1
|
Hastings A, Cullinane P, Wrigley S, Revesz T, Morris HR, Dickson JC, Jaunmuktane Z, Warner TT, De Pablo-Fernández E. Neuropathologic Validation and Diagnostic Accuracy of Presynaptic Dopaminergic Imaging in the Diagnosis of Parkinsonism. Neurology 2024; 102:e209453. [PMID: 38759132 DOI: 10.1212/wnl.0000000000209453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Degeneration of the presynaptic nigrostriatal dopaminergic system is one of the main biological features of Parkinson disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD), which can be measured using single-photon emission CT imaging for diagnostic purposes. Despite its widespread use in clinical practice and research, the diagnostic properties of presynaptic nigrostriatal dopaminergic (DAT) imaging in parkinsonism have never been evaluated against the diagnostic gold standard of neuropathology. The aim of this study was to evaluate the diagnostic parameters of DAT imaging compared with pathologic diagnosis in patients with parkinsonism. METHODS Retrospective cohort study of patients with DAT imaging for the investigation of a clinically uncertain parkinsonism with brain donation between 2010 and 2021 to the Queen Square Brain Bank (London). Patients with DAT imaging for investigation of pure ataxia or dementia syndromes without parkinsonism were excluded. Those with a pathologic diagnosis of PD, MSA, PSP, or CBD were considered presynaptic dopaminergic parkinsonism, and other pathologies were considered postsynaptic for the analysis. DAT imaging was performed in routine clinical practice and visually classified by hospital nuclear medicine specialists as normal or abnormal. The results were correlated with neuropathologic diagnosis to calculate diagnostic accuracy parameters for the diagnosis of presynaptic dopaminergic parkinsonism. RESULTS All of 47 patients with PD, 41 of 42 with MSA, 68 of 73 with PSP, and 6 of 10 with CBD (sensitivity 100%, 97.6%, 93.2%, and 60%, respectively) had abnormal presynaptic dopaminergic imaging. Eight of 17 patients with presumed postsynaptic parkinsonism had abnormal scans (specificity 52.9%). DISCUSSION DAT imaging has very high sensitivity and negative predictive value for the diagnosis of presynaptic dopaminergic parkinsonism, particularly for PD. However, patients with CBD, and to a lesser extent PSP (of various phenotypes) and MSA (with predominant ataxia), can show normal DAT imaging. A range of other neurodegenerative disorders may have abnormal DAT scans with low specificity in the differential diagnosis of parkinsonism. DAT imaging is a useful diagnostic tool in the differential diagnosis of parkinsonism, although clinicians should be aware of its diagnostic properties and limitations. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that DAT imaging does not accurately distinguish between presynaptic dopaminergic parkinsonism and non-presynaptic dopaminergic parkinsonism.
Collapse
Affiliation(s)
- Alexandra Hastings
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Patrick Cullinane
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Sarah Wrigley
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Tamas Revesz
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Huw R Morris
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - John C Dickson
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Zane Jaunmuktane
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Thomas T Warner
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Eduardo De Pablo-Fernández
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| |
Collapse
|
2
|
Dzialas V, Hoenig MC, Prange S, Bischof GN, Drzezga A, van Eimeren T. Structural underpinnings and long-term effects of resilience in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:94. [PMID: 38697984 PMCID: PMC11066097 DOI: 10.1038/s41531-024-00699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Resilience in neuroscience generally refers to an individual's capacity to counteract the adverse effects of a neuropathological condition. While resilience mechanisms in Alzheimer's disease are well-investigated, knowledge regarding its quantification, neurobiological underpinnings, network adaptations, and long-term effects in Parkinson's disease is limited. Our study involved 151 Parkinson's patients from the Parkinson's Progression Marker Initiative Database with available Magnetic Resonance Imaging, Dopamine Transporter Single-Photon Emission Computed Tomography scans, and clinical information. We used an improved prediction model linking neuropathology to symptom severity to estimate individual resilience levels. Higher resilience levels were associated with a more active lifestyle, increased grey matter volume in motor-associated regions, a distinct structural connectivity network and maintenance of relative motor functioning for up to a decade. Overall, the results indicate that relative maintenance of motor function in Parkinson's patients may be associated with greater neuronal substrate, allowing higher tolerance against neurodegenerative processes through dynamic network restructuring.
Collapse
Affiliation(s)
- Verena Dzialas
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, 50937, Cologne, Germany
- University of Cologne, Faculty of Mathematics and Natural Sciences, 50923, Cologne, Germany
| | - Merle C Hoenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, 50937, Cologne, Germany
- Molecular Organization of the Brain, Institute for Neuroscience and Medicine II, Research Center Juelich, 52428, Juelich, Germany
| | - Stéphane Prange
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, 50937, Cologne, Germany
- Université de Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR, 5229, Bron, France
| | - Gérard N Bischof
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, 50937, Cologne, Germany
- Molecular Organization of the Brain, Institute for Neuroscience and Medicine II, Research Center Juelich, 52428, Juelich, Germany
| | - Alexander Drzezga
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, 50937, Cologne, Germany
- Molecular Organization of the Brain, Institute for Neuroscience and Medicine II, Research Center Juelich, 52428, Juelich, Germany
- German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
| | - Thilo van Eimeren
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, 50937, Cologne, Germany.
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, 50937, Cologne, Germany.
| |
Collapse
|
3
|
Manchanda R, Samanta R, Narayan ML, Kumar M, Tiwari A, Agarwal A, Bahurupi Y, Kumari S, Kumar N. Connecting the Dots: Exploring the Relationship between Optical Coherence Tomography and 99mTc-TRODAT-1 SPECT Parameters in Parkinson's Disease. Ann Indian Acad Neurol 2024; 27:188-195. [PMID: 38751926 PMCID: PMC11093162 DOI: 10.4103/aian.aian_31_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Background and Objective While optical coherence tomography (OCT) is explored as a potential biomarker in Parkinson's disease (PD), technetium-99m-labeled tropane derivative (99mTc-TRODAT-1) single-photon emission computed tomography (SPECT) imaging has a proven role in diagnosing PD. Our objective was to compare the OCT parameters in PD patients and healthy controls (HCs) and correlate them with 99mTc-TRODAT-1 parameters in PD patients. Materials and Methods This cross-sectional study included 30 PD patients and 30 age- and gender-matched HCs. Demographic data, PD details including Movement Disorders Society Unified Parkinson's Disease Rating Scale-III (MDS-UPDRS-III) and Hoehn-Yahr (HY) staging, and OCT parameters including macular and peripapillary retinal nerve fiber layer (RNFL) thickness in bilateral eyes were recorded. PD patients underwent 99mTc-TRODAT-1 SPECT imaging. The terms "ipsilateral" and "contralateral" were used with reference to more severely affected body side in PD patients and compared with corresponding sides in HCs. Results PD patients showed significant ipsilateral superior parafoveal quadrant (mean ± standard deviation [SD] = 311.10 ± 15.90 vs. 297.57 ± 26.55, P = 0.02) and contralateral average perifoveal (mean ± SD = 278.75 ± 18.97 vs. 269.08 ± 16.91, P = 0.04) thinning compared to HCs. Peripapillary RNFL parameters were comparable between PD patients and HCs. MDS-UPDRS-III score and HY stage were inversely correlated to both ipsilateral (Spearman rho = -0.52, P = 0.003; Spearman rho = -0.47, P = 0.008) and contralateral (Spearman rho = -0.53, P = 0.002; Spearman rho = -0.58, P < 0.001) macular volumes, respectively. PD duration was inversely correlated with ipsilateral temporal parafoveal thickness (ρ = -0.41, P = 0.02). No correlation was observed between OCT and 99mTc-TRODAT-1 SPECT parameters in PD patients. Conclusion Compared to HCs, a significant thinning was observed in the ipsilateral superior parafoveal quadrant and the contralateral average perifoveal region in PD patients. Macular volume and ipsilateral temporal parafoveal thickness were inversely correlated with disease severity and duration, respectively. OCT and 99mTc-TRODAT-1 SPECT parameters failed to correlate in PD patients.
Collapse
Affiliation(s)
- Rajat Manchanda
- Department of Neurology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ramanuj Samanta
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Manishi L. Narayan
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Mritunjai Kumar
- Department of Neurology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ashutosh Tiwari
- Department of Neurology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ajai Agarwal
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Yogesh Bahurupi
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Sweety Kumari
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
- Department of Ophthalmology, MediCiti Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Niraj Kumar
- Department of Neurology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
- Department of Neurology, All India Institute of Medical Sciences, Bibinagar, Hyderabad Metropolitan Region, Telangana, India
| |
Collapse
|
4
|
Salvatore MF. Dopamine Signaling in Substantia Nigra and Its Impact on Locomotor Function-Not a New Concept, but Neglected Reality. Int J Mol Sci 2024; 25:1131. [PMID: 38256204 PMCID: PMC10815979 DOI: 10.3390/ijms25021131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The mechanistic influences of dopamine (DA) signaling and impact on motor function are nearly always interpreted from changes in nigrostriatal neuron terminals in striatum. This is a standard practice in studies of human Parkinson's disease (PD) and aging and related animal models of PD and aging-related parkinsonism. However, despite dozens of studies indicating an ambiguous relationship between changes in striatal DA signaling and motor phenotype, this perseverating focus on striatum continues. Although DA release in substantia nigra (SN) was first reported almost 50 years ago, assessment of nigral DA signaling changes in relation to motor function is rarely considered. Whereas DA signaling has been well-characterized in striatum at all five steps of neurotransmission (biosynthesis and turnover, storage, release, reuptake, and post-synaptic binding) in the nigrostriatal pathway, the depth of such interrogations in the SN, outside of cell counts, is sparse. However, there is sufficient evidence that these steps in DA neurotransmission in the SN are operational and regulated autonomously from striatum and are present in human PD and aging and related animal models. To complete our understanding of how nigrostriatal DA signaling affects motor function, it is past time to include interrogation of nigral DA signaling. This brief review highlights evidence that changes in nigral DA signaling at each step in DA neurotransmission are autonomous from those in striatum and changes in the SN alone can influence locomotor function. Accordingly, for full characterization of how nigrostriatal DA signaling affects locomotor activity, interrogation of DA signaling in SN is essential.
Collapse
Affiliation(s)
- Michael F Salvatore
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
5
|
López-Ornelas A, Escobedo-Avila I, Ramírez-García G, Lara-Rodarte R, Meléndez-Ramírez C, Urrieta-Chávez B, Barrios-García T, Cáceres-Chávez VA, Flores-Ponce X, Carmona F, Reynoso CA, Aguilar C, Kerik NE, Rocha L, Verdugo-Díaz L, Treviño V, Bargas J, Ramos-Mejía V, Fernández-Ruiz J, Campos-Romo A, Velasco I. Human Embryonic Stem Cell-Derived Immature Midbrain Dopaminergic Neurons Transplanted in Parkinsonian Monkeys. Cells 2023; 12:2738. [PMID: 38067166 PMCID: PMC10706241 DOI: 10.3390/cells12232738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Human embryonic stem cells (hESCs) differentiate into specialized cells, including midbrain dopaminergic neurons (DANs), and Non-human primates (NHPs) injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine develop some alterations observed in Parkinson's disease (PD) patients. Here, we obtained well-characterized DANs from hESCs and transplanted them into two parkinsonian monkeys to assess their behavioral and imaging changes. DANs from hESCs expressed dopaminergic markers, generated action potentials, and released dopamine (DA) in vitro. These neurons were transplanted bilaterally into the putamen of parkinsonian NHPs, and using magnetic resonance imaging techniques, we calculated the fractional anisotropy (FA) and mean diffusivity (MD), both employed for the first time for these purposes, to detect in vivo axonal and cellular density changes in the brain. Likewise, positron-emission tomography scans were performed to evaluate grafted DANs. Histological analyses identified grafted DANs, which were quantified stereologically. After grafting, animals showed signs of partially improved motor behavior in some of the HALLWAY motor tasks. Improvement in motor evaluations was inversely correlated with increases in bilateral FA. MD did not correlate with behavior but presented a negative correlation with FA. We also found higher 11C-DTBZ binding in positron-emission tomography scans associated with grafts. Higher DA levels measured by microdialysis after stimulation with a high-potassium solution or amphetamine were present in grafted animals after ten months, which has not been previously reported. Postmortem analysis of NHP brains showed that transplanted DANs survived in the putamen long-term, without developing tumors, in immunosuppressed animals. Although these results need to be confirmed with larger groups of NHPs, our molecular, behavioral, biochemical, and imaging findings support the integration and survival of human DANs in this pre-clinical PD model.
