1
|
Johal AS, Al-Shekaili HH, Abedrabbo M, Kehinde AZ, Towriss M, Koe JC, Hewton KG, Thomson SB, Ciernia AV, Leavitt B, Parker SJ. Restricting lysine normalizes toxic catabolites associated with ALDH7A1 deficiency in cells and mice. Cell Rep 2024; 43:115069. [PMID: 39661514 DOI: 10.1016/j.celrep.2024.115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/04/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
Lysine metabolism converges at α-aminoadipic semialdehyde dehydrogenase (ALDH7A1). Rare loss-of-function mutations in ALDH7A1 cause a toxic accumulation of lysine catabolites, including piperideine-6-carboxylate (P6C), that are thought to cause fatal seizures in children unless strictly managed with dietary lysine reduction. In this study, we perform metabolomics and expression analysis of tissues from Aldh7a1-deficient mice, which reveal tissue-specific differences in lysine metabolism and other metabolic pathways. We also develop a fluorescent biosensor to characterize lysine transporter activity and identify competitive substrates that reduce the accumulation of lysine catabolites in ALDH7A1-deficient HEK293 cells. Lastly, we show that intravenous administration of lysine α-oxidase from Trichoderma viride reduces lysine and P6C levels by >80% in mice. Our results improve our understanding of lysine metabolism and make inroads toward improving therapeutic strategies for lysine catabolic disorders.
Collapse
Affiliation(s)
- Amritpal S Johal
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hilal H Al-Shekaili
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Muna Abedrabbo
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Abisola Z Kehinde
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Morgan Towriss
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jessica C Koe
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Keeley G Hewton
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Sarah B Thomson
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Annie V Ciernia
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Blair Leavitt
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Seth J Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
2
|
Gan Y, Li G, Wei Z, Feng Y, Shi Y, Deng Y. Precision diagnosis and treatment of vitamin metabolism-related epilepsy. ACTA EPILEPTOLOGICA 2024; 6:27. [DOI: 10.1186/s42494-024-00169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/23/2024] [Indexed: 01/05/2025] Open
Abstract
AbstractEpilepsy is a chronic disorder of the nervous system caused by abnormal discharges from brain cells. Structural, infectious, metabolic, immunologic, and unknown causes can contribute to the development of seizures. In recent years, there has been increasing attention on epilepsy caused by genetic metabolic disorders. More than two hundred inherited metabolic disorders have been identified as potential cause of seizures, and they are mainly associated with energy deficiency in the brain, accumulation of toxic substances, abnormal neurotransmitter transmission, and deficiency of cofactors. Vitamins play a crucial role as components of several enzymes or coenzymes. Impaired metabolism of thiamine, biotin, vitamin B6, vitamin B12 and folic acid can contribute to early-onset seizures and developmental abnormalities in infants. However, timely supplementation therapy can significantly improve patient prognosis of affected patients. Therefore, a thorough understanding and investigation of the metabolic basis of epilepsy is essential for the development of precise therapeutic approaches, which could provide significant therapeutic benefits for patients.
Collapse
|
3
|
焦 莶, 龚 潘, 牛 悦, 徐 兆, 周 宗, 杨 志. [Phenotype of infantile epileptic spasm syndrome in pyridoxin-dependent epilepsy]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:781-787. [PMID: 39397454 PMCID: PMC11480537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To analyze the clinical diagnosis, treatment, and prognosis of the patients with pyridoxine-dependent epilepsy (PDE) characterized by infantile epileptic spasm syndrome (IESS). METHODS A total of 75 PDE patients with ALDH7A1 variants were diagnosed at the Department of Pediatrics of Peking University First Hospital and Peking University People's Hospital from July 2012 to June 2024, and five PDE patients with the phenotype of IESS were selected. The clinical manifestations, treatment, blood biochemistry, metabolic screening, electroencephalogram (EEG), brain magnetic resonance imaging (MRI), and gene testing results of the five PDE patients were analyzed. RESULTS Among the five patients diagnosed with PDE, three were female and two were male, and the phenotype was consistent with IESS. The age at the last follow-up was from one year and 3 months to 11 years and 9 months. All the five cases were delivered at term. Two cases had anoxia and asphyxia at birth, and three cases had normal birth history. The onset age of seizure ranged from one day to 4 months after birth. One case presented with epileptic spasms (ES), and three cases presented with focal seizure and ES. The other patient was started with ES, followed by multiple seizure types, including focal seizure and generalized tonic-clonic seizure, and developed epileptic status which caused secondary brain injury. The interictal EEG results showed hypsarrhythmia in three cases, generalized and multifocal discharges in one cases, and multifocal discharges in one case. No abnormalities were found in brain MRI in three cases, and secondary cerebral atrophy and hydrocephalus were observed in two cases during the course of the disease. Gene analysis confirmed that the five patients carried compound heterozygous variants of ALDH7A1, and two of them carried exon deletion variants. High dose pyridoxine treatment started at the end of 2 days, 4 years, 3 years, 4 days. and 2 months after the onset of the disease. Up to the last follow-up, seizures of four cases were controlled, followed by normal EEG. One patient with brain atrophy had uncontrolled seizures and EEG remained abnormal. The neurodevelopment of the three patients were severely delayed, and two were mildly delayed. CONCLUSION IESS could be a rare phenotype of PDE. High doses of pyridoxine can control or reduce the frequency of seizures. Delayed diagnosis and treatment, secondary brain injury, and the genotype, especially deletions variants, were associated with poor prognosis.
Collapse
Affiliation(s)
- 莶如 焦
- 北京大学人民医院儿科,北京 100044Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
- 北京大学第一医院儿科,北京 100034Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - 潘 龚
- 北京大学第一医院儿科,北京 100034Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - 悦 牛
- 北京大学人民医院儿科,北京 100044Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| | - 兆 徐
- 北京大学人民医院儿科,北京 100044Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| | - 宗朴 周
- 北京大学人民医院儿科,北京 100044Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| | - 志仙 杨
- 北京大学人民医院儿科,北京 100044Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
4
|
Fang C, Yang L, Xiao F, Yan K, Zhou W. Genotype and phenotype features and prognostic factors of neonatal-onset pyridoxine-dependent epilepsy: A systematic review. Epilepsy Res 2024; 202:107363. [PMID: 38636407 DOI: 10.1016/j.eplepsyres.2024.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is a rare autosomal recessive disorder due to a deficiency of α-aminoadipic semialdehyde dehydrogenase. This study aimed to systematically explore genotypic and phenotypic features and prognostic factors of neonatal-onset PDE. A literature search covering PubMed, Elsevier, and Web of Science was conducted from January 2006 to August 2023. We identified 56 eligible studies involving 169 patients and 334 alleles. The c.1279 G>C variant was the most common variant of neonatal-onset PDE (25.7 %). All patients were treated with pyridoxine; forty patients received dietary intervention therapy. 63.9 % of the patients were completely seizure-free; however, 68.6 % of the patients had neurodevelopmental delays. Additionally, homozygous c.1279 G>C variants were significantly associated with ventriculomegaly, abnormal white matter signal, and cysts (P<0.05). In contrast, homozygous c.1364 T>C was associated with clonic seizure (P=0.031). Pyridoxine used immediately at seizure onset was an independent protective factor for developmental delay (P=0.035; odds ratio [OR]: 3.14). Besides, pyridoxine used early in the neonatal period was a protective factor for language delay (P=0.044; OR: 4.59). In contrast, neonatal respiratory distress (P=0.001; OR: 127.44) and abnormal brain magnetic resonance imaging (P=0.049; OR: 3.64) were risk factors. Prenatal movement abnormality (P=0.041; OR: 20.56) and abnormal white matter signal (P=0.012; OR: 24.30) were risk factors for motor delay. Myoclonic seizure (P=0.023; OR: 7.13) and status epilepticus (P=0.000; OR: 9.93) were risk factors for breakthrough seizures. In conclusion, our study indicated that pyridoxine should be started immediately when unexplained neonatal seizures occur and not later than the neonatal period to prevent poor neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Chuchu Fang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lin Yang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Feifan Xiao
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Kai Yan
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Chang FM. Update current understanding of neurometabolic disorders related to lysine metabolism. Epilepsy Behav 2023; 146:109363. [PMID: 37499576 DOI: 10.1016/j.yebeh.2023.109363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Lysine, as an essential amino acid, predominantly undergoes metabolic processes through the saccharopine pathway, whereas a smaller fraction follows the pipecolic acid pathway. Although the liver is considered the primary organ for lysine metabolism, it is worth noting that lysine catabolism also takes place in other tissues and organs throughout the body, including the brain. Enzyme deficiency caused by pathogenic variants in its metabolic pathway may lead to a series of neurometabolic diseases, among which glutaric aciduria type 1 and pyridoxine-dependent epilepsy have the most significant clinical manifestations. At present, through research, we have a deeper understanding of the multiple pathophysiological mechanisms related to these diseases, including intracerebral accumulation of neurotoxic metabolites, imbalance between GABAergic and glutamatergic neurotransmission, energy deprivation due to metabolites, and the dysfunction of antiquitin. Because of the complexity of these diseases, their clinical manifestations are also diverse. The early implementation of lysine-restricted diets and supplementation with arginine and carnitine has reported positive impacts on the neurodevelopmental outcomes of patients. Presently, there is more robust evidence supporting the effectiveness of these treatments in glutaric aciduria type 1 compared with pyridoxine-dependent epilepsy.
