer isothermal amplification followed by NGS and comprehensive data analysis. Altogether 441,608,474 reads were obtained and mapped using blastn. In a CSF sample from the patient with clinically isolated syndrome, 11 varicella-zoster virus reads were found. Other than that similar bacterial, fungal, parasitic, and protozoan reads were identified in all samples, indicating a common presence of contamination in metagenomics. In conclusion, we identified varicella zoster virus sequences in one out of the 12 patients with IIDD, which suggests that this virus could be occasionally related to the MS pathogenesis. A widespread bacterial contamination seems inherent to NGS and complicates the interpretation of results.
Collapse
Affiliation(s)
- Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, 3C Pawińskiego Street, Warsaw, 02-106, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, 3C Pawińskiego Street, Warsaw, 02-106, Poland.
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Osaka, Japan
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
| | - Rafał Płoski
- Department of the Medical Genetics, Warsaw Medical University, 3C Pawińskiego Street, Warsaw, 02-106, Poland
| | - Małgorzata Rydzanicz
- Department of the Medical Genetics, Warsaw Medical University, 3C Pawińskiego Street, Warsaw, 02-106, Poland
| | | | | | - Monika Nojszewska
- Department of Neurology, Warsaw Medical University, 1A Banacha, Warsaw, 02-097, Poland
| | - Anna Gogol
- Department of Neurology, Warsaw Medical University, 1A Banacha, Warsaw, 02-097, Poland
| | - Kamila Caraballo Cortés
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, 3C Pawińskiego Street, Warsaw, 02-106, Poland
| | - Urszula Demkow
- Department of Laboratory Medicine and Clinical Immunology of Developmental Age, Medical University of Warsaw, 24 Marszałkowska Street, Warsaw, 00-576, Poland
| | - Adam Stępień
- Department of Neurology, Military Institute of Medicine, 128 Szaserów Street, Warsaw, 04-141, Poland
| | - Tomasz Laskus
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, 3C Pawińskiego Street, Warsaw, 02-106, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, 3C Pawińskiego Street, Warsaw, 02-106, Poland
| |
Collapse
|
9
|
Skundric DS, Cruikshank WW, Montgomery PC, Lisak RP, Tse HY. Emerging role of IL-16 in cytokine-mediated regulation of multiple sclerosis. Cytokine 2015; 75:234-48. [DOI: 10.1016/j.cyto.2015.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/28/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
|
10
|
Galama JMD, Zoll JG, Lanke KH, de Jong AS, Melief J, Huitinga I, Verbeek MM, van Kuppeveld FJM. Saffold cardiovirus and multiple sclerosis: no evidence for an association. Ann Clin Transl Neurol 2014; 1:618-21. [PMID: 25356431 PMCID: PMC4184563 DOI: 10.1002/acn3.82] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/14/2014] [Accepted: 06/18/2014] [Indexed: 11/23/2022] Open
Abstract
Saffold cardiovirus, a newly discovered human cardiovirus, has close similarity with Theiler's murine encephalomyelitis virus (TMEV) which can cause a chronic demyelinating encephalomyelitis in mice. In this study, we tested whether Saffold cardiovirus infection of the brain is associated with multiple sclerosis (MS). Autopsy white matter samples from 19 MS and 9 normal brain donors were tested by polymerase chain reaction. All were negative. Paired cerebrospinal fluid and serum samples from 24 MS patients and 27 controls were tested for Saffold cardiovirus-specific oligoclonal bands, two patients and two controls reacted positive. We conclude that an association between Saffold cardiovirus and MS is highly improbable.
Collapse
Affiliation(s)
- Jochem M D Galama
- Department of Medical Microbiology, Radboud University Medical Centre 6500 HB, Nijmegen, The Netherlands
| | - Jan G Zoll
- Department of Medical Microbiology, Radboud University Medical Centre 6500 HB, Nijmegen, The Netherlands
| | - Kjerstin H Lanke
- Department of Medical Microbiology, Radboud University Medical Centre 6500 HB, Nijmegen, The Netherlands
| | - Arjan S de Jong
- Department of Medical Microbiology, Radboud University Medical Centre 6500 HB, Nijmegen, The Netherlands
| | - Jeroen Melief
- Neuroimmunology Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences Amsterdam, The Netherlands
| | - Inge Huitinga
- Neuroimmunology Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences Amsterdam, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology and Laboratory Medicine, Radboud University Medical Centre 6500 HB, Nijmegen, The Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre 6500 HB, Nijmegen, The Netherlands
| | - Frank J M van Kuppeveld
- Department of Medical Microbiology, Radboud University Medical Centre 6500 HB, Nijmegen, The Netherlands ; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University Utrecht, The Netherlands
| |
Collapse
|
11
|
Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014; 38:1-12. [PMID: 24370461 PMCID: PMC4062078 DOI: 10.1016/j.bbi.2013.12.015] [Citation(s) in RCA: 511] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022] Open
Abstract
Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders.
