1
|
Danzi MC, Powell E, Rebelo AP, Dohrn MF, Beijer D, Fazal S, Xu IRL, Medina J, Chen S, Arcia de Jesus Y, Schatzman J, Hershberger RE, Saporta M, Baets J, Falk M, Herrmann DN, Scherer SS, Reilly MM, Cortese A, Marques W, Cornejo-Olivas MR, Sanmaneechai O, Kennerson ML, Jordanova A, Silva TYT, Pedroso JL, Schierbaum L, Ebrahimi-Fakhari D, Peric S, Lee YC, Synofzik M, Tekin M, Ravenscroft G, Shy M, Basak N, Schule R, Zuchner S. The GENESIS database and tools: A decade of discovery in Mendelian genomics. Exp Neurol 2024; 382:114978. [PMID: 39357594 DOI: 10.1016/j.expneurol.2024.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
In the past decade, human genetics research saw an acceleration of disease gene discovery and further dissection of the genetic architectures of many disorders. Much of this progress was enabled via data aggregation projects, collaborative data sharing among researchers, and the adoption of sophisticated and standardized bioinformatics analyses pipelines. In 2012, we launched the GENESIS platform, formerly known as GEM.app, with the aims to 1) empower clinical and basic researchers without bioinformatics expertise to analyze and explore genome level data and 2) facilitate the detection of novel pathogenic variation and novel disease genes by leveraging data aggregation and genetic matchmaking. The GENESIS database has grown to over 20,000 datasets from rare disease patients, which were provided by multiple academic research consortia and many individual investigators. Some of the largest global collections of genome-level data are available for Charcot-Marie-Tooth disease, hereditary spastic paraplegia, and cerebellar ataxia. A number of rare disease consortia and networks are archiving their data in this database. Over the past decade, more than 1500 scientists have registered and used this resource and published over 200 papers on gene and variant identifications, which garnered >6000 citations. GENESIS has supported >100 gene discoveries and contributed to approximately half of all gene identifications in the fields of inherited peripheral neuropathies and spastic paraplegia in this time frame. Many diagnostic odysseys of rare disease patients have been resolved. The concept of genomes-to-therapy has borne out for a number of such discoveries that let to rapid clinical trials and expedited natural history studies. This marks GENESIS as one of the most impactful data aggregation initiatives in rare monogenic diseases.
Collapse
Affiliation(s)
- Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric Powell
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adriana P Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maike F Dohrn
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Danique Beijer
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sarah Fazal
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Isaac R L Xu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jessica Medina
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sitong Chen
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yeisha Arcia de Jesus
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jacquelyn Schatzman
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ray E Hershberger
- Divisions of Human Genetics and Cardiovascular Medicine, Department of Internal Medicine, and the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mario Saporta
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences and Born-Bunge Institute, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Center, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Marni Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David N Herrmann
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Cortese
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences, University of Pavia, Pavia, Italy
| | - Wilson Marques
- Department of Neurology, School of Medicine of Ribeirão Preto, University of São Paulo, 2650 Ribeirão Preto, Brazil
| | - Mario R Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima 15003, Peru
| | - Oranee Sanmaneechai
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Marina L Kennerson
- ANZAC Research Institute, Sydney Local Health District, Concord, NSW 2139 and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology and Department of Biomedical Sciences, University of Antwerp, Antwerpen 2610, Belgium; Molecular Medicine Center Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia 1431, Bulgaria
| | - Thiago Y T Silva
- Department of Neurology, Ataxia Unit, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jose Luiz Pedroso
- Department of Neurology, Ataxia Unit, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luca Schierbaum
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stojan Peric
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
| | - Yi-Chung Lee
- Department of Neurology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Matthis Synofzik