Collapse
Affiliation(s)
- Fu-Man Chang
- Department of Pediatrics, Taitung MacKay Memorial Hospital, Taitung, Taiwan.
| |
Collapse
|
6
|
Mao B, Lin N, Guo D, He D, Xue H, Chen L, He Q, Zhang M, Chen M, Huang H, Xu L. Molecular analysis and prenatal diagnosis of seven Chinese families with genetic epilepsy. Front Neurosci 2023; 17:1165601. [PMID: 37250406 PMCID: PMC10213446 DOI: 10.3389/fnins.2023.1165601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Genetic epilepsy is a large group of clinically and genetically heterogeneous neurological disorders characterized by recurrent seizures, which have a clear association with genetic defects. In this study, we have recruited seven families from China with neurodevelopmental abnormalities in which epilepsy was a predominant manifestation, aiming to elucidate the underlying causes and make a precise diagnosis for the cases. Methods Whole-exome sequencing (WES) combined with Sanger sequencing was used to identify the causative variants associated with the diseases in addition to essential imaging and biomedical examination. Results A gross intragenic deletion detected in MFSD8 was investigated via gap-polymerase chain reaction (PCR), real-time quantitative PCR (qPCR), and mRNA sequence analysis. We identified 11 variants in seven genes (ALDH7A1, CDKL5, PCDH19, QARS1, POLG, GRIN2A, and MFSD8) responsible for genetic epilepsy in the seven families, respectively. A total of six variants (c.1408T>G in ALDH7A1, c.1994_1997del in CDKL5, c.794G>A in QARS1, c.2453C>T in GRIN2A, and c.217dup and c.863+995_998+1480del in MFSD8) have not yet been reported to be associated with diseases and were all evaluated to be pathogenic or likely pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Methods Based on the molecular findings, we have associated the intragenic deletion in MFSD8 with the mutagenesis mechanism of Alu-mediated genomic rearrangements for the first time and provided genetic counseling, medical suggestions, and prenatal diagnosis for the families. In conclusion, molecular diagnosis is crucial to obtain improved medical outcomes and recurrence risk evaluation for genetic epilepsy.
Collapse
Affiliation(s)
- Bin Mao
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Danhua Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Deqin He
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Huili Xue
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Lingji Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Qianqian He
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Min Zhang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
7
|
Global Metabolomics Discovers Two Novel Biomarkers in Pyridoxine-Dependent Epilepsy Caused by ALDH7A1 Deficiency. Int J Mol Sci 2022; 23:ijms232416061. [PMID: 36555701 PMCID: PMC9784804 DOI: 10.3390/ijms232416061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive developmental and epileptic encephalopathy caused by pathogenic variants in the ALDH7A1 gene (PDE-ALDH7A1), which mainly has its onset in neonates and infants. Early diagnosis and treatment are crucial to prevent severe neurological sequelae or death. Sensitive, specific, and stable biomarkers for diagnostic evaluations and follow-up examinations are essential to optimize outcomes. However, most of the known biomarkers for PDE lack these criteria. Additionally, there is little discussion regarding the interdependence of biomarkers in the PDE-ALDH7A1 metabolite profile. Therefore, the aim of this study was to understand the underlying mechanisms in PDE-ALDH7A1 and to discover new biomarkers in the plasma of patients using global metabolomics. Plasma samples from 9 patients with genetically confirmed PDE-ALDH7A1 and 22 carefully selected control individuals were analyzed by ultra high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). Two novel and reliable pyridoxine-independent diagnostic markers, 6-hydroxy-2-aminocaproic acid (HACA) and an isomer of C9H11NO4, were identified. Furthermore, a possible reaction mechanism is proposed for HACA. This study demonstrates the capability of global metabolomics in disease screening to detect established and novel biomarkers.
Collapse
|
8
|
Al-Shekaili HH, Petkau TL, Pena I, Lengyell TC, Verhoeven-Duif NM, Ciapaite J, Bosma M, van Faassen M, Kema IP, Horvath G, Ross C, Simpson EM, Friedman JM, van Karnebeek C, Leavitt BR. A novel mouse model for pyridoxine-dependent epilepsy due to antiquitin deficiency. Hum Mol Genet 2021; 29:3266-3284. [PMID: 32969477 DOI: 10.1093/hmg/ddaa202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disease caused by mutations in the ALDH7A1 gene leading to blockade of the lysine catabolism pathway. PDE is characterized by recurrent seizures that are resistant to conventional anticonvulsant treatment but are well-controlled by pyridoxine (PN). Most PDE patients also suffer from neurodevelopmental deficits despite adequate seizure control with PN. To investigate potential pathophysiological mechanisms associated with ALDH7A1 deficiency, we generated a transgenic mouse strain with constitutive genetic ablation of Aldh7a1. We undertook extensive biochemical characterization of Aldh7a1-KO mice consuming a low lysine/high PN diet. Results showed that KO mice accumulated high concentrations of upstream lysine metabolites including ∆1-piperideine-6-carboxylic acid (P6C), α-aminoadipic semialdehyde (α-AASA) and pipecolic acid both in brain and liver tissues, similar to the biochemical picture in ALDH7A1-deficient patients. We also observed preliminary evidence of a widely deranged amino acid profile and increased levels of methionine sulfoxide, an oxidative stress biomarker, in the brains of KO mice, suggesting that increased oxidative stress may be a novel pathobiochemical mechanism in ALDH7A1 deficiency. KO mice lacked epileptic seizures when fed a low lysine/high PN diet. Switching mice to a high lysine/low PN diet led to vigorous seizures and a quick death in KO mice. Treatment with PN controlled seizures and improved survival of high-lysine/low PN fed KO mice. This study expands the spectrum of biochemical abnormalities that may be associated with ALDH7A1 deficiency and provides a proof-of-concept for the utility of the model to study PDE pathophysiology and to test new therapeutics.
