1
|
Stokes C, Whitmore LS, Moreno D, Malhotra K, Tisoncik-Go J, Tran E, Wren N, Glass I, Young JE, Gale M. The Human Neural Cell Atlas of Zika Infection in developing human brain tissue: viral pathogenesis, innate immunity, and lineage reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615512. [PMID: 39386476 PMCID: PMC11463344 DOI: 10.1101/2024.09.27.615512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Zika virus (ZIKV) infection during pregnancy can lead to fetal brain infection and developmental anomalies collectively known as congenital Zika syndrome (CZS). To define the molecular features underlying CZS in a relevant human cell model, we evaluated ZIKV infection and neurodevelopment in primary fetal brain explants and induced pluripotent stem cell-derived mixed neural cultures at single cell resolution. We identified astrocytes as key innate immune sentinel cells detecting ZIKV and producing IFN-β. In contrast, neural progenitor cells displayed impaired innate immunity and supported high levels of viral replication. ZIKV infection of neurons suppressed differentiation and synaptic signaling networks and programmed a molecular switch from neurogenesis to astrogliogenesis. We identified a universal ZIKV-driven cellular stress response linked to intrinsic apoptosis and regulated by IFN-β. These findings reveal how innate immune signaling intersects with ZIKV-driven perturbations in cellular function to influence CZS outcomes including neuron developmental dysfunction and apoptotic cell death.
Collapse
Affiliation(s)
- Caleb Stokes
- Department of Pediatrics, University of Washington, Seattle WA
- Seattle Children's Hospital, Seattle WA
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
| | - Leanne S Whitmore
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
| | - Dante Moreno
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
| | | | - Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
- Washington National Primate Research Center, University of Washington, Seattle Washington, USA
| | - Emily Tran
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
| | - Nick Wren
- School of Medicine, University of Washington, Seattle WA
| | - Ian Glass
- Department of Pediatrics, University of Washington, Seattle WA
- Seattle Children's Hospital, Seattle WA
| | - Jessica E Young
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
- Washington National Primate Research Center, University of Washington, Seattle Washington, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis MN
- Institute on Infectious Diseases, University of Minnesota, Minneapolis MN
| |
Collapse
|
2
|
Metzler AD, Tang H. Zika Virus Neuropathogenesis-Research and Understanding. Pathogens 2024; 13:555. [PMID: 39057782 PMCID: PMC11279898 DOI: 10.3390/pathogens13070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.
Collapse
Affiliation(s)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
3
|
Mitroshina EV, Saviuk M, Vedunova MV. Necroptosis in CNS diseases: Focus on astrocytes. Front Aging Neurosci 2023; 14:1016053. [PMID: 36778591 PMCID: PMC9911465 DOI: 10.3389/fnagi.2022.1016053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
In the last few years, necroptosis, a recently described type of cell death, has been reported to play an important role in the development of various brain pathologies. Necroptosis is a cell death mechanism that has morphological characteristics similar to necrosis but is mediated by fundamentally different molecular pathways. Necroptosis is initiated by signaling through the interaction of RIP1/RIP3/MLKL proteins (receptor-interacting protein kinase 1/receptor-interacting protein kinase 3/mixed lineage kinase domain-like protein). RIPK1 kinase is usually inactive under physiological conditions. It is activated by stimulation of death receptors (TNFR1, TNFR2, TLR3, and 4, Fas-ligand) by external signals. Phosphorylation of RIPK1 results in the formation of its complex with death receptors. Further, complexes with the second member of the RIP3 and MLKL cascade appear, and the necroptosome is formed. There is enough evidence that necroptosis plays an important role in the pathogenesis of brain ischemia and neurodegenerative diseases. In recent years, a point of view that both neurons and glial cells can play a key role in the development of the central nervous system (CNS) pathologies finds more and more confirmation. Astrocytes play complex roles during neurodegeneration and ischemic brain damage initiating both impair and protective processes. However, the cellular and molecular mechanisms that induce pathogenic activity of astrocytes remain veiled. In this review, we consider these processes in terms of the initiation of necroptosis. On the other hand, it is important to remember that like other types of programmed cell death, necroptosis plays an important role for the organism, as it induces a strong immune response and is involved in the control of cancerogenesis. In this review, we provide an overview of the complex role of necroptosis as an important pathogenetic component of neuronal and astrocyte death in neurodegenerative diseases, epileptogenesis, and ischemic brain damage.
Collapse
|
4
|
Hageman G, Nihom J. Fetuses and infants with Amyoplasia congenita in congenital Zika syndrome: The evidence of a viral cause. A narrative review of 144 cases. Eur J Paediatr Neurol 2023; 42:1-14. [PMID: 36442412 DOI: 10.1016/j.ejpn.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 10/09/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Amyoplasia congenita is the most frequent type of arthrogryposis causing fetal hypokinesia, leading to congenital contractures at birth. The pathogenesis is thought to be impaired blood circulation to the fetus early in pregnancy, with hypotension and hypoxia damaging the anterior horn cells. In animal studies however a prenatal infection with a poliomyelitis-like viral agent was demonstrated. Congenital Zika virus syndrome (CZVS) has recently been described in infants with severe microcephaly, and in 10-25% of cases arthrogryposis. METHODS A search in PubMed for CZVS yielded 124 studies. After a selection for arthrogryposis, 35 papers were included, describing 144 cases. The studies were divided into two categories. 1) Those (87 cases) focussing on imaging or histological data of congenital brain defects, contained insufficient information to link arthrogryposis specifically to lesions of the brain or spinal motor neuron. 2) In the other 57 cases detailed clinical data could be linked to neurophysiological, imaging or histological data. RESULTS In category 1 the most frequent brain abnormalities in imaging studies were ventriculomegaly, calcifications (subcortical, basal ganglia, cerebellum), hypoplasia of the brainstem and cerebellum, atrophy of the cerebral cortex, migration disorders and corpus callosum anomalies. In category 2, in 38 of 57 cases clinical data were indicative of Amyoplasia congenita. This diagnosis was confirmed by electromyographic findings (13 cases), by MRI (37 cases) or histology (12 cases) of the spinal cord. The latter showed small or absent lateral corticospinal tracts, and cell loss and degeneration of motor neuron cells. Zika virus-proteins and flavivirus-like particles were detected in cytoplasm of spinal neurons. CONCLUSION The phenotype of arthrogryposis in CZVS is consistent with Amyoplasia congenita. These findings warrant search for an intrauterine infection with any neurotropic viral agent with affinity to spinal motor neurons in neonates with Amyoplasia.