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gianina Ravenscroft
- Centre for Medical Research, University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Mike Shy
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Nazli Basak
- Koç University, School of Medicine, Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine, 34010 Istanbul, Turkey
| | - Rebecca Schule
- Center for Neurology and Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany; Division of Neurodegenerative Diseases, Department of Neurology, Heidelberg University Hospital and Faculty of Medicine, Heidelberg, Germany
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
2
|
Tazir M, Nouioua S. Distal hereditary motor neuropathies. Rev Neurol (Paris) 2024; 180:1031-1036. [PMID: 38702287 DOI: 10.1016/j.neurol.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 07/30/2023] [Accepted: 09/29/2023] [Indexed: 05/06/2024]
Abstract
Distal hereditary motor neuropathies (dHMN) are a group of heterogeneous hereditary disorders characterized by a slowly progressive distal pure motor neuropathy. Electrophysiology, with normal motor and sensory conduction velocities, can suggest the diagnosis of dHMN and guide the genetic study. More than thirty genes are currently associated with HMNs, but around 60 to 70% of cases of dHMN remain uncharacterized genetically. Recent cohort studies showed that HSPB1, GARS, BICB2 and DNAJB2 are among the most frequent dHMN genes and that the prevalence of the disease was calculated as 2.14 and 2.3 per 100,000. The determination of the different genes involved in dHMNs made it possible to observe a genotypic overlap with some other neurogenetic disorders and other hereditary neuropathies such as CMT2, mainly with the HSPB1, HSPB8, BICD2 and TRPV4 genes of AD-inherited transmission and recently observed with SORD gene of AR transmission which seems relatively frequent and potentially curable. Distal hereditary motor neuropathy that predominates in the upper limbs is linked mainly to three genes: GARS, BSCL2 and REEP1, whereas dHMN with vocal cord palsy is associated with SLC5A7, DCTN1 and TRPV4 genes. Among the rare AR forms of dHMN like IGHMBP2 and DNAJB2, the SIGMAR1 gene mutations as well as VRK1 variants are associated with a motor neuropathy phenotype often associated with upper motoneuron involvement. The differential diagnosis of these latter arises with juvenile forms of amyotrophic lateral sclerosis, that could be caused also by variations of these genes, as well as hereditary spastic paraplegia. A differential diagnosis of dHMN related to Brown Vialetto Van Laere syndrome due to riboflavin transporter deficiency is important to consider because of the therapeutic possibility.
Collapse
Affiliation(s)
- Meriem Tazir
- Department of Neurology, University Hospital Mustapha Bacha, Algiers, Algeria; Neurosciences Laboratory, University Benyoucef Benkhedda, Algiers, Algeria.
| | - Sonia Nouioua
- Neurosciences Laboratory, University Benyoucef Benkhedda, Algiers, Algeria; Department of Neurology, EHS El Maham, Cherchell,Tipaza, Algeria
| |
Collapse
|
3
|
Xu C, Wei J, Song D, Zhao S, Hou M, Fan Y, Guo L, Sun H, Guo T. Effects of SIPA1L1 on trabecular meshwork extracellular matrix protein accumulation and cellular phagocytosis in POAG. JCI Insight 2024; 9:e174836. [PMID: 39361424 PMCID: PMC11601898 DOI: 10.1172/jci.insight.174836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
Accumulation of extracellular matrix (ECM) proteins in trabecular meshwork (TM), which leads to increased outflow resistance of aqueous humor and consequently high intraocular pressure, is a major cause of primary open-angle glaucoma (POAG). According to our preliminary research, the RapGAP protein superfamily member, signal-induced proliferation-associated 1-like 1 protein (SIPA1L1), which is involved in tissue fibrosis, may have an impact on POAG by influencing ECM metabolism of TM. This study aims to confirm these findings and identify effects and cellular mechanisms of SIPA1L1 on ECM changes and phagocytosis in human TM (HTM) cells. Our results showed that the expression of SIPA1L1 in HTM cells was significantly increased by TGF-β2 treatment in label-free quantitative proteomics. The aqueous humor and TM cell concentration of SIPA1L1 in POAG patients was higher than that of control. In HTM cells, TGF-β2 increased expression of SIPA1L1 along with accumulation of ECM, RhoA, and p-cofilin 1. The effects of TGF-β2 were reduced by si-SIPA1L1. TGF-β2 decreased HTM cell phagocytosis by polymerizing cytoskeletal actin filaments, while si-SIPA1L1 increased phagocytosis by disassembling actin filaments. Simultaneously, overexpressing SIPA1L1 alone exhibited comparable effects to that of TGF-β2. Our studies demonstrate that SIPA1L1 not only promotes the production of ECM, but also inhibits its removal by reducing phagocytosis. Targeting SIPA1L1 degradation may become a significant therapy for POAG.