Collapse
Affiliation(s)
- Adolfo López-Ornelas
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Itzel Escobedo-Avila
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Gabriel Ramírez-García
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Rolando Lara-Rodarte
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - César Meléndez-Ramírez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Beetsi Urrieta-Chávez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Tonatiuh Barrios-García
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey 64710, Mexico; (T.B.-G.); (V.T.)
| | - Verónica A. Cáceres-Chávez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
| | - Xóchitl Flores-Ponce
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Francia Carmona
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico; (F.C.); (L.R.)
| | - Carlos Alberto Reynoso
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Carlos Aguilar
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Nora E. Kerik
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Luisa Rocha
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico; (F.C.); (L.R.)
| | - Leticia Verdugo-Díaz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
| | - Víctor Treviño
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey 64710, Mexico; (T.B.-G.); (V.T.)
| | - José Bargas
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
| | - Verónica Ramos-Mejía
- Gene Regulation, Stem Cells, and Development Group, GENYO-Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain;
| | - Juan Fernández-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
| | - Aurelio Campos-Romo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| |
Collapse
|
6
|
Kuhlman G, Auinger P, Duff-Canning S, Lang A, Tanner C, Marras C. Non-steroidal anti-inflammatory drug use and markers of Parkinson's disease progression: A retrospective cohort study. J Neurol Sci 2023; 454:120822. [PMID: 37839283 DOI: 10.1016/j.jns.2023.120822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Previous studies demonstrated reduced incidence of Parkinson's disease (PD) with regular non-steroidal anti-inflammatory drug (NSAID) exposure, particularly ibuprofen. No studies have investigated the impact of NSAID exposure on markers of disease progression for established PD. METHODS This is a retrospective observational study using two cohorts. The Deprenyl and Tocopheral Anti-Oxidative Therapy of Parkinsonism (DATATOP) study enrolled 800 drug naïve people with PD with a median follow-up duration of 6.5 years. The DATATOP primary outcome measures were mortality at last study visit. The Parkinson's Progression Markers Initiative (PPMI) cohort was limited to drug naïve PD participants (423 at time of analysis). The PPMI primary outcome measure was annual rate of change in ipsilateral putamen 123I-ioflupane binding ratio at four years study duration. Regular NSAID exposure was defined as any scheduled NSAID use (as needed use was excluded). Analysis was performed separately for recent exposure and cumulative exposure time (CET). RESULTS Total CET median and interquartile range (years) for ibuprofen, non-aspirin NSAID, and aspirin were respectively 0.9 (0.3-2.9), 1.1 (0.3-2.6), and 1.5 (0.4-2.8) for DATATOP and 0.4 (0.01-2.2), 1.4 (0.3-4.4), and 5.5 (2.6-7.1) for PPMI. Exposure was usually discontinuous. Exposure to ibuprofen was low in both cohorts. There was no significant association between NSAID recent exposure or CET and primary outcome measures in either cohort. CONCLUSIONS NSAID exposure in established PD does not appear to provide protective effect although exposure may not have occurred continuously enough in these two cohorts to provide benefit. Statistical power for ibuprofen exposure analyses was limited.
Collapse
Affiliation(s)
- Greg Kuhlman
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, 260 Stetson St., Suite 2300, Cincinnati, OH 45267-0525, USA; Edmond J. Safra Program in Parkinson's disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, 399 Bathurst St, Toronto, ON M5T 2S6, Canada.
| | - Peggy Auinger
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Box 694, Rochester, NY 14642, USA.
| | - Sarah Duff-Canning
- Toronto Psychology Centre, 131 Bloor St W #410, Toronto, ON M5S 1R1, Canada
| | - Anthony Lang
- Edmond J. Safra Program in Parkinson's disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, 399 Bathurst St, Toronto, ON M5T 2S6, Canada.
| | - Caroline Tanner
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, 1635 Divisadero St Suite 520, San Francisco, CA 94115.
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, 399 Bathurst St, Toronto, ON M5T 2S6, Canada.
| |
Collapse
|
7
|
Kasanga EA, Han Y, Shifflet MK, Navarrete W, McManus R, Parry C, Barahona A, Nejtek VA, Manfredsson FP, Kordower JH, Richardson JR, Salvatore MF. Nigral-specific increase in ser31 phosphorylation compensates for tyrosine hydroxylase protein and nigrostriatal neuron loss: Implications for delaying parkinsonian signs. Exp Neurol 2023; 368:114509. [PMID: 37634696 DOI: 10.1016/j.expneurol.2023.114509] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Compensatory mechanisms that augment dopamine (DA) signaling are thought to mitigate onset of hypokinesia prior to major loss of tyrosine hydroxylase (TH) in striatum that occurs in Parkinson's disease. However, the identity of such mechanisms remains elusive. In the present study, the rat nigrostriatal pathway was unilaterally-lesioned with 6-hydroxydopamine (6-OHDA) to determine whether differences in DA content, TH protein, TH phosphorylation, or D1 receptor expression in striatum or substantia nigra (SN) aligned with hypokinesia onset and severity at two time points. In striatum, DA and TH loss reached its maximum (>90%) 7 days after lesion induction. However, in SN, no DA loss occurred, despite ∼60% TH loss. Hypokinesia was established at 21 days post-lesion and maintained at 28 days. At this time, DA loss was ∼60% in the SN, but still of lesser magnitude than TH loss. At day 7 and 28, ser31 TH phosphorylation increased only in SN, corresponding to less DA versus TH protein loss. In contrast, ser40 TH phosphorylation was unaffected in either region. Despite DA loss in both regions at day 28, D1 receptor expression increased only in lesioned SN. These results support the concept that augmented components of DA signaling in the SN, through increased ser31 TH phosphorylation and D1 receptor expression, contribute as compensatory mechanisms against progressive nigrostriatal neuron and TH protein loss, and may mitigate hypokinesia severity.
Collapse
Affiliation(s)
- Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Yoonhee Han
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Marla K Shifflet
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Walter Navarrete
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Robert McManus
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Caleb Parry
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Arturo Barahona
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Vicki A Nejtek
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85287, USA
| | - Jason R Richardson
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Michael F Salvatore
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA.
| |
Collapse
|
8
|
Correlations between cerebrospinal fluid homovanillic acid and dopamine transporter SPECT in degenerative parkinsonian syndromes. J Neural Transm (Vienna) 2023; 130:513-520. [PMID: 36871130 PMCID: PMC10050014 DOI: 10.1007/s00702-023-02611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Both cerebrospinal fluid (CSF) homovanillic acid (HVA) and striatal dopamine transporter (DAT) binding on single-photon emission computed tomography (SPECT) reflect nigrostriatal dopaminergic function, but studies on the relationship between the two have been limited. It is also unknown whether the reported variance in striatal DAT binding among diseases reflects the pathophysiology or characteristics of the subjects. We included 70 patients with Parkinson's disease (PD), 12 with progressive supranuclear palsy (PSP), 12 with multiple system atrophy, six with corticobasal syndrome, and nine with Alzheimer's disease as disease control, who underwent both CSF analysis and 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (123I-ioflupane) SPECT. We evaluated the correlation between CSF HVA concentration and the specific binding ratio (SBR) of striatal DAT binding. We also compared the SBR for each diagnosis, controlling for CSF HVA concentration. The correlations between the two were significant in patients with PD (r = 0.34, p = 0.004) and PSP (r = 0.77, p = 0.004). The mean SBR value was the lowest in patients with PSP and was significantly lower in patients with PSP than in those with PD (p = 0.037) after adjusting for CSF HVA concentration. Our study demonstrates that striatal DAT binding correlates with CSF HVA concentration in both PD and PSP, and striatal DAT reduction would be more advanced in PSP than in PD at an equivalent dopamine level. Striatal DAT binding may correlate with dopamine levels in the brain. The pathophysiology of each diagnosis may explain this difference.
Collapse
|
9
|
Norris SA, Tian L, Williams EL, Perlmutter JS. Transient dystonia correlates with parkinsonism after 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine in nonhuman primates. DYSTONIA 2023; 2:11019. [PMID: 37711667 PMCID: PMC10501383 DOI: 10.3389/dyst.2023.11019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Unilateral internal carotid artery 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) infusion in non-human primates produces transient contralateral hemi-dystonia followed by stable contralateral hemi-parkinsonism; the relationship between dystonia and parkinsonism remains unclear. We hypothesized that transient dystonia severity following MPTP correlates with parkinsonism severity. In male Macaca nemestrina (n = 3) and M. fascicularis (n = 17) we administered unilateral intra-carotid MPTP, then correlated validated blinded ratings of transient peak dystonia and delayed parkinsonism. We also correlated dystonia severity with post-mortem measures of residual striatal dopamine and nigral neuron counts obtained a mean 53 ± 15 days following MPTP, after resolution of dystonia but during stable parkinsonism. Median latency to dystonia onset was 1 day, and peak severity 2.5 days after MPTP; total dystonia duration was 13.5 days. Parkinsonism peaked a median of 19.5 days after MPTP, remaining nearly constant thereafter. Peak dystonia severity highly correlated with parkinsonism severity (r[18] = 0.82, p < 0.001). Residual cell counts in lesioned nigra correlated linearly with peak dystonia scores (r[18] = -0.68, p=<0.001). Dystonia was not observed in monkeys without striatal dopamine depletion (n = 2); dystonia severity correlated with striatal dopamine depletion when residual nigral cell loss was less than 50% ([11] r = -0.83, p < 0.001) but spanned a broad range with near complete striatal dopamine depletion, when nigral cell loss was greater than 50%. Our data indicate that residual striatal dopamine may not reflect dystonia severity. We speculate on mechanisms of transient dystonia followed by parkinsonism that may be studied using this particular NHP MPTP model to better understand relationships of transient dystonia to nigrostriatal injury and parkinsonism.
Collapse
Affiliation(s)
- S. A. Norris
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - L. Tian
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - E. L. Williams
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - J. S. Perlmutter
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Physical Therapy, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Occupational Therapy, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
10
|
Maiti B, Perlmutter JS. Imaging in Movement Disorders. Continuum (Minneap Minn) 2023; 29:194-218. [PMID: 36795878 DOI: 10.1212/con.0000000000001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVE This article reviews commonly used imaging modalities in movement disorders, particularly parkinsonism. The review includes the diagnostic utility, role in differential diagnosis, reflection of pathophysiology, and limitations of neuroimaging in the setting of movement disorders. It also introduces promising new imaging modalities and describes the current status of research. LATEST DEVELOPMENTS Iron-sensitive MRI sequences and neuromelanin-sensitive MRI can be used to directly assess the integrity of nigral dopaminergic neurons and thus may reflect disease pathology and progression throughout the full range of severity in Parkinson disease (PD). The striatal uptake of presynaptic radiotracers in their terminal axons as currently assessed using clinically approved positron emission tomography (PET) or single-photon emission computed tomography (SPECT) imaging correlates with nigral pathology and disease severity only in early PD. Cholinergic PET, using radiotracers that target the presynaptic vesicular acetylcholine transporter, constitutes a substantial advance and may provide crucial insights into the pathophysiology of clinical symptoms such as dementia, freezing, and falls. ESSENTIAL POINTS In the absence of valid, direct, objective biomarkers of intracellular misfolded α-synuclein, PD remains a clinical diagnosis. The clinical utility of PET- or SPECT-based striatal measures is currently limited given their lack of specificity and inability to reflect nigral pathology in moderate to severe PD. These scans may be more sensitive than clinical examination to detect nigrostriatal deficiency that occurs in multiple parkinsonian syndromes and may still be recommended for clinical use in the future to identify prodromal PD if and when disease-modifying treatments become available. Multimodal imaging to evaluate underlying nigral pathology and its functional consequences may hold the key to future advances.
Collapse
|
11
|
Xu J. Dopamine D3 Receptor in Parkinson Disease: A Prognosis Biomarker and an Intervention Target. Curr Top Behav Neurosci 2023; 60:89-107. [PMID: 35711029 PMCID: PMC10034716 DOI: 10.1007/7854_2022_373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Parkinson disease (PD) dementia, pathologically featured as nigrostriatal dopamine (DA) neuronal loss with motor and non-motor manifestations, leads to substantial disability and economic burden. DA therapy targets the DA D3 receptor (D3R) with high affinity and selectivity. The pathological involvement of D3R is evidenced as an effective biomarker for disease progression and DA agnostic interventions, with compensations of increased DA, decreased aggregates of α-synuclein (α-Syn), enhanced secretion of brain-derived neurotrophic factors (BDNF), attenuation of neuroinflammation and oxidative damage, and promoting neurogenesis in the brain. D3R also interacts with D1R to reduce PD-associated motor symptoms and alleviate the side effects of levodopa (L-DOPA) treatment. We recently found that DA D2 receptor (D2R) density decreases in the late-stage PDs, while high D3R or DA D1 receptor (D1R) + D3R densities in the postmortem PD brains correlate with survival advantages. These new essential findings warrant renewed investigations into the understanding of D3R neuron populations and their cross-sectional and longitudinal regulations in PD progression.