Collapse
Affiliation(s)
- G Hageman
- Department of Neurology, Medical Spectrum Twente, Hospital Enschede, the Netherlands.
| | - J Nihom
- Department of Neurology, Medical Spectrum Twente, Hospital Enschede, the Netherlands
| |
Collapse
|
5
|
Heparin Protects Human Neural Progenitor Cells from Zika Virus-Induced Cell Death While Preserving Their Differentiation into Mature Neuroglial Cells. J Virol 2022; 96:e0112222. [PMID: 36121298 PMCID: PMC9555206 DOI: 10.1128/jvi.01122-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Zika virus (ZIKV) is an arbovirus member of the Flaviviridae family that causes severe congenital brain anomalies in infected fetuses. The key target cells of ZIKV infection, human neural progenitor cells (hNPCs), are highly permissive to infection that causes the inhibition of cell proliferation and induces cell death. We have previously shown that pharmaceutical-grade heparin inhibits virus-induced cell death with negligible effects on in vitro virus replication in ZIKV-infected hNPCs at the “high” multiplicity of infection (MOI) of 1. Here, we show that heparin inhibits formation of ZIKV-induced intracellular vacuoles, a signature of paraptosis, and inhibits necrosis and apoptosis of hNPCs grown as neurospheres (NS). To test whether heparin preserved the differentiation of ZIKV-infected hNPCs into neuroglial cells, hNPCs were infected at the MOI of 0.001. In this experimental condition, heparin inhibited ZIKV replication by ca. 2 log10, mostly interfering with virion attachment, while maintaining its protective effect against ZIKV-induced cytopathicity. Heparin preserved differentiation into neuroglial cells of hNPCs that were obtained from either human-induced pluripotent stem cells (hiPSC) or by fetal tissue. Quite surprisingly, multiple additions of heparin to hNPCs enabled prolonged virus replication while preventing virus-induced cytopathicity. Collectively, these results highlight the potential neuroprotective effect of heparin that could serve as a lead compound to develop novel agents for preventing the damage of ZIKV infection on the developing brain. IMPORTANCE ZIKV is a neurotropic virus that invades neural progenitor cells (NPCs), causing inhibition of their proliferation and maturation into neurons and glial cells. We have shown previously that heparin, an anticoagulant also used widely during pregnancy, prevents ZIKV-induced cell death with negligible inhibition of virus replication. Here, we demonstrate that heparin also exerts antiviral activity against ZIKV replication using a much lower infectious inoculum. Moreover, heparin interferes with different modalities of virus-induced cell death. Finally, heparin-induced prevention of virus-induced NPC death allows their differentiation into neuroglial cells despite the intracellular accumulation of virions. These results highlight the potential use of heparin, or pharmacological agents derived from it, in pregnant women to prevent the devastating effects of ZIKV infection on the developing brain of their fetuses.
Collapse
|
6
|
Transcriptomic Studies Suggest a Coincident Role for Apoptosis and Pyroptosis but Not for Autophagic Neuronal Death in TBEV-Infected Human Neuronal/Glial Cells. Viruses 2021; 13:v13112255. [PMID: 34835061 PMCID: PMC8620470 DOI: 10.3390/v13112255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, Flavivirus genus, is responsible for neurological symptoms that may cause permanent disability or death. With an incidence on the rise, it is the major arbovirus affecting humans in Central/Northern Europe and North-Eastern Asia. Neuronal death is a critical feature of TBEV infection, yet little is known about the type of death and the molecular mechanisms involved. In this study, we used a recently established pathological model of TBEV infection based on human neuronal/glial cells differentiated from fetal neural progenitors and transcriptomic approaches to tackle this question. We confirmed the occurrence of apoptotic death in these cultures and further showed that genes involved in pyroptotic death were up-regulated, suggesting that this type of death also occurs in TBEV-infected human brain cells. On the contrary, no up-regulation of major autophagic genes was found. Furthermore, we demonstrated an up-regulation of a cluster of genes belonging to the extrinsic apoptotic pathway and revealed the cellular types expressing them. Our results suggest that neuronal death occurs by multiple mechanisms in TBEV-infected human neuronal/glial cells, thus providing a first insight into the molecular pathways that may be involved in neuronal death when the human brain is infected by TBEV.
Collapse
|
7
|
Daza M, Mercado M, Moore CA, Valencia D, Lengua MF, Newton S, Rodríguez B, Tong VT, Acevedo P, Gilboa SM, Ospina ML, Mulkey SB. Clinical and neurodevelopmental outcomes based on brain imaging studies in a Colombian cohort of children with probable antenatal Zika virus exposure. Birth Defects Res 2021; 113:1299-1312. [PMID: 34491004 PMCID: PMC10535366 DOI: 10.1002/bdr2.1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Our aim was to describe the neuroimaging and clinical evaluations of children with antenatal Zika-virus (ZIKV) exposure. METHODS The Colombian National Institute of Health performed serial clinical evaluations of children with probable antenatal ZIKV exposure (i.e., born to ZIKV symptomatic mothers or born with birth defects compatible with ZIKV infection, regardless of laboratory results) over 2 years that included head circumference (HC), eye examination, and neurodevelopmental assessments. Clinical neuroimaging studies (head computed tomography and/or brain magnetic resonance imaging) were analyzed for abnormalities, two-dimensional measurements were made of the right and left frontal and occipital cortical thickness. Two abnormal patterns were defined: Pattern 1 (sum of four areas of cortex <6 cm) and Pattern 2 (sum of four areas of cortex ≥6 cm and < 10 cm). RESULTS Thirty-one children had a neuroimaging study; in 24, cortical thickness was measured. The median age at the first visit was 8 (range: 6-9) months and 22 (range: 19-42) months at the last evaluation. In the 24 cases with cortical measurements, three were normal, 12 were in Pattern 1, and nine were in Pattern 2. Children within Pattern 1 had lower mean HC at birth and in follow-up (both p < .05) and a higher frequency of structural eye abnormalities (p < .01). A trend towards poorer neuromotor development was seen in Pattern 1, although not statistically significant (p = .06). CONCLUSION Brain imaging classification based on cortical measurements correlate with ophthalmologic abnormalities and HC. Cortical thickness may be a marker for clinical outcomes in children with congenital ZIKV infection.
