1
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O'Connor CL, Brindley MA, Campbell KP, Lek M. Saturation mutagenesis-reinforced functional assays for disease-related genes. Cell 2024; 187:6707-6724.e22. [PMID: 39326416 PMCID: PMC11568926 DOI: 10.1016/j.cell.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth K Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O’Connor CL, Brindley MA, Campbell KP, Lek M. Deep Mutational Scanning in Disease-related Genes with Saturation Mutagenesis-Reinforced Functional Assays (SMuRF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548370. [PMID: 37873263 PMCID: PMC10592615 DOI: 10.1101/2023.07.12.548370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Kenneth K. Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Nicole J. Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Keryn G. Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
- Senior Authors
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Senior Authors
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Senior Authors
- Lead Contact
| |
Collapse
|
3
|
Zhou H, Wang Z, Guo J, Zhu Z, Sun G. Analysis of the potential biological significance of glycosylation in triple-negative breast cancer on patient prognosis. Am J Transl Res 2024; 16:2212-2232. [PMID: 39006258 PMCID: PMC11236660 DOI: 10.62347/pxar3644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/06/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Breast cancer is the most common malignancy in women, with its prognosis varying greatly according to its subtype. Triple-negative breast cancer (TNBC) has the worst prognosis among all subtypes. Glycosylation is a critical factor influencing the prognosis of patients with TNBC. Our aim is to develop a tumor prognosis model by analyzing genes related to glycosylation to predict patient outcomes. METHODS The dataset used in this study was downloaded from the Cancer Genome Atlas Program (TCGA) database, and predictive genes were identified through Cox one-way regression analysis. The model genes with the highest risk scores among the 18 samples were obtained by lasso regression analysis to establish the model. We analyzed the pathways affecting the progression of TNBC and discovered key genes for subsequent research. RESULTS Our model was constructed using data from TCGA database and validated through Kaplan-Meier curve analysis and Receiver Operating Characteristic (ROC) curve assessment. Our analysis revealed that a high expression of tumor-related chemokines in the high-risk group may be associated with poor tumor prognosis. Furthermore, we conducted a random survival forest analysis and identified two significant genes, namely DPM2 and PINK1, which have been selected for further investigation. CONCLUSION The prognostic analysis model, developed based on the glycosylation genes in TNBC, exhibits excellent validation efficacy. This model is valuable for the prognostic analysis of patients with TNBC.
Collapse
Affiliation(s)
- Han Zhou
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Zhiwei Wang
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Jun Guo
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous RegionUrumqi 830011, Xinjiang, China
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Zihui Zhu
- Department of Breast Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Gang Sun
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous RegionUrumqi 830011, Xinjiang, China
| |
Collapse
|
4
|
Koff M, Monagas-Valentin P, Novikov B, Chandel I, Panin V. Protein O-mannosylation: one sugar, several pathways, many functions. Glycobiology 2023; 33:911-926. [PMID: 37565810 PMCID: PMC10859634 DOI: 10.1093/glycob/cwad067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Recent research has unveiled numerous important functions of protein glycosylation in development, homeostasis, and diseases. A type of glycosylation taking the center stage is protein O-mannosylation, a posttranslational modification conserved in a wide range of organisms, from yeast to humans. In animals, protein O-mannosylation plays a crucial role in the nervous system, whereas protein O-mannosylation defects cause severe neurological abnormalities and congenital muscular dystrophies. However, the molecular and cellular mechanisms underlying protein O-mannosylation functions and biosynthesis remain not well understood. This review outlines recent studies on protein O-mannosylation while focusing on the functions in the nervous system, summarizes the current knowledge about protein O-mannosylation biosynthesis, and discusses the pathologies associated with protein O-mannosylation defects. The evolutionary perspective revealed by studies in the Drosophila model system are also highlighted. Finally, the review touches upon important knowledge gaps in the field and discusses critical questions for future research on the molecular and cellular mechanisms associated with protein O-mannosylation functions.
Collapse
Affiliation(s)
- Melissa Koff
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Boris Novikov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Ishita Chandel
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| |
Collapse
|
5
|
Polenghi M, Taverna E. Intracellular traffic and polarity in brain development. Front Neurosci 2023; 17:1172016. [PMID: 37859764 PMCID: PMC10583573 DOI: 10.3389/fnins.2023.1172016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/31/2023] [Indexed: 10/21/2023] Open
Abstract
Neurons forming the human brain are generated during embryonic development by neural stem and progenitor cells via a process called neurogenesis. A crucial feature contributing to neural stem cell morphological and functional heterogeneity is cell polarity, defined as asymmetric distribution of cellular components. Cell polarity is built and maintained thanks to the interplay between polarity proteins and polarity-generating organelles, such as the endoplasmic reticulum (ER) and the Golgi apparatus (GA). ER and GA affect the distribution of membrane components and work as a hub where glycans are added to nascent proteins and lipids. In the last decades our knowledge on the role of polarity in neural stem and progenitor cells have increased tremendously. However, the role of traffic and associated glycosylation in neural stem and progenitor cells is still relatively underexplored. In this review, we discuss the link between cell polarity, architecture, identity and intracellular traffic, and highlight how studies on neurons have shaped our knowledge and conceptual framework on traffic and polarity. We will then conclude by discussing how a group of rare diseases, called congenital disorders of glycosylation (CDG) offers the unique opportunity to study the contribution of traffic and glycosylation in the context of neurodevelopment.
Collapse
|
6
|
Lee HF, Chi CS. Congenital disorders of glycosylation and infantile epilepsy. Epilepsy Behav 2023; 142:109214. [PMID: 37086590 DOI: 10.1016/j.yebeh.2023.109214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/24/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a group of rare inherited metabolic disorders caused by defects in various defects of protein or lipid glycosylation pathways. The symptoms and signs of CDG usually develop in infancy. Epilepsy is commonly observed in CDG individuals and is often a presenting symptom. These epilepsies can present across the lifespan, share features of refractoriness to antiseizure medications, and are often associated with comorbid developmental delay, psychomotor regression, intellectual disability, and behavioral problems. In this review, we discuss CDG and infantile epilepsy, focusing on an overview of clinical manifestations and electroencephalographic features. Finally, we propose a tiered approach that will permit a clinician to systematically investigate and identify CDG earlier, and furthermore, to provide genetic counseling for the family.
Collapse
Affiliation(s)
- Hsiu-Fen Lee
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145, Xingda Rd., Taichung 402, Taiwan; Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan.
| | - Ching-Shiang Chi
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan.
| |
Collapse
|
7
|
GDP-Mannose Pyrophosphorylase B ( GMPPB)-Related Disorders. Genes (Basel) 2023; 14:genes14020372. [PMID: 36833299 PMCID: PMC9956253 DOI: 10.3390/genes14020372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
GDP-mannose pyrophosphorylase B (GMPPB) is a cytoplasmic protein that catalyzes the formation of GDP-mannose. Impaired GMPPB function reduces the amount of GDP-mannose available for the O-mannosylation of α-dystroglycan (α-DG) and ultimately leads to disruptions of the link between α-DG and extracellular proteins, hence dystroglycanopathy. GMPPB-related disorders are inherited in an autosomal recessive manner and caused by mutations in either a homozygous or compound heterozygous state. The clinical spectrum of GMPPB-related disorders spans from severe congenital muscular dystrophy (CMD) with brain and eye abnormalities to mild forms of limb-girdle muscular dystrophy (LGMD) to recurrent rhabdomyolysis without overt muscle weakness. GMPPB mutations can also lead to the defect of neuromuscular transmission and congenital myasthenic syndrome due to altered glycosylation of the acetylcholine receptor subunits and other synaptic proteins. Such impairment of neuromuscular transmission is a unique feature of GMPPB-related disorders among dystroglycanopathies. LGMD is the most common phenotypic presentation, characterized by predominant proximal weakness involving lower more than upper limbs. Facial, ocular, bulbar, and respiratory muscles are largely spared. Some patients demonstrate fluctuating fatigable weakness suggesting neuromuscular junction involvement. Patients with CMD phenotype often also have structural brain defects, intellectual disability, epilepsy, and ophthalmic abnormalities. Creatine kinase levels are typically elevated, ranging from 2 to >50 times the upper limit of normal. Involvement of the neuromuscular junction is demonstrated by the decrement in the compound muscle action potential amplitude on low-frequency (2-3 Hz) repetitive nerve stimulation in proximal muscles but not in facial muscles. Muscle biopsies typically show myopathic changes with variable degrees of reduced α-DG expression. Higher mobility of β-DG on Western blotting represents a specific feature of GMPPB-related disorders, distinguishing it from other α-dystroglycanopathies. Patients with clinical and electrophysiologic features of neuromuscular transmission defect can respond to acetylcholinesterase inhibitors alone or combined with 3,4 diaminopyridine or salbutamol.