Collapse
Affiliation(s)
- Jinbin Xu
- Division of Radiological Sciences, Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Disentangling nigral and putaminal contribution to motor impairment and levodopa response in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:132. [PMID: 36241644 PMCID: PMC9568583 DOI: 10.1038/s41531-022-00401-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
The extent to which the degeneration of the substantia nigra (SN) and putamen each contribute to motor impairment in Parkinson's disease (PD) is unclear, as they are usually investigated using different imaging modalities. To examine the pathophysiological significance of the SN and putamen in both motor impairment and the levodopa response in PD using diffusion microstructure imaging (DMI). In this monocentric retrospective cross-sectional study, DMI parameters from 108 patients with PD and 35 healthy controls (HC) were analyzed using a voxel- and region-based approach. Linear models were applied to investigate the association between individual DMI parameters and Movement Disorder Society Unified Parkinson's Disease Rating Scale-Part 3 performance in ON- and OFF-states, as well as the levodopa response, controlling for age and sex. Voxel- and region-based group comparisons of DMI parameters between PD and HC revealed significant differences in the SN and putamen. In PD, a poorer MDS-UPDRS-III performance in the ON-state was associated with increased free fluid in the SN (b-weight = 65.79, p = 0.004) and putamen (b-weight = 86.00, p = 0.006), and contrariwise with the demise of cells in both structures. The levodopa response was inversely associated with free fluid both in the SN (b-weight = -83.61, p = 0.009) and putamen (b-weight = -176.56, p < 0.001). Interestingly, when the two structures were assessed together, the integrity of the putamen, but not the SN, served as a predictor for the levodopa response (b-weight = -158.03, p < 0.001). Structural alterations in the SN and putamen can be measured by diffusion microstructure imaging in PD. They are associated with poorer motor performance in the ON-state, as well as a reduced response to levodopa. While both nigral and putaminal integrity are required for good performance in the ON-state, it is putaminal integrity alone that determines the levodopa response. Therefore, the structural integrity of the putamen is crucial for the improvement of motor symptoms to dopaminergic medication, and might therefore serve as a promising biomarker for motor staging.
Collapse
|
13
|
Schröter N, Blazhenets G, Frings L, Jost WH, Weiller C, Rijntjes M, Meyer PT, Brumberg J. Nigral glucose metabolism as a diagnostic marker of neurodegenerative parkinsonian syndromes. NPJ Parkinsons Dis 2022; 8:123. [PMID: 36171206 PMCID: PMC9519554 DOI: 10.1038/s41531-022-00392-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractParkinson’s disease (PD), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP) are characterized by nigrostriatal degeneration. We used [18F]FDG PET to assess glucose metabolism of the substantia nigra (SN) in patients with these diseases and evaluated its ability to discriminate neurodegenerative parkinsonian syndromes (NP) from controls. We retrospectively evaluated [18F]FDG PET scans of 171 patients with NP (n = 115 PD, n = 35 MSA, n = 21 PSP) and 48 controls (13 healthy controls [HC] and 35 control patients). Mean normalized bilateral [18F]FDG uptake in the SN was calculated and compared between groups with covariance and receiver operating characteristic (ROC) analyses (selection of the optimal cut-off required a minimum specificity of 90% to meet the clinical need of a confirmatory test). PD patients were additionally stratified by the expression of the well-established PD-related metabolic pattern (PDRP; elevated expression defined as 2 standard deviations above the mean value of HC). [18F]FDG uptake was significantly lower in NP (Cohen’s d = 1.09, p < 0.001) and its subgroups (PD, d = 1.10, p < 0.001; MSA, d = 0.97, p < 0.001; PSP, d = 1.79, p < 0.001) than in controls. ROC analysis for discriminating NP vs. controls revealed an area under the curve of 0.81 and a sensitivity and specificity of 56 and 92%. Moreover, nigral metabolism was below the cut-off in 60% of PD patients without elevated PDRP expression. Glucose metabolism of the SN can distinguish patients with NP from controls with good diagnostic accuracy and can be used as a marker of nigral degeneration. Its evaluation is particularly valuable in PD patients without elevated PDRP expression and may thus help to narrow the diagnostic gap of [18F]FDG PET in neurodegenerative parkinsonism (i.e., identification of patients with PD without cortical involvement).
Collapse
|
14
|
Chung SJ, Kim YJ, Kim YJ, Lee HS, Yun M, Lee PH, Jeong Y, Sohn YH. Potential Link Between Cognition and Motor Reserve in Patients With Parkinson's Disease. J Mov Disord 2022; 15:249-257. [PMID: 36065615 DOI: 10.14802/jmd.22063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Objective To investigate whether there is a link between cognitive function and motor reserve (i.e., individual capacity to cope with nigrostriatal dopamine depletion) in patients with newly diagnosed Parkinson's disease (PD). Methods A total of 163 patients with drug-naïve PD who underwent 18F-FP-CIT PET, brain MRI, and a detailed neuropsychological test were enrolled. We estimated individual motor reserve based on initial motor deficits and striatal dopamine depletion using a residual model. We performed correlation analyses between motor reserve estimates and cognitive composite scores. Diffusion connectometry analysis was performed to map the white matter fiber tracts, of which fractional anisotropy (FA) values were well correlated with motor reserve estimates. Additionally, Cox regression analysis was used to assess the effect of initial motor reserve on the risk of dementia conversion. Results The motor reserve estimate was positively correlated with the composite score of the verbal memory function domain (γ = 0.246) and with the years of education (γ = 0.251). Connectometry analysis showed that FA values in the left fornix were positively correlated with the motor reserve estimate, while no fiber tracts were negatively correlated with the motor reserve estimate. Cox regression analysis demonstrated that higher motor reserve estimates tended to be associated with a lower risk of dementia conversion (hazard ratio, 0.781; 95% confidence interval, 0.576-1.058). Conclusion The present study demonstrated that the motor reserve estimate was well correlated with verbal memory function and with white matter integrity in the left fornix, suggesting a possible link between cognition and motor reserve in patients with PD.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea.,YONSEI BEYOND LAB, Yongin, Korea
| | - Yae Ji Kim
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea.,YONSEI BEYOND LAB, Yongin, Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Jeong
- YONSEI BEYOND LAB, Yongin, Korea.,Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Pitella FA, Trevisan AC, Alexandre-Santos L, Kato M, Macruz Brito MMC, Tumas V, Wichert-Ana L. Reference Values for Dopamine Transporter Imaging With 99m Tc-TRODAT-1 in Healthy Subjects and Parkinson's Disease Patients. Clin Nucl Med 2022; 47:794-799. [PMID: 35695759 DOI: 10.1097/rlu.0000000000004311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to evaluate different quantitative indexes of striatum dopamine transporter density in healthy subjects and patients with PD. PATIENTS AND METHODS Sixty-seven patients, 23 healthy (8 male; 59 ± 11 years old) and 44 age-matched patients (29 male; 59 ± 7 years old), with various degrees of severity of idiopathic PD (duration of symptoms, 10 ± 6 years; Hoehn and Yahr Scale, 2.16 ± 0.65; UPDRS-3, 29.74 ± 17.79). All patients performed 99m Tc-TRODAT-1 SPECT. Binding potential indexes (BPIs) of striatum and subregions, asymmetry index (AI), and putamen/caudate ratio (P/C) were calculated. RESULTS Binding potential index was lower in the PD than in healthy subjects. A BPI cutoff for striatum and putamen ranging from 0.73 to 0.78 showed 95% to 100% sensitivity and 84% to 88% specificity. For the caudate nucleus, a BPI threshold of 0.8 to 0.88 revealed 100% sensitivity and 77% to 84% specificity. The BPI's respective areas under the curve ranged from 0.92 to 0.98. For AI and P/C, the area under the curve was less than 0.70. Binding potential index intraclass correlation coefficient was close to 1.0 in the intraobserver evaluation and 0.76 to 0.87 in the interobserver assessment. Intraclass correlation coefficient for AI and P/C was inferior to 0.75 in the intraobserver and interobserver evaluations. CONCLUSIONS Different semiquantitative indices differentiated PD and healthy subjects and may help the differential diagnosis of other entities involving the dopaminergic system. Asymmetry index and P/C performances were lower than BPI, including their intraobserver and interobserver reliability, and therefore should be used with caution.
Collapse
Affiliation(s)
| | | | | | - Mery Kato
- From the Department of Medical Imaging, Hematology, and Clinical Oncology
| | | | - Vitor Tumas
- From the Department of Medical Imaging, Hematology, and Clinical Oncology
| | - Lauro Wichert-Ana
- From the Department of Medical Imaging, Hematology, and Clinical Oncology
| |
Collapse
|
16
|
Liu Z, Moon HS, Li Z, Laforest R, Perlmutter JS, Norris SA, Jha AK. A tissue-fraction estimation-based segmentation method for quantitative dopamine transporter SPECT. Med Phys 2022; 49:5121-5137. [PMID: 35635327 PMCID: PMC9703616 DOI: 10.1002/mp.15778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Quantitative measures of dopamine transporter (DaT) uptake in caudate, putamen, and globus pallidus (GP) derived from dopamine transporter-single-photon emission computed tomography (DaT-SPECT) images have potential as biomarkers for measuring the severity of Parkinson's disease. Reliable quantification of this uptake requires accurate segmentation of the considered regions. However, segmentation of these regions from DaT-SPECT images is challenging, a major reason being partial-volume effects (PVEs) in SPECT. The PVEs arise from two sources, namely the limited system resolution and reconstruction of images over finite-sized voxel grids. The limited system resolution results in blurred boundaries of the different regions. The finite voxel size leads to TFEs, that is, voxels contain a mixture of regions. Thus, there is an important need for methods that can account for the PVEs, including the TFEs, and accurately segment the caudate, putamen, and GP, from DaT-SPECT images. PURPOSE Design and objectively evaluate a fully automated tissue-fraction estimation-based segmentation method that segments the caudate, putamen, and GP from DaT-SPECT images. METHODS The proposed method estimates the posterior mean of the fractional volumes occupied by the caudate, putamen, and GP within each voxel of a three-dimensional DaT-SPECT image. The estimate is obtained by minimizing a cost function based on the binary cross-entropy loss between the true and estimated fractional volumes over a population of SPECT images, where the distribution of true fractional volumes is obtained from existing populations of clinical magnetic resonance images. The method is implemented using a supervised deep-learning-based approach. RESULTS Evaluations using clinically guided highly realistic simulation studies show that the proposed method accurately segmented the caudate, putamen, and GP with high mean Dice similarity coefficients of ∼ 0.80 and significantly outperformed (p < 0.01 $p < 0.01$ ) all other considered segmentation methods. Further, an objective evaluation of the proposed method on the task of quantifying regional uptake shows that the method yielded reliable quantification with low ensemble normalized root mean square error (NRMSE) < 20% for all the considered regions. In particular, the method yielded an even lower ensemble NRMSE of ∼ 10% for the caudate and putamen. CONCLUSIONS The proposed tissue-fraction estimation-based segmentation method for DaT-SPECT images demonstrated the ability to accurately segment the caudate, putamen, and GP, and reliably quantify the uptake within these regions. The results motivate further evaluation of the method with physical-phantom and patient studies.
Collapse
Affiliation(s)
- Ziping Liu
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Hae Sol Moon
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Zekun Li
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joel S. Perlmutter
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology,Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott A. Norris
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology,Washington University School of Medicine, St. Louis, Missouri, USA
| | - Abhinav K. Jha
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Multimodal brain and retinal imaging of dopaminergic degeneration in Parkinson disease. Nat Rev Neurol 2022; 18:203-220. [PMID: 35177849 DOI: 10.1038/s41582-022-00618-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
Parkinson disease (PD) is a progressive disorder characterized by dopaminergic neurodegeneration in the brain. The development of parkinsonism is preceded by a long prodromal phase, and >50% of dopaminergic neurons can be lost from the substantia nigra by the time of the initial diagnosis. Therefore, validation of in vivo imaging biomarkers for early diagnosis and monitoring of disease progression is essential for future therapeutic developments. PET and single-photon emission CT targeting the presynaptic terminals of dopaminergic neurons can be used for early diagnosis by detecting axonal degeneration in the striatum. However, these techniques poorly differentiate atypical parkinsonian syndromes from PD, and their availability is limited in clinical settings. Advanced MRI in which pathological changes in the substantia nigra are visualized with diffusion, iron-sensitive susceptibility and neuromelanin-sensitive sequences potentially represents a more accessible imaging tool. Although these techniques can visualize the classic degenerative changes in PD, they might be insufficient for phenotyping or prognostication of heterogeneous aspects of PD resulting from extranigral pathologies. The retina is an emerging imaging target owing to its pathological involvement early in PD, which correlates with brain pathology. Retinal optical coherence tomography (OCT) is a non-invasive technique to visualize structural changes in the retina. Progressive parafoveal thinning and fovea avascular zone remodelling, as revealed by OCT, provide potential biomarkers for early diagnosis and prognostication in PD. As we discuss in this Review, multimodal imaging of the substantia nigra and retina is a promising tool to aid diagnosis and management of PD.