Collapse
Affiliation(s)
- Marcela Daza
- Research Division, Vysnova Partners, Bethesda, MD, United States
| | - Marcela Mercado
- Division of Research in Public Health, National Institute of Health of Colombia, Bogota, Colombia
| | - Cynthia A. Moore
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Diana Valencia
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | | - Suzanne Newton
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Blanca Rodríguez
- Division of Health Sciences, School of Medicine. Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Van T. Tong
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Pedro Acevedo
- Colombian Society of Pediatric Ophthalmology and Strabismus, Bogotá D.C, Colombia
| | - Suzanne M. Gilboa
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Martha L. Ospina
- General Director, National Institute of Health, Bogota D.C., Colombia
| | - Sarah B. Mulkey
- Prenatal Pediatrics Institute, Childreńs National Hospital, Washington, DC, United States
- Departments of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Departments of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
8
|
Mulkey SB, Ansusinha E, Cristante C, Russo SM, Biddle C, Kousa YA, Pesacreta L, Jantausch B, Hanisch B, Harik N, Hamdy RF, Hahn A, Chang T, Jaafar M, Ambrose T, Vezina G, Bulas DI, Wessel D, du Plessis AJ, DeBiasi RL. Complexities of Zika Diagnosis and Evaluation in a U.S. Congenital Zika Program. Am J Trop Med Hyg 2021; 104:2210-2219. [PMID: 33872214 DOI: 10.4269/ajtmh.20-1256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
The objective of the study was to describe the complexity of diagnosis and evaluation of Zika-exposed pregnant women/fetuses and infants in a U.S. Congenital Zika Program. Pregnant women/fetuses and/or infants referred for clinical evaluation to the Congenital Zika Program at Children's National (Washington, DC) from January 2016 to June 2018 were included. We recorded the timing of maternal Zika-virus (ZIKV) exposure and ZIKV laboratory testing results. Based on laboratory testing, cases were either confirmed, possible, or unlikely ZIKV infection. Prenatal and postnatal imaging by ultrasound and/or magnetic resonance imaging (MRI) were categorized as normal, nonspecific, or as findings of congenital Zika syndrome (CZS). Of 81 women-fetus/infant pairs evaluated, 72 (89%) had confirmed ZIKV exposure; 18% of women were symptomatic; only a minority presented for evaluation within the time frame for laboratory detection. Zika virus could only be confirmed in 29 (40%) cases, was possible in 26 (36%) cases, and was excluded in 17 (24%) cases. Five cases (7%) had prenatal ultrasound and MRI findings of CZS, but in only three was ZIKV confirmed by laboratory testing. Because of timing of exposure to presentation, ZIKV infection could not be excluded in many cases. Neuroimaging found CZS in 7% of cases, and in many patients, there were nonspecific imaging findings that warrant long-term follow-up. Overall, adherence to postnatal recommended follow-up evaluations was modest, representing a barrier to care. These challenges may be instructive to future pediatric multidisciplinary clinics for congenital infectious/noninfectious threats to pregnant women and their infants.
Collapse
Affiliation(s)
- Sarah B Mulkey
- 1Division of Fetal and Transitional Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,3Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Emily Ansusinha
- 4Division of Pediatric Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Caitlin Cristante
- 1Division of Fetal and Transitional Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Stephanie M Russo
- 1Division of Fetal and Transitional Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Cara Biddle
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,5Division of General and Community Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Youssef A Kousa
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,6Division of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Lindsay Pesacreta
- 1Division of Fetal and Transitional Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Barbara Jantausch
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,4Division of Pediatric Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Benjamin Hanisch
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,4Division of Pediatric Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Nada Harik
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,4Division of Pediatric Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Rana F Hamdy
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,4Division of Pediatric Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Andrea Hahn
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,4Division of Pediatric Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Taeun Chang
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,3Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,6Division of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Mohamad Jaafar
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,7Division of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Tracey Ambrose
- 8Division of Audiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Gilbert Vezina
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,9Division of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Dorothy I Bulas
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,9Division of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - David Wessel
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,10Division of Chief Medical Officer, Children's National Hospital, Washington, District of Columbia
| | - Adre J du Plessis
- 1Division of Fetal and Transitional Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,3Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,6Division of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Roberta L DeBiasi
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,4Division of Pediatric Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,11Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
9
|
Wen C, Yu Y, Gao C, Qi X, Cardona CJ, Xing Z. RIPK3-Dependent Necroptosis Is Induced and Restricts Viral Replication in Human Astrocytes Infected With Zika Virus. Front Cell Infect Microbiol 2021; 11:637710. [PMID: 33796483 PMCID: PMC8007970 DOI: 10.3389/fcimb.2021.637710] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Apoptosis, pyroptosis and necroptosis are regulated processes of cell death which can be crucial for viral disease outcomes in hosts because of their effects on viral pathogenicity and host resistance. Zika virus (ZIKV) is a mosquito-borne flavivirus, which infects humans and can cause neurological disorders. Neural developmental disorders and microcephaly could occur in infected fetuses. Several types of nervous cells have been reported to be susceptible to ZIKV infection. Human astrocytes play important roles in the nutritional support and defense of neurons. In this study, we show that human astrocytes are susceptible to ZIKV infection and undergo progressive cell death after infection. In infected astrocytes we detected no cleavage or activation of pro-caspase-3 and pro-caspase-1. Apoptotic substrates and increased secretion of interleukin (IL)-1β or IL-18 were not detected, either. These ruled out the occurrence of apoptosis or pyroptosis in ZIKV-infected astrocytes. We detected, however, an increase of phosphorylated receptor-interacting serine/threonine-protein kinase (RIPK)1, RIPK3, and mixed lineage kinase domain-like (MLKL) protein, indicating that programmed necrosis, or necroptosis, was induced in infected astrocytes. The phosphorylation and cell death were inhibited in cells pre-treated with GSK’872, an inhibitor of RIPK3, while inhibition of RIPK1 with an inhibitor, Necrostatin-1, had no effect, suggesting that ZIKV-induced necroptosis was RIPK1-independent in astrocytes. Consistent with this finding, the inhibition of RIPK1 had no effect on the phosphorylation of MLKL. We showed evidence that MLKL phosphorylation was RIPK3-dependent and ZBP-1, which could stimulate RIPK3, was upregulated in ZIKV-infected astrocytes. Finally, we demonstrated that in GSK’872-pre-treated astrocytes, viral replication increased significantly, which indicates that necroptosis may be protective against viral replication in astrocytes. Our finding that astrocytes uniquely underwent necroptosis in response to ZIKV infection provides insight and helps us better understand the viral pathogenesis in the ZIKV-infected central nervous system.