Collapse
|
8
|
Paprocka J. Neurological Consequences of Congenital Disorders of Glycosylation. ADVANCES IN NEUROBIOLOGY 2023; 29:219-253. [PMID: 36255677 DOI: 10.1007/978-3-031-12390-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chapter is devoted to neurological aspects of congenital disorders of glycosylation (CDG). At the beginning, the various types of CDG with neurological presentation of symptoms are summarized. Then, the occurrence of various neurological constellation of abnormalities (for example: epilepsy, brain anomalies on neuroimaging, ataxia, stroke-like episodes, autistic features) in different CDG types are discussed followed by data on possible biomarkers and limited treatment options.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
9
|
Cubilla M, Papazoglu G, Asteggiano C. Dystroglycanopathies: Genetic Bases of Muscular Dystrophies Due to Alteration in the O-Glycosylation of α-Dystroglycan. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2023; 11. [DOI: 10.1590/2326-4594-jiems-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Affiliation(s)
- M.A. Cubilla
- Hospital de Niños de la Santísima Trinidad, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - G.M. Papazoglu
- Hospital de Niños de la Santísima Trinidad, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - C.G. Asteggiano
- Hospital de Niños de la Santísima Trinidad, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina; Universidad Católica de Córdoba, Argentina
| |
Collapse
|
10
|
Zhao P, Hu Y, Hu J, Li C, Huang Y, Zhang L, Luo S, Zhu H, Jiang J, He X. Identification and characterization of a new variation in DPM2 gene in two Chinese siblings with mild intellectual impairment. Front Genet 2023; 14:930692. [PMID: 37152991 PMCID: PMC10154465 DOI: 10.3389/fgene.2023.930692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction: Congenital disorders of glycosylation (CDGs) are a genetically heterogeneous group of metabolic disorders caused by abnormal protein or lpid glycosylation. DPM2 is one subunit of a heterotrimeric complex for dolichol-phosphatemannose synthase (DPMS), a key enzyme in glycosylation, and only four patients with DPM2-CDG have been reported. Methods: Whole-exome sequencing (WES) was performed in a Chinese family having two siblings with a mild form of DPM2-CDG with developmental delay, mild intellectual disability, hypotonia, and increased serum creatine kinase. Sanger sequencing was used to validate the variants identified in the siblings and their parents. In vitro functional study was performed. Results: A homozygous mutation, c.197G>A (p.Gly66Glu) in exon 4 of DPM2 (NM_003863) was identified by whole exome sequencing (WES). In vitro functional analysis demonstrated that this variant increased the expression level of DPM2 protein and western blot revealed a significant decrease in ICAM1, a universal biomarker for hypoglycosylation in patients with CDG, suggesting abnormal N-linked glycosylation. We also reviewed the 4 previously reported patients carrying homozygous or compound heterozygous variants of DMP2 gene, and found that patients with variants within the region encoding the first domain had more severe clinical symptoms than those with variants within the second domain. However, the actual genotype-phenotype relationship needs more study. Discussion: Overall, our study broadens the variant spectrum of DPM2 gene, attempts to explain the different phenotypes in patients with different DPM2 variants, and emphasizes the need of further functional studies to understand the underlying pathophysiology of the phenotypic heterogeneity.
Collapse
Affiliation(s)
- Peiwei Zhao
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiu Hu
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Hu
- Rehabilitation Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Li
- Department of Neuroelectrophysiology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Huang
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhang
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sukun Luo
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmin Zhu
- Rehabilitation Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongmin Zhu, ; Jun Jiang, ; Xuelian He,
| | - Jun Jiang
- Department of Neuroelectrophysiology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongmin Zhu, ; Jun Jiang, ; Xuelian He,
| | - Xuelian He
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongmin Zhu, ; Jun Jiang, ; Xuelian He,
| |
Collapse
|
11
|
Ronzoni L, Boito S, Meossi C, Cesaretti C, Rinaldi B, Agolini E, Rizzuti T, Pezzoli L, Silipigni R, Novelli A, Iascone M, Persico N, Natacci F. Prenatal ultrasound findings associated with PIGW variants: One more piece in the FRYNS syndrome puzzle? PIGW-related prenatal findings. Prenat Diagn 2022; 42:1493-1502. [PMID: 35788948 DOI: 10.1002/pd.6204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We describe the prenatal ultrasound findings and autopsy of three fetuses with multiple congenital anomalies (MCA) whose diagnostic workup suggested the same genetic etiology. We conducted a literature review to corroborate the molecular results and find evidence that the identified variants are responsible for the phenotype seen. METHODS Trio-based Exome Sequencing (ES) analysis was performed on chorionic villus samples. We reviewed available reports dealing with prenatal manifestations of genes involved in the Glycosylphosphatidylinositols (GPI) biosynthesis defects (GPIBDs). RESULTS Prenatal findings shared by all the three pregnancies included facial dysmorphisms, brain malformations of the posterior fossa, skeletal and genitourinary anomalies. ES analysis identified homozygous variants of uncertain significance in PIGW in the three fetuses. Prenatal findings of the three pregnancies overlapped with those previously described for PIGW variants and with those associated with PIGN, PIGV and PIGA variants. CONCLUSION Based on the phenotypic overlap between the prenatal findings in our three cases and other cases with pathogenic variants in other genes involved in GPIBDs, we speculate that the variants identified in the three fetuses are likely causal of their phenotype and that the PIGWclinical spectrum might extend to MCA, mainly involving brain, skeletal and genitourinary systems. Moreover, we suggest that also PIGW could be involved in Fryns/Fryns-like phenotypes.
Collapse
Affiliation(s)
- Luisa Ronzoni
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Simona Boito
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Camilla Meossi
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Claudia Cesaretti
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Berardo Rinaldi
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Tommaso Rizzuti
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Pezzoli
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Rosamaria Silipigni
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Iascone
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Nicola Persico
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Natacci
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| |
Collapse
|
12
|
Hang J, Wang J, Lu M, Xue Y, Qiao J, Tao L. Protein O-mannosylation across kingdoms and related diseases: From glycobiology to glycopathology. Biomed Pharmacother 2022; 148:112685. [PMID: 35149389 DOI: 10.1016/j.biopha.2022.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
The post-translational glycosylation of proteins by O-linked α-mannose is conserved from bacteria to humans. Due to advances in high-throughput mass spectrometry-based approaches, a variety of glycoproteins are identified to be O-mannosylated. Various proteins with O-mannosylation are involved in biological processes, providing essential necessity for proper growth and development. In this review, we summarize the process and regulation of O-mannosylation. The multi-step O-mannosylation procedures are quite dynamic and complex, especially when considering the structural and functional inspection of the involved enzymes. The widely studied O-mannosylated proteins in human include α-Dystroglycan (α-DG), cadherins, protocadherins, and plexin, and their aberrant O-mannosylation are associated with many diseases. In addition, O-mannosylation also contributes to diverse functions in lower eukaryotes and prokaryotes. Finally, we present the relationship between O-mannosylation and gut microbiota (GM), and elucidate that O-mannosylation in microbiome is of great importance in the dynamic balance of GM. Our study provides an overview of the processes of O-mannosylation in mammalian cells and other organisms, and also associated regulated enzymes and biological functions, which could contribute to the understanding of newly discovered O-mannosylated glycoproteins.
Collapse
Affiliation(s)
- Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang 110001, China
| | - Minzhen Lu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang 110001, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
13
|
De Giorgis V, Paoletti M, Varesio C, Gana S, Rognone E, Dallavalle G, Papalia G, Pichiecchio A. Novel insights into the clinico-radiological spectrum of phenotypes associated to PIGN mutations. Eur J Paediatr Neurol 2021; 33:21-28. [PMID: 34051595 DOI: 10.1016/j.ejpn.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Autosomic recessive mutations in the PIGN gene have been described in less than 30 subjects to date, in whom multiple congenital anomalies combined with severe developmental delay, hypotonia, epileptic encephalopathy, and cerebellar atrophy have been described as crucial features. A clear-cut neuroradiological characterization of this entity, however, is still lacking. We aim to present three pediatric PIGN mutated cases with an in-depth evaluation of their brain abnormalities. METHODS We present the neuroradiological, clinical, and genetic characterization of three Caucasian pediatric subjects with pathogenic/likely pathogenic variants in the PIGN gene revealed by Next Generation Sequencing analysis. RESULTS We identified three subjects (two siblings, one unrelated case) presenting with encephalopathy with early-onset epilepsy, hypotonia, and severe global developmental delay. No additional severe multiple congenital anomalies were detected. Neuroradiological evaluation showed extensive quantitative reduction of white matter, severe and progressive cortical atrophy, with frontal predominance and an anteroposterior gradient, combined with cerebellar and brainstem atrophy. CONCLUSIONS Our findings broaden and systematize the neuroradiological spectrum of abnormalities in PIGN related encephalopathy. Furthermore, our dataset confirms that mutations in PIGN gene appear to be pan-ethnic and represent an underestimated cause of early-onset encephalopathy.
Collapse
Affiliation(s)
- Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Paoletti
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.
| | - Simone Gana
- Medical Genetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Elisa Rognone
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Gianfranco Dallavalle
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Grazia Papalia
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anna Pichiecchio
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Kondkar AA. Updates on Genes and Genetic Mechanisms Implicated in Primary Angle-Closure Glaucoma. APPLICATION OF CLINICAL GENETICS 2021; 14:89-112. [PMID: 33727852 PMCID: PMC7955727 DOI: 10.2147/tacg.s274884] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/18/2021] [Indexed: 12/29/2022]
Abstract
Primary angle-closure glaucoma (PACG) is estimated to affect over 30 million people worldwide by 2040 and is highly prevalent in the Asian population. PACG is more severe and carries three times the higher risk of blindness than primary open-angle glaucoma, thus representing a significant public health concern. High heritability and ethnic-specific predisposition to PACG suggest the involvement of genetic factors in disease development. In the recent past, genetic studies have led to the successful identification of several genes and loci associated with PACG across different ethnicities. The precise cellular and molecular roles of these multiple loci in the development and progression of PACG remains to be elucidated. Nonetheless, these studies have significantly increased our understanding of the emerging cellular processes and biological pathways that might provide more significant insights into the disease’s genetic etiology and may be valuable for future clinical applications. This review aims to summarize and update the current knowledge of PACG genetics analysis research.
Collapse
Affiliation(s)
- Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Brown SC, Fernandez-Fuente M, Muntoni F, Vissing J. Phenotypic Spectrum of α-Dystroglycanopathies Associated With the c.919T>a Variant in the FKRP Gene in Humans and Mice. J Neuropathol Exp Neurol 2021; 79:1257-1264. [PMID: 33051673 DOI: 10.1093/jnen/nlaa120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the fukutin-related protein gene, FKRP, are the most frequent single cause of α-dystroglycanopathy. Rare FKRP mutations are clinically not well characterized. Here, we review the phenotype associated with the rare c.919T>A mutation in FKRP in humans and mice. We describe clinical and paraclinical findings in 6 patients, 2 homozygous, and 4-compound heterozygous for c.919T>A, and compare findings with a mouse model we generated, which is homozygous for the same mutation. In patients, the mutation at the homozygous state is associated with a severe congenital muscular dystrophy phenotype invariably characterized by severe multisystem disease and early death. Compound heterozygous patients have a severe limb-girdle muscular dystrophy phenotype, loss of ambulation before age 20 and respiratory insufficiency. In contrast, mice homozygous for the same mutation show no symptoms or signs of muscle disease. Evidence therefore defines the FKRP c.919T>A as a very severe mutation in humans. The huge discrepancy between phenotypes in humans and mice suggests that differences in protein folding/processing exist between human and mouse Fkrp. This emphasizes the need for more detailed structural analyses of FKRP and shows the challenges of developing appropriate animal models of dystroglycanopathies that mimic the disease course in humans.