Collapse
|
18
|
Norris SA, White H, Tanenbaum A, Williams EL, Cruchaga C, Tian L, Schmidt RE, Perlmutter JS. Severe acute neurotoxicity reflects absolute intra-carotid 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine dose in non-human primates. J Neurosci Methods 2022; 366:109406. [PMID: 34767855 DOI: 10.1016/j.jneumeth.2021.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022]
Affiliation(s)
- S A Norris
- Departments of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; Departments of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA.
| | - Hcb White
- Departments of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - A Tanenbaum
- Departments of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - E L Williams
- Departments of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - C Cruchaga
- Departments of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - L Tian
- Departments of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - R E Schmidt
- Departments of Pathology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - J S Perlmutter
- Departments of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; Departments of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; Departments of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; Departments of Physical, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; Departments of Occupational Therapy, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| |
Collapse
|
19
|
Brücke T, Brücke C. Dopamine transporter (DAT) imaging in Parkinson's disease and related disorders. J Neural Transm (Vienna) 2021; 129:581-594. [PMID: 34910248 DOI: 10.1007/s00702-021-02452-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
This review gives an insight into the beginnings of dopamine transporter (DAT) imaging in the early 1990s, focussing on single photon emission tomography (SPECT). The development of the method and its consolidation as a now widely used clinical tool is described. The role of DAT-SPECT in the diagnosis and differential diagnosis of PD, atypical parkinsonian syndromes and several other different neurological disorders is reviewed. Finally the clinical research using DAT-SPECT as a biomarker for the progression of PD, for the detection of a preclinical dopaminergic lesion and its correlation with neuropathological findings is outlined.
Collapse
Affiliation(s)
- Thomas Brücke
- Ottakring Clinic, Neurological Department, Verein zur Förderung der Wissenschaftlichen Forschung am Wilhelminenspital (FWFW), Montleartstrasse 37, 1160, Vienna, Austria.
- , Linke Wienzeile 12, 1060, Vienna, Austria.
| | - Christof Brücke
- Department for Neurology, Medical University Vienna, Währingergürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
20
|
Palermo G, Giannoni S, Bellini G, Siciliano G, Ceravolo R. Dopamine Transporter Imaging, Current Status of a Potential Biomarker: A Comprehensive Review. Int J Mol Sci 2021; 22:11234. [PMID: 34681899 PMCID: PMC8538800 DOI: 10.3390/ijms222011234] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
A major goal of current clinical research in Parkinson's disease (PD) is the validation and standardization of biomarkers enabling early diagnosis, predicting outcomes, understanding PD pathophysiology, and demonstrating target engagement in clinical trials. Molecular imaging with specific dopamine-related tracers offers a practical indirect imaging biomarker of PD, serving as a powerful tool to assess the status of presynaptic nigrostriatal terminals. In this review we provide an update on the dopamine transporter (DAT) imaging in PD and translate recent findings to potentially valuable clinical practice applications. The role of DAT imaging as diagnostic, preclinical and predictive biomarker is discussed, especially in view of recent evidence questioning the incontrovertible correlation between striatal DAT binding and nigral cell or axon counts.
Collapse
Affiliation(s)
- Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Sara Giannoni
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
- Unit of Neurology, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Gabriele Bellini
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Gabriele Siciliano
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson’s Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
21
|
Biondetti E, Santin MD, Valabrègue R, Mangone G, Gaurav R, Pyatigorskaya N, Hutchison M, Yahia-Cherif L, Villain N, Habert MO, Arnulf I, Leu-Semenescu S, Dodet P, Vila M, Corvol JC, Vidailhet M, Lehéricy S. The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson's disease. Brain 2021; 144:3114-3125. [PMID: 33978742 PMCID: PMC8634084 DOI: 10.1093/brain/awab191] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
In Parkinson's disease, there is a progressive reduction in striatal dopaminergic function, and loss of neuromelanin-containing dopaminergic neurons and increased iron deposition in the substantia nigra. We tested the hypothesis of a relationship between impairment of the dopaminergic system and changes in the iron metabolism. Based on imaging data of patients with prodromal and early clinical Parkinson's disease, we assessed the spatiotemporal ordering of such changes and relationships in the sensorimotor, associative and limbic territories of the nigrostriatal system. Patients with Parkinson's disease (disease duration < 4 years) or idiopathic REM sleep behaviour disorder (a prodromal form of Parkinson's disease) and healthy controls underwent longitudinal examination (baseline and 2-year follow-up). Neuromelanin and iron sensitive MRI and dopamine transporter single-photon emission tomography were performed to assess nigrostriatal levels of neuromelanin, iron, and dopamine. For all three functional territories of the nigrostriatal system, in the clinically most and least affected hemispheres separately, the following was performed: cross-sectional and longitudinal inter-group difference analysis of striatal dopamine and iron, and nigral neuromelanin and iron; in Parkinson's disease patients, exponential fitting analysis to assess the duration of the prodromal phase and the temporal ordering of changes in dopamine, neuromelanin or iron relative to controls; voxel-wise correlation analysis to investigate concomitant spatial changes in dopamine-iron, dopamine-neuromelanin and neuromelanin-iron in the substantia nigra pars compacta. The temporal ordering of dopaminergic changes followed the known spatial pattern of progression involving first the sensorimotor, then the associative and limbic striatal and nigral regions. Striatal dopaminergic denervation occurred first followed by abnormal iron metabolism and finally neuromelanin changes in the substantia nigra pars compacta, which followed the same spatial and temporal gradient observed in the striatum but shifted in time. In conclusion, dopaminergic striatal dysfunction and cell loss in the substantia nigra pars compacta are interrelated with increased nigral iron content.
Collapse
Affiliation(s)
- Emma Biondetti
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France
| | - Mathieu D Santin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France
| | - Romain Valabrègue
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France
| | - Graziella Mangone
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, Centre d'Investigation Clinique Neurosciences, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, 75013 Paris, France
| | - Rahul Gaurav
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France
| | - Nadya Pyatigorskaya
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neuroradiology, 75013 Paris, France
| | | | - Lydia Yahia-Cherif
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France
| | - Nicolas Villain
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, 75013 Paris, France
| | - Marie-Odile Habert
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, 75013 Paris, France.,Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale - LIB, 75006 Paris, France
| | - Isabelle Arnulf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sleep Disorder Unit, 75013 Paris, France
| | - Smaranda Leu-Semenescu
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sleep Disorder Unit, 75013 Paris, France
| | - Pauline Dodet
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sleep Disorder Unit, 75013 Paris, France
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB)-Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, Centre d'Investigation Clinique Neurosciences, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, 75013 Paris, France
| | - Marie Vidailhet
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, 75013 Paris, France
| | - Stéphane Lehéricy
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neuroradiology, 75013 Paris, France
| |
Collapse
|
22
|
Juri C, Kramer V, Riss PJ, Soza-Ried C, Haeger A, Pruzzo R, Rösch F, Amaral H, Chana-Cuevas P. [18F]PR04.MZ PET/CT Imaging for Evaluation of Nigrostriatal Neuron Integrity in Patients With Parkinson Disease. Clin Nucl Med 2021; 46:119-124. [PMID: 33323728 PMCID: PMC7774816 DOI: 10.1097/rlu.0000000000003430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/14/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Degeneration of dopaminergic, nigrostriatal neurons is the hallmark of Parkinson disease (PD), and PET quantification of dopamine transporters is a widely accepted method for differential diagnosis between idiopathic PD and essential tremor. [18F]PR04.MZ is a new PET tracer with excellent imaging properties allowing for precise quantification of striatal and extrastriatal dopamine transporter. Here we describe our initial experience with [18F]PR04.MZ PET/CT in a larger cohort of healthy controls and PD patients as a proof-of-concept study for this tracer. METHODS Eighteen healthy subjects, 19 early PD patients (Hoehn-Yahr I-II), and 13 moderate-advanced PD patients (Hoehn-Yahr III-IV) underwent static PET/CT scans 60 to 90 minutes after injection of 5.16 ± 1.03 mCi (191 ± 38 MBq) [18F]PR04.MZ. Specific binding ratios (SBRs) were calculated for caudate nucleus, anterior putamen, posterior putamen, substantia nigra (SNpc), compared between different groups and correlated with clinical ratings. RESULTS [18F]PR04.MZ showed very high and specific uptake in the putamen, caudate, and substantia nigra pars compacta and very low nonspecific binding in other brain regions, and SBR values for the control group were 22.3 ± 4.1, 19.1 ± 3.5, and 5.4 ± 1.2, respectively. A reduction of SBR values was observed in all regions and in both initial and moderate PD, ranging from 35% to 89% (P < 0.001). The observed pattern of reduction was posterior putamen > anterior putamen > substantia nigra pars compacta > caudate, with contralateral posterior putamen being the most affected region. Rostrocaudal depletion gradient was evident in all PD patients and progression correlated with motor manifestations. CONCLUSIONS [18F]PR04.MZ PET/CT is a highly sensitive imaging modality for the detection of dopaminergic deficit in nigrostriatal pathways in PD.
Collapse
Affiliation(s)
- Carlos Juri
- From the Department of Neurology, Facultad de Medicina, Pontificia Universidad Católica de Chile
- Department of Neurology, Hospital Sotero del Río
| | - Vasko Kramer
- Nuclear Medicine and PET/CT Center PositronMed
- Positronpharma SA, Santiago, Chile
| | | | | | | | | | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Horacio Amaral
- Nuclear Medicine and PET/CT Center PositronMed
- Positronpharma SA, Santiago, Chile
| | - Pedro Chana-Cuevas
- Centro de Trastornos del Movimiento
- Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
23
|
Kerstens VS, Fazio P, Sundgren M, Matheson GJ, Franzén E, Halldin C, Cervenka S, Svenningsson P, Varrone A. Reliability of dopamine transporter PET measurements with [ 18F]FE-PE2I in patients with Parkinson's disease. EJNMMI Res 2020; 10:95. [PMID: 32797307 PMCID: PMC7427674 DOI: 10.1186/s13550-020-00676-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/22/2020] [Indexed: 11/10/2022] Open
Abstract
Background Reliable quantification of dopamine transporter (DAT), a biomarker for Parkinson’s disease (PD), is essential for diagnostic purposes as well as for evaluation of potential disease-modifying treatment. Due to degeneration of dopaminergic neurons and thus lower expected radioligand binding to DAT, higher measurement variability in PD patients might be expected than earlier reproducibility results in healthy controls. Therefore, we aimed to examine the test-retest properties of [18F]FE-PE2I-PET in PD patients. Methods Nine patients with PD (Hoehn and Yahr stage < 3) were included (men/women 6/3; mean age 65.2 ± 6.8 years). Each patient underwent two [18F]FE-PE2I-PET measurements within 7–28 days. The outcome measure was non-displaceable binding potential generated using wavelet-aided parametric imaging with cerebellum as reference region. We assessed test-retest performance using estimates of reliability and repeatability. Regions for primary analysis were caudate, putamen, ventral striatum, and substantia nigra. Exploratory analysis was performed for functional subdivisions of the striatum. We also compared the more vs. less affected side. Results [18F]FE-PE2I showed absolute variability estimates of 5.3–7.6% in striatal regions and 11% in substantia nigra and ICCs of 0.74–0.97 (median 0.91). The absolute variability for functional striatal subdivisions was 6.0–9.6% and ICCs of 0.76–0.91 (median 0.91). The less affected substantia nigra exhibited greater consistency than the more affected side. According to power calculations based on the current sample size, DAT changes of 5–11% in the striatum and 28% in the substantia nigra can be detected with a power of 0.8 (p < 0.0125). Conclusion DAT-PET measurements with [18F]FE-PE2I in PD patients showed good repeatability and reliability. The slightly lower reliability in the substantia nigra in patients may be explained by lower DAT density and smaller anatomical size. Power calculations suggest that [18F]FE-PE2I PET is a suitable marker for longitudinal DAT decline in PD. Trial registration EudraCT 2017-003327-29
Collapse
Affiliation(s)
- Vera S Kerstens
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Region Stockholm, Karolinska University Hospital, Stockholm, Sweden.