Collapse
Affiliation(s)
- Chunxia Wen
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, and the State Key Laboratory of Pharmaceutical Technology, Nanjing University, Nanjing, China
| | - Yufeng Yu
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, and the State Key Laboratory of Pharmaceutical Technology, Nanjing University, Nanjing, China
| | - Chengfeng Gao
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, and the State Key Laboratory of Pharmaceutical Technology, Nanjing University, Nanjing, China
| | - Xian Qi
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Carol J Cardona
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, MN, United States
| | - Zheng Xing
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, and the State Key Laboratory of Pharmaceutical Technology, Nanjing University, Nanjing, China.,Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, MN, United States
| |
Collapse
|
10
|
Immunity to TBEV Related Flaviviruses with Reduced Pathogenicity Protects Mice from Disease but Not from TBEV Entry into the CNS. Vaccines (Basel) 2021; 9:vaccines9030196. [PMID: 33652698 PMCID: PMC7996866 DOI: 10.3390/vaccines9030196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a leading cause of vector-borne viral encephalitis with expanding endemic regions across Europe. In this study we tested in mice the efficacy of preinfection with a closely related low-virulent flavivirus, Langat virus (LGTV strain TP21), or a naturally avirulent TBEV strain (TBEV-280) in providing protection against lethal infection with the highly virulent TBEV strain (referred to as TBEV-Hypr). We show that prior infection with TP21 or TBEV-280 is efficient in protecting mice from lethal TBEV-Hypr challenge. Histopathological analysis of brains from nonimmunized mice revealed neuronal TBEV infection and necrosis. Neuroinflammation, gliosis, and neuronal necrosis was however also observed in some of the TP21 and TBEV-280 preinfected mice although at reduced frequency as compared to the nonimmunized TBEV-Hypr infected mice. qPCR detected the presence of viral RNA in the CNS of both TP21 and TBEV-280 immunized mice after TBEV-Hypr challenge, but significantly reduced compared to mock-immunized mice. Our results indicate that although TBEV-Hypr infection is effectively controlled in the periphery upon immunization with low-virulent LGTV or naturally avirulent TBEV 280, it may still enter the CNS of these animals. These findings contribute to our understanding of causes for vaccine failure in individuals vaccinated with TBE vaccines.
Collapse
|
11
|
Muthuraj PG, Sahoo PK, Kraus M, Bruett T, Annamalai AS, Pattnaik A, Pattnaik AK, Byrareddy SN, Natarajan SK. Zika virus infection induces endoplasmic reticulum stress and apoptosis in placental trophoblasts. Cell Death Discov 2021; 7:24. [PMID: 33500388 PMCID: PMC7838309 DOI: 10.1038/s41420-020-00379-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/13/2020] [Indexed: 01/30/2023] Open
Abstract
Zika virus (ZIKV) infection to a pregnant woman can be vertically transmitted to the fetus via the placenta leading to Congenital Zika syndrome. This is characterized by microcephaly, retinal defects, and intrauterine growth retardation. ZIKV induces placental trophoblast apoptosis leading to severe abnormalities in the growth and development of the fetus. However, the molecular mechanism behind ZIKV-induced apoptosis in placental trophoblasts remains unclear. We hypothesize that ZIKV infection induces endoplasmic reticulum (ER) stress in the trophoblasts, and sustained ER stress results in apoptosis. HTR-8 (HTR-8/SVneo), a human normal immortalized trophoblast cell and human choriocarcinoma-derived cell lines (JEG-3 and JAR) were infected with ZIKV. Biochemical and structural markers of apoptosis like caspase 3/7 activity and percent apoptotic nuclear morphological changes, respectively were assessed. ZIKV infection in placental trophoblasts showed an increase in the levels of CHOP mRNA and protein expression, which is an inducer of apoptosis. Next, we also observed increased levels of ER stress markers such as phosphorylated forms of inositol-requiring transmembrane kinase/endoribonuclease 1α (P-IRE1α), and its downstream target, the spliced form of XBP1 mRNA, phosphorylated eukaryotic initiation factor 2α (P-eIF2α), and activation of cJun N-terminal Kinase (JNK) and p38 mitogen activated protein kinase (MAPK) after 16-24 h of ZIKV infection in trophoblasts. Inhibition of JNK or pan-caspases using small molecule inhibitors significantly prevented ZIKV-induced apoptosis in trophoblasts. Further, JNK inhibition also reduced XBP1 mRNA splicing and viral E protein staining in ZIKV infected cells. In conclusion, the mechanism of ZIKV-induced placental trophoblast apoptosis involves the activation of ER stress and JNK activation, and the inhibition of JNK dramatically prevents ZIKV-induced trophoblast apoptosis.
Collapse
Affiliation(s)
- Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Prakash K Sahoo
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Madison Kraus
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Taylor Bruett
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Arun S Annamalai
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Aryamav Pattnaik
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Asit K Pattnaik
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Siddappa N Byrareddy
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Pharmacology and Experimental Therapeutics, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA.
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
12
|
Mercado M, Daza M, Moore CA, Valencia D, Rico A, Álvarez-Diaz DA, Brault AC, Fitzpatrick K, Mulkey SB. Discordant Clinical Outcomes in a Monozygotic Dichorionic-Diamniotic Twin Pregnancy with Probable Zika Virus Exposure. Case Report. Trop Med Infect Dis 2020; 5:tropicalmed5040188. [PMID: 33352748 PMCID: PMC7768539 DOI: 10.3390/tropicalmed5040188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/09/2023] Open
Abstract
Prenatal exposure to Zika virus (ZIKV) is associated with congenital anomalies of the brain and the eye and neurodevelopmental sequelae. The spectrum of disease outcomes may relate to timing of infection as well as genetic and environmental factors. Congenital infections occurring in twin pregnancies can inform the clinical spectrum of these conditions and provide unique information regarding timing of infection and in utero environment with disease pathophysiology. Herein, we report a monozygotic dichorionic-diamniotic twin pregnancy with probable prenatal ZIKV exposure identified through the Colombian ZIKV disease surveillance system. Multidisciplinary clinical evaluations were provided to the twins during their first three years of life through a national program for children with in utero ZIKV exposure. Laboratory evidence of congenital infection as well as microcephaly, brain, eye, and neurodevelopmental compromise related to prenatal ZIKV infection were identified in only one infant of the twin pregnancy. This is the first report of monozygotic twins discordant for Zika-associated birth defects. The evaluation of the pathophysiology of discordance in disease outcome for congenital infections in twin pregnancies may lead to a better understanding of potential complex environmental and genetic interactions between the mother, her offspring, and an infectious exposure.