Collapse
Affiliation(s)
- Susan C Brown
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | | | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK and National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Paprocka J, Jezela-Stanek A, Tylki-Szymańska A, Grunewald S. Congenital Disorders of Glycosylation from a Neurological Perspective. Brain Sci 2021; 11:brainsci11010088. [PMID: 33440761 PMCID: PMC7827962 DOI: 10.3390/brainsci11010088] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post-translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations in the following genes: ALG13, DOLK, DPAGT1, SLC35A2, ST3GAL3, PIGA, PIGW, ST3GAL5. On brain neuroimaging, atrophic changes of the cerebellum and cerebrum are frequently seen. Brain malformations particularly in the group of dystroglycanopathies are reported. Despite the growing number of CDG patients in the world and often neurological symptoms dominating in the clinical picture, the number of performed screening tests eg transferrin isoforms is systematically decreasing as broadened genetic testing is recently more favored. The aim of the review is the summary of selected neurological symptoms in CDG described in the literature in one paper. It is especially important for pediatric neurologists not experienced in the field of metabolic medicine. It may help to facilitate the diagnosis of this expanding group of disorders. Biochemically, this paper focuses on protein glycosylation abnormalities.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-606-415-888
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland;
| | - Stephanie Grunewald
- NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK;
| |
Collapse
|
17
|
Radenkovic S, Fitzpatrick-Schmidt T, Byeon SK, Madugundu AK, Saraswat M, Lichty A, Wong SYW, McGee S, Kubiak K, Ligezka A, Ranatunga W, Zhang Y, Wood T, Friez MJ, Clarkson K, Pandey A, Jones JR, Morava E. Expanding the clinical and metabolic phenotype of DPM2 deficient congenital disorders of glycosylation. Mol Genet Metab 2021; 132:27-37. [PMID: 33129689 PMCID: PMC7855207 DOI: 10.1016/j.ymgme.2020.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Pathogenic alterations in the DPM2 gene have been previously described in patients with hypotonia, progressive muscle weakness, absent psychomotor development, intractable seizures, and early death. We identified biallelic DPM2 variants in a 23-year-old male with truncal hypotonia, hypertonicity, congenital heart defects, intellectual disability, and generalized muscle wasting. His clinical presentation was much less severe than that of the three previously described patients. This is the second report on this ultra-rare disorder. Here we review the characteristics of previously reported individuals with a defect in the DPM complex while expanding the clinical phenotype of DPM2-Congenital Disorders of Glycosylation. In addition, we offer further insights into the pathomechanism of DPM2-CDG disorder by introducing glycomics and lipidomics analysis.
Collapse
Affiliation(s)
- Silvia Radenkovic
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Metabolomics Expertise Center, CCB, KU Leuven-VIB, Leuven, Belgium; Laboratory of Hepatology, Department of CHROMETA, KU Leuven, Leuven, Belgium.
| | | | - Seul Kee Byeon
- Mayo Clinic, Department of Laboratory of Medical Pathology, Rochester, MN, USA
| | - Anil K Madugundu
- Mayo Clinic, Department of Laboratory of Medical Pathology, Rochester, MN, USA; Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mayank Saraswat
- Mayo Clinic, Department of Laboratory of Medical Pathology, Rochester, MN, USA; Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Sunnie Y W Wong
- Tulane University Medical School, New Orleans, LA, USA; Stanford University, CA, USA
| | | | | | - Anna Ligezka
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA
| | | | - Yuebo Zhang
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA
| | - Tim Wood
- Greenwood Genetic Center, Greenwood, SC, USA
| | | | | | - Akhilesh Pandey
- Mayo Clinic, Department of Laboratory of Medical Pathology, Rochester, MN, USA; Mayo Clinic, Center for Individualized Medicine, Rochester, MN, USA
| | | | - Eva Morava
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Laboratory of Medical Pathology, Rochester, MN, USA
| |
Collapse
|
18
|
Lipiński P, Tylki-Szymańska A. Congenital Disorders of Glycosylation: What Clinicians Need to Know? Front Pediatr 2021; 9:715151. [PMID: 34540767 PMCID: PMC8446601 DOI: 10.3389/fped.2021.715151] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of clinically heterogeneous disorders characterized by defects in the synthesis of glycans and their attachment to proteins and lipids. This manuscript aims to provide a classification of the clinical presentation, diagnostic methods, and treatment of CDG based on the literature review and our own experience (referral center in Poland). A diagnostic algorithm for CDG was also proposed. Isoelectric focusing (IEF) of serum transferrin (Tf) is still the method of choice for diagnosing N-glycosylation disorders associated with sialic acid deficiency. Nowadays, high-performance liquid chromatography, capillary zone electrophoresis, and mass spectrometry techniques are used, although they are not routinely available. Since next-generation sequencing became more widely available, an improvement in diagnostics has been observed, with more patients and novel CDG subtypes being reported. Early and accurate diagnosis of CDG is crucial for timely implementation of appropriate therapies and improving clinical outcomes. However, causative treatment is available only for few CDG types.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
19
|
Shi H, Chen Y, Lu H, Zhu R, Zhang J, He M, Guan H. In-depth analysis of eight susceptibility loci of primary angle closure glaucoma in Han Chinese. Exp Eye Res 2020; 202:108350. [PMID: 33227294 DOI: 10.1016/j.exer.2020.108350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Primary angle closure glaucoma (PACG) is a multifactorial disease with genetic predisposition. Primary angle closure (PAC) is the early stage of PACG and they share the same anatomical characteristics. We aimed to examine whether the PACG associated-genetic loci identified previously by genome-wide association study (GWAS) were also related to primary angle closure disease (PACD) in Han Chinese. This cross-sectional case-control study consisted of 232 PAC, 264 PACG and 306 controls. Eight single-nucleotide polymorphisms (SNPs) of PACG susceptibility loci within PLEKHA7, COL11A1, PCMTD1-ST18, EPDR1, CHAT, GLIS3, FERMT2, DPM2-FAM102A were genotyped using participants' blood samples. We excluded 3 SNPs for PAC analysis because the data has been reported using the same sample set. Anatomical parameters such as axial length (AL), anterior chamber depth (ACD) and lens thickness (LT) were included as phenotypes for the association analysis. Allelic and genotypic model tests were performed. Three among the eight SNPs were found to be significantly associated with PACG, e.g. PLEKHA7 rs11024102 in additive, dominant and recessive model; and both CHAT rs1258267 and DPM2-FAM102A rs3739821 in dominant model. CHAT rs1258267 showed marginal association with PAC in dominant model. Anatomical parameters were not found to link to the eight SNPs after Bonferroni multiple test correction. Our data suggest that PLEKHA7 and DPM2-FAM102A might exert effect in the late stage of the PACD, while CHAT may play a broad role in both early and late stages of the PACD.
Collapse
Affiliation(s)
- Haihong Shi
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Yunxia Chen
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hong Lu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongrong Zhu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Junfang Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Mengxuan He
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
20
|
Davids M, Menezes M, Guo Y, McLean SD, Hakonarson H, Collins F, Worgan L, Billington CJ, Maric I, Littlejohn RO, Onyekweli T, Adams DR, Tifft CJ, Gahl WA, Wolfe LA, Christodoulou J, Malicdan MCV. Homozygous splice-variants in human ARV1 cause GPI-anchor synthesis deficiency. Mol Genet Metab 2020; 130:49-57. [PMID: 32165008 PMCID: PMC7303973 DOI: 10.1016/j.ymgme.2020.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Mutations in the ARV1 Homolog, Fatty Acid Homeostasis Modulator (ARV1), have recently been described in association with early infantile epileptic encephalopathy 38. Affected individuals presented with epilepsy, ataxia, profound intellectual disability, visual impairment, and central hypotonia. In S. cerevisiae, Arv1 is thought to be involved in sphingolipid metabolism and glycophosphatidylinositol (GPI)-anchor synthesis. The function of ARV1 in human cells, however, has not been elucidated. METHODS Mutations were discovered through whole exome sequencing and alternate splicing was validated on the cDNA level. Expression of the variants was determined by qPCR and Western blot. Expression of GPI-anchored proteins on neutrophils and fibroblasts was analyzed by FACS and immunofluorescence microscopy, respectively. RESULTS Here we describe seven patients from two unrelated families with biallelic splice mutations in ARV1. The patients presented with early onset epilepsy, global developmental delays, profound hypotonia, delayed speech development, cortical visual impairment, and severe generalized cerebral and cerebellar atrophy. The splice variants resulted in decreased ARV1 expression and significant decreases in GPI-anchored protein on the membranes of neutrophils and fibroblasts, indicating that the loss of ARV1 results in impaired GPI-anchor synthesis. CONCLUSION Loss of GPI-anchored proteins on our patients' cells confirms that the yeast Arv1 function of GPI-anchor synthesis is conserved in humans. Overlap between the phenotypes in our patients and those reported for other GPI-anchor disorders suggests that ARV1-deficiency is a GPI-anchor synthesis disorder.
Collapse
Affiliation(s)
- Mariska Davids
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Minal Menezes
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health and Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia
| | - Yiran Guo
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott D McLean
- Department of Clinical Genetics, The Children's Hospital of San Antonio, San Antonio, TX, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Felicity Collins
- Discipline of Child and Adolescent Health and Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia; Department of Clinical Genetics, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Lisa Worgan
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, NSW, Australia
| | - Charles J Billington
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irina Maric
- Hematology Service, Clinical Center, NIH, Bethesda, MD, USA
| | | | - Tito Onyekweli
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David R Adams
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia J Tifft
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lynne A Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health and Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Pediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia.