Collapse
Affiliation(s)
- Hilal H Al-Shekaili
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Terri L Petkau
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Izabella Pena
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tess C Lengyell
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Jolita Ciapaite
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | - Marjolein Bosma
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gabriella Horvath
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Colin Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth M Simpson
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jan M Friedman
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Clara van Karnebeek
- Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, BC Children's Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Engelke UF, van Outersterp RE, Merx J, van Geenen FA, van Rooij A, Berden G, Huigen MC, Kluijtmans LA, Peters TM, Al-Shekaili HH, Leavitt BR, de Vrieze E, Broekman S, van Wijk E, Tseng LA, Kulkarni P, Rutjes FP, Mecinović J, Struys EA, Jansen LA, Gospe SM, Mercimek-Andrews S, Hyland K, Willemsen MA, Bok LA, van Karnebeek CD, Wevers RA, Boltje TJ, Oomens J, Martens J, Coene KL. Untargeted metabolomics and infrared ion spectroscopy identify biomarkers for pyridoxine-dependent epilepsy. J Clin Invest 2021; 131:e148272. [PMID: 34138754 DOI: 10.1172/jci148272] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022] Open
Abstract
BackgroundPyridoxine-dependent epilepsy (PDE-ALDH7A1) is an inborn error of lysine catabolism that presents with refractory epilepsy in newborns. Biallelic ALDH7A1 variants lead to deficiency of α-aminoadipic semialdehyde dehydrogenase/antiquitin, resulting in accumulation of piperideine-6-carboxylate (P6C), and secondary deficiency of the important cofactor pyridoxal-5'-phosphate (PLP, active vitamin B6) through its complexation with P6C. Vitamin B6 supplementation resolves epilepsy in patients, but intellectual disability may still develop. Early diagnosis and treatment, preferably based on newborn screening, could optimize long-term clinical outcome. However, no suitable PDE-ALDH7A1 newborn screening biomarkers are currently available.MethodsWe combined the innovative analytical methods untargeted metabolomics and infrared ion spectroscopy to discover and identify biomarkers in plasma that would allow for PDE-ALDH7A1 diagnosis in newborn screening.ResultsWe identified 2S,6S-/2S,6R-oxopropylpiperidine-2-carboxylic acid (2-OPP) as a PDE-ALDH7A1 biomarker, and confirmed 6-oxopiperidine-2-carboxylic acid (6-oxoPIP) as a biomarker. The suitability of 2-OPP as a potential PDE-ALDH7A1 newborn screening biomarker in dried bloodspots was shown. Additionally, we found that 2-OPP accumulates in brain tissue of patients and Aldh7a1-knockout mice, and induced epilepsy-like behavior in a zebrafish model system.ConclusionThis study has opened the way to newborn screening for PDE-ALDH7A1. We speculate that 2-OPP may contribute to ongoing neurotoxicity, also in treated PDE-ALDH7A1 patients. As 2-OPP formation appears to increase upon ketosis, we emphasize the importance of avoiding catabolism in PDE-ALDH7A1 patients.FundingSociety for Inborn Errors of Metabolism for Netherlands and Belgium (ESN), United for Metabolic Diseases (UMD), Stofwisselkracht, Radboud University, Canadian Institutes of Health Research, Dutch Research Council (NWO), and the European Research Council (ERC).
Collapse
Affiliation(s)
- Udo Fh Engelke
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Jona Merx
- Institute for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Nijmegen, Netherlands
| | | | - Arno van Rooij
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory and
| | - Marleen Cdg Huigen
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo Aj Kluijtmans
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tessa Ma Peters
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hilal H Al-Shekaili
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia Vancouver, British Columbia, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia Vancouver, British Columbia, Canada
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sanne Broekman
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Laura A Tseng
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Purva Kulkarni
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Floris Pjt Rutjes
- Institute for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Nijmegen, Netherlands
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Nijmegen, Netherlands.,Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Eduard A Struys
- Department of Clinical Chemistry, Amsterdam University Medical Centers, location VU Medical Centre, Amsterdam, Netherlands
| | - Laura A Jansen
- Division of Pediatric Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sidney M Gospe
- Departments of Neurology and Pediatrics, University of Washington, Seattle, Washington, USA.,Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Saadet Mercimek-Andrews
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Keith Hyland
- Medical Neurogenetics Laboratories, Atlanta, Georgia, USA
| | - Michèl Aap Willemsen
- Department of Pediatric Neurology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Levinus A Bok
- Department of Pediatrics, Máxima Medical Centre, Veldhoven, Netherlands
| | - Clara Dm van Karnebeek
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Pediatrics-Metabolic Diseases, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,United for Metabolic Diseases (UMD), Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Nijmegen, Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory and.,Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | | | - Karlien Lm Coene
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
10
|
Cognitive and neurological outcome of patients in the Dutch pyridoxine-dependent epilepsy (PDE-ALDH7A1) cohort, a cross-sectional study. Eur J Paediatr Neurol 2021; 33:112-120. [PMID: 34153871 DOI: 10.1016/j.ejpn.2021.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/14/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Pyridoxine monotherapy in PDE-ALDH7A1 often results in adequate seizure control, but neurodevelopmental outcome varies. Detailed long-term neurological outcome is unknown. Here we present the cognitive and neurological features of the Dutch PDE-ALDH7A1 cohort. METHODS Neurological outcome was assessed in 24 patients (age 1-26 years); classified as normal, complex minor neurological dysfunction (complex MND) or abnormal. Intelligence quotient (IQ) was derived from standardized IQ tests with five severity levels of intellectual disability (ID). MRI's and treatments were assessed. RESULTS Ten patients (42%) showed unremarkable neurological examination, 11 (46%) complex MND, and 3 (12%) cerebral palsy (CP). Minor coordination problems were identified in 17 (71%), fine motor disability in 11 (46%), posture/muscle tone deviancies in 11 (46%) and abnormal reflexes in 8 (33%). Six patients (25%) had an IQ > 85, 7 (29%) borderline, 7 (29%) mild, 3 (13%) moderate, and 1 severe ID. Cerebral ventriculomegaly on MRI was progressive in 11. Three patients showed normal neurologic exam, IQ, and MRI. Eleven patients were treated with pyridoxine only and 13 by additional lysine reduction therapy (LRT). LRT started at age <3 years demonstrated beneficial effect on IQ results in 3 patients. DISCUSSION Complex MND and CP occurred more frequently in PDE-ALDH7A1 (46% and 12%) than in general population (7% and 0.2%, Peters et al., 2011, Schaefer et al., 2008). Twenty-five percent had a normal IQ. Although LRT shows potential to improve outcomes, data are heterogeneous in small patient numbers. More research with longer follow-up via the International PDE Registry (www.pdeonline.org) is needed.
Collapse
|
11
|
Kesavan S, Singanamalla B, Krishna Sahitya DS, Saini AG, Vyas S. Epilepsy and Hydrocephalus: Should Pyridoxine-Dependent Epilepsy Cross Our Minds? Ann Indian Acad Neurol 2020; 23:239-241. [PMID: 32189873 PMCID: PMC7061514 DOI: 10.4103/aian.aian_328_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shivan Kesavan
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhanudeep Singanamalla
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Arushi Gahlot Saini
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sameer Vyas
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Simultaneous quantification of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate, pipecolic acid and alpha-aminoadipic acid in pyridoxine-dependent epilepsy. Sci Rep 2019; 9:11371. [PMID: 31388081 PMCID: PMC6684619 DOI: 10.1038/s41598-019-47882-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/02/2019] [Indexed: 11/27/2022] Open
Abstract
The measurements of lysine metabolites provide valuable information for the rapid diagnosis of pyridoxine-dependent epilepsy (PDE). Here, we aimed to develop a sensitive method to simultaneously quantify multiple lysine metabolites in PDE, including α-aminoadipic semialdehyde (a-AASA), piperideine-6-carboxylate (P6C), pipecolic acid (PA) and α-aminoadipic acid (α-AAA) in plasma, serum, dried blood spots (DBS), urine and dried urine spots (DUS). Fifteen patients with molecularly confirmed PDE were detected using liquid chromatography-mass spectrometry (LC-MS/MS) method. Compared to the control groups, the concentrations of a-AASA, P6C and the sum of a-AASA and P6C (AASA-P6C) in all types of samples from PDE patients were markedly elevated. The PA and a-AAA concentrations ranges overlapped partially between PDE patients and control groups. The concentrations of all the analytes in plasma and serum, as well as in urine and DUS were highly correlated. Our study provided more options for the diverse sample collection in the biochemical tests according to practical requirements. With treatment modality of newly triple therapy investigated, biomarker study might play important role not only on diagnosis but also on treatment monitoring and fine tuning the diet. The persistently elevated analytes with good correlation between plasma and DBS, as well as urine and DUS made neonatal screening using DBS and DUS possible.