| | - Patrik Fazio
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Region Stockholm, Karolinska University Hospital, Stockholm, Sweden
| | - Mathias Sundgren
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Stockholm, Sweden.,Neurology Department, Karolinska University Hospital, Stockholm, Sweden
| | - Granville J Matheson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Region Stockholm, Karolinska University Hospital, Stockholm, Sweden
| | - Erika Franzén
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden.,Function Area Occupational Therapy & Physiotherapy, Allied Health Professionals Function, Karolinska University Hospital, Stockholm, Sweden
| | - Christer Halldin
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Region Stockholm, Karolinska University Hospital, Stockholm, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Region Stockholm, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Stockholm, Sweden.,Neurology Department, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Varrone
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Region Stockholm, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Buchert R, Buhmann C, Apostolova I, Meyer PT, Gallinat J. Nuclear Imaging in the Diagnosis of Clinically Uncertain Parkinsonian Syndromes. DEUTSCHES ARZTEBLATT INTERNATIONAL 2020; 116:747-754. [PMID: 31774054 DOI: 10.3238/arztebl.2019.0747] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/01/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Parkinsonian syndromes are classified by etiology mainly on clinical grounds, that is, on the basis of the clinical manifestations and with the aid of conventional ancillary studies. In most cases, the clinical diagnosis is clear. In up to 30% of cases, however, the etiological classification remains uncertain after completion of the basic clinical diagnostic evaluation, and additional investigation with nuclear imaging may be indicated. In particular, cerebral single-photon emission computed tomography (SPECT) with dopamine transporter (DAT) ligands may be helpful. DAT-SPECT can be used to demonstrate or rule out nigrostriatal degeneration and thereby differentiate neurodegenerative parkinsonian syndromes from symptomatic parkinsonian syndromes and other differential diagnoses. Positron emission tomography (PET) with the glucose analogue [18F]fluorodeoxyglucose (FDG) can be used to identify disease-specific patterns of neuronal dysfunction/degeneration in order to differentiate the various neurodegenerative parkinsonian syndromes from one another. METHODS In this review, we summarize the current state of the evidence on DAT-SPECT and FDG-PET for the indications mentioned above on the basis of a selective review of the literature. RESULTS DAT-SPECT has been adequately validated as an in vivo marker for nigrostriatal degeneration. Studies using the clinical diagnosis of a movement disorders specialist over the course of the disease as a reference have shown that DAT- SPECT is 78-100% sensitive (median, 93%) and 70-100% specific (median, 89%) for the differentiation of neurodegenerative parkinsonian syndromes from symptomatic parkinsonism and other differential diagnoses in clinically unclear cases. DAT- SPECT scanning led to a change of diagnosis in 27-56% of patients (median, 43%) and to a change of treatment in 33-72% (median, 43%). FDG-PET enables the differentiation of atypical neurodegenerative parkinsonian syndromes from the idiopathic parkinsonian syndrome (i.e., Parkinson's disease proper) with high sensitivity and specificity (both approximately 90%), when the clinical diagnosis by a movement disorders specialist over the course of the disease is used as a reference. CONCLUSION DAT-SPECT has been well documented to be highly diagnostically accurate and to have a relevant influence on the diagnosis and treatment of patients with clinically uncertain parkinsonian or tremor syndrome. It has not yet been shown to improve patient-relevant endpoints such as mortality, morbidity, and health-related quality of life; proof of this will probably have to await the introduction of neuroprotective treatments. The current evidence for the high differential diagnostic accuracy of FDG-PET in neurodegenerative parkinsonian syndromes needs to be reinforced by prospective studies with neuropathological verification of the diagnosis.
Collapse
Affiliation(s)
- Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf; Department of Neurology, University Medical Center Hamburg-Eppendorf; Department of Nuclear Medicine, Medical Center-University of Freiburg; Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf
| | | | | | | | | |
Collapse
|
25
|
Merchant KM, Cedarbaum JM, Brundin P, Dave KD, Eberling J, Espay AJ, Hutten SJ, Javidnia M, Luthman J, Maetzler W, Menalled L, Reimer AN, Stoessl AJ, Weiner DM. A Proposed Roadmap for Parkinson's Disease Proof of Concept Clinical Trials Investigating Compounds Targeting Alpha-Synuclein. JOURNAL OF PARKINSONS DISEASE 2020; 9:31-61. [PMID: 30400107 PMCID: PMC6398545 DOI: 10.3233/jpd-181471] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The convergence of human molecular genetics and Lewy pathology of Parkinson's disease (PD) have led to a robust, clinical-stage pipeline of alpha-synuclein (α-syn)-targeted therapies that have the potential to slow or stop the progression of PD and other synucleinopathies. To facilitate the development of these and earlier stage investigational molecules, the Michael J. Fox Foundation for Parkinson's Research convened a group of leaders in the field of PD research from academia and industry, the Alpha-Synuclein Clinical Path Working Group. This group set out to develop recommendations on preclinical and clinical research that can de-risk the development of α-syn targeting therapies. This consensus white paper provides a translational framework, from the selection of animal models and associated end-points to decision-driving biomarkers as well as considerations for the design of clinical proof-of-concept studies. It also identifies current gaps in our biomarker toolkit and the status of the discovery and validation of α-syn-associated biomarkers that could help fill these gaps. Further, it highlights the importance of the emerging digital technology to supplement the capture and monitoring of clinical outcomes. Although the development of disease-modifying therapies targeting α-syn face profound challenges, we remain optimistic that meaningful strides will be made soon toward the identification and approval of disease-modifying therapeutics targeting α-syn.
Collapse
Affiliation(s)
- Kalpana M Merchant
- Vincere Biosciences, Inc., and Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Patrik Brundin
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, MI, USA
| | - Kuldip D Dave
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Jamie Eberling
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Alberto J Espay
- UC Gardner Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Samantha J Hutten
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Monica Javidnia
- Center for Health and Technology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Liliana Menalled
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Alyssa N Reimer
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Center, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
26
|
Black KJ, Acevedo HK, Koller JM. Dopamine Buffering Capacity Imaging: A Pharmacodynamic fMRI Method for Staging Parkinson Disease. Front Neurol 2020; 11:370. [PMID: 32477245 PMCID: PMC7232584 DOI: 10.3389/fneur.2020.00370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
We propose a novel pharmacological fMRI (phMRI) method for objectively quantifying disease severity in Parkinson disease (PD). It is based on the clinical observation that the benefit from a dose of levodopa wears off more quickly as PD progresses. Biologically this has been thought to represent decreased buffering capacity for dopamine as nigrostriatal cells die. Buffering capacity has been modeled based on clinical effects, but clinical measurements are influenced by confounding factors. The new method proposes to measure the effect objectively based on the timing of the known response of several brain regions to exogenous levodopa. Such responses are robust and can be quantified using perfusion MRI. Here we present simulation studies based on published clinical dose-response data and an intravenous levodopa infusion. Standard pharmacokinetic-pharmacodynamic methods were used to model the response. Then the effect site rate constant k e was estimated from simulated response data plus Gaussian noise. Predicted time - effect curves sampled at times consistent with phMRI differ substantially based on clinical severity. Estimated k e from noisy input data was recovered with good accuracy. These simulation results support the feasibility of levodopa phMRI hysteresis mapping to measure the severity of dopamine denervation objectively and simultaneously in all brain regions with a robust imaging response to exogenous levodopa.
Collapse
Affiliation(s)
- Kevin J. Black
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Departments of Neurology, Radiology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Haley K. Acevedo
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Jonathan M. Koller
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
27
|
Affiliation(s)
- Baijayanta Maiti
- Washington University School of Medicine, St. Louis, Missouri (B.M., J.S.P.)
| | - Joel S Perlmutter
- Washington University School of Medicine, St. Louis, Missouri (B.M., J.S.P.)
| |
Collapse
|
28
|
Palermo G, Giannoni S, Frosini D, Morganti R, Volterrani D, Bonuccelli U, Pavese N, Ceravolo R. Dopamine Transporter, Age, and Motor Complications in Parkinson's Disease: A Clinical and Single-Photon Emission Computed Tomography Study. Mov Disord 2020; 35:1028-1036. [PMID: 32154947 DOI: 10.1002/mds.28008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/25/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Previous molecular imaging studies comparing dopamine function in vivo between early-onset PD and late-onset PD patients have shown contradictory results, presumably attributable to the aging-related decline in nigrostriatal function. OBJECTIVES (1) To investigate baseline dopamine transporter availability in early-onset PD (<55 years) and late-onset PD (>70 years) patients, z-scores values of putamen and caudate [123 I]-ioflupane uptake were calculated using the respective age-matched controls in order to correct for early presynaptic compensatory mechanisms and age-related dopamine neuron loss; (2) to examine the associations of such baseline single-photon emission computed tomography measures with the emergence of late-disease motor complications. METHODS In this retrospective study, 105 de novo PD patients who underwent [123 I]-ioflupane single-photon emission computed tomography at time of diagnosis were divided into three tertile groups according to age at disease onset (35 early-onset PD and 40 late-onset PD patients). Z-scores were compared between the two groups, and their predictive power for motor complications (during a mean follow-up of 7 years) was evaluated using Cox proportional hazard models. RESULTS Despite a less-severe motor phenotype, early-onset PD patients exhibited more reduced [123 I]-ioflupane binding in the putamen and had a higher and earlier risk for developing motor complications than those with late-onset PD. Lower [123 I]-Ioflupane uptake in the putamen and caudate increased the risk of motor complications. CONCLUSIONS Our findings indicate that a lower dopamine transporter binding in early-onset PD predicts the later development of motor complications, but it is not related to severity of motor symptoms, suggesting age-related differences in striatal compensatory mechanisms in PD. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Giannoni
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Frosini
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Duccio Volterrani
- Regional Center of Nuclear Medicine, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Pavese
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Clinical Medicine, Nuclear Medicine and PET, Aarhus University, Aarhus, Denmark
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
Perlmutter JS, Stoessl AJ. Striatal DAT SPECT: Caveat Emptor! Mov Disord 2019; 34:1430-1432. [PMID: 31769089 DOI: 10.1002/mds.27811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Joel S Perlmutter
- Departments of Neurology, Radiology, Neuroscience and Programs in Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, USA
| | - A Jon Stoessl
- Division of Neurology & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Molecular Imaging of the Dopamine Transporter. Cells 2019; 8:cells8080872. [PMID: 31405186 PMCID: PMC6721747 DOI: 10.3390/cells8080872] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Dopamine transporter (DAT) single-photon emission tomography (SPECT) with (123)Ioflupane is a widely used diagnostic tool for patients with suspected parkinsonian syndromes, as it assists with differentiating between Parkinson’s disease (PD) or atypical parkinsonisms and conditions without a presynaptic dopaminergic deficit such as essential tremor, vascular and drug-induced parkinsonisms. Recent evidence supports its utility as in vivo proof of degenerative parkinsonisms, and DAT imaging has been proposed as a potential surrogate marker for dopaminergic nigrostriatal neurons. However, the interpretation of DAT-SPECT imaging may be challenged by several factors including the loss of DAT receptor density with age and the effect of certain drugs on dopamine uptake. Furthermore, a clear, direct relationship between nigral loss and DAT decrease has been controversial so far. Striatal DAT uptake could reflect nigral neuronal loss once the loss exceeds 50%. Indeed, reduction of DAT binding seems to be already present in the prodromal stage of PD, suggesting both an early synaptic dysfunction and the activation of compensatory changes to delay the onset of symptoms. Despite a weak correlation with PD severity and progression, quantitative measurements of DAT binding at baseline could be used to predict the emergence of late-disease motor fluctuations and dyskinesias. This review addresses the possibilities and limitations of DAT-SPECT in PD and, focusing specifically on regulatory changes of DAT in surviving DA neurons, we investigate its role in diagnosis and its prognostic value for motor complications as disease progresses.