Collapse
Affiliation(s)
- Yan Wang
- Departments of Microbiology/Immunology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Lloyd H. Kasper
- Departments of Microbiology/Immunology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
12
|
Do bugs control our fate? The influence of the microbiome on autoimmunity. Curr Allergy Asthma Rep 2013; 12:511-9. [PMID: 22886439 DOI: 10.1007/s11882-012-0291-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Autoimmune disease has traditionally been thought to be due to the impact of environmental factors on genetically susceptible individuals causing immune dysregulation and loss of tolerance. However, recent literature has highlighted the importance of the microbiome, (a collective genome of microorganisms in a given niche) in immune homeostasis. Increasingly, it has been recognized that disruptions in the commensal microflora may lead to immune dysfunction and autoimmunity. This review summarizes recent studies investigating the interplay between the microbiome and immune-mediated organ-specific diseases. In particular, we review new findings on the role of the microbiome in inflammatory bowel disease, celiac disease, psoriasis, rheumatoid arthritis, type I diabetes, and multiple sclerosis.
Collapse
|
13
|
Ramroodi N, Niazi AA, Sanadgol N, Ganjali Z, Sarabandi V. Evaluation of reactive Epstein–Barr Virus (EBV) in Iranian patient with different subtypes of multiple sclerosis (MS). Braz J Infect Dis 2013; 17:156-63. [PMID: 23465600 PMCID: PMC9427419 DOI: 10.1016/j.bjid.2012.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Nourollah Ramroodi
- Department of Neurology, Zahedan University of Medical Science, Zahedan, Iran
| | - Abbas Ali Niazi
- Department of Pathology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Science, Zabol University, Zabol, Iran
- Cellular and Molecular Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding author at: Biotechnology Research Institute, P.O. Box: 98615-538, Mofateh Sq., Zabol, University, Zabol, Iran.
| | - Zohre Ganjali
- Department of Biology, Faculty of Science, Zabol University, Zabol, Iran
| | - Vida Sarabandi
- Department of Biology, Faculty of Science, Zabol University, Zabol, Iran
| |
Collapse
|
14
|
Deeks S, Drosten C, Picker L, Subbarao K, Suzich J. Roadblocks to translational challenges on viral pathogenesis. Nat Med 2013; 19:30-4. [PMID: 23296014 PMCID: PMC7095913 DOI: 10.1038/nm.3050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Distinct roadblocks prevent translating basic findings in viral pathogenesis into therapies and implementing potential solutions in the clinic. An ongoing partnership between the Volkswagen Foundation and Nature Medicine resulted in an interactive meeting in 2012, as part of the "Herrenhausen Symposia" series. Current challenges for various fields of viral research were recognized and discussed with a goal in mind--to identify solutions and propose an agenda to address the translational barriers. Here, some of the researchers who participated at the meeting provide a concise outlook at the most pressing unmet research and clinical needs, identifying these key obstacles is a necessary step towards the prevention and cure of human viral diseases.
Collapse
Affiliation(s)
- Steven Deeks
- Steven Deeks is at the Department of Medicine, University of California–San Francisco, San Francisco, California, USA.,
| | - Christian Drosten
- Christian Drosten is at the Institute of Virology, University of Bonn Medical Centre, Bonn, Germany.,
| | - Louis Picker
- Louis Picker is at the Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA.,
| | - Kanta Subbarao
- Kanta Subbarao is at the Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,
| | - JoAnn Suzich
- JoAnn Suzich is at MedImmune, Gaithersburg, Maryland, USA.,
| |
Collapse
|
15
|
Abstract
BACKGROUND Epidemiological data support a potential relationship between vitamin D deficiency and an increased risk of developing multiple sclerosis (MS). In vitro studies have expanded the potential role of vitamin D and its receptor beyond calcium modulation, regulation, and maintenance of bone mineralization, to include immune modulation. REVIEW SUMMARY Whether vitamin D immunomodulatory effects can be translated into clinical benefits in MS patients is still a matter of debate. A review of the biochemistry of vitamin D and its synthesized derivatives is discussed in the context of treating vitamin D deficiency. Animal studies, which led to some human studies, are also discussed. Future studies are pending and will likely yield conclusive results as to the benefit and possible synergistic effects of vitamin D with other disease-modifying therapies of MS. CONCLUSIONS Further prospective studies are needed to identify vitamin D levels during the various phases of MS, including relapses, remissions and progression, and to determine whether correcting vitamin D during any or all of these phases may affect the incidence or even the course of the disease.