Collapse
|
13
|
Crowther LM, Mathis D, Poms M, Plecko B. New insights into human lysine degradation pathways with relevance to pyridoxine-dependent epilepsy due to antiquitin deficiency. J Inherit Metab Dis 2019; 42:620-628. [PMID: 30767241 DOI: 10.1002/jimd.12076] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/12/2019] [Indexed: 01/19/2023]
Abstract
Deficiency of antiquitin (ATQ), an enzyme involved in lysine degradation, is the major cause of vitamin B6 -dependent epilepsy. Accumulation of the potentially neurotoxic α-aminoadipic semialdehyde (AASA) may contribute to frequently associated developmental delay. AASA is formed by α-aminoadipic semialdehyde synthase (AASS) via the saccharopine pathway of lysine degradation, or, as has been postulated, by the pipecolic acid (PA) pathway, and then converted to α-aminoadipic acid by ATQ. The PA pathway has been considered to be the predominant pathway of lysine degradation in mammalian brain; however, this was refuted by recent studies in mouse. Consequently, inhibition of AASS was proposed as a potential new treatment option for ATQ deficiency. It is therefore of utmost importance to determine whether the saccharopine pathway is also predominant in human brain cells. The route of lysine degradation was analyzed by isotopic tracing studies in cultured human astrocytes, ReNcell CX human neuronal progenitor cells and human fibroblasts, and expression of enzymes of the two lysine degradation pathways was determined by Western blot. Lysine degradation was only detected through the saccharopine pathway in all cell types studied. The enrichment of 15 N-glutamate as a side product of AASA formation through AASS furthermore demonstrated activity of the saccharopine pathway. We provide first evidence that the saccharopine pathway is the major route of lysine degradation in cultured human brain cells. These results support inhibition of the saccharopine pathway as a new treatment option for ATQ deficiency.
Collapse
Affiliation(s)
- Lisa M Crowther
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, Switzerland
- CRC Clinical Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Radiz - Rare Disease Intiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Déborah Mathis
- CRC Clinical Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Radiz - Rare Disease Intiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Department of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin Poms
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, Switzerland
- CRC Clinical Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Radiz - Rare Disease Intiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Barbara Plecko
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, Switzerland
- CRC Clinical Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Radiz - Rare Disease Intiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| |
Collapse
|
14
|
Wilson MP, Plecko B, Mills PB, Clayton PT. Disorders affecting vitamin B 6 metabolism. J Inherit Metab Dis 2019; 42:629-646. [PMID: 30671974 DOI: 10.1002/jimd.12060] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
Vitamin B6 is present in our diet in many forms, however, only pyridoxal 5'-phosphate (PLP) can function as a cofactor for enzymes. The intestine absorbs nonphosphorylated B6 vitamers, which are converted by specific enzymes to the active PLP form. The role of PLP is enabled by its reactive aldehyde group. Pathways reliant on PLP include amino acid and neurotransmitter metabolism, folate and 1-carbon metabolism, protein and polyamine synthesis, carbohydrate and lipid metabolism, mitochondrial function and erythropoiesis. Besides the role of PLP as a cofactor B6 vitamers also play other cellular roles, for example, as antioxidants, modifying expression and action of steroid hormone receptors, affecting immune function, as chaperones and as an antagonist of Adenosine-5'-triphosphate (ATP) at P2 purinoceptors. Because of the vital role of PLP in neurotransmitter metabolism, particularly synthesis of the inhibitory transmitter γ-aminobutyric acid, it is not surprising that various inborn errors leading to PLP deficiency manifest as B6 -responsive epilepsy, usually of early onset. This includes pyridox(am)ine phosphate oxidase deficiency (a disorder affecting PLP synthesis and recycling), disorders affecting PLP import into the brain (hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects), a disorder of an intracellular PLP-binding protein (PLPBP, previously named PROSC) and disorders where metabolites accumulate that inactivate PLP, for example, ALDH7A1 deficiency and hyperprolinaemia type II. Patients with these disorders can show rapid control of seizures in response to either pyridoxine and/or PLP with a lifelong dependency on supraphysiological vitamin B6 supply. The clinical and biochemical features of disorders leading to B6 -responsive seizures and the treatment of these disorders are described in this review.
Collapse
Affiliation(s)
- Matthew P Wilson
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Barbara Plecko
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, University Childrens' Hospital Graz, Medical University Graz, Graz, Austria
| | - Philippa B Mills
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Peter T Clayton
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
15
|
Juric-Sekhar G, Hevner RF. Malformations of Cerebral Cortex Development: Molecules and Mechanisms. ANNUAL REVIEW OF PATHOLOGY 2019; 14:293-318. [PMID: 30677308 PMCID: PMC6938687 DOI: 10.1146/annurev-pathmechdis-012418-012927] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malformations of cortical development encompass heterogeneous groups of structural brain anomalies associated with complex neurodevelopmental disorders and diverse genetic and nongenetic etiologies. Recent progress in understanding the genetic basis of brain malformations has been driven by extraordinary advances in DNA sequencing technologies. For example, somatic mosaic mutations that activate mammalian target of rapamycin signaling in cortical progenitor cells during development are now recognized as the cause of hemimegalencephaly and some types of focal cortical dysplasia. In addition, research on brain development has begun to reveal the cellular and molecular bases of cortical gyrification and axon pathway formation, providing better understanding of disorders involving these processes. New neuroimaging techniques with improved resolution have enhanced our ability to characterize subtle malformations, such as those associated with intellectual disability and autism. In this review, we broadly discuss cortical malformations and focus on several for which genetic etiologies have elucidated pathogenesis.
Collapse
Affiliation(s)
- Gordana Juric-Sekhar
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA; ,
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Robert F Hevner
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA; ,
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98105, USA
- Current affiliation: Department of Pathology, University of California, San Diego, California 92093, USA
| |
Collapse
|
16
|
Wang J, Xue J, Gong P, Wu M, Yang W, Jiang S, Wu Y, Jiang Y, Zhang Y, Yuzyuk T, Li H, Yang Z. The Effects of a Single Oral Dose of Pyridoxine on Alpha-Aminoadipic Semialdehyde, Piperideine-6-Carboxylate, Pipecolic Acid, and Alpha-Aminoadipic Acid Levels in Pyridoxine-Dependent Epilepsy. Front Pediatr 2019; 7:337. [PMID: 31508398 PMCID: PMC6718124 DOI: 10.3389/fped.2019.00337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/25/2019] [Indexed: 11/15/2022] Open
Abstract
Purpose: To evaluate the effects of a single oral dose of pyridoxine on lysine metabolites including α-aminoadipic semialdehyde (a-AASA), piperideine-6-carboxylate (P6C), the sum of AASA and P6C (AASA-P6C), pipecolic acid (PA), and α-aminoadipic acid (α-AAA) in PDE patients. Methods: The lysine metabolites of 15 patients with molecularly confirmed PDE were detected before and 4 h after taking a single oral dose of pyridoxine, respectively, using liquid chromatography-mass spectrometry (LC-MS/MS) method. Five types of samples were freshly prepared, including plasma, serum, dried blood spots (DBS), urine, and dried urine spots (DUS). Results: All the patients had been treated with long-term oral pyridoxine for several months to years, with doses of 30-360 mg/d. The concentrations of a-AASA, P6C, AASA-P6C, PA, and a-AAA before and after taking a single oral dose of pyridoxine for the same analyte detected in the same type of sample varied among patients. The mean concentrations increased in almost all the metabolites after taking an oral dose of pyridoxine, with or without statistical significance. Whereas, the metabolites concentrations might increase or decrease among different patients, or in different samples of the same patient, without a regular tendency. There was no statistical correlation between the concentrations before and after taking pyridoxine in the same type of sample for most metabolites. Conclusions: No obvious relationship between the metabolite levels or concentration differences and the age, pyridoxine dose (a single oral dose and long-term maintenance dose), duration of treatment, or neurodevelopmental phenotype was found at present study. The large individual differences among patients, probably affected by various genotypes, leading to quite different effects of pyridoxine on the change degree of metabolites concentrations. Our study suggested that long-term pyridoxine treatment could control seizures rather than getting toxic lysine metabolites such as a-AASA and P6C back to normal. In the future, more therapies should be focused to alleviate the metabolites accumulation and further improve the prognosis of PDE.