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Carmody LC, Blau H, Danis D, Zhang XA, Gourdine JP, Vasilevsky N, Krawitz P, Thompson MD, Robinson PN. Significantly different clinical phenotypes associated with mutations in synthesis and transamidase+remodeling glycosylphosphatidylinositol (GPI)-anchor biosynthesis genes. Orphanet J Rare Dis 2020; 15:40. [PMID: 32019583 PMCID: PMC7001271 DOI: 10.1186/s13023-020-1313-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Defects in the glycosylphosphatidylinositol (GPI) biosynthesis pathway can result in a group of congenital disorders of glycosylation known as the inherited GPI deficiencies (IGDs). To date, defects in 22 of the 29 genes in the GPI biosynthesis pathway have been identified in IGDs. The early phase of the biosynthetic pathway assembles the GPI anchor (Synthesis stage) and the late phase transfers the GPI anchor to a nascent peptide in the endoplasmic reticulum (ER) (Transamidase stage), stabilizes the anchor in the ER membrane using fatty acid remodeling and then traffics the GPI-anchored protein to the cell surface (Remodeling stage). RESULTS We addressed the hypothesis that disease-associated variants in either the Synthesis stage or Transamidase+Remodeling-stage GPI pathway genes have distinct phenotypic spectra. We reviewed clinical data from 58 publications describing 152 individual patients and encoded the phenotypic information using the Human Phenotype Ontology (HPO). We showed statistically significant differences between the Synthesis and Transamidase+Remodeling Groups in the frequencies of phenotypes in the musculoskeletal system, cleft palate, nose phenotypes, and cognitive disability. Finally, we hypothesized that phenotypic defects in the IGDs are likely to be at least partially related to defective GPI anchoring of their target proteins. Twenty-two of one hundred forty-two proteins that receive a GPI anchor are associated with one or more Mendelian diseases and 12 show some phenotypic overlap with the IGDs, represented by 34 HPO terms. Interestingly, GPC3 and GPC6, members of the glypican family of heparan sulfate proteoglycans bound to the plasma membrane through a covalent GPI linkage, are associated with 25 of these phenotypic abnormalities. CONCLUSIONS IGDs associated with Synthesis and Transamidase+Remodeling stages of the GPI biosynthesis pathway have significantly different phenotypic spectra. GPC2 and GPC6 genes may represent a GPI target of general disruption to the GPI biosynthesis pathway that contributes to the phenotypes of some IGDs.
Collapse
Affiliation(s)
- Leigh C Carmody
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Hannah Blau
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Daniel Danis
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Xingman A Zhang
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | | | | | - Peter Krawitz
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Miles D Thompson
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA.
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
22
|
Yousefian A, Shokoohi-Rad S, Abbaszadegan MR, Rad DM, Zargari S, Milanizadeh S, Morovatdar N, Daneshvar R. Primary Angle Closure Glaucoma-associated Genetic Polymorphisms in Northeast Iran. J Ophthalmic Vis Res 2020; 15:45-52. [PMID: 32095208 PMCID: PMC7001019 DOI: 10.18502/jovr.v15i1.5942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/11/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate the association of five different polymorphisms from a genome-wide-associated study with susceptibility to glaucoma in the northeast Iranian population. Methods Hundred and thirty patients with primary angle closure glaucoma (PACG) and 130 healthy controls were genotyped for the polymorphic regions with the aid of tetra-amplification refractory mutation system-polymerase chain reaction. The association of these variants with the disease susceptibility was measured statistically with the logistic regression method. Results Hundred and thirty patients with PACG (53 males, 77 females) with a mean age of 64.5 ± 6.2 years and 130 healthy control subjects (51 males, 79 females) with a mean age of 64.0 ± 5.7 years were selected for evaluation. There was a significant association between rs3816415 (P = 0.005), rs736893 (P< 0.001), rs7494379 (P< 0.001), and rs1258267 (P = 0.02) with PACG susceptibility. This association could not be shown for rs3739821. Conclusion It was revealed that studied variants in GLIS3, EPDR1, FERMT2, and CHAT genes can contribute to the incidence of PACG. Additional studies in other populations are needed to evaluate DPM2-FAM102A.
Collapse
Affiliation(s)
- Ali Yousefian
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Shokoohi-Rad
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Dorsa Morshedi Rad
- Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Selma Zargari
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Milanizadeh
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Morovatdar
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Daneshvar
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Kim J, Lana B, Torelli S, Ryan D, Catapano F, Ala P, Luft C, Stevens E, Konstantinidis E, Louzada S, Fu B, Paredes‐Redondo A, Chan AWE, Yang F, Stemple DL, Liu P, Ketteler R, Selwood DL, Muntoni F, Lin Y. A new patient-derived iPSC model for dystroglycanopathies validates a compound that increases glycosylation of α-dystroglycan. EMBO Rep 2019; 20:e47967. [PMID: 31566294 PMCID: PMC6832011 DOI: 10.15252/embr.201947967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
Dystroglycan, an extracellular matrix receptor, has essential functions in various tissues. Loss of α-dystroglycan-laminin interaction due to defective glycosylation of α-dystroglycan underlies a group of congenital muscular dystrophies often associated with brain malformations, referred to as dystroglycanopathies. The lack of isogenic human dystroglycanopathy cell models has limited our ability to test potential drugs in a human- and neural-specific context. Here, we generated induced pluripotent stem cells (iPSCs) from a severe dystroglycanopathy patient with homozygous FKRP (fukutin-related protein gene) mutation. We showed that CRISPR/Cas9-mediated gene correction of FKRP restored glycosylation of α-dystroglycan in iPSC-derived cortical neurons, whereas targeted gene mutation of FKRP in wild-type cells disrupted this glycosylation. In parallel, we screened 31,954 small molecule compounds using a mouse myoblast line for increased glycosylation of α-dystroglycan. Using human FKRP-iPSC-derived neural cells for hit validation, we demonstrated that compound 4-(4-bromophenyl)-6-ethylsulfanyl-2-oxo-3,4-dihydro-1H-pyridine-5-carbonitrile (4BPPNit) significantly augmented glycosylation of α-dystroglycan, in part through upregulation of LARGE1 glycosyltransferase gene expression. Together, isogenic human iPSC-derived cells represent a valuable platform for facilitating dystroglycanopathy drug discovery and therapeutic development.
Collapse
Affiliation(s)
- Jihee Kim
- Centre for Genomics and Child HealthBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Stem Cell LaboratoryNational Bowel Research CentreBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Beatrice Lana
- Centre for Genomics and Child HealthBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Stem Cell LaboratoryNational Bowel Research CentreBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Silvia Torelli
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | - David Ryan
- Wellcome Sanger InstituteHinxtonCambridgeUK
| | | | - Pierpaolo Ala
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Christin Luft
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | | | - Evangelos Konstantinidis
- Centre for Genomics and Child HealthBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Stem Cell LaboratoryNational Bowel Research CentreBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | | | - Beiyuan Fu
- Wellcome Sanger InstituteHinxtonCambridgeUK
| | - Amaia Paredes‐Redondo
- Centre for Genomics and Child HealthBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Stem Cell LaboratoryNational Bowel Research CentreBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - AW Edith Chan
- The Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | | | | | - Pentao Liu
- Wellcome Sanger InstituteHinxtonCambridgeUK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - David L Selwood
- The Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Francesco Muntoni
- UCL Great Ormond Street Institute of Child HealthLondonUK
- NIHR Biomedical Research Centre at Great Ormond Street HospitalLondonUK
| | - Yung‐Yao Lin
- Centre for Genomics and Child HealthBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Stem Cell LaboratoryNational Bowel Research CentreBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
24
|
van Tol W, Ashikov A, Korsch E, Abu Bakar N, Willemsen MA, Thiel C, Lefeber DJ. A mutation in mannose-phosphate-dolichol utilization defect 1 reveals clinical symptoms of congenital disorders of glycosylation type I and dystroglycanopathy. JIMD Rep 2019; 50:31-39. [PMID: 31741824 PMCID: PMC6850978 DOI: 10.1002/jmd2.12060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Congenital disorders of glycosylation type I (CDG-I) are inborn errors of metabolism, generally characterized by multisystem clinical manifestations, including developmental delay, hepatopathy, hypotonia, and skin, skeletal, and neurological abnormalities. Among others, dolichol-phosphate-mannose (DPM) is the mannose donor for N-glycosylation as well as O-mannosylation. DOLK-CDG, DPM1-CDG, DPM2-CDG, and DPM3-CDG are defects in the DPM synthesis showing both CDG-I abnormalities and reduced O-mannosylation of alpha-dystroglycan (αDG), which leads to muscular dystrophy-dystroglycanopathy. Mannose-phosphate-dolichol utilization defect 1 (MPDU1) plays a role in the utilization of DPM. Here, we report two MPDU1-CDG patients without skin involvement, but with massive dilatation of the biliary duct system and dystroglycanopathy characteristics including hypotonia, elevated creatine kinase, dilated cardiomyopathy, buphthalmos, and congenital glaucoma. Biochemical analyses revealed elevated disialotransferrin in serum, and analyses in fibroblasts showed shortened lipid linked oligosaccharides and DPM, and reduced O-mannosylation of αDG. Thus, MPDU1-CDG can be added to the list of disorders with overlapping biochemical and clinical abnormalities of CDG-I and dystroglycanopathy. SYNOPSIS Mannose-phosphate-dolichol utilization defect 1 patients can have overlapping biochemical and clinical abnormalities of congenital disorders of glycosylation type I and dystroglycanopathy.