Collapse
Affiliation(s)
- Marcela Mercado
- Division of Research in Public Health, National Institute of Health of Colombia, Bogota 110311, Colombia; (M.M.); (A.R.); (D.A.Á.-D.)
| | - Marcela Daza
- Vysnova Partners, Bethesda, MD 20785, USA
- Correspondence: ; Tel.: +57(1)-321-201-4409
| | - Cynthia A. Moore
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Division of Birth Defects and Infant Disorders, Atlanta, GA 30333, USA; (C.A.M.); (D.V.)
| | - Diana Valencia
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Division of Birth Defects and Infant Disorders, Atlanta, GA 30333, USA; (C.A.M.); (D.V.)
| | - Angelica Rico
- Division of Research in Public Health, National Institute of Health of Colombia, Bogota 110311, Colombia; (M.M.); (A.R.); (D.A.Á.-D.)
| | - Diego A. Álvarez-Diaz
- Division of Research in Public Health, National Institute of Health of Colombia, Bogota 110311, Colombia; (M.M.); (A.R.); (D.A.Á.-D.)
| | - Aaron C. Brault
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Ft Collins, CO 80521, USA; (A.C.B.); (K.F.)
| | - Kelly Fitzpatrick
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Ft Collins, CO 80521, USA; (A.C.B.); (K.F.)
| | - Sarah B. Mulkey
- Prenatal Pediatrics Institute, Children’s National Hospital, Washington, DC 20310, USA;
- Departments of Pediatrics and Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| |
Collapse
|
13
|
Guzeloglu-Kayisli O, Guo X, Tang Z, Semerci N, Ozmen A, Larsen K, Mutluay D, Guller S, Schatz F, Kayisli UA, Lockwood CJ. Zika Virus-Infected Decidual Cells Elicit a Gestational Age-Dependent Innate Immune Response and Exaggerate Trophoblast Zika Permissiveness: Implication for Vertical Transmission. THE JOURNAL OF IMMUNOLOGY 2020; 205:3083-3094. [PMID: 33139490 DOI: 10.4049/jimmunol.2000713] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Vertical transmission of the Zika virus (ZIKV) causes severe fetal defects, but the exact pathogenic mechanism is unclear. We identified up to a 10,480-fold higher expression of viral attachment factors AXL, GAS6, and PROS1 and a 3880-fold increase in ZIKV infectiousness/propagation in human term decidual stromal cells versus trophoblasts. Moreover, levels of viral attachment factors and ZIKV are significantly increased, whereas expression of innate immune response genes are significantly decreased, in human first trimester versus term decidual cells. ZIKV-infected decidual cell supernatants increased cytotrophoblasts infection up to 252-fold compared with directly infected cytotrophoblasts. Tizoxanide treatment efficiently inhibited Zika infection in both maternal and fetal cells. We conclude that ZIKV permissiveness, as well as innate immune responsiveness of human decidual cells, are gestational age dependent, and decidual cells augment ZIKV infection of primary human cytotrophoblast cultures, which are otherwise ZIKV resistant. Human decidual cells may act as reservoirs for trimester-dependent placental transmission of ZIKV, accounting for the higher Zika infection susceptibility and more severe fetal sequelae observed in early versus late pregnancy. Moreover, tizoxanide is a promising agent in preventing perinatal Zika transmission as well as other RNA viruses such as coronavirus.
Collapse
Affiliation(s)
- Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Xiaofang Guo
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Zhonghua Tang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Asli Ozmen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Kellie Larsen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Duygu Mutluay
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Umit Ali Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Charles Joseph Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| |
Collapse
|
14
|
Schilling M, Bridgeman A, Gray N, Hertzog J, Hublitz P, Kohl A, Rehwinkel J. RIG-I Plays a Dominant Role in the Induction of Transcriptional Changes in Zika Virus-Infected Cells, which Protect from Virus-Induced Cell Death. Cells 2020; 9:E1476. [PMID: 32560274 PMCID: PMC7349056 DOI: 10.3390/cells9061476] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
The Zika virus (ZIKV) has received much attention due to an alarming increase in cases of neurological disorders including congenital Zika syndrome associated with infection. To date, there is no effective treatment available. An immediate response by the innate immune system is crucial for effective control of the virus. Using CRISPR/Cas9-mediated knockouts in A549 cells, we investigated the individual contributions of the RIG-I-like receptors MDA5 and RIG-I to ZIKV sensing and control of this virus by using a Brazilian ZIKV strain. We show that RIG-I is the main sensor for ZIKV in A549 cells. Surprisingly, we observed that loss of RIG-I and consecutive type I interferon (IFN) production led to virus-induced apoptosis. ZIKV non-structural protein NS5 was reported to interfere with type I IFN receptor signaling. Additionally, we show that ZIKV NS5 inhibits type I IFN induction. Overall, our study highlights the importance of RIG-I-dependent ZIKV sensing for the prevention of virus-induced cell death and shows that NS5 inhibits the production of type I IFN.
Collapse
Affiliation(s)
- Mirjam Schilling
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; (M.S.); (A.B.); (J.H.)