Collapse
|
16
|
Mehta B, Ramanathan M, Weinstock-Guttman B. Vitamin D and multiple sclerosis: can vitamin D prevent disease progression? Expert Rev Neurother 2011; 11:469-71. [PMID: 21469917 DOI: 10.1586/ern.11.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Tarlinton RE, Dunham SP. Pushing the envelope: Advances in molecular techniques for the detection of novel viruses. Vet J 2011; 190:185-186. [DOI: 10.1016/j.tvjl.2011.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
|
18
|
The L-coding region of the DA strain of Theiler's murine encephalomyelitis virus causes dysfunction and death of myelin-synthesizing cells. J Virol 2011; 85:9377-84. [PMID: 21752920 DOI: 10.1128/jvi.00178-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DA strain and other members of the TO subgroup of Theiler's murine encephalomyelitis virus (TMEV) induce an early transient subclinical neuronal disease followed by a chronic progressive inflammatory demyelination, with persistence of the virus in the central nervous system (CNS) for the life of the mouse. Although TMEV-induced demyelinating disease (TMEV-IDD) is thought to be immune mediated, there is also evidence that supports a role for the virus in directly inducing demyelination. In order to clarify the function of DA virus genes, we generated a transgenic mouse that had tamoxifen-inducible expression of the DA L-coding region in oligodendrocytes (and Schwann cells), a cell type in which the virus is known to persist. Tamoxifen-treated young transgenic mice usually developed an acute progressive fatal paralysis, with abnormalities of the oligodendrocytes and Schwann cells and demyelination, but without significant lymphocytic infiltration; later treatment led to transient weakness with demyelination and persistent expression of the recombined transgene. These findings demonstrate that a high level of expression of DA L can cause the death of myelin-synthesizing cells and death of the mouse, while a lower level of L expression (which can persist) can lead to cellular dysfunction with survival. The results suggest that expression of DA L plays an important role in the pathogenesis of TMEV-IDD. Virus-induced infection and death of oligodendrocytes may play a part in the demyelination of other diseases in which an immune-mediated mechanism has been stressed, including multiple sclerosis.
Collapse
|
19
|
Peeva E. Reproductive immunology: a focus on the role of female sex hormones and other gender-related factors. Clin Rev Allergy Immunol 2011; 40:1-7. [PMID: 20697838 DOI: 10.1007/s12016-010-8209-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reproductive immunology has attracted the attention of researchers interested in fertility and pregnancy as well as those interested in immunity and autoimmunity. Over the past couple of decades, a wealth of data on the immune-reproductive interactions has been generated. This issue of the Journal will examine several topics including the role of immune factors in the induction of anti-Ro antibody-mediated autoimmunity in neonates and the immunological effects of gender and sex hormones. The possible implications of the research reviewed here for the development of novel therapeutic approaches are also addressed.
Collapse
Affiliation(s)
- Elena Peeva
- Department of Medicine, Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
20
|
Scheikl T, Pignolet B, Mars LT, Liblau RS. Transgenic mouse models of multiple sclerosis. Cell Mol Life Sci 2010; 67:4011-34. [PMID: 20714779 PMCID: PMC11115830 DOI: 10.1007/s00018-010-0481-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/08/2010] [Accepted: 07/27/2010] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease affecting the central nervous system (CNS) and a frequent cause of neurological disability in young adults. Multifocal inflammatory lesions in the CNS white matter, demyelination, oligodendrocyte loss, axonal damage, as well as astrogliosis represent the histological hallmarks of the disease. These pathological features of MS can be mimicked, at least in part, using animal models. This review discusses the current concepts of the immune effector mechanisms driving CNS demyelination in murine models. It highlights the fundamental contribution of transgenesis in identifying the mediators and mechanisms involved in the pathophysiology of MS models.
Collapse
Affiliation(s)
- Tanja Scheikl
- Institut National de la Santé et de la Recherche Médicale, Unité 563, Toulouse, France.
| | | | | | | |
Collapse
|