Collapse
Affiliation(s)
- Junjuan Wang
- Department of Epidemiology & Bio-Statistics, Zhejiang University School of Public Health, Zhejiang, China.,Zhejiang Biosan Biochemical Technologies Co., Ltd., Zhejiang, China
| | - Jiao Xue
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Pan Gong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Minhang Wu
- Zhejiang Biosan Biochemical Technologies Co., Ltd., Zhejiang, China
| | - Wenshuang Yang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Shiju Jiang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Tatiana Yuzyuk
- Department of Pathology, University of Utah, Salt Lake, UT, United States.,ARUP Laboratories, ARUP Institute for Clinical and Experimental Pathology, Salt Lake, UT, United States
| | - Hong Li
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
17
|
Toldo I, Bonardi CM, Bettella E, Polli R, Talenti G, Burlina A, Sartori S, Murgia A. Brain malformations associated to Aldh7a1 gene mutations: Report of a novel homozygous mutation and literature review. Eur J Paediatr Neurol 2018; 22:1042-1053. [PMID: 30005813 DOI: 10.1016/j.ejpn.2018.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND The ALDH7A1 gene is known to be responsible for autosomal recessive pyridoxine-dependent epilepsy (OMIM 266100). The phenotypic spectrum of ALDH7A1 mutations is very heterogeneous ranging from refractory epilepsy and neurodevelopmental delay, to multisystem neonatal disorder. AIM The present study aims at describing the phenotype associated with a novel homozygous ALDH7A1 mutation and the spectrum of brain malformations associated with pyridoxine-dependent epilepsy. METHODS We conducted a literature review on the Internet database Pubmed (up to November 2017) searching for ALDH7A1 mutations associated with brain malformations and brain MRI findings. RESULTS We present the case of two siblings, children of related parents. The proband presented neonatal focal seizures not responding to conventional antiepileptic drugs. Electroencephalography showed a suppression burst pattern and several multifocal ictal patterns, responsive to pyridoxine. Brain MRI was normal. Molecular analysis by targeted next-generation sequencing panel for epileptic encephalopathy disclosed a homozygous missense mutation of ALDH7A1. The same mutation was then found in a stored sample of DNA from peripheral blood of an older sister dead 3 years earlier. This girl presented a complex brain malformation diagnosed with a foetal MRI and had neonatal refractory seizures with suppression burst pattern. She died at 6 months of age. LITERATURE REVIEW The brain abnormalities most frequently reported in pyridoxine-dependent epilepsy include: agenesia/hypoplasia of the corpus callosum, not specific white matter abnormalities, large cisterna magna, ventriculomegaly, haemorrhages, cerebellum hypoplasia/dysplasia, and, more rarely, dysplasia of the brainstem and hydrocephalus. DISCUSSION AND CONCLUSIONS ALDH7A1 mutations have been associated to different brain abnormalities, documented by MRI only in few cases. The study cases expand the clinical spectrum of ALDH7A1 associated conditions, suggesting to look for ALDH7A1 mutations not only in classical phenotypes but also in patients with brain malformations, mainly if there is a response to a pyridoxine trial.
Collapse
Affiliation(s)
- Irene Toldo
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | | | - Elisa Bettella
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | - Roberta Polli
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | - Giacomo Talenti
- Department of Neurosciences, University Hospital of Padua, Italy.
| | - Alberto Burlina
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | - Stefano Sartori
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | | |
Collapse
|
18
|
Mankad K, Talenti G, Tan AP, Gonçalves FG, Robles C, Kan EYL, Siddiqui A. Neurometabolic Disorders of the Newborn. Top Magn Reson Imaging 2018; 27:179-196. [PMID: 30086107 DOI: 10.1097/rmr.0000000000000176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is an extensive and diverse set of medical conditions affecting the neonatal brain within the spectrum of neurometabolic disorders. As such, their clinical presentations can be rather nonspecific, and can often mimic acquired entities such as hypoxic-ischemic encephalopathy and sepsis. Similarly, the radiological findings in these entities can also be frequently nonspecific, but a more detailed analysis of imaging findings (especially magnetic resonance imaging) alongside the relevant clinical details can be a rewarding experience, thus enabling a timely and targeted diagnosis. Early diagnosis of an underlying neurometabolic disorder is vital, as some of these entities are potentially treatable, and laboratory and genetic testing can be precisely targeted. Further, their detection helps with counselling families for future pregnancies. We present a review of neurometabolic disorders specific to the newborns with a focus on how neuroimaging findings match their clinical presentation patterns.
Collapse
Affiliation(s)
- Kshitij Mankad
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Ai Peng Tan
- Department of Diagnostic Imaging, National University Health System, Singapore, Singapore
| | | | - Carlos Robles
- Department of Radiology, Hospital Clinico Universidad de Chile, Región Metropolitana, Chile
| | - Elaine Y L Kan
- Department of Radiology, Hong Kong Children's Hospital, Kai Tak, Hong Kong
| | - Ata Siddiqui
- Department of Neuroradiology, King's College Hospital, London, UK
| |
Collapse
|
19
|
Oesch G, Maga AM, Friedman SD, Poliachik SL, Budech CB, Wright JN, Bok LA, Gospe SM. Geometric morphometrics reveal altered corpus callosum shape in pyridoxine-dependent epilepsy. Neurology 2018; 91:e78-e86. [PMID: 29875223 DOI: 10.1212/wnl.0000000000005748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To evaluate the features and maturational changes in overall callosal shape in patients with pyridoxine-dependent epilepsy (PDE). METHODS Measurements were conducted through landmark-based geometric morphometrics applied on cerebral MRIs of patients with PDE and age-matched control subjects. The outline of the corpus callosum was manually traced in the midsagittal plane. Three hundred semi-landmarks along the outline were collected and underwent statistical generalized Procrustes analysis. An allometric regression was applied to evaluate the callosal shape due to growth over time. RESULTS Thirty-eight patients with PDE and 38 age- and sex-matched control subjects were included. Mean age at the time of the MRI in the patient group was 9.3 years (median 6.3 years, range 0.01-48 years). Significant differences (p < 0.01) in the mean callosal shape between patients and controls were found. The allometric regression model revealed significant shape variations (p < 0.01) between the 2 study groups across the developmental course after controlling for the effect of callosal size on shape. This latter effect turned out to be significant as well (p < 0.001). CONCLUSIONS Patients with PDE show an altered callosal shape and variations in callosal ontogeny, which are likely secondary to the underlying genetic defect with abnormal function of antiquitin, the product of the ALDH7A1 gene.