Collapse
Affiliation(s)
- Walinka van Tol
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Angel Ashikov
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
| | - Eckhard Korsch
- Children's Hospital of the City of CologneCologneGermany
| | - Nurulamin Abu Bakar
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
| | - Michèl A. Willemsen
- Department of Pediatric Neurology, Amalia Children's Hospital, Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Kinderheilkunde IUniversity of HeidelbergHeidelbergGermany
| | - Dirk J. Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
25
|
van Tol W, Michelakakis H, Georgiadou E, van den Bergh P, Moraitou M, Papadimas GK, Papadopoulos C, Huijben K, Alsady M, Willemsen MA, Lefeber DJ. Toward understanding tissue-specific symptoms in dolichol-phosphate-mannose synthesis disorders; insight from DPM3-CDG. J Inherit Metab Dis 2019; 42:984-992. [PMID: 30931530 DOI: 10.1002/jimd.12095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
The congenital disorders of glycosylation (CDG) are inborn errors of metabolism with a great genetic heterogeneity. Most CDG are caused by defects in the N-glycan biosynthesis, leading to multisystem phenotypes. However, the occurrence of tissue-restricted clinical symptoms in the various defects in dolichol-phosphate-mannose (DPM) synthesis remains unexplained. To deepen our understanding of the tissue-specific characteristics of defects in the DPM synthesis pathway, we investigated N-glycosylation and O-mannosylation in skeletal muscle of three DPM3-CDG patients presenting with muscle dystrophy and hypo-N-glycosylation of serum transferrin in only two of them. In the three patients, O-mannosylation of alpha-dystroglycan (αDG) was strongly reduced and western blot analysis of beta-dystroglycan (βDG) N-glycosylation revealed a consistent lack of one N-glycan in skeletal muscle. Recently, defective N-glycosylation of βDG has been reported in patients with mutations in guanosine-diphosphate-mannose pyrophosphorylase B (GMPPB). Thus, we suggest that aberrant O-glycosylation of αDG and N-glycosylation of βDG in skeletal muscle is indicative of a defect in the DPM synthesis pathway. Further studies should address to what extent hypo-N-glycosylation of βDG or other skeletal muscle proteins contribute to the phenotype of patients with defects in DPM synthesis. Our findings contribute to our understanding of the tissue-restricted phenotype of DPM3-CDG and other defects in the DPM synthesis pathway.
Collapse
Affiliation(s)
- Walinka van Tol
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helen Michelakakis
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - Elissavet Georgiadou
- First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Peter van den Bergh
- Neuromuscular Reference Center, University Hospital St-Luc, University of Louvain, Brussels, Belgium
| | - Marina Moraitou
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - George K Papadimas
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Papadopoulos
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Karin Huijben
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mohammad Alsady
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michèl A Willemsen
- Department of Pediatric Neurology, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Kanagawa M, Toda T. Muscular Dystrophy with Ribitol-Phosphate Deficiency: A Novel Post-Translational Mechanism in Dystroglycanopathy. J Neuromuscul Dis 2019; 4:259-267. [PMID: 29081423 PMCID: PMC5701763 DOI: 10.3233/jnd-170255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Muscular dystrophy is a group of genetic disorders characterized by progressive muscle weakness. In the early 2000s, a new classification of muscular dystrophy, dystroglycanopathy, was established. Dystroglycanopathy often associates with abnormalities in the central nervous system. Currently, at least eighteen genes have been identified that are responsible for dystroglycanopathy, and despite its genetic heterogeneity, its common biochemical feature is abnormal glycosylation of alpha-dystroglycan. Abnormal glycosylation of alpha-dystroglycan reduces its binding activities to ligand proteins, including laminins. In just the last few years, remarkable progress has been made in determining the sugar chain structures and gene functions associated with dystroglycanopathy. The normal sugar chain contains tandem structures of ribitol-phosphate, a pentose alcohol that was previously unknown in humans. The dystroglycanopathy genes fukutin, fukutin-related protein (FKRP), and isoprenoid synthase domain-containing protein (ISPD) encode essential enzymes for the synthesis of this structure: fukutin and FKRP transfer ribitol-phosphate onto sugar chains of alpha-dystroglycan, and ISPD synthesizes CDP-ribitol, a donor substrate for fukutin and FKRP. These findings resolved long-standing questions and established a disease subgroup that is ribitol-phosphate deficient, which describes a large population of dystroglycanopathy patients. Here, we review the history of dystroglycanopathy, the properties of the sugar chain structure of alpha-dystroglycan, dystroglycanopathy gene functions, and therapeutic strategies.
Collapse
Affiliation(s)
- Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
27
|
Dilated cardiomyopathy and limb-girdle muscular dystrophy-dystroglycanopathy due to novel pathogenic variants in the DPM3 gene. Neuromuscul Disord 2019; 29:497-502. [DOI: 10.1016/j.nmd.2019.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022]
|
28
|
Nicklas JA, Vacek PM, Carter EW, McDiarmid M, Albertini RJ. Molecular analysis of glycosylphosphatidylinositol anchor deficient aerolysin resistant isolates in gulf war i veterans exposed to depleted uranium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:470-493. [PMID: 30848503 DOI: 10.1002/em.22283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
During the First Gulf War (1991) over 100 servicemen sustained depleted uranium (DU) exposure through wound contamination, inhalation, and shrapnel. The Department of Veterans Affairs has a surveillance program for these Veterans which has included genotoxicity assays. The frequencies of glycosylphosphatidylinositol anchor (GPIa) negative (aerolysin resistant) cells determined by cloning assays for these Veterans are reported in Albertini RJ et al. (2019: Environ Mol Mutagen). Molecular analyses of the GPIa biosynthesis class A (PIGA) gene was performed on 862 aerolysin-resistant T-lymphocyte recovered isolates. The frequencies of different types of PIGA mutations were compared between high and low DU exposure groups. Additional molecular studies were performed on mutants that produced no PIGA mRNA or with deletions of all or part of the PIGA gene to determine deletion size and breakpoint sequence. One mutant appeared to be the result of a chromothriptic event. A significant percentage (>30%) of the aerolysin resistant isolates, which varied by sample year and Veteran, had wild-type PIGA cDNA (no mutation). As described in Albertini RJ et al. (2019: Environ Mol Mutagen), TCR gene rearrangement analysis of these isolates indicated most arose from multiple T-cell progenitors (hence the inability to find a mutation). It is likely that these isolates were the result of failure of complete selection against nonmutant cells in the cloning assays. Real-time studies of GPIa resistant isolates with no PIGA mutation but with a single TCR gene rearrangement found one clone with a PIGV deletion and several others with decreased levels of GPIa pathway gene mRNAs implying mutation in other GPIa pathway genes. Environ. Mol. Mutagen. 60:470-493, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Janice A Nicklas
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont
| | - Pamela M Vacek
- Medical Biostatistics Unit, University of Vermont College of Medicine, Burlington, Vermont
| | - Elizabeth W Carter
- Jeffords Institute for Quality, University of Vermont Medical Center, Burlington, Vermont
| | - Melissa McDiarmid
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- U.S. Department of Veterans Affairs, Washington, District of Columbia
| | - Richard J Albertini
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
29
|
Albertini RJ, Nicklas JA, Vacek PM, Carter EW, McDiarmid M. Longitudinal study of t-cell somatic mutations conferring glycosylphosphatidylinositol-anchor deficiency in gulf war I veterans exposed to depleted uranium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:494-504. [PMID: 30848527 DOI: 10.1002/em.22281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Fifty Veterans of the first Gulf War in 1991 exposed to depleted uranium (DU) were studied for glycosylphosphatidylinositol-anchor (GPIa) deficient T-cell mutants on three occasions during the years 2009, 2011, and 2013. GPIa deficiency was determined in two ways: cloning assays employing aerolysin selection and cytometry using the FLAER reagent for positive staining of GPIa cell surface proteins. Subsequent molecular analyses of deficient isolates recovered from cloning assays (Nicklas JA et al. [2019]: Environ Mol Mutagen) revealed apparent incomplete selection in some cloning assays, necessitating correction of original data to afford a more realistic estimate of GPIa deficient mutant frequency (MF) values. GPIa deficient variant frequencies (VFs) determined by cytometry were determined in the years 2011 and 2013. A positive but nonsignificant association was observed between MF and VF values determined on the same blood samples during 2013. Exposure to DU had no effect on either GPIa deficient MF or VFs. Environ. Mol. Mutagen. 60:494-504, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Richard J Albertini
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont
| | - Janice A Nicklas
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont
| | - Pamela M Vacek
- Medical Biostatistics Unit, University of Vermont College of Medicine, Burlington, Vermont
| | - Elizabeth W Carter
- Jeffords Institute for Quality, University of Vermont Medical Center, Burlington, Vermont
| | - Melissa McDiarmid
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- U.S. Department of Veterans Affairs, Washington, DC
| |
Collapse
|
30
|
ENDO T. Mammalian O-mannosyl glycans: Biochemistry and glycopathology. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:39-51. [PMID: 30643095 PMCID: PMC6395781 DOI: 10.2183/pjab.95.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/05/2018] [Indexed: 05/20/2023]
Abstract
Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Recently, O-mannosyl glycan, an O-glycan, has been shown to be important in muscle and brain development. A clear relationship between O-mannosyl glycans and the pathomechanisms of some congenital muscular dystrophies has been established in humans. Ribitol-5-phosphate is a newly identified glycan component in mammals, and its biosynthetic pathway has been elucidated. The discovery of new glycan structures and the identification of highly regulated mechanisms of glycan processing will help researchers to understand glycan functions and develop therapeutic strategies.