Collapse
|
31
|
Takahashi H, Watanabe Y, Tanaka H, Mochizuki H, Kato H, Hatazawa J, Tomiyama N. Quantifying the Severity of Parkinson Disease by Use of Dopaminergic Neuroimaging. AJR Am J Roentgenol 2019; 213:163-168. [DOI: 10.2214/ajr.18.20655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Hiroto Takahashi
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hisashi Tanaka
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroki Kato
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Tomiyama
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Honkanen EA, Saari L, Orte K, Gardberg M, Noponen T, Joutsa J, Kaasinen V. No link between striatal dopaminergic axons and dopamine transporter imaging in Parkinson's disease. Mov Disord 2019; 34:1562-1566. [DOI: 10.1002/mds.27777] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/30/2023] Open
Affiliation(s)
- Emma A. Honkanen
- Department of Neurology University of Turku Turku Finland
- Division of Clinical Neurosciences Turku University Hospital Turku Finland
| | - Laura Saari
- Department of Neurology University of Turku Turku Finland
- Division of Clinical Neurosciences Turku University Hospital Turku Finland
| | - Katri Orte
- Department of Pathology Institute of Biomedicine, University of Turku and Turku University Hospital Turku Finland
| | - Maria Gardberg
- Department of Pathology Institute of Biomedicine, University of Turku and Turku University Hospital Turku Finland
| | - Tommi Noponen
- Department of Clinical Physiology and Nuclear Medicine Turku University Hospital Turku Finland
- Department of Medical Physics Turku University Hospital Turku Finland
| | - Juho Joutsa
- Department of Neurology University of Turku Turku Finland
- Division of Clinical Neurosciences Turku University Hospital Turku Finland
- Turku Brain and Mind Center University of Turku Turku Finland
| | - Valtteri Kaasinen
- Department of Neurology University of Turku Turku Finland
- Division of Clinical Neurosciences Turku University Hospital Turku Finland
| |
Collapse
|
33
|
Lee JY, Yoon EJ, Kim YK, Shin CW, Nam H, Jeong JM, Kim HJ, Jeon B. Nonmotor and Dopamine Transporter Change in REM Sleep Behavior Disorder by Olfactory Impairment. J Mov Disord 2019; 12:103-112. [PMID: 31158943 PMCID: PMC6547034 DOI: 10.14802/jmd.18061] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/13/2019] [Indexed: 11/24/2022] Open
Abstract
Objective It is unclear whether the decline in dopamine transporters (DAT) differs among idiopathic rapid eye movement sleep behavior disorder (iRBD) patients with different levels of olfactory impairment. This study aimed to characterize DAT changes in relation to nonmotor features in iRBD patients by olfactory loss. Methods This prospective cohort study consisted of three age-matched groups: 30 polysomnography-confirmed iRBD patients, 30 drug-naïve Parkinson’s disease patients, and 19 healthy controls without olfactory impairment. The iRBD group was divided into two groups based on olfactory testing results. Participants were evaluated for reported prodromal markers and then underwent 18F-FP-CIT positron emission tomography and 3T MRI. Tracer uptakes were analyzed in the caudate, anterior and posterior putamen, substantia nigra, and raphe nuclei. Results Olfactory impairment was defined in 38.5% of iRBD patients. Mild parkinsonian signs and cognitive functions were not different between the two iRBD subgroups; however, additional prodromal features, constipation, and urinary and sexual dysfunctions were found in iRBD patients with olfactory impairment but not in those without. Tracer uptake showed significant group differences in all brain regions, except the raphe nuclei. The iRBD patients with olfactory impairment had uptake reductions in the anterior and posterior putamen, caudate, and substantia nigra (p < 0.016 in all, adjusted for age), which ranged from 0.6 to 0.8 of age-normative values. In contrast, those without olfactory impairment had insignificant changes in all regions ranging above 0.8. Conclusion There was a clear distinction in DAT loss and nonmotor profiles by olfactory status in iRBD.
Collapse
Affiliation(s)
- Jee-Young Lee
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea.,Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Jin Yoon
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul National University, Seoul, Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Chae Won Shin
- Department of Neurology, Kyung Hee University Medical Center, Seoul, Korea
| | - Hyunwoo Nam
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea.,Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Min Jeong
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul National University, Seoul, Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Joon Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Kyung Hee University Medical Center, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology and Movement Disorders Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
34
|
Fu JF, Klyuzhin I, McKenzie J, Neilson N, Shahinfard E, Dinelle K, McKeown MJ, Stoessl AJ, Sossi V. Joint pattern analysis applied to PET DAT and VMAT2 imaging reveals new insights into Parkinson's disease induced presynaptic alterations. Neuroimage Clin 2019; 23:101856. [PMID: 31091502 PMCID: PMC6517523 DOI: 10.1016/j.nicl.2019.101856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 11/03/2022]
Abstract
Most neurodegenerative diseases are known to affect several aspects of brain function, including neurotransmitter systems, metabolic and functional connectivity. Diseases are generally characterized by common clinical characteristics across subjects, but there are also significant inter-subject variations. It is thus reasonable to expect that in terms of brain function, such clinical behaviors will be related to a general overall multi-system pattern of disease-induced alterations and additional brain system-specific abnormalities; these additional abnormalities would be indicative of a possible unique system response to disease or subject-specific propensity to a specific clinical progression. Based on the above considerations we introduce and validate the use of a joint pattern analysis approach, canonical correlation analysis and orthogonal signal correction, to analyze multi-tracer PET data to identify common (reflecting functional similarities) and unique (reflecting functional differences) information provided by each tracer/target. We apply the method to [11C]-DTBZ (VMAT2 marker) and [11C]-MP (DAT marker) data from 15 early Parkinson's disease (PD) subjects; the behavior of these two tracers/targets is well characterized providing robust reference information for the method's outcome. Highly significant common subject profiles were identified that decomposed the characteristic dopaminergic changes into three distinct orthogonal spatial patterns: 1) disease-induced asymmetry between the less and more affected dorsal striatum; 2) disease-induced gradient with caudate and ventral striatum being relatively spared compared to putamen; 3) progressive loss in the less affected striatum, which correlated significantly with disease duration (p < 0.01 for DTBZ, p < 0.05 for MP). These common spatial patterns reproduce all known aspects of these two targets/tracers. In addition, orthogonality of the patterns may indicate different mechanisms underlying disease initiation or progression. Information unique to each tracer revealed a residual striatal asymmetry when targeting VMAT2, consistent with the notion that VMAT2 density is highly related to terminal degeneration; and a residual DAT disease-induced gradient in the striatum with relative DAT preservation in the substantia nigra. This finding may be indicative either of a possible DAT specific early disease compensation and/or related to disease origin. These results demonstrate the applicability and relevance of the joint pattern analysis approach to datasets obtained with two PET tracers; this data driven method, while recapitulating known aspects of the PD-induced tracer/target behaviour, was found to be statistically more robust and provided additional information on (i) correlated behaviors of the two systems, identified as orthogonal patterns, possibly reflecting different disease-induced alterations and (ii) system specific effects of disease. It is thus expected that this approach will be very well suited to the analysis of multi-tracer and/or multi-modality data and to relating the outcomes to different aspects of disease.
Collapse
Affiliation(s)
- Jessie Fanglu Fu
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.
| | - Ivan Klyuzhin
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jessamyn McKenzie
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Nicole Neilson
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Elham Shahinfard
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Katie Dinelle
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Martin J McKeown
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Abstract
Positron emission tomography (PET) has revealed key insights into the pathophysiology of movement disorders. This paper will focus on how PET investigations of pathophysiology are particularly relevant to Parkinson disease, a neurodegenerative condition usually starting later in life marked by a varying combination of motor and nonmotor deficits. Various molecular imaging modalities help to determine what changes in brain herald the onset of pathology; can these changes be used to identify presymptomatic individuals who may be appropriate for to-be-developed treatments that may forestall onset of symptoms or slow disease progression; can PET act as a biomarker of disease progression; can molecular imaging help enrich homogenous cohorts for clinical studies; and what other pathophysiologic mechanisms relate to nonmotor manifestations. PET methods include measurements of regional cerebral glucose metabolism and blood flow, selected receptors, specific neurotransmitter systems, postsynaptic signal transducers, and abnormal protein deposition. We will review each of these methodologies and how they are relevant to important clinical issues pertaining to Parkinson disease.
Collapse
Affiliation(s)
- Baijayanta Maiti
- Department of Neurology, Washington University in St. Louis, St Louis, MO.
| | - Joel S Perlmutter
- Department of Neurology, Washington University in St. Louis, St Louis, MO; Department of Radiology, Washington University in St. Louis, St Louis, MO; Department of Neuroscience, Washington University in St. Louis, St Louis, MO; Department of Physical Therapy, Washington University in St. Louis, St Louis, MO; Department of Occupational Therapy, Washington University in St. Louis, St Louis, MO
| |
Collapse
|
36
|
Usefulness of the combination of iodine-123-metaiodobenzylguanidine scintigraphy and iodine-123-ioflupane scintigraphy in new-onset Parkinson’s disease. Nucl Med Commun 2018; 39:983-988. [DOI: 10.1097/mnm.0000000000000898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Criswell SR, Warden MN, Searles Nielsen S, Perlmutter JS, Moerlein SM, Sheppard L, Lenox-Krug J, Checkoway H, Racette BA. Selective D2 receptor PET in manganese-exposed workers. Neurology 2018; 91:e1022-e1030. [PMID: 30097475 PMCID: PMC6140373 DOI: 10.1212/wnl.0000000000006163] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate the associations between manganese (Mn) exposure, D2 dopamine receptors (D2Rs), and parkinsonism using [11C](N-methyl)benperidol (NMB) PET. METHODS We used NMB PET to evaluate 50 workers with a range of Mn exposure: 22 Mn-exposed welders, 15 Mn-exposed workers, and 13 nonexposed workers. Cumulative Mn exposure was estimated from work histories, and movement disorder specialists examined all workers. We calculated NMB D2R nondisplaceable binding potential (BPND) for the striatum, globus pallidus, thalamus, and substantia nigra (SN). Multivariate analysis of covariance with post hoc descriptive discriminate analysis identified regional differences by exposure group. We used linear regression to examine the association among Mn exposure, Unified Parkinson's Disease Rating Scale motor subsection 3 (UPDRS3) score, and regional D2R BPND. RESULTS D2R BPND in the SN had the greatest discriminant power among exposure groups (p < 0.01). Age-adjusted SN D2R BPND was 0.073 (95% confidence interval [CI] 0.022-0.124) greater in Mn-exposed welders and 0.068 (95% CI 0.013-0.124) greater in Mn-exposed workers compared to nonexposed workers. After adjustment for age, SN D2R BPND was 0.0021 (95% CI 0.0005-0.0042) higher for each year of Mn exposure. Each 0.10 increase in SN D2R BPND was associated with a 2.65 (95% CI 0.56-4.75) increase in UPDRS3 score. CONCLUSIONS AND RELEVANCE Nigral D2R BPND increased with Mn exposure and clinical parkinsonism, indicating dose-dependent dopaminergic dysfunction of the SN in Mn neurotoxicity.
Collapse
Affiliation(s)
- Susan R Criswell
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Mark N Warden
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Susan Searles Nielsen
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Joel S Perlmutter
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Stephen M Moerlein
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Lianne Sheppard
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Jason Lenox-Krug
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Harvey Checkoway
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Brad A Racette
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa.
| |
Collapse
|
38
|
Shimony JS, Rutlin J, Karimi M, Tian L, Snyder AZ, Loftin SK, Norris SA, Perlmutter JS. Validation of diffusion tensor imaging measures of nigrostriatal neurons in macaques. PLoS One 2018; 13:e0202201. [PMID: 30183721 PMCID: PMC6124722 DOI: 10.1371/journal.pone.0202201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022] Open
Abstract
Objective Interpretation of diffusion MRI in the living brain requires validation against gold standard histological measures. We compared diffusion values of the nigrostriatal tract to PET and histological results in non-human primates (NHPs) with varying degrees of unilateral nigrostriatal injury induced by MPTP, a toxin selective for dopaminergic neurons. Methods Sixteen NHPs had MRI and PET scans of three different presynaptic radioligands and blinded video-based motor ratings before and after unilateral carotid artery infusion of variable doses of MPTP. Diffusion measures of connections between midbrain and striatum were calculated. Then animals were euthanized to quantify striatal dopamine concentration, stereologic measures of striatal tyrosine hydroxylase (TH) immunostained fiber density and unbiased stereologic counts of TH stained nigral cells. Results Diffusion measures correlated with MPTP dose, nigral TH-positive cell bodies and striatal TH-positive fiber density but did not correlate with in vitro nigrostriatal terminal field measures or in vivo PET measures of striatal uptake of presynaptic markers. Once nigral TH cell count loss exceeded 50% the stereologic terminal field measures reached a near zero floor effect but the diffusion measures continued to correlate with nigral cell counts. Conclusion Diffusion measures in the nigrostriatal tract correlate with nigral dopamine neurons and striatal fiber density, but have the same relationship to terminal field measures as a previous report of striatal PET measures of presynaptic neurons. These diffusion measures have the potential to act as non-invasive index of the severity of nigrostriatal injury. Diffusion imaging of the nigrostriatal tract could potentially have diagnostic value in humans with Parkinson disease or related disorders.