Collapse
Affiliation(s)
- Gabriela Oesch
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands
| | - A Murat Maga
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands
| | - Seth D Friedman
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands
| | - Sandra L Poliachik
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands
| | - Christopher B Budech
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands
| | - Jason N Wright
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands
| | - Levinus A Bok
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands
| | - Sidney M Gospe
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands.
| |
Collapse
|
20
|
Navarro-Abia V, Soriano-Ramos M, Núñez-Enamorado N, Camacho-Salas A, Martinez-de Aragón A, Martín-Hernández E, Simón-de Las Heras R. Hydrocephalus in pyridoxine-dependent epilepsy: New case and literature review. Brain Dev 2018; 40:348-352. [PMID: 29295802 DOI: 10.1016/j.braindev.2017.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Pyridoxine-dependent epilepsy (PDE) is a rare disorder of the lysine metabolism, characterized by a pharmacoresistant epileptic encephalopathy that usually begins in the neonatal period. However, its phenotypic spectrum is wide and not limited to seizures. We report a new case of PDE who developed hydrocephalus, along with an exhaustive review of the literature. CASE REPORT Our patient presented with seizures at 13 h of life. Antiepileptic drugs, vitamins and cofactors were required to achieve seizure control. Laboratory tests were congruent with PDE. She remained seizure-free until age five months, when seizures reappeared in the context of increasing head size and irritability. A cranial ultrasound showed hydrocephalus, for which she underwent ventriculoperitoneal shunting. DISCUSSION Seven other patients with same features have been previously reported. Seizure onset occurred within the first 7 days in all patients. Most of the children developed hydrocephalus at 6-7 months of age. In 4 out of 7 a genetic mutation was identified, despite the accurate etiology of hydrocephalus was unknown in most of them. The case we report behaved similarly to the others previously described. We postulate that the pathogenesis of this complication could be related to the high expression of antiquitin in choroid plexus epithelium, where the cerebrospinal fluid is produced. CONCLUSIONS patients with PDE should be closely monitored, since they may present severe complications. We highlight the development of hydrocephalus, an uncommon but potentially life-threatening problem reported in 8 patients up to present time.
Collapse
Affiliation(s)
- Virginia Navarro-Abia
- Division of Child Neurology, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041 Madrid, Spain.
| | - María Soriano-Ramos
- Division of Child Neurology, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Noemí Núñez-Enamorado
- Division of Child Neurology, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Ana Camacho-Salas
- Division of Child Neurology, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Ana Martinez-de Aragón
- Division of Neuroradiology, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Elena Martín-Hernández
- Pediatric Unit of Rare Diseases, Mitochondrial and Inherited Metabolic Disorders, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Rogelio Simón-de Las Heras
- Division of Child Neurology, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041 Madrid, Spain
| |
Collapse
|
21
|
Coci EG, Codutti L, Fink C, Bartsch S, Grüning G, Lücke T, Kurth I, Riedel J. Novel homozygous missense mutation in ALDH7A1 causes neonatal pyridoxine dependent epilepsy. Mol Cell Probes 2017; 32:18-23. [DOI: 10.1016/j.mcp.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 01/01/2023]
|
22
|
Ben Younes T, Kraoua I, Benrhouma H, Nasrallah F, Ben Achour N, Klaa H, Hassen-Rouissi A, Drissi C, Benoist JF, Ben Youssef-Turki I. Pyridoxine-dependent epilepsy: A novel mutation in a Tunisian child. Arch Pediatr 2017; 24:241-243. [DOI: 10.1016/j.arcped.2016.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/22/2016] [Accepted: 11/30/2016] [Indexed: 11/25/2022]
|
23
|
Pena IA, MacKenzie A, Van Karnebeek CDM. Current knowledge for pyridoxine-dependent epilepsy: a 2016 update. Expert Rev Endocrinol Metab 2017; 12:5-20. [PMID: 30058881 DOI: 10.1080/17446651.2017.1273107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare genetic condition characterized by intractable and recurrent neonatal seizures that are uniquely alleviated by high doses of pyridoxine (vitamin B6). This recessive disease is caused by mutations in ALDH7A1, a gene encoding Antiquitin, an enzyme central to lysine degradation. This results in the pathogenic accumulation of the lysine intermediates Aminoadipate Semialdehyde (AASA) and its cyclic equilibrium form Piperideine-6-carboxylate (P6C) in body fluids; P6C reacts with pyridoxal-5'-phosphate (PLP, the active form of vitamin B6) causing its inactivation and leading to pyridoxine-dependent seizures. While PDE is responsive to pharmacological dosages of pyridoxine, despite lifelong supplementation, neurodevelopment delays are observed in >75% of PDE cases. Thus, adjunct treatment strategies are emerging to both improve seizure control and moderate the delays in cognition. These adjunctive therapies, lysine restriction and arginine supplementation, separately or in combination (with pyridoxine thus termed 'triple therapy'), have shown promising results and are recommended in all PDE patients. Other new therapeutic strategies currently in preclinical phase of study include antisense therapy and substrate reduction therapy. We present here a comprehensive review of current treatment options as well as PDE phenotype, differential diagnosis, current management and views upon the future of PDE research.
Collapse
Affiliation(s)
- Izabella Agostinho Pena
- a Children's Hospital of Eastern Ontario (CHEO) Research Institute , Ottawa , ON , Canada
- b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , ON , Canada
| | - Alex MacKenzie
- a Children's Hospital of Eastern Ontario (CHEO) Research Institute , Ottawa , ON , Canada
- b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , ON , Canada
| | - Clara D M Van Karnebeek
- c Department of Pediatrics, BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics , University of British Columbia , Vancouver BC , Canada
| |
Collapse
|
24
|
Marguet F, Barakizou H, Tebani A, Abily-Donval L, Torre S, Bayoudh F, Jebnoun S, Brasseur-Daudruy M, Marret S, Laquerriere A, Bekri S. Pyridoxine-dependent epilepsy: report on three families with neuropathology. Metab Brain Dis 2016; 31:1435-1443. [PMID: 27438048 DOI: 10.1007/s11011-016-9869-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022]
Abstract
Pyridoxine-dependent epilepsy (PDE) is a pharmacoresistant epileptogenic encephalopathy controlled by pyridoxine supplementation at pharmacological doses. Despite supplementation, the long-term outcome is often poor possibly because of recurrent seizures and developmental structural brain abnormalities. We report on five patients with PDE from three unrelated families. The diagnosis was confirmed by ALDH7A1 sequencing, which allowed for the characterization of two homozygous variations [NM_001182.3:c.1279G > C - p.(Glu427Gln) and c.834G > A - p.(Val278Val)]. Brain autopsy was conducted for one untreated patient with molecularly confirmed antiquitin deficiency. Macroscopic and histological examination revealed a combination of lesions resulting from recurrent seizures and consisting of extensive areas of cortical necrosis, gliosis, and hippocampic sclerosis. The examination also revealed developmental abnormalities including corpus callosum dysgenesis and corticospinal pathfinding anomalies. This case is the second to be reported in the literature, and our findings show evidence that antiquitin is required for normal brain development and functioning. Despite prophylactic prenatal pyridoxine supplementation during the last trimester of pregnancy in one of the three families and sustained pyridoxine treatment in three living patients, the clinical outcome remained poor with delayed acquisition of neurocognitive skills. Combined therapy (pyridoxine/arginine supplementation and lysine-restricted diet) should be considered early in the course of the disease for a better long-term outcome. Enhanced knowledge of PDE features is required to improve treatment strategies.
Collapse
Affiliation(s)
- Florent Marguet
- Pathology Laboratory, Rouen University Hospital, Rouen, France
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen, 76000, France
| | - Hager Barakizou
- Department of Pediatrics, Military Hospital of Tunis, Tunis, Tunisia
| | - Abdellah Tebani
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen, 76000, France
- Department of Metabolic Biochemistry, Rouen University Hospital, 1 Rue de Germont, 76031, Rouen Cedex, France
| | - Lenaig Abily-Donval
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen, 76000, France
- Department of Neonatology, Intensive care unit, and Neuropediatrics, Rouen University Hospital, Rouen, France
| | - Stéphanie Torre
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen, 76000, France
- Department of Neonatology, Intensive care unit, and Neuropediatrics, Rouen University Hospital, Rouen, France
| | - Fethi Bayoudh
- Department of Pediatrics, Military Hospital of Tunis, Tunis, Tunisia
| | - Sami Jebnoun
- Department of Pediatrics, Clinique Avicenne Tunis, Tunis, Tunisia
| | | | - Stéphane Marret
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen, 76000, France
- Department of Neonatology, Intensive care unit, and Neuropediatrics, Rouen University Hospital, Rouen, France
| | - Annie Laquerriere
- Pathology Laboratory, Rouen University Hospital, Rouen, France
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen, 76000, France
| | - Soumeya Bekri
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen, 76000, France.