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; (M.S.); (A.B.); (J.H.)
| | - Nicki Gray
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK;
| | - Jonny Hertzog
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; (M.S.); (A.B.); (J.H.)
| | - Philip Hublitz
- Genome Engineering Facility, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK;
| | - Alain Kohl
- MRC-Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK;
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; (M.S.); (A.B.); (J.H.)
| |
Collapse
|
15
|
Nelson BR, Hodge RD, Daza RA, Tripathi PP, Arnold SJ, Millen KJ, Hevner RF. Intermediate progenitors support migration of neural stem cells into dentate gyrus outer neurogenic niches. eLife 2020; 9:53777. [PMID: 32238264 PMCID: PMC7159924 DOI: 10.7554/elife.53777] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
The hippocampal dentate gyrus (DG) is a unique brain region maintaining neural stem cells (NCSs) and neurogenesis into adulthood. We used multiphoton imaging to visualize genetically defined progenitor subpopulations in live slices across key stages of mouse DG development, testing decades old static models of DG formation with molecular identification, genetic-lineage tracing, and mutant analyses. We found novel progenitor migrations, timings, dynamic cell-cell interactions, signaling activities, and routes underlie mosaic DG formation. Intermediate progenitors (IPs, Tbr2+) pioneered migrations, supporting and guiding later emigrating NSCs (Sox9+) through multiple transient zones prior to converging at the nascent outer adult niche in a dynamic settling process, generating all prenatal and postnatal granule neurons in defined spatiotemporal order. IPs (Dll1+) extensively targeted contacts to mitotic NSCs (Notch active), revealing a substrate for cell-cell contact support during migrations, a developmental feature maintained in adults. Mouse DG formation shares conserved features of human neocortical expansion.
Collapse
Affiliation(s)
- Branden R Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Neurological Surgery, University of Washington, Seattle, United States
| | - Rebecca D Hodge
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Ray Am Daza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Prem Prakash Tripathi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Freiburg, Germany.,Signaling Research Centers BIOSS and CIBSS, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Pediatrics, University of Washington, Seattle, United States
| | - Robert F Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Neurological Surgery, University of Washington, Seattle, United States
| |
Collapse
|
16
|
Muller WJ, Mulkey SB. Lessons about early neurodevelopment in children exposed to ZIKV in utero. Nat Med 2019; 25:1192-1193. [PMID: 31359000 DOI: 10.1038/s41591-019-0540-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- William J Muller
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
| | - Sarah B Mulkey
- Departments of Pediatrics and Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Fetal Medicine Institute, Children's National Health System, Washington, DC, USA
| |
Collapse
|
17
|
Abstract
In 2015, public awareness of Zika virus (ZIKV) rose in response to alarming statistics of infants with microcephaly being born to women who were infected with the virus during pregnancy, triggering global concern over these potentially devastating consequences. Although we have discovered a great deal about the genome and pathogenesis of this reemergent flavivirus since this recent outbreak, we still have much more to learn, including the nature of the virus-host interactions and mechanisms that determine its tropism and pathogenicity in the nervous system, which are in turn shaped by the continual evolution of the virus. Inevitably, we will find out more about the potential long-term effects of ZIKV exposure on the nervous system from ongoing longitudinal studies. Integrating clinical and epidemiological data with a wider range of animal and human cell culture models will be critical to understanding the pathogenetic mechanisms and developing more specific antiviral compounds and vaccines.
Collapse
Affiliation(s)
- Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
18
|
Mulkey SB, Bulas DI, Vezina G, Fourzali Y, Morales A, Arroyave-Wessel M, Swisher CB, Cristante C, Russo SM, Encinales L, Pacheco N, Kousa YA, Lanciotti RS, Cure C, DeBiasi RL, du Plessis AJ. Sequential Neuroimaging of the Fetus and Newborn With In Utero Zika Virus Exposure. JAMA Pediatr 2019; 173:52-59. [PMID: 30476967 PMCID: PMC6583436 DOI: 10.1001/jamapediatrics.2018.4138] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE The evolution of fetal brain injury by Zika virus (ZIKV) infection is not well described. OBJECTIVES To perform longitudinal neuroimaging of fetuses and infants exposed to in utero maternal ZIKV infection using concomitant magnetic resonance imaging (MRI) and ultrasonography (US), as well as to determine the duration of viremia in pregnant women with ZIKV infection and whether the duration of viremia correlated with fetal and/or infant brain abnormalities. DESIGN, SETTING, AND PARTICIPANTS A cohort of 82 pregnant women with clinical criteria for probable ZIKV infection in Barranquilla, Colombia, and Washington, DC, were enrolled from June 15, 2016, through June 27, 2017, with Colombian women identified by community recruitment and physician referral and travel-related cases of American women recruited from a Congenital Zika Program. INTERVENTIONS AND EXPOSURES Women received 1 or more MRI and US examinations during the second and/or third trimesters. Postnatally, infants underwent brain MRI and cranial US. Blood samples were tested for ZIKV. MAIN OUTCOMES AND MEASURES The neuroimaging studies were evaluated for brain injury and cerebral biometry. RESULTS Of the 82 women, 80 were from Colombia and 2 were from the United States. In 3 of 82 cases (4%), fetal MRI demonstrated abnormalities consistent with congenital ZIKV infection. Two cases had heterotopias and malformations in cortical development and 1 case had a parietal encephalocele, Chiari II malformation, and microcephaly. In 1 case, US results remained normal despite fetal abnormalities detected on MRI. Prolonged maternal polymerase chain reaction positivity was present in 1 case. Of the remaining 79 cases with normal results of prenatal imaging, postnatal brain MRI was acquired in 53 infants and demonstrated mild abnormalities in 7 (13%). Fifty-seven infants underwent postnatal cranial US, which detected changes of lenticulostriate vasculopathy, choroid plexus cysts, germinolytic/subependymal cysts, and/or calcification in 21 infants (37%). CONCLUSIONS AND RELEVANCE In a cohort of pregnant women with ZIKV infection, prenatal US examination appeared to detect all but 1 abnormal fetal case. Postnatal neuroimaging in infants who had normal prenatal imaging revealed new mild abnormalities. For most patients, prenatal and postnatal US may identify ZIKV-related brain injury.