Collapse
Affiliation(s)
- Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| | - Jerrel Rutlin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Morvarid Karimi
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Linlin Tian
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Abraham Z. Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan K. Loftin
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott A. Norris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joel S. Perlmutter
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
39
|
Ahn J, Lee JY, Kim TW, Yoon EJ, Oh S, Kim YK, Kim JM, Woo SJ, Kim KW, Jeon B. Retinal thinning associates with nigral dopaminergic loss in de novo Parkinson disease. Neurology 2018; 91:e1003-e1012. [PMID: 30111550 DOI: 10.1212/wnl.0000000000006157] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/07/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To analyze the relationship between retinal thinning and nigral dopaminergic loss in de novo Parkinson disease (PD). METHODS Forty-nine patients with PD and 54 age-matched controls were analyzed. Ophthalmologic examination and macula optical coherence tomography scans were performed with additional microperimetry, N-(3-[18F]fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl) nortropane PET, and 3T MRI scans were done in patients with PD only. Retinal layer thickness and volume were measured in subfields of the 1-, 2.22-, and 3.45-mm Early Treatment of Diabetic Retinopathy Study circle and compared in patients with PD and controls. Correlation of inner retinal layer thinning with microperimetric response was examined in patients with PD, and the relationships between retinal layer thickness and dopamine transporter densities in the ipsilateral caudate, anterior and posterior putamen, and substantia nigra were analyzed. RESULTS Retinal layer thinning was observed in the temporal and inferior 2.22-mm sectors (false discovery rate-adjusted p < 0.05) of drug-naive patients with PD, particularly the inner plexiform and ganglion cell layers. The thickness of these layers in the inferior 2.22-mm sector showed a negative correlation with the Hoehn and Yahr stage (p = 0.032 and 0.014, respectively). There was positive correlation between macular sensitivity and retinal layer thickness in all 3.45-mm sectors, the superior 2.22-mm sector, and 1-mm circle (p < 0.05 for all). There was an association between retinal thinning and dopaminergic loss in the left substantia nigra (false discovery rate-adjusted p < 0.001). CONCLUSION Retinal thinning is present in the early stages of PD, correlates with disease severity, and may be linked to nigral dopaminergic degeneration. Retinal imaging may be useful for detection of pathologic changes occurring in early PD.
Collapse
Affiliation(s)
- Jeeyun Ahn
- From the Departments of Ophthalmology (J.A., T.W.K.), Neurology (J.-Y.L.), Nuclear Medicine (E.J.Y., Y.K.K.), and Biomedical Statistics (S.O.), Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine; Departments of Neurology (J.M.K.), Ophthalmology (S.J.W.), and Psychiatry (K.W.K.), Seoul National University Bundang Hospital and Seoul National University College of Medicine; and Department of Neurology (B.J.), Seoul National University Hospital and Seoul National University College of Medicine, South Korea
| | - Jee-Young Lee
- From the Departments of Ophthalmology (J.A., T.W.K.), Neurology (J.-Y.L.), Nuclear Medicine (E.J.Y., Y.K.K.), and Biomedical Statistics (S.O.), Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine; Departments of Neurology (J.M.K.), Ophthalmology (S.J.W.), and Psychiatry (K.W.K.), Seoul National University Bundang Hospital and Seoul National University College of Medicine; and Department of Neurology (B.J.), Seoul National University Hospital and Seoul National University College of Medicine, South Korea.
| | - Tae Wan Kim
- From the Departments of Ophthalmology (J.A., T.W.K.), Neurology (J.-Y.L.), Nuclear Medicine (E.J.Y., Y.K.K.), and Biomedical Statistics (S.O.), Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine; Departments of Neurology (J.M.K.), Ophthalmology (S.J.W.), and Psychiatry (K.W.K.), Seoul National University Bundang Hospital and Seoul National University College of Medicine; and Department of Neurology (B.J.), Seoul National University Hospital and Seoul National University College of Medicine, South Korea.
| | - Eun Jin Yoon
- From the Departments of Ophthalmology (J.A., T.W.K.), Neurology (J.-Y.L.), Nuclear Medicine (E.J.Y., Y.K.K.), and Biomedical Statistics (S.O.), Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine; Departments of Neurology (J.M.K.), Ophthalmology (S.J.W.), and Psychiatry (K.W.K.), Seoul National University Bundang Hospital and Seoul National University College of Medicine; and Department of Neurology (B.J.), Seoul National University Hospital and Seoul National University College of Medicine, South Korea
| | - Sohee Oh
- From the Departments of Ophthalmology (J.A., T.W.K.), Neurology (J.-Y.L.), Nuclear Medicine (E.J.Y., Y.K.K.), and Biomedical Statistics (S.O.), Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine; Departments of Neurology (J.M.K.), Ophthalmology (S.J.W.), and Psychiatry (K.W.K.), Seoul National University Bundang Hospital and Seoul National University College of Medicine; and Department of Neurology (B.J.), Seoul National University Hospital and Seoul National University College of Medicine, South Korea
| | - Yu Kyeong Kim
- From the Departments of Ophthalmology (J.A., T.W.K.), Neurology (J.-Y.L.), Nuclear Medicine (E.J.Y., Y.K.K.), and Biomedical Statistics (S.O.), Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine; Departments of Neurology (J.M.K.), Ophthalmology (S.J.W.), and Psychiatry (K.W.K.), Seoul National University Bundang Hospital and Seoul National University College of Medicine; and Department of Neurology (B.J.), Seoul National University Hospital and Seoul National University College of Medicine, South Korea
| | - Jong-Min Kim
- From the Departments of Ophthalmology (J.A., T.W.K.), Neurology (J.-Y.L.), Nuclear Medicine (E.J.Y., Y.K.K.), and Biomedical Statistics (S.O.), Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine; Departments of Neurology (J.M.K.), Ophthalmology (S.J.W.), and Psychiatry (K.W.K.), Seoul National University Bundang Hospital and Seoul National University College of Medicine; and Department of Neurology (B.J.), Seoul National University Hospital and Seoul National University College of Medicine, South Korea
| | - Se Joon Woo
- From the Departments of Ophthalmology (J.A., T.W.K.), Neurology (J.-Y.L.), Nuclear Medicine (E.J.Y., Y.K.K.), and Biomedical Statistics (S.O.), Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine; Departments of Neurology (J.M.K.), Ophthalmology (S.J.W.), and Psychiatry (K.W.K.), Seoul National University Bundang Hospital and Seoul National University College of Medicine; and Department of Neurology (B.J.), Seoul National University Hospital and Seoul National University College of Medicine, South Korea
| | - Ki Woong Kim
- From the Departments of Ophthalmology (J.A., T.W.K.), Neurology (J.-Y.L.), Nuclear Medicine (E.J.Y., Y.K.K.), and Biomedical Statistics (S.O.), Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine; Departments of Neurology (J.M.K.), Ophthalmology (S.J.W.), and Psychiatry (K.W.K.), Seoul National University Bundang Hospital and Seoul National University College of Medicine; and Department of Neurology (B.J.), Seoul National University Hospital and Seoul National University College of Medicine, South Korea
| | - Beomseok Jeon
- From the Departments of Ophthalmology (J.A., T.W.K.), Neurology (J.-Y.L.), Nuclear Medicine (E.J.Y., Y.K.K.), and Biomedical Statistics (S.O.), Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine; Departments of Neurology (J.M.K.), Ophthalmology (S.J.W.), and Psychiatry (K.W.K.), Seoul National University Bundang Hospital and Seoul National University College of Medicine; and Department of Neurology (B.J.), Seoul National University Hospital and Seoul National University College of Medicine, South Korea
| |
Collapse
|
40
|
|
41
|
Nigrostriatal dopamine transporter availability in early Parkinson's disease. Mov Disord 2018; 33:592-599. [DOI: 10.1002/mds.27316] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 11/07/2022] Open
|
42
|
Sommerauer M, Fedorova TD, Hansen AK, Knudsen K, Otto M, Jeppesen J, Frederiksen Y, Blicher JU, Geday J, Nahimi A, Damholdt MF, Brooks DJ, Borghammer P. Evaluation of the noradrenergic system in Parkinson’s disease: an 11C-MeNER PET and neuromelanin MRI study. Brain 2017; 141:496-504. [DOI: 10.1093/brain/awx348] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/30/2017] [Indexed: 11/13/2022] Open
|
43
|
A six-year longitudinal PET study of (+)-[ 11 C]DTBZ binding to the VMAT2 in monkey brain. Nucl Med Biol 2017; 55:34-37. [DOI: 10.1016/j.nucmedbio.2017.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 11/23/2022]
|
44
|
Evaluation of striatonigral connectivity using probabilistic tractography in Parkinson's disease. NEUROIMAGE-CLINICAL 2017; 16:557-563. [PMID: 28971007 PMCID: PMC5608174 DOI: 10.1016/j.nicl.2017.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/07/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
The cardinal movement abnormalities of Parkinson's disease (PD), including tremor, muscle rigidity, and reduced speed and frequency of movements, are caused by degeneration of dopaminergic neurons in the substantia nigra that project to the putamen, compromising information flow through frontal-subcortical circuits. Typically, the nigrostriatal pathway is more severely affected on the side of the brain opposite (contralateral) to the side of the body that manifests initial symptoms. Several studies have suggested that PD is also associated with changes in white matter microstructural integrity. The goal of the present study was to further develop methods for measuring striatonigral connectivity differences between PD patients and age-matched controls using diffusion weighted magnetic resonance imaging (MRI). In this cross-sectional study, 40 PD patients and 44 controls underwent diffusion weighted imaging (DWI) using a 40-direction MRI sequence as well as an optimized 60-direction sequence with overlapping slices. Regions of interest (ROIs) encompassing the putamen and substantia nigra were hand drawn in the space of the 40-direction data using high-contrast structural images and then coregistered to the 60-direction data. Probabilistic tractography was performed in the native space of each dataset by seeding the putamen ROI with an ipsilateral substantia nigra classification target. The effect of disease group (PD versus control) on mean putamen-SN connection probability and streamline density were then analyzed using generalized linear models controlling for age, gender, education, as well as seed and target region characteristics. Mean putamen-SN streamline density was lower in PD on both sides of the brain and in both 40- and 60-direction data. The optimized sequence provided a greater separation between PD and control means; however, individual values overlapped between groups. The 60-direction data also yielded mean connection probability values either trending (ipsilateral) or significantly (contralateral) lower in the PD group. There were minor between-group differences in average diffusion measures within the substantia nigra ROIs that did not affect the results of the GLM analyses when included as covariates. Based on these results, we conclude that mean striatonigral structural connectivity differs between PD and control groups and that use of an optimized 60-direction DWI sequence with overlapping slices increases the sensitivity of the technique to putative disease-related differences. However, overlap in individual values between disease groups limits its use as a classifier. The nigrostriatal pathway degenerates in Parkinson's disease. Two diffusion tensor imaging (DTI) sequences were acquired in 84 participants. Structural connectivity between putamen and substantia nigra was quantified. Parkinson's patients had lower connection probability and streamline density. A 60-direction DTI sequence with overlapping slices was most sensitive.
Collapse
Key Words
- ADRC, Alzheimer's Disease Research Center
- AFNI, Analysis of Functional NeuroImages
- Aged brain/metabolism/*pathology
- BET, brain extraction tool
- DWI, diffusion-weighted imaging
- Diffusion tensor imaging/*methods
- FA, fractional anisotropy
- FLAIR, fluid attenuated inversion recovery
- FOV, field of view
- FSL, Oxford Centre for Functional MRI of the Brain Software Library
- GE, general electric
- HY, Hoehn and Yahr
- Humans
- ICC, interclass correlation coefficient
- IRB, institutional review board
- LMPD, longitudinal MRI biomarkers in Parkinson's disease study
- MD, mean diffusivity
- MRI, magnetic resonance imaging
- PD, Parkinson's disease
- PET, Positron Emission Tomography
- Parkinson disease/classification/*pathology
- RD, radial diffusivity
- ROI, region of interest
- SD, standard deviation
- SN, substantia nigra
- SNR, signal to noise ratio
- SPECT, single photon emission tomography
- SPM, Statistical Parametric Mapping software
- Severity of illness index
- TE, echo time
- TFCE, threshold-free cluster enhancement
- TI, inversion time
- TR, repetition time
- UPDRS, Unified Parkinson Disease Rating Scale
- VA, Veterans Affairs
Collapse
|
45
|
Saari L, Kivinen K, Gardberg M, Joutsa J, Noponen T, Kaasinen V. Dopamine transporter imaging does not predict the number of nigral neurons in Parkinson disease. Neurology 2017; 88:1461-1467. [DOI: 10.1212/wnl.0000000000003810] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/23/2016] [Indexed: 11/15/2022] Open
Abstract
Objective:To examine possible associations between in vivo brain dopamine transporter SPECT imaging and substantia nigra pars compacta (SNc) neuronal survival in Parkinson disease (PD).Methods:Nigral neuron numbers were calculated for 18 patients (11 patients with neuropathologically confirmed PD) who had been examined with dopamine transporter (DAT) SPECT before death. Correlation analyses between SNc tyrosine hydroxylase (TH)–positive and neuromelanin-containing neuron counts and DAT striatal specific binding ratios (SBRs) were performed with semiquantitative region of interest–based and voxel-based analyses.Results:Mean putamen SBR did not correlate with the number of substantia nigra TH-positive (r = −0.11, p = 0.66) or neuromelanin-containing (r = −0.07, p = 0.78) neurons. Correlations remained clearly nonsignificant when the time interval between SPECT and death was used as a covariate, when the voxel-based analysis was used, and when only patients with PD were included.Conclusions:This cohort study demonstrates that postmortem SNc neuron counts are not associated with striatal DAT binding in PD. These results fit with the theory that there is no correlation between the number of substantia nigra neurons and striatal dopamine after a certain level of damage has occurred. Striatal DAT binding in PD may reflect axonal dysfunction or DAT expression rather than the number of viable neurons.