- Department of Metabolic Biochemistry, Rouen University Hospital, 1 Rue de Germont, 76031, Rouen Cedex, France.
| |
Collapse
|
25
|
Yuzyuk T, Thomas A, Viau K, Liu A, De Biase I, Botto LD, Pasquali M, Longo N. Effect of dietary lysine restriction and arginine supplementation in two patients with pyridoxine-dependent epilepsy. Mol Genet Metab 2016; 118:167-172. [PMID: 27324284 DOI: 10.1016/j.ymgme.2016.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022]
Abstract
Pyridoxine-Dependent Epilepsy (PDE) is a recessive disorder caused by deficiency of α-aminoadipic semialdehyde dehydrogenase in the catabolic pathway of lysine. It is characterized by intractable seizures controlled by the administration of pharmacological doses of vitamin B6. Despite seizure control with pyridoxine, intellectual disability and developmental delays are still observed in some patients with PDE, likely due to the accumulation of toxic intermediates in the lysine catabolic pathway: alpha-aminoadipic semialdehyde (AASA), delta-1-piperideine-6-carboxylate (P6C), and pipecolic acid. Here we evaluate biochemical and clinical parameters in two PDE patients treated with a lysine-restricted diet and arginine supplementation (100-150mg/kg), aimed at reducing the levels of PDE biomarkers. Lysine restriction resulted in decreased accumulation of PDE biomarkers and improved development. Plasma lysine but not plasma arginine, directly correlated with plasma levels of AASA-P6C (p<0.001, r(2)=0.640) and pipecolic acid (p<0.01, r(2)=0.484). In addition, plasma threonine strongly correlated with the levels of AASA-P6C (p<0.0001, r(2)=0.732) and pipecolic acid (p<0.005, r(2)=0.527), suggesting extreme sensitivity of threonine catabolism to pyridoxine availability. Our results further support the use of dietary therapies in combination with pyridoxine for the treatment of PDE.
Collapse
Affiliation(s)
- Tatiana Yuzyuk
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA.
| | - Amanda Thomas
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA
| | - Krista Viau
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Aiping Liu
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Irene De Biase
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Lorenzo D Botto
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA; Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Nicola Longo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA; Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
26
|
Pyridoxine-Dependent Epilepsy: An Expanding Clinical Spectrum. Pediatr Neurol 2016; 59:6-12. [PMID: 26995068 DOI: 10.1016/j.pediatrneurol.2015.12.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pyridoxine-dependent epilepsy is a rare autosomal recessive epileptic encephalopathy caused by antiquitin (ALDH7A1) deficiency. In spite of adequate seizure control, 75% of patients suffer intellectual developmental disability. Antiquitin deficiency affects lysine catabolism resulting in accumulation of α-aminoadipic semialdehyde/pyrroline 6' carboxylate and pipecolic acid. Beside neonatal refractory epileptic encephalopathy, numerous neurological manifestations and metabolic/biochemical findings have been reported. METHODS AND RESULTS We present a phenotypic spectrum of antiquitin deficiency based on a literature review (2006 to 2015) of reports (n = 49) describing the clinical presentation of confirmed patients (n > 200) and a further six patient vignettes. Possible presentations include perinatal asphyxia; neonatal withdrawal syndrome; sepsis; enterocolitis; hypoglycemia; neuroimaging abnormalities (corpus callosum and cerebellar abnormalities, hemorrhage, white matter lesions); biochemical abnormalities (lactic acidosis, electrolyte disturbances, neurotransmitter abnormalities); and seizure response to pyridoxine, pyridoxal-phosphate, and folinic acid dietary interventions. DISCUSSION The phenotypic spectrum of pyridoxine-dependent epilepsy is wide, including a myriad of neurological and systemic symptoms. Its hallmark feature is refractory seizures during the first year of life. Given its amenability to treatment with lysine-lowering strategies in addition to pyridoxine supplementation for optimal seizure control and developmental outcomes, early diagnosis of pyridoxine-dependent epilepsy is essential. All infants presenting with unexplained seizures should be screened for antiquitin deficiency by determination of α-aminoadipic semialdehyde/pyrroline 6' carboxylate (in urine, plasma or cerebrospinal fluid) and ALDH7A1 molecular analysis.
Collapse
|
27
|
Poliachik SL, Friedman SD, Poliakov AV, Budech CB, Ishak GE, Shaw DWW, Gospe SM. Corpus Callosum Diffusion and Connectivity Features in High Functioning Subjects With Pyridoxine-Dependent Epilepsy. Pediatr Neurol 2016; 54:43-8. [PMID: 26547255 DOI: 10.1016/j.pediatrneurol.2015.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND In this observational study, white matter structure, functional magnetic resonance imaging (fMRI) task-based responses, and functional connectivity were assessed in four subjects with high functioning pyridoxine-dependent epilepsy and age-matched control subjects. METHODS Four male subjects with pyridoxine-dependent epilepsy (mean age 31 years 8 months, standard deviation 12 years 3 months) and age-matched control subjects (32 years 4 months, standard deviation 13 years) were recruited to participate in the study. Diffusion tensor data were collected and postprocessed in Functional Magnetic Resonance Imaging of the Brain Software Library to quantify corpus callosum tracts as a means to assess white matter structure. Task-based fMRI data were collected and Functional Magnetic Resonance Imaging of the Brain Software Library used to assess task response. The fMRI resting-state data were analyzed with the functional connectivity toolbox Conn to determine functional connectivity. RESULTS Subjects with high functioning pyridoxine-dependent epilepsy retained structural white matter connectivity compared with control subjects, despite morphologic differences in the posterior corpus callosum. fMRI task-based results did not differ between subjects with pyridoxine-dependent epilepsy and control subjects; functional connectivity as measured with resting-state fMRI was lower in subjects with pyridoxine-dependent epilepsy for several systems (memory, somatosensory, auditory). CONCLUSION Although corpus callosum morphology is diminished in the posterior portions, structural connectivity was retained in subjects with pyridoxine-dependent epilepsy, while functional connectivity was diminished for memory, somatosensory, and auditory systems.
Collapse
Affiliation(s)
- Sandra L Poliachik
- Department of Radiology, Seattle Children's Hospital, Seattle Washington
| | - Seth D Friedman
- Department of Radiology, Seattle Children's Hospital, Seattle Washington
| | - Andrew V Poliakov
- Department of Radiology, Seattle Children's Hospital, Seattle Washington
| | | | - Gisele E Ishak
- Department of Radiology, Seattle Children's Hospital, Seattle Washington; Department of Radiology, University of Washington, Seattle Washington
| | - Dennis W W Shaw
- Department of Radiology, Seattle Children's Hospital, Seattle Washington; Department of Radiology, University of Washington, Seattle Washington
| | - Sidney M Gospe
- Departments of Neurology and Pediatrics, University of Washington, Division of Neurology, Seattle Children's Hospital, Seattle Washington.