Collapse
Affiliation(s)
- Tamao ENDO
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Correspondence should be addressed: T. Endo, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan (e-mail: )
| |
Collapse
|
31
|
Vannoy CH, Blaeser A, Lu QL. Dystroglycanopathy Gene Therapy: Unlocking the Potential of Genetic Engineering. MUSCLE GENE THERAPY 2019:469-490. [DOI: 10.1007/978-3-030-03095-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
32
|
Nickolls AR, Bönnemann CG. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Dis Model Mech 2018; 11:11/12/dmm035931. [PMID: 30578246 PMCID: PMC6307911 DOI: 10.1242/dmm.035931] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dystroglycan is a cell membrane protein that binds to the extracellular matrix in a variety of mammalian tissues. The α-subunit of dystroglycan (αDG) is heavily glycosylated, including a special O-mannosyl glycoepitope, relying upon this unique glycosylation to bind its matrix ligands. A distinct group of muscular dystrophies results from specific hypoglycosylation of αDG, and they are frequently associated with central nervous system involvement, ranging from profound brain malformation to intellectual disability without evident morphological defects. There is an expanding literature addressing the function of αDG in the nervous system, with recent reports demonstrating important roles in brain development and in the maintenance of neuronal synapses. Much of these data are derived from an increasingly rich array of experimental animal models. This Review aims to synthesize the information from such diverse models, formulating an up-to-date understanding about the various functions of αDG in neurons and glia of the central and peripheral nervous systems. Where possible, we integrate these data with our knowledge of the human disorders to promote translation from basic mechanistic findings to clinical therapies that take the neural phenotypes into account. Summary: Dystroglycan is a ubiquitous matrix receptor linked to brain and muscle disease. Unraveling the functions of this protein will inform basic and translational research on neural development and muscular dystrophies.
Collapse
Affiliation(s)
- Alec R Nickolls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Nguyen TTM, Murakami Y, Wigby KM, Baratang NV, Rousseau J, St-Denis A, Rosenfeld JA, Laniewski SC, Jones J, Iglesias AD, Jones MC, Masser-Frye D, Scheuerle AE, Perry DL, Taft RJ, Le Deist F, Thompson M, Kinoshita T, Campeau PM. Mutations in PIGS, Encoding a GPI Transamidase, Cause a Neurological Syndrome Ranging from Fetal Akinesia to Epileptic Encephalopathy. Am J Hum Genet 2018; 103:602-611. [PMID: 30269814 DOI: 10.1016/j.ajhg.2018.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/23/2018] [Indexed: 11/17/2022] Open
Abstract
Inherited GPI deficiencies (IGDs) are a subset of congenital disorders of glycosylation that are increasingly recognized as a result of advances in whole-exome sequencing (WES) and whole-genome sequencing (WGS). IGDs cause a series of overlapping phenotypes consisting of seizures, dysmorphic features, multiple congenital malformations, and severe intellectual disability. We present a study of six individuals from three unrelated families in which WES or WGS identified bi-allelic phosphatidylinositol glycan class S (PIGS) biosynthesis mutations. Phenotypes included severe global developmental delay, seizures (partly responding to pyridoxine), hypotonia, weakness, ataxia, and dysmorphic facial features. Two of them had compound-heterozygous variants c.108G>A (p.Trp36∗) and c.101T>C (p.Leu34Pro), and two siblings of another family were homozygous for a deletion and insertion leading to p.Thr439_Lys451delinsArgLeuLeu. The third family had two fetuses with multiple joint contractures consistent with fetal akinesia. They were compound heterozygous for c.923A>G (p.Glu308Gly) and c.468+1G>C, a splicing mutation. Flow-cytometry analyses demonstrated that the individuals with PIGS mutations show a GPI-AP deficiency profile. Expression of the p.Trp36∗ variant in PIGS-deficient HEK293 cells revealed only partial restoration of cell-surface GPI-APs. In terms of both biochemistry and phenotype, loss of function of PIGS shares features with PIGT deficiency and other IGDs. This study contributes to the understanding of the GPI-AP biosynthesis pathway by describing the consequences of PIGS disruption in humans and extending the family of IGDs.
Collapse
Affiliation(s)
- Thi Tuyet Mai Nguyen
- Centre Hospitalier Universitaire Sainte Justine Research Center, University of Montreal, Montreal, QC H3T1C5, Canada
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kristen M Wigby
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Nissan V Baratang
- Centre Hospitalier Universitaire Sainte Justine Research Center, University of Montreal, Montreal, QC H3T1C5, Canada
| | - Justine Rousseau
- Centre Hospitalier Universitaire Sainte Justine Research Center, University of Montreal, Montreal, QC H3T1C5, Canada
| | - Anik St-Denis
- Centre Hospitalier Universitaire Sainte Justine Research Center, University of Montreal, Montreal, QC H3T1C5, Canada
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Julie Jones
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Alejandro D Iglesias
- NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, NY 10032, USA
| | - Marilyn C Jones
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | | | | | | | | | - Françoise Le Deist
- Centre Hospitalier Universitaire Sainte Justine Research Center, University of Montreal, Montreal, QC H3T1C5, Canada
| | - Miles Thompson
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte Justine Research Center, University of Montreal, Montreal, QC H3T1C5, Canada.
| |
Collapse
|
34
|
Detection of variants in dystroglycanopathy-associated genes through the application of targeted whole-exome sequencing analysis to a large cohort of patients with unexplained limb-girdle muscle weakness. Skelet Muscle 2018; 8:23. [PMID: 30060766 PMCID: PMC6066920 DOI: 10.1186/s13395-018-0170-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022] Open
Abstract
Background Dystroglycanopathies are a clinically and genetically heterogeneous group of disorders that are typically characterised by limb-girdle muscle weakness. Mutations in 18 different genes have been associated with dystroglycanopathies, the encoded proteins of which typically modulate the binding of α-dystroglycan to extracellular matrix ligands by altering its glycosylation. This results in a disruption of the structural integrity of the myocyte, ultimately leading to muscle degeneration. Methods Deep phenotypic information was gathered using the PhenoTips online software for 1001 patients with unexplained limb-girdle muscle weakness from 43 different centres across 21 European and Middle Eastern countries. Whole-exome sequencing with at least 250 ng DNA was completed using an Illumina exome capture and a 38 Mb baited target. Genes known to be associated with dystroglycanopathies were analysed for disease-causing variants. Results Suspected pathogenic variants were detected in DPM3, ISPD, POMT1 and FKTN in one patient each, in POMK in two patients, in GMPPB in three patients, in FKRP in eight patients and in POMT2 in ten patients. This indicated a frequency of 2.7% for the disease group within the cohort of 1001 patients with unexplained limb-girdle muscle weakness. The phenotypes of the 27 patients were highly variable, yet with a fundamental presentation of proximal muscle weakness and elevated serum creatine kinase. Conclusions Overall, we have identified 27 patients with suspected pathogenic variants in dystroglycanopathy-associated genes. We present evidence for the genetic and phenotypic diversity of the dystroglycanopathies as a disease group, while also highlighting the advantage of incorporating next-generation sequencing into the diagnostic pathway of rare diseases. Electronic supplementary material The online version of this article (10.1186/s13395-018-0170-1) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Larson AA, Baker PR, Milev MP, Press CA, Sokol RJ, Cox MO, Lekostaj JK, Stence AA, Bossler AD, Mueller JM, Prematilake K, Tadjo TF, Williams CA, Sacher M, Moore SA. TRAPPC11 and GOSR2 mutations associate with hypoglycosylation of α-dystroglycan and muscular dystrophy. Skelet Muscle 2018; 8:17. [PMID: 29855340 PMCID: PMC5984345 DOI: 10.1186/s13395-018-0163-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/16/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Transport protein particle (TRAPP) is a supramolecular protein complex that functions in localizing proteins to the Golgi compartment. The TRAPPC11 subunit has been implicated in muscle disease by virtue of homozygous and compound heterozygous deleterious mutations being identified in individuals with limb girdle muscular dystrophy and congenital muscular dystrophy. It remains unclear how this protein leads to muscle disease. Furthermore, a role for this protein, or any other membrane trafficking protein, in the etiology of the dystroglycanopathy group of muscular dystrophies has yet to be found. Here, using a multidisciplinary approach including genetics, immunofluorescence, western blotting, and live cell analysis, we implicate both TRAPPC11 and another membrane trafficking protein, GOSR2, in α-dystroglycan hypoglycosylation. CASE PRESENTATION Subject 1 presented with severe epileptic episodes and subsequent developmental deterioration. Upon clinical evaluation she was found to have brain, eye, and liver abnormalities. Her serum aminotransferases and creatine kinase were abnormally high. Subjects 2 and 3 are siblings from a family unrelated to subject 1. Both siblings displayed hypotonia, muscle weakness, low muscle bulk, and elevated creatine kinase levels. Subject 3 also developed a seizure disorder. Muscle biopsies from subjects 1 and 3 were severely dystrophic with abnormal immunofluorescence and western blotting indicative of α-dystroglycan hypoglycosylation. Compound heterozygous mutations in TRAPPC11 were identified in subject 1: c.851A>C and c.965+5G>T. Cellular biological analyses on fibroblasts confirmed abnormal membrane trafficking. Subject 3 was found to have compound heterozygous mutations in GOSR2: c.430G>T and c.2T>G. Cellular biological analyses on fibroblasts from subject 3 using two different model cargo proteins did not reveal defects in protein transport. No mutations were found in any of the genes currently known to cause dystroglycanopathy in either individual. CONCLUSION Recessive mutations in TRAPPC11 and GOSR2 are associated with congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. This is the first report linking membrane trafficking proteins to dystroglycanopathy and suggests that these genes should be considered in the diagnostic evaluation of patients with congenital muscular dystrophy and dystroglycanopathy.