Collapse
|
46
|
Takeda A, Perlmutter JS. Striatal molecular imaging of presynaptic markers: Ready, fire, aim. Neurology 2017; 88:1388-1389. [PMID: 28283591 DOI: 10.1212/wnl.0000000000003827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Atsushi Takeda
- From the Department of Neurology (A.T.), National Hospital Organization, Sendai-Nishitaga Hospital, Sendai, Miyagi, Japan; and Departments of Neurology, Radiology, and Neuroscience and Programs in Physical Therapy and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO.
| | - Joel S Perlmutter
- From the Department of Neurology (A.T.), National Hospital Organization, Sendai-Nishitaga Hospital, Sendai, Miyagi, Japan; and Departments of Neurology, Radiology, and Neuroscience and Programs in Physical Therapy and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
47
|
Strafella AP, Bohnen NI, Perlmutter JS, Eidelberg D, Pavese N, Van Eimeren T, Piccini P, Politis M, Thobois S, Ceravolo R, Higuchi M, Kaasinen V, Masellis M, Peralta MC, Obeso I, Pineda-Pardo JÁ, Cilia R, Ballanger B, Niethammer M, Stoessl JA. Molecular imaging to track Parkinson's disease and atypical parkinsonisms: New imaging frontiers. Mov Disord 2017; 32:181-192. [DOI: 10.1002/mds.26907] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 11/27/2016] [Indexed: 12/23/2022] Open
Affiliation(s)
- Antonio P. Strafella
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Neurology Div/Dept. Medicine, Toronto Western Hospital, UHN; Krembil Research Institute, UHN; Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH; University of Toronto; Ontario Canada
| | - Nicolaas I. Bohnen
- University of Michigan & Veterans Administration Medical Center; Ann Arbor Michigan USA
| | - Joel S. Perlmutter
- Neurology, Radiology, Neuroscience, Physical Therapy & Occupational Therapy; Washington University in St. Louis; St. Louis Missouri USA
| | - David Eidelberg
- Center for Neurosciences; The Feinstein Institute for Medical Research; Manhasset New York USA
| | - Nicola Pavese
- Newcastle Magnetic Resonance Centre & Positron Emission Tomography Centre; Newcastle University; Campus for Ageing & Vitality Newcastle upon Tyne United Kingdom
| | - Thilo Van Eimeren
- Multimodal Neuroimaging Group-Department of Nuclear Medicine Department of Neurology-University of Cologne; Institute of Neuroscience and Medicine, Jülich Research Center, German Center for Neurodegenerative Diseases (DZNE); Germany
| | - Paola Piccini
- Neurology Imaging Unit, Centre of Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Hammersmith Campus; Imperial College London; United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry; Psychology and Neuroscience, King's College London; London United Kingdom
| | - Stephane Thobois
- Hospices Civils de Lyon, Hopital Neurologique Pierre Wertheimer; Université Lyon 1; CNRS, Centre de Neurosciences Cognitives; UMR 5229 Lyon France
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, Movement Disorders and Parkinson Center; University of Pisa; Italy
| | - Makoto Higuchi
- National Institute of Radiological Sciences; National Institutes for Quantum and Radiological Science and Technology; Chiba Japan
| | - Valtteri Kaasinen
- Division of Clinical Neurosciences, Turku University Hospital; Department of Neurology; University of Turku; Turku PET Centre, University of Turku; Turku Finland
| | - Mario Masellis
- Cognitive & Movement Disorders Clinic, Sunnybrook Health Sciences Centre; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute; University of Toronto; Toronto Ontario Canada
| | - M. Cecilia Peralta
- Movement Disorder and Parkinson's Disease Program; CEMIC University Hospital; Buenos Aires Argentina
| | - Ignacio Obeso
- Centro Integral de Neurociencias (CINAC), Hospitales Madrid Puerta del Sur & Centro de Investigación Biomédica en Red; Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Jose Ángel Pineda-Pardo
- Centro Integral de Neurociencias (CINAC), Hospitales Madrid Puerta del Sur & Centro de Investigación Biomédica en Red; Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Roberto Cilia
- Parkinson Institute; ASST Gaetano Pini-CTO; Milan Italy
| | - Benedicte Ballanger
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity & Neuropathology of Olfactory Perception Team; University Lyon; France
| | - Martin Niethammer
- Center for Neurosciences; The Feinstein Institute for Medical Research; Manhasset New York USA
| | - Jon A. Stoessl
- Pacific Parkinson's Research Centre & National Parkinson Foundation Centre of Excellence; University of British Columbia & Vancouver Coastal Health; Vancouver British Columbia Canada
| | | |
Collapse
|
48
|
Hansen AK, Knudsen K, Lillethorup TP, Landau AM, Parbo P, Fedorova T, Audrain H, Bender D, Østergaard K, Brooks DJ, Borghammer P. In vivo imaging of neuromelanin in Parkinson's disease using 18F-AV-1451 PET. Brain 2016; 139:2039-49. [PMID: 27190023 DOI: 10.1093/brain/aww098] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/14/2016] [Indexed: 11/13/2022] Open
Abstract
The tau tangle ligand (18)F-AV-1451 ((18)F-T807) binds to neuromelanin in the midbrain, and may therefore be a measure of the pigmented dopaminergic neuronal count in the substantia nigra. Parkinson's disease is characterized by progressive loss of dopaminergic neurons. Extrapolation of post-mortem data predicts that a ∼30% decline of nigral dopamine neurons is necessary to cause motor symptoms in Parkinson's disease. Putamen dopamine terminal loss at disease onset most likely exceeds that of the nigral cell bodies and has been estimated to be of the order of 50-70%. We investigated the utility of (18)F-AV-1451 positron emission tomography to visualize the concentration of nigral neuromelanin in Parkinson's disease and correlated the findings to dopamine transporter density, measured by (123)I-FP-CIT single photon emission computed tomography. A total of 17 patients with idiopathic Parkinson's disease and 16 age- and sex-matched control subjects had (18)F-AV-1451 positron emission tomography using a Siemens high-resolution research tomograph. Twelve patients with Parkinson's disease also received a standardized (123)I-FP-CIT single photon emission computed tomography scan at our imaging facility. Many of the patients with Parkinson's disease displayed visually apparent decreased (18)F-AV-1451 signal in the midbrain. On quantitation, patients showed a 30% mean decrease in total nigral (18)F-AV-1451 volume of distribution compared with controls (P = 0.004), but there was an overlap of the individual ranges. We saw no significant correlation between symptom dominant side and contralateral nigral volume of distribution. There was no correlation between nigral (18)F-AV-1451 volume of distribution and age or time since diagnosis. In the subset of 12 patients, who also had a (123)I-FP-CIT scan, the mean total striatal dopamine transporter signal was decreased by 45% and the mean total (18)F-AV-1451 substantia nigra volume of distribution was decreased by 33% after median disease duration of 4.7 years (0.5-12.4 years). (18)F-AV-1451 positron emission tomography may be the first radiotracer to reflect the loss of pigmented neurons in the substantia nigra of parkinsonian patients. The magnitude of the nigral signal loss was smaller than the decrease in striatal dopamine transporter signal measured by dopamine transporter single photon emission computed tomography. These findings suggest a more severe loss of striatal nerve terminal function compared with neuronal cell bodies, in accordance with the post-mortem literature.
Collapse
Affiliation(s)
- Allan K Hansen
- 1 Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Denmark
| | - Karoline Knudsen
- 1 Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Denmark
| | - Thea P Lillethorup
- 1 Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Denmark
| | - Anne M Landau
- 1 Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Denmark 2 Translational Neuropsychiatry Unit, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Peter Parbo
- 1 Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Denmark
| | - Tatyana Fedorova
- 1 Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Denmark
| | - Hélène Audrain
- 1 Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Denmark
| | - Dirk Bender
- 1 Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Denmark
| | - Karen Østergaard
- 3 Department of Neurology, Institute of Clinical Medicine, Aarhus University, Denmark
| | - David J Brooks
- 1 Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Denmark 4 Division of Neuroscience, Department of Medicine, Imperial College London, UK 5 Division of Neuroscience, Newcastle University, UK
| | - Per Borghammer
- 1 Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Denmark
| |
Collapse
|
49
|
Zheng HG, Zhang R, Li X, Li FF, Wang YC, Wang XM, Lu LL, Feng T. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography. Chin Med J (Engl) 2016; 128:1765-71. [PMID: 26112718 PMCID: PMC4733705 DOI: 10.4103/0366-6999.159352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: The relationship between monosymptomatic resting tremor (mRT) and Parkinson's disease (PD) remains controversial. In this study, we aimed to assess the function of presynaptic dopaminergic neurons in patients with mRT by dopamine transporter positron emission tomography (DAT-PET) and to evaluate the utility of clinical features or electrophysiological studies in differential diagnosis. Methods: Thirty-three consecutive patients with mRT were enrolled prospectively. The Unified Parkinson's Disease Rating Scale and electromyography were tested before DAT-PET. Striatal asymmetry index (SAI) was calculated, and a normal DAT-PET was defined as a SAI of <15%. Scans without evidence of dopaminergic deficits (SWEDDs) were diagnosed in patients with a subsequent normal DAT-PET and structural magnetic resonance imaging. Results: Twenty-eight mRT patients with a significant reduction in uptake of DAT binding in the striatum were diagnosed with PD, while the remained 5 with a normal DAT-PET scan were SWEDDs. As for UPRDS, the dressing and hygiene score, walking in motor experiences of daily living (Part II) and motor examination (Part III) were significant different between two groups (P < 0.05 and P < 0.01, respectively). Bilateral tremor was more frequent in the SWEDDs group (P < 0.05). The frequency of resting tremor and the amplitude of postural tremor tend to be higher in the SWEDDs group (P = 0.08 and P = 0.05, respectively). Conclusions: mRT is heterogeneous in presynaptic nigrostriatal dopaminergic degeneration, which can be determined by DAT-PET brain imaging. Clinical and electrophysiological features may provide clues to distinguish PD from SWEDDs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tao Feng
- China National Clinical Research Center for Neurological Diseases; Center of Neurodegenerative Disease, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050; Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
50
|
Chen Z, Tang J, Liu C, Li X, Huang H, Xu X, Yu H. Effects of anesthetics on vesicular monoamine transporter type 2 binding to ¹⁸F-FP-(+)-DTBZ: a biodistribution study in rat brain. Nucl Med Biol 2015; 43:124-129. [PMID: 26526872 DOI: 10.1016/j.nucmedbio.2015.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The in vivo binding analysis of vesicular monoamine transporter type 2 (VMAT2) to radioligand has provided a means of investigating related disorders. Anesthesia is often inevitable when the investigations are performed in animals. In the present study, we tested effects of four commonly-used anesthetics: isoflurane, pentobarbital, chloral hydrate and ketamine, on in vivo VMAT2 binding to (18)F-FP-(+)-DTBZ, a specific VMAT2 radioligand, in rat brain. METHODS The transient equilibrium time window for in vivo binding of (18)F-FP-(+)-DTBZ after a bolus injection was firstly determined. The brain biodistribution studies under anesthetized and awake rats were then performed at the equilibrium time. Standard uptake values (SUVs) of the interest brain regions: the striatum (ST), hippocampus (HP), cortex (CX) and cerebellum (CB) were obtained; and ratios of tissue to cerebellum were calculated. RESULTS Isoflurane and pentobarbital did not alter distribution of (18)F-FP-(+)-DTBZ in the brain relative to the awake group; neither SUVs nor ratios of ST/CB and HP/CB were altered significantly. Chloral hydrate significantly increased SUVs of all the brain regions, but did not significantly alter ratios of ST/CB and HP/CB. Ketamine significantly increased SUVs of the striatum, hippocampus and cortex, and insignificantly increased the SUV of the cerebellum; consequently, ketamine significantly increased ratios of ST/CB and HP/CB. CONCLUSIONS It is concluded that in vivo VMAT2 binding to (18)F-FP-(+)-DTBZ are not altered by isoflurane and pentobarbital, but altered by chloral hydrate and ketamine. Isoflurane and pentobarbital may be promising anesthetic compounds for investigating in vivo VMAT2 binding. Further studies are warranted to investigate the interactions of anesthetics with VMAT2 binding potential with in vivo PET studies.
Collapse
Affiliation(s)
- Zhengping Chen
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China, 214063.
| | - Jie Tang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China, 214063
| | - Chunyi Liu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China, 214063
| | - Xiaomin Li
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China, 214063
| | - Hongbo Huang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China, 214063
| | - Xijie Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China, 214063
| | - Huixin Yu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China, 214063
| |
Collapse
|