| |
Collapse
|
28
|
Ream MA, Patel AD. Obtaining genetic testing in pediatric epilepsy. Epilepsia 2015; 56:1505-14. [DOI: 10.1111/epi.13122] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Margie A. Ream
- Nationwide Children's Hospital; Columbus Ohio U.S.A
- The Ohio State University College of Medicine; Columbus Ohio U.S.A
| | - Anup D. Patel
- Nationwide Children's Hospital; Columbus Ohio U.S.A
- The Ohio State University College of Medicine; Columbus Ohio U.S.A
| |
Collapse
|
29
|
Coughlin CR, van Karnebeek CDM, Al-Hertani W, Shuen AY, Jaggumantri S, Jack RM, Gaughan S, Burns C, Mirsky DM, Gallagher RC, Van Hove JLK. Triple therapy with pyridoxine, arginine supplementation and dietary lysine restriction in pyridoxine-dependent epilepsy: Neurodevelopmental outcome. Mol Genet Metab 2015; 116:35-43. [PMID: 26026794 DOI: 10.1016/j.ymgme.2015.05.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 11/21/2022]
Abstract
Pyridoxine-dependent epilepsy (PDE) is an epileptic encephalopathy characterized by response to pharmacologic doses of pyridoxine. PDE is caused by deficiency of α-aminoadipic semialdehyde dehydrogenase resulting in impaired lysine degradation and subsequent accumulation of α-aminoadipic semialdehyde. Despite adequate seizure control with pyridoxine monotherapy, 75% of individuals with PDE have significant developmental delay and intellectual disability. We describe a new combined therapeutic approach to reduce putative toxic metabolites from impaired lysine metabolism. This approach utilizes pyridoxine, a lysine-restricted diet to limit the substrate that leads to neurotoxic metabolite accumulation and L-arginine to compete for brain lysine influx and liver mitochondrial import. We report the developmental and biochemical outcome of six subjects who were treated with this triple therapy. Triple therapy reduced CSF, plasma, and urine biomarkers associated with neurotoxicity in PDE. The addition of arginine supplementation to children already treated with dietary lysine restriction and pyridoxine further reduced toxic metabolites, and in some subjects appeared to improve neurodevelopmental outcome. Dietary lysine restriction was associated with improved seizure control in one subject, and the addition of arginine supplementation increased the objective motor outcome scale in two twin siblings, illustrating the contribution of each component of this treatment combination. Optimal results were noted in the individual treated with triple therapy early in the course of the disease. Residual disease symptoms could be related to early injury suggested by initial MR imaging prior to initiation of treatment or from severe epilepsy prior to diagnosis. This observational study reports the use of triple therapy, which combines three effective components in this rare condition, and suggests that early diagnosis and treatment with this new triple therapy may ameliorate the cognitive impairment in PDE.
Collapse
Affiliation(s)
- Curtis R Coughlin
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Clara D M van Karnebeek
- Division of Biochemical Diseases &Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Walla Al-Hertani
- Department of Medical Genetics, Montreal Children's Hospital, McGill University of Health Centre, Montreal, QC, Canada
| | - Andrew Y Shuen
- Department of Medical Genetics, Montreal Children's Hospital, McGill University of Health Centre, Montreal, QC, Canada
| | - Sravan Jaggumantri
- Division of Biochemical Diseases &Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Rhona M Jack
- Department of Laboratory Medicine, Seattle Children's Hospital Laboratory, Seattle, WA, United States
| | - Sommer Gaughan
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Casey Burns
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - David M Mirsky
- Department of Radiology, University of Colorado, Aurora, CO, United States
| | - Renata C Gallagher
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Johan L K Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, United States.
| |
Collapse
|
30
|
Nasr E, Mamak E, Feigenbaum A, Donner EJ, Mercimek-Mahmutoglu S. Long-term treatment outcome of two patients with pyridoxine-dependent epilepsy caused by ALDH7A1 mutations: normal neurocognitive outcome. J Child Neurol 2015; 30:648-53. [PMID: 24789515 DOI: 10.1177/0883073814531331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pyridoxine-dependent epilepsy is an autosomal recessively inherited disorder of lysine catabolism caused by mutations in the ALDH7A1 gene. We report 2 patients with normal neurocognitive outcome (full-scale IQ of 108 and 74) and their more than 10 years' treatment outcome on pyridoxine monotherapy. Both patients had specific borderline impairments in visual processing speed. More long-term treatment outcome reports will increase our knowledge about the natural history of the disease.
Collapse
Affiliation(s)
- Enas Nasr
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Eva Mamak
- Department of Psychology, The Hospital for Sick Children, Toronto, Canada
| | - Anette Feigenbaum
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada Department of Pediatrics & Biochemical Genetics, Rady Children's Hospital-San Diego, University of California, San Diego, CA, USA
| | - Elizabeth J Donner
- Division of Neurology, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
31
|
Friedman SD, Ishak GE, Poliachik SL, Poliakov AV, Otto RK, Shaw DWW, Willemsen MA, Bok LA, Gospe SM. Callosal alterations in pyridoxine-dependent epilepsy. Dev Med Child Neurol 2014; 56:1106-10. [PMID: 24942048 DOI: 10.1111/dmcn.12511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 11/30/2022]
Abstract
AIM While there have been isolated reports of callosal morphology differences in pyridoxine-dependent epilepsy (PDE), a rare autosomal disorder caused by ALDH7A1 gene mutations, no study has systematically evaluated callosal features in a large sample of patients. This study sought to overcome this knowledge gap. METHOD Spanning a wide age range from birth to 48 years, corpus callosum morphology and cross-sectional cerebral area were measured in 30 individuals with PDE (12 males, 18 females, median age 3.92y; 25th centile 0.27, 75th centile 15.25) compared to 30 age-matched comparison individuals (11 males, 19 females, median age 3.85y; 25th centile 0.26, 75th centile 16.00). Individuals with PDE were also divided into age groups to evaluate findings across development. As delay to treatment may modulate clinical severity, groups were stratified by treatment delay (less than or greater than 2wks from birth). RESULTS Markedly reduced callosal area expressed as a ratio of mid-sagittal cerebral area was observed for the entire group with PDE (p<0.001). Stratifying by age (<1y, 1-10y, >10y) demonstrated posterior abnormalities to be a consistent feature, with anterior regions increasingly involved across the developmental trajectory. Splitting the PDE group by treatment lag did not reveal overall or sub-region callosal differences. INTERPRETATION Callosal abnormalities are a common feature of PDE not explained by treatment lag. Future work utilizing tract-based approaches to understand inter- and intra-hemispheric connectivity patterns will help in the better understanding the structural aspects of this disease.
Collapse
Affiliation(s)
- Seth D Friedman
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schmitt B. Corpus callosum alterations in pyridoxine-dependent epilepsy: a mirror image of an ongoing disease? Dev Med Child Neurol 2014; 56:1039-40. [PMID: 24948334 DOI: 10.1111/dmcn.12526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
van Karnebeek CDM, Stockler-Ipsiroglu S, Jaggumantri S, Assmann B, Baxter P, Buhas D, Bok LA, Cheng B, Coughlin CR, Das AM, Giezen A, Al-Hertani W, Ho G, Meyer U, Mills P, Plecko B, Struys E, Ueda K, Albersen M, Verhoeven N, Gospe SM, Gallagher RC, Van Hove JKL, Hartmann H. Lysine-Restricted Diet as Adjunct Therapy for Pyridoxine-Dependent Epilepsy: The PDE Consortium Consensus Recommendations. JIMD Rep 2014; 15:1-11. [PMID: 24748525 DOI: 10.1007/8904_2014_296] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/21/2014] [Accepted: 01/28/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Seventy-five percent of patients with pyridoxine-dependent epilepsy (PDE) due to Antiquitin (ATQ) deficiency suffer from developmental delay and/or intellectual disability (IQ < 70) despite seizure control. An observational study showed that adjunct treatment with a lysine-restricted diet is safe, results in partial normalization of lysine intermediates in body fluids, and may have beneficial effects on seizure control and psychomotor development. METHODS In analogy to the NICE guideline process, the international PDE Consortium, an open platform uniting scientists and clinicians working in the field of this metabolic epilepsy, during four workshops (2010-2013) developed a recommendation for a lysine-restricted diet in PDE, with the aim of standardizing its implementation and monitoring of patients. Additionally, a proposal for a further observational study is suggested. RESULTS (1) All patients with confirmed ATQ deficiency are eligible for adjunct treatment with lysine-restricted diet, unless treatment with pyridoxine alone has resulted in complete symptom resolution, including normal behavior and development. (2) Lysine restriction should be started as early as possible; the optimal duration remains undetermined. (3) The diet should be implemented and the patient be monitored according to these recommendations in order to assure best possible quality of care and safety. DISCUSSION The implementation of this recommendation will provide a unique and a much needed opportunity to gather data with which to refine the recommendation as well as improve our understanding of outcomes of individuals affected by this rare disease. We therefore propose an international observational study that would utilize freely accessible, online data sharing technologies to generate more evidence.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Centre for Molecular Medicine and Therapeutics, 3091-950 West 28th Avenue, Vancouver, Canada, V5Z 4H4,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|