Collapse
Affiliation(s)
- Austin A. Larson
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO USA
| | - Peter R. Baker
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO USA
| | | | - Craig A. Press
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO USA
| | - Ronald J. Sokol
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO USA
| | - Mary O. Cox
- Department of Pathology Carver College of Medicine, The University of Iowa, Iowa City, IA USA
| | - Jacqueline K. Lekostaj
- Department of Pathology Carver College of Medicine, The University of Iowa, Iowa City, IA USA
| | - Aaron A. Stence
- Department of Pathology Carver College of Medicine, The University of Iowa, Iowa City, IA USA
| | - Aaron D. Bossler
- Department of Pathology Carver College of Medicine, The University of Iowa, Iowa City, IA USA
| | - Jennifer M. Mueller
- Division of Genetics and Metabolism, University of Florida College of Medicine, Gainesville, FL USA
| | | | | | - Charles A. Williams
- Division of Genetics and Metabolism, University of Florida College of Medicine, Gainesville, FL USA
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Steven A. Moore
- Department of Pathology Carver College of Medicine, The University of Iowa, Iowa City, IA USA
| |
Collapse
|
36
|
Molecular hypotheses to explain the shared pathways and underlying pathobiological causes in catatonia and in catatonic presentations in neuropsychiatric disorders. Med Hypotheses 2018. [PMID: 29523295 DOI: 10.1016/j.mehy.2018.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Liewluck T, Milone M. Untangling the complexity of limb-girdle muscular dystrophies. Muscle Nerve 2018; 58:167-177. [PMID: 29350766 DOI: 10.1002/mus.26077] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
The limb-girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous, autosomal inherited muscular dystrophies with a childhood to adult onset, manifesting with hip- and shoulder-girdle muscle weakness. When the term LGMD was first conceptualized in 1954, it was thought to be a single entity. Currently, there are 8 autosomal dominant (LGMD1A-1H) and 26 autosomal recessive (LGMD2A-2Z) variants according to the Online Mendelian Inheritance in Man database. In addition, there are other genetically identified muscular dystrophies with an LGMD phenotype not yet classified as LGMD. This highlights the entanglement of LGMDs, which represents an area in continuous expansion. Herein we aim to simplify the complexity of LGMDs by subgrouping them on the basis of the underlying defective protein and impaired function. Muscle Nerve 58: 167-177, 2018.
Collapse
Affiliation(s)
- Teerin Liewluck
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| |
Collapse
|
38
|
Kanagawa M, Toda T. Ribitol-phosphate—a newly identified posttranslational glycosylation unit in mammals: structure, modification enzymes and relationship to human diseases. J Biochem 2018; 163:359-369. [DOI: 10.1093/jb/mvy020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Motoi Kanagawa
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Tatsushi Toda
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
39
|
Nongpiur ME, Cheng CY, Duvesh R, Vijayan S, Baskaran M, Khor CC, Allen J, Kavitha S, Venkatesh R, Goh D, Husain R, Boey PY, Quek D, Ho CL, Wong TT, Perera S, Wong TY, Krishnadas SR, Sundaresan P, Aung T, Vithana EN. Evaluation of Primary Angle-Closure Glaucoma Susceptibility Loci in Patients with Early Stages of Angle-Closure Disease. Ophthalmology 2018; 125:664-670. [PMID: 29310965 DOI: 10.1016/j.ophtha.2017.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/07/2017] [Accepted: 11/08/2017] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To investigate whether newly identified genetic loci for primary angle-closure glaucoma (PACG) are associated with early stage angle-closure disease defined as primary angle closure suspect (PACS). DESIGN Case-control study. PARTICIPANTS A total of 1397 PACS patients and 943 controls of Chinese ethnicity from Singapore and 604 PACS patients and 287 controls of Indian ethnicity. METHODS The 8 PACG single nucleotide polymorphisms (SNPs; rs11024102 at PLEKHA7, rs3753841 at COL11A1, rs1015213 located between PCMTD1 and ST18 son chromosome 8q, rs3816415 at EPDR1, rs1258267 at CHAT, rs736893 at GLIS3, rs7494379 at FERMT2, and rs3739821 mapping in between DPM2 and FAM102A) were genotyped by Taqman assays. The association between SNP genotypes and PACS status was measured using logistic regression. A P value of 0.006 was set to account for the testing of 8 genetic loci using a Bonferroni correction. A meta-analysis was conducted to calculate the overall P value and accompanying per-allele odds ratios for each SNP analyzed. MAIN OUTCOME MEASURES Association of PACG loci with PACS status. RESULTS The PACS patients were significantly older in both cohorts (Chinese, P < 0.001; Indian, P = 0.002), and there were also more women (P < 0.001, both Chinese and Indian cohorts). In the Chinese cohort, significant evidence of association was noted at 3 SNPs: rs1015213 [A] in PCMTD1-ST18 (odds ratio [OR], 2.36; 95% confidence interval [CI], 1.36-4.11; P = 0.002), rs3816415 [A] in EPDR1 (OR, 1.49; 95% CI, 1.19-1.85; P < 0.001), and rs3739821 [G] in DPM2-FAM102A (OR, 1.40; 95% CI, 1.18-1.65; P < 0.001). Only PCMTD1-ST-18 was replicated modestly in the Indian population (P = 0.056). Meta-analysis showed significant evidence of association for PCMTD1-ST-18 (OR, 1.55; 95% CI, 1.18-2.04; P = 0.002) and DPM2-FAM102A (OR, 1.27; 95% CI, 1.12-1.45; P = 0.0002). CONCLUSIONS In this study, 2 of 8 PACG-associated loci were associated significantly with PACS status, the earliest stage in the angle-closure glaucoma disease course. The association of these PACG loci with PACS status suggests that these loci may confer susceptibility to a narrow angle configuration.
Collapse
Affiliation(s)
- Monisha E Nongpiur
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Duke-National University of Singapore Medical School, Singapore, Republic of Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Duke-National University of Singapore Medical School, Singapore, Republic of Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Roopam Duvesh
- Department of Genetics, Aravind Medical Research Foundation, Madurai, India
| | - Saravanan Vijayan
- Department of Genetics, Aravind Medical Research Foundation, Madurai, India
| | - Mani Baskaran
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Duke-National University of Singapore Medical School, Singapore, Republic of Singapore
| | - Chiea-Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Human Genetics, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - John Allen
- Duke-National University of Singapore Medical School, Singapore, Republic of Singapore
| | | | | | - David Goh
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - Rahat Husain
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - Pui Yi Boey
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - Desmond Quek
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - Ching Lin Ho
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - Tina T Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - Shamira Perera
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | | | | | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Eranga N Vithana
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Duke-National University of Singapore Medical School, Singapore, Republic of Singapore.
| |
Collapse
|
40
|
Identification and characterization of UDP-mannose in human cell lines and mouse organs: Differential distribution across brain regions and organs. Biochem Biophys Res Commun 2017; 495:401-407. [PMID: 29101027 DOI: 10.1016/j.bbrc.2017.10.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 11/22/2022]
Abstract
Mannosylation in the endoplasmic reticulum is a key process for synthesizing various glycans. Guanosine diphosphate mannose (GDP-Man) and dolichol phosphate-mannose serve as donor substrates for mannosylation in mammals and are used in N-glycosylation, O-mannosylation, C-mannosylation, and the synthesis of glycosylphosphatidylinositol-anchor (GPI-anchor). Here, we report for the first time that low-abundant uridine diphosphate-mannose (UDP-Man), which can serve as potential donor substrate, exists in mammals. Liquid chromatography-mass spectrometry (LC-MS) analyses showed that mouse brain, especially hypothalamus and neocortex, contains higher concentrations of UDP-Man compared to other organs. In cultured human cell lines, addition of mannose in media increased UDP-Man concentrations in a dose-dependent manner. These findings indicate that in mammals the minor nucleotide sugar UDP-Man regulates glycosylation, especially mannosylation in specific organs or conditions.
Collapse
|
41
|
Witters P, Cassiman D, Morava E. Nutritional Therapies in Congenital Disorders of Glycosylation (CDG). Nutrients 2017; 9:nu9111222. [PMID: 29112118 PMCID: PMC5707694 DOI: 10.3390/nu9111222] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of more than 130 inborn errors of metabolism affecting N-linked, O-linked protein and lipid-linked glycosylation. The phenotype in CDG patients includes frequent liver involvement, especially the disorders belonging to the N-linked protein glycosylation group. There are only a few treatable CDG. Mannose-Phosphate Isomerase (MPI)-CDG was the first treatable CDG by high dose mannose supplements. Recently, with the successful use of d-galactose in Phosphoglucomutase 1 (PGM1)-CDG, other CDG types have been trialed on galactose and with an increasing number of potential nutritional therapies. Current mini review focuses on therapies in glycosylation disorders affecting liver function and dietary intervention in general in N-linked glycosylation disorders. We also emphasize now the importance of early screening for CDG in patients with mild hepatopathy but also in cholestasis.
Collapse
Affiliation(s)
- Peter Witters
- Metabolic Center, University Hospitals Leuven, B-3000 Leuven, Belgium.
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, B-3000 Leuven, Belgium.
| | - David Cassiman
- Department of Gastroenterology-Hepatology and Metabolic Center, University Hospitals Leuven, B-3000 Leuven, Belgium.
| | - Eva Morava
- Metabolic Center, University Hospitals Leuven, B-3000 Leuven, Belgium.
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, B-3000 Leuven, Belgium.
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
42
|
Sheikh MO, Halmo SM, Wells L. Recent advancements in understanding mammalian O-mannosylation. Glycobiology 2017; 27:806-819. [PMID: 28810660 PMCID: PMC6082599 DOI: 10.1093/glycob/cwx062] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023] Open
Abstract
The post-translational glycosylation of select proteins by O-linked mannose (O-mannose or O-man) is a conserved modification from yeast to humans and has been shown to be necessary for proper development and growth. The most well studied O-mannosylated mammalian protein is α-dystroglycan (α-DG). Hypoglycosylation of α-DG results in varying severities of congenital muscular dystrophies, cancer progression and metastasis, and inhibited entry and infection of certain arenaviruses. Defects in the gene products responsible for post-translational modification of α-DG, primarily glycosyltransferases, are the basis for these diseases. The multitude of clinical phenotypes resulting from defective O-mannosylation highlights the biomedical significance of this unique modification. Elucidation of the various O-mannose biosynthetic pathways is imperative to understanding a broad range of human diseases and for the development of novel therapeutics. In this review, we will focus on recent discoveries delineating the various enzymes, structures and functions associated with O-mannose-initiated glycoproteins. Additionally, we discuss current gaps in our knowledge of mammalian O-mannosylation, discuss the evolution of this pathway, and illustrate the utility and limitations of model systems to study functions of O-mannosylation.