Collapse
Affiliation(s)
- Sarah B. Mulkey
- Division of Fetal and Transitional Medicine, Children’s National Health System, Washington, DC,Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC,Department of Neurology, School of Medicine and Health Sciences, The George Washington University, Washington, DC
| | - Dorothy I. Bulas
- Division of Radiology, Children’s National Health System, Washington, DC
| | - Gilbert Vezina
- Division of Radiology, Children’s National Health System, Washington, DC
| | | | | | | | - Christopher B. Swisher
- Division of Fetal and Transitional Medicine, Children’s National Health System, Washington, DC
| | - Caitlin Cristante
- Division of Fetal and Transitional Medicine, Children’s National Health System, Washington, DC
| | - Stephanie M. Russo
- Division of Fetal and Transitional Medicine, Children’s National Health System, Washington, DC
| | | | | | - Youssef A. Kousa
- Division of Neurology, Children’s National Health System, Washington, DC
| | - Robert S. Lanciotti
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | | | - Roberta L. DeBiasi
- Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC,Division of Infectious Diseases, Children’s National Health System, Washington, DC,Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC
| | - Adre J. du Plessis
- Division of Fetal and Transitional Medicine, Children’s National Health System, Washington, DC,Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC,Department of Neurology, School of Medicine and Health Sciences, The George Washington University, Washington, DC
| |
Collapse
|
19
|
Abstract
Zika virus is a mosquito-borne virus that causes congenital Zika syndrome, characterized by microcephaly and other fetal brain anomalies. This case report presents a case of Zika virus-related fetal brain anomalies including pathologic evidence of cerebral neuronal apoptosis and macrophage infiltrates and intracerebral calcification, ventriculomegaly and corpus callosum dysgenesis detected by ultrasound at 18 weeks of pregnancy.
Collapse
|
20
|
Hetman M, Slomnicki LP. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J Neurochem 2018; 148:325-347. [PMID: 30144322 DOI: 10.1111/jnc.14576] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
Development of the nervous system is carried out by complex gene expression programs that are regulated at both transcriptional and translational level. In addition, quality control mechanisms such as the TP53-mediated apoptosis or neuronal activity-stimulated survival ensure successful neurogenesis and formation of functional circuitries. In the nucleolus, production of ribosomes is essential for protein synthesis. In addition, it participates in chromatin organization and regulates the TP53 pathway via the ribosomal stress response. Its tight regulation is required for maintenance of genomic integrity. Mutations in several ribosomal components and trans-acting ribosomal biogenesis factors result in neurodevelopmental syndromes that present with microcephaly, autism, intellectual deficits and/or progressive neurodegeneration. Furthermore, ribosomal biogenesis is perturbed by exogenous factors that disrupt neurodevelopment including alcohol or Zika virus. In this review, we present recent literature that argues for a role of dysregulated ribosomal biogenesis in pathogenesis of various neurodevelopmental syndromes. We also discuss potential mechanisms through which such dysregulation may lead to cellular pathologies of the developing nervous system including insufficient proliferation and/or loss of neuroprogenitors cells, apoptosis of immature neurons, altered neuronal morphogenesis, and neurodegeneration.
Collapse
Affiliation(s)
- Michal Hetman
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA.,Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Lukasz P Slomnicki
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| |
Collapse
|
21
|
Ojha CR, Rodriguez M, Lapierre J, Muthu Karuppan MK, Branscome H, Kashanchi F, El-Hage N. Complementary Mechanisms Potentially Involved in the Pathology of Zika Virus. Front Immunol 2018; 9:2340. [PMID: 30374352 PMCID: PMC6196287 DOI: 10.3389/fimmu.2018.02340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) has emerged as a global health threat due to its neuro-teratogenic effect and wide range of transmission routes. Most recently, ZIKV infection has been linked with both autoimmune disorders in adults and neurodevelopmental disorders in newborns. Researchers are exploring potential cellular and molecular mechanisms underlying the neuro-teratogenicity and related consequences by using various in vitro cell culture methods and in vivo animal models. Though some of the putative viral entry receptors have been identified for ZIKV entry into the target cells, the exact mechanism of ZIKV entry or induced pathology are still not clear. Some of the important host cellular pathways including the toll-like receptor (TLR), autophagy, apoptosis and unfolded protein response (UPR) pathways are considered potential mechanism(s) for ZIKV induced neuroinflammation and for neurodevelopmental disorders. Since there is still a dire need for efficient treatment and vaccine to prevent ZIKV mediated disorders, a better understanding of the interaction between virus and host cellular pathways could pave the way for development of targeted therapeutic intervention. In this review, we are focusing on the recent advances and current knowledge regarding the interaction of ZIKV with abovementioned pathways so as to provide basic understanding to execute further research that could aid in the development of novel therapeutic strategy.
Collapse
Affiliation(s)
- Chet Raj Ojha
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Myosotys Rodriguez
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Jessica Lapierre
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Mohan Kumar Muthu Karuppan
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
22
|
Goodfellow FT, Willard KA, Wu X, Scoville S, Stice SL, Brindley MA. Strain-Dependent Consequences of Zika Virus Infection and Differential Impact on Neural Development. Viruses 2018; 10:v10100550. [PMID: 30304805 PMCID: PMC6212967 DOI: 10.3390/v10100550] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
Maternal infection with Zika virus (ZIKV) during pregnancy can result in neonatal abnormalities, including neurological dysfunction and microcephaly. Experimental models of congenital Zika syndrome identified neural progenitor cells as a target of viral infection. Neural progenitor cells are responsible for populating the developing central nervous system with neurons and glia. Neural progenitor dysfunction can lead to severe birth defects, namely, lissencephaly, microcephaly, and cognitive deficits. For this study, the consequences of ZIKV infection in human pluripotent stem cell-derived neural progenitor (hNP) cells and neurons were evaluated. ZIKV isolates from Asian and African lineages displayed lineage-specific replication kinetics, cytopathic effects, and impacts on hNP function and neuronal differentiation. The currently circulating ZIKV isolates exhibit a unique profile of virulence, cytopathic effect, and impaired cellular functions that likely contribute to the pathological mechanism of congenital Zika syndrome. The authors found that infection with Asian-lineage ZIKV isolates impaired the proliferation and migration of hNP cells, and neuron maturation. In contrast, the African-lineage infections resulted in abrupt and extensive cell death. This work furthers the understanding of ZIKV-induced brain pathology.