Collapse
Affiliation(s)
- M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Stephanie M Halmo
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
43
|
Van den Bergh PYK, Sznajer Y, Van Parys V, van Tol W, Wevers RA, Lefeber DJ, Xu L, Lek M, MacArthur DG, Johnson K, Phillips L, Töpf A, Straub V. A homozygous DPM3 mutation in a patient with alpha-dystroglycan-related limb girdle muscular dystrophy. Neuromuscul Disord 2017; 27:1043-1046. [PMID: 28803818 DOI: 10.1016/j.nmd.2017.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
Defects of O-linked glycosylation of alpha-dystroglycan cause a wide spectrum of muscular dystrophies ranging from severe congenital muscular dystrophy associated with abnormal brain and eye development to mild limb girdle muscular dystrophy. We report a female patient who developed isolated pelvic girdle muscle weakness and wasting, which became symptomatic at age 42. Exome sequencing uncovered a homozygous c.131T > G (p.Leu44Pro) substitution in DPM3, encoding dolichol-P-mannose (DPM) synthase subunit 3, leading to a 50% reduction of enzymatic activity. Decreased availability of DPM as an essential donor substrate for protein O-mannosyltransferase (POMT) 1 and 2 explains defective skeletal muscle alpha-dystroglycan O-glycosylation. Our findings show that DPM3 mutations may lead to an isolated and mild limb girdle muscular dystrophy phenotype without cardiomyopathy.
Collapse
Affiliation(s)
- P Y K Van den Bergh
- Neuromuscular Reference Centre, University Hospital St-Luc, University of Louvain, Brussels, Belgium.
| | - Y Sznajer
- Neuromuscular Reference Centre, University Hospital St-Luc, University of Louvain, Brussels, Belgium; Centre for Human Genetics, University Hospital St-Luc, University of Louvain, Brussels, Belgium
| | - V Van Parys
- Neuromuscular Reference Centre, University Hospital St-Luc, University of Louvain, Brussels, Belgium
| | - W van Tol
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands; Translational Metabolic Laboratory, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - R A Wevers
- Translational Metabolic Laboratory, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - D J Lefeber
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands; Translational Metabolic Laboratory, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - L Xu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - M Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - D G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - K Johnson
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon-Tyne, United Kingdom
| | - L Phillips
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon-Tyne, United Kingdom
| | - A Töpf
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon-Tyne, United Kingdom
| | - V Straub
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon-Tyne, United Kingdom
| |
Collapse
|
44
|
Manya H, Endo T. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan. Biochim Biophys Acta Gen Subj 2017; 1861:2462-2472. [PMID: 28711406 DOI: 10.1016/j.bbagen.2017.06.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND O-mannosyl glycans have been found in a limited number of glycoproteins of the brain, nerves, and skeletal muscles, particularly in α-dystroglycan (α-DG). Defects in O-mannosyl glycan on α-DG are the primary cause of a group of congenital muscular dystrophies, which are collectively termed α-dystroglycanopathy. Recent studies have revealed various O-mannosyl glycan structures, which can be classified as core M1, core M2, and core M3 glycans. Although many dystroglycanopathy genes are involved in core M3 processing, the structure and biosynthesis of core M3 glycan remains only partially understood. SCOPE OF REVIEW This review presents recent findings about the structure, biosynthesis, and pathology of O-mannosyl glycans. MAJOR CONCLUSIONS Recent studies have revealed that the entire structure of core M3 glycan, including ribitol-5-phosphate, is a novel structure in mammals; its unique biosynthetic pathway has been elucidated by the identification of new causative genes for α-dystroglycanopathies and their functions. GENERAL SIGNIFICANCE O-mannosyl glycan has a novel, unique structure that is important for the maintenance of brain and muscle functions. These findings have opened up a new field in glycoscience. These studies will further contribute to the understanding of the pathomechanism of α-dystroglycanopathy and the development of glycotherapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
45
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
46
|
Booler HS, Pagalday-Vergara V, Williams JL, Hopkinson M, Brown SC. Evidence of early defects in Cajal-Retzius cell localization during brain development in a mouse model of dystroglycanopathy. Neuropathol Appl Neurobiol 2017; 43:330-345. [PMID: 28039900 DOI: 10.1111/nan.12376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/10/2016] [Accepted: 12/31/2016] [Indexed: 01/21/2023]
Abstract
AIMS The secondary dystroglycanopathies represent a heterogeneous group of congenital muscular dystrophies characterized by the defective glycosylation of alpha dystroglycan. These disorders are associated with mutations in at least 17 genes, including Fukutin-related protein (FKRP). At the severe end of the clinical spectrum there is substantial brain involvement, and cobblestone lissencephaly is highly suggestive of these disorders. The precise pathogenesis of this phenotype has, however, remained unclear with most attention focused on the disruption to the radial glial scaffold. Here, we set out to investigate whether lesions are apparent prior to the differentiation of the radial glia. METHODS A detailed investigation of the structural brain defects from embryonic day 10.5 (E10.5) up until the time of birth (P0) was undertaken in the Fkrp-deficient mice (FKRPKD ). Reelin, and downstream PI3K/Akt signalling pathways were analysed using Western blot. RESULTS We show that early basement membrane defects and neuroglial ectopia precede radial glial cell differentiation. Furthermore, we identify mislocalization of Cajal-Retzius cells which nonetheless is not associated with any apparent disruption to the reelin, and downstream PI3K/Akt signalling pathways. CONCLUSIONS These observations identify Cajal-Retzius cell mislocalization as an early event during the development of cortical defects thereby identifying an earlier onset and more complex pathogenesis than originally reported for the secondary dystroglycanopathies. Overall this study provides new insight into central nervous system involvement in this group of diseases.
Collapse
Affiliation(s)
- H S Booler
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - V Pagalday-Vergara
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - J L Williams
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - M Hopkinson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - S C Brown
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
47
|
Johnstone DL, Nguyen TTM, Murakami Y, Kernohan KD, Tétreault M, Goldsmith C, Doja A, Wagner JD, Huang L, Hartley T, St-Denis A, le Deist F, Majewski J, Bulman DE, Kinoshita T, Dyment DA, Boycott KM, Campeau PM. Compound heterozygous mutations in the gene PIGP are associated with early infantile epileptic encephalopathy. Hum Mol Genet 2017; 26:1706-1715. [DOI: 10.1093/hmg/ddx077] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/27/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Devon L. Johnstone
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
| | - Thi-Tuyet-Mai Nguyen
- Research Center, CHU Sainte-Justine, University of Montreal, Montreal, Quebec H3T1C5, Canada
| | - Yoshiko Murakami
- WPI Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kristin D. Kernohan
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
| | - Martine Tétreault
- Department of Human Genetics, McGill University, Montreal, Quebec H3A1B1, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec H3A0G1, Canada
| | - Claire Goldsmith
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario K1H8L1, Canada
| | - Asif Doja
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario K1H8L1, Canada
| | - Justin D. Wagner
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
| | - Lijia Huang
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
| | - Taila Hartley
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
| | - Anik St-Denis
- Research Center, CHU Sainte-Justine, University of Montreal, Montreal, Quebec H3T1C5, Canada
| | - Françoise le Deist
- Research Center, CHU Sainte-Justine, University of Montreal, Montreal, Quebec H3T1C5, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Quebec H3A1B1, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec H3A0G1, Canada
| | - Dennis E. Bulman
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
| | - Taroh Kinoshita
- WPI Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - David A. Dyment
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario K1H8L1, Canada
| | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario K1H8L1, Canada
| | - Philippe M. Campeau
- Research Center, CHU Sainte-Justine, University of Montreal, Montreal, Quebec H3T1C5, Canada
- Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, Quebec H3T1C5, Canada
| | | |
Collapse
|
48
|
Keramaris E, Lu PJ, Tucker J, Lu QL. Expression of glycosylated α-dystroglycan in newborn skeletal and cardiac muscles of fukutin related protein (FKRP) mutant mice. Muscle Nerve 2016; 55:582-590. [DOI: 10.1002/mus.25378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Elizabeth Keramaris
- McColl-Lockwood Laboratory for Muscular Dystrophy Research; Cannon Research Center, Carolinas Medical Center; 1542 Garden Terrace Charlotte North Carolina 28203 USA
| | - Pei J. Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research; Cannon Research Center, Carolinas Medical Center; 1542 Garden Terrace Charlotte North Carolina 28203 USA
| | - Jason Tucker
- McColl-Lockwood Laboratory for Muscular Dystrophy Research; Cannon Research Center, Carolinas Medical Center; 1542 Garden Terrace Charlotte North Carolina 28203 USA
| | - Qi L. Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research; Cannon Research Center, Carolinas Medical Center; 1542 Garden Terrace Charlotte North Carolina 28203 USA
| |
Collapse
|
49
|
220th ENMC workshop: Dystroglycan and the dystroglycanopathies Naarden, The Netherlands, 27-29 May 2016. Neuromuscul Disord 2016; 27:387-395. [PMID: 28089719 DOI: 10.1016/j.nmd.2016.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/30/2023]
|
50
|
Bouchet-Séraphin C, Chelbi-Viallon M, Vuillaumier-Barrot S, Seta N. [Genes of alpha-dystroglycanopathies in 2016]. Med Sci (Paris) 2016; 32 Hors série n°2:40-45. [PMID: 27869076 DOI: 10.1051/medsci/201632s210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Céline Bouchet-Séraphin
- AP-HP, Hôpital Bichat Claude Bernard, Service de Biochimie, 75018 Paris, France - AP-HP, Hôpital Bichat Claude Bernard, Département de Génétique, 75018 Paris, France
| | | | - S Vuillaumier-Barrot
- AP-HP, Hôpital Bichat Claude Bernard, Service de Biochimie, 75018 Paris, France - AP-HP, Hôpital Bichat Claude Bernard, Département de Génétique, 75018 Paris, France - Inserm U733, Faculté Bichat, 75018 Paris, France
| | - N Seta
- AP-HP, Hôpital Bichat Claude Bernard, Service de Biochimie, 75018 Paris, France - Université Paris Descartes, 75006 Paris, France
| |
Collapse
|