Collapse
Affiliation(s)
- Forrest T Goodfellow
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agriculture and Environmental Science, University of Georgia, Athens, GA 30602, USA.
| | - Katherine A Willard
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Xian Wu
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agriculture and Environmental Science, University of Georgia, Athens, GA 30602, USA.
| | | | - Steven L Stice
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agriculture and Environmental Science, University of Georgia, Athens, GA 30602, USA.
| | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
23
|
de Sousa JR, Azevedo RSS, Martins Filho AJ, Araujo MTF, Moutinho ERC, Baldez Vasconcelos BC, Cruz ACR, Oliveira CS, Martins LC, Baldez Vasconcelos BH, Casseb LMN, Chiang JO, Quaresma JAS, Vasconcelos PFC. Correlation between Apoptosis and in Situ Immune Response in Fatal Cases of Microcephaly Caused by Zika Virus. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2644-2652. [PMID: 30121258 DOI: 10.1016/j.ajpath.2018.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/27/2022]
Abstract
Zika virus (ZIKV) is a single-stranded positive-sense RNA flavivirus that possesses a genome approximately 10.7 Kb in length. Although pro-inflammatory and anti-inflammatory cytokines and apoptotic markers belonging to the extrinsic and intrinsic pathways are suggested to be involved in fatal cases of ZIKV-induced microcephaly, their exact roles and associations are unclear. To address this, brain tissue samples were collected from 10 individuals, five of whom were diagnosed as ZIKV positive with microcephaly and a further five were flavivirus-negative controls that died because of other causes. Examination of material from the fatal cases of microcephaly revealed lesions in the cerebral cortex, edema, vascular proliferation, neuronal necrosis, gliosis, neuronophagy, calcifications, apoptosis, and neuron loss. The expression of various apoptosis markers in the neural parenchyma, including FasL, FAS, BAX, BCL2, and caspase 3 differed between ZIKV-positive cases and controls. Further investigation of type 1 and 2 helper T-cell cytokines confirmed a greater anti-inflammatory response in fatal ZIKV-associated microcephaly cases. Finally, an analysis of the linear correlation between tumor necrosis factor-α, IL-1β, IL-4, IL-10, transforming growth factor-β, and IL-33 expression and various apoptotic markers suggested that the immune response may be associated with the apoptotic phenomenon observed in ZIKV-induced microcephaly.
Collapse
Affiliation(s)
- Jorge R de Sousa
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Raimunda S S Azevedo
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | | | - Marialva T F Araujo
- Department of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Ermelinda R C Moutinho
- Department of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | | | - Ana C R Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil; Center of Biological and Health Sciences, State University of Pará, Belém, Brazil
| | - Consuelo S Oliveira
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Lívia C Martins
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | | | - Livia M N Casseb
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Jannifer O Chiang
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Juarez A S Quaresma
- Department of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil; Center of Biological and Health Sciences, State University of Pará, Belém, Brazil; Tropical Medicine Center, Federal University of Pará, Belém, Brazil.
| | - Pedro F C Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil; Center of Biological and Health Sciences, State University of Pará, Belém, Brazil.
| |
Collapse
|
24
|
Subverting the mechanisms of cell death: flavivirus manipulation of host cell responses to infection. Biochem Soc Trans 2018; 46:609-617. [DOI: 10.1042/bst20170399] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Viruses exploit host metabolic and defence machinery for their own replication. The flaviviruses, which include Dengue (DENV), Yellow Fever (YFV), Japanese Encephalitis (JEV), West Nile (WNV) and Zika (ZIKV) viruses, infect a broad range of hosts, cells and tissues. Flaviviruses are largely transmitted by mosquito bites and humans are usually incidental, dead-end hosts, with the notable exceptions of YFV, DENV and ZIKV. Infection by flaviviruses elicits cellular responses including cell death via necrosis, pyroptosis (involving inflammation) or apoptosis (which avoids inflammation). Flaviviruses exploit these mechanisms and subvert them to prolong viral replication. The different effects induced by DENV, WNV, JEV and ZIKV are reviewed. Host cell surface proteoglycans (PGs) bearing glycosaminoglycan (GAG) polysaccharides — heparan/chondroitin sulfate (HS/CS) — are involved in initial flavivirus attachment and during the expression of non-structural viral proteins play a role in disease aetiology. Recent work has shown that ZIKV-infected cells are protected from cell death by exogenous heparin (a GAG structurally similar to host cell surface HS), raising the possibility of further subtle involvement of HS PGs in flavivirus disease processes. The aim of this review is to synthesize information regarding DENV, WNV, JEV and ZIKV from two areas that are usually treated separately: the response of host cells to infection by flaviviruses and the involvement of cell surface GAGs in response to those infections.
Collapse
|
25
|
A Fluorescent Cell-Based System for Imaging Zika Virus Infection in Real-Time. Viruses 2018; 10:v10020095. [PMID: 29495257 PMCID: PMC5850402 DOI: 10.3390/v10020095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV) is a re-emerging flavivirus that is transmitted to humans through the bite of an infected mosquito or through sexual contact with an infected partner. ZIKV infection during pregnancy has been associated with numerous fetal abnormalities, including prenatal lethality and microcephaly. However, until recent outbreaks in the Americas, ZIKV has been relatively understudied, and therefore the biology and pathogenesis of ZIKV infection remain incompletely understood. Better methods to study ZIKV infection in live cells could enhance our understanding of the biology of ZIKV and the mechanisms by which ZIKV contributes to fetal abnormalities. To this end, we developed a fluorescent cell-based reporter system allowing for live imaging of ZIKV-infected cells. This system utilizes the protease activity of the ZIKV non-structural proteins 2B and 3 (NS2B-NS3) to specifically mark virus-infected cells. Here, we demonstrate the utility of this fluorescent reporter for identifying cells infected by ZIKV strains of two lineages. Further, we use this system to determine that apoptosis is induced in cells directly infected with ZIKV in a cell-autonomous manner. Ultimately, approaches that can directly track ZIKV-infected cells at the single cell-level have the potential to yield new insights into the host-pathogen interactions that regulate ZIKV infection and pathogenesis.
Collapse
|
26
|
Platt DJ, Miner JJ. Consequences of congenital Zika virus infection. Curr Opin Virol 2017; 27:1-7. [PMID: 29080429 DOI: 10.1016/j.coviro.2017.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022]
Abstract
The 2015 Zika virus (ZIKV) epidemic in the Americas led to the discovery that ZIKV causes congenital abnormalities including microcephaly, intrauterine growth restriction, and eye disease that can result in blindness. Studies in animal models and human organoid cultures, together with human epidemiological studies, have shown that ZIKV crosses the placenta and subsequently replicates within fetal tissues including the developing brain. Preferential infection of neural cell precursors causes damage to the developing fetal brain. However, a majority of congenitally infected humans do not develop microcephaly or other overt congenital abnormalities, so longitudinal epidemiological studies are necessary to more completely define the long-term consequences of in utero ZIKV infection.
Collapse
Affiliation(s)
- Derek J Platt
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Jonathan J Miner
- Department of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States; Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States.
| |
Collapse
|