Collapse
Affiliation(s)
- Chenyu Xu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Bengbu Medical University, Bengbu, China
| | - Jiahong Wei
- Department of Ophthalmology, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Song
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Bengbu Medical University, Bengbu, China
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siyu Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Yuchen Fan
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Li Guo
- Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, China
- Lu’an People’s Hospital, Lu’an, China
| | - Hao Sun
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tao Guo
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
4
|
Xu IRL, Danzi MC, Ruiz A, Raposo J, De Jesus YA, Reilly MM, Cortese A, Shy ME, Scherer SS, Hermann D, Fridman V, Baets J, Saporta M, Seyedsadjadi R, Stojkovic T, Claeys KG, Patel P, Feely S, Rebelo A, Dohrn MF, Züchner S. A study concept of expeditious clinical enrollment for genetic modifier studies in Charcot-Marie-Tooth neuropathy 1A. J Peripher Nerv Syst 2024; 29:202-212. [PMID: 38581130 PMCID: PMC11209807 DOI: 10.1111/jns.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Caused by duplications of the gene encoding peripheral myelin protein 22 (PMP22), Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common hereditary neuropathy. Despite this shared genetic origin, there is considerable variability in clinical severity. It is hypothesized that genetic modifiers contribute to this heterogeneity, the identification of which may reveal novel therapeutic targets. In this study, we present a comprehensive analysis of clinical examination results from 1564 CMT1A patients sourced from a prospective natural history study conducted by the RDCRN-INC (Inherited Neuropathy Consortium). Our primary objective is to delineate extreme phenotype profiles (mild and severe) within this patient cohort, thereby enhancing our ability to detect genetic modifiers with large effects. METHODS We have conducted large-scale statistical analyses of the RDCRN-INC database to characterize CMT1A severity across multiple metrics. RESULTS We defined patients below the 10th (mild) and above the 90th (severe) percentiles of age-normalized disease severity based on the CMT Examination Score V2 and foot dorsiflexion strength (MRC scale). Based on extreme phenotype categories, we defined a statistically justified recruitment strategy, which we propose to use in future modifier studies. INTERPRETATION Leveraging whole genome sequencing with base pair resolution, a future genetic modifier evaluation will include single nucleotide association, gene burden tests, and structural variant analysis. The present work not only provides insight into the severity and course of CMT1A, but also elucidates the statistical foundation and practical considerations for a cost-efficient and straightforward patient enrollment strategy that we intend to conduct on additional patients recruited globally.
Collapse
Affiliation(s)
- Isaac R. L. Xu
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Matt C. Danzi
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ariel Ruiz
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jacquelyn Raposo
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Yeisha Arcia De Jesus
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square
| | - Andrea Cortese
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square
| | - Michael E Shy
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Steven S. Scherer
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David Hermann
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 673, Rochester, New York, 14642, USA
| | - Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA
| | - Jonathan Baets
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, Translational Neurosciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Mario Saporta
- Department of Neurology, University of Miami Miller School of Medicine, United States
| | - Reza Seyedsadjadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tanya Stojkovic
- AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Hôpital Pitié-Salpêtrière, 47-83, boulevard de l’Hôpital, 75013 Paris, France
| | - Kristl G. Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Muscle Diseases and Neuropathies, KU Leuven, Leuven, Belgium
| | - Pooja Patel
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Shawna Feely
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Adriana Rebelo
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | - Maike F. Dohrn
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Neurology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Scherer SS, Svaren J. Peripheral Nervous System (PNS) Myelin Diseases. Cold Spring Harb Perspect Biol 2024; 16:a041376. [PMID: 38253417 PMCID: PMC11065170 DOI: 10.1101/cshperspect.a041376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
This is a review of inherited and acquired causes of human demyelinating neuropathies and a subset of disorders that affect axon-Schwann cell interactions. Nearly all inherited demyelinating neuropathies are caused by mutations in genes that are expressed by myelinating Schwann cells, affecting diverse functions in a cell-autonomous manner. The most common acquired demyelinating neuropathies are Guillain-Barré syndrome and chronic, inflammatory demyelinating polyneuropathy, both of which are immune-mediated. An additional group of inherited and acquired disorders affect axon-Schwann cell interactions in the nodal region. Overall, these disorders affect the formation of myelin and its maintenance, with superimposed axonal loss that is clinically important.
Collapse
Affiliation(s)
- Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John Svaren
- Department of Comparative Biosciences, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
6
|
Tomaselli PJ, Blake J, Polke JM, do Nascimento OJM, Reilly MM, Marques Júnior W, Laurá M. Intermediate conduction velocity in two cases of Charcot-Marie-Tooth disease type 1A. Eur J Neurol 2024; 31:e16199. [PMID: 38409938 PMCID: PMC11235722 DOI: 10.1111/ene.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND AND PURPOSE Charcot-Marie-Tooth disease type 1A (CMT1A) is the most prevalent hereditary neuropathy worldwide and classically has slow nerve conduction velocity (NCV), in most cases below 38 m/s. Two unrelated patients with motor NCVs in the upper limbs above 38 m/s are reported. METHOD Case report. RESULTS Two genetically confirmed CMT1A patients are presented, from two unrelated families (one of British origin and the other of Brazilian origin). Both individuals had upper limb motor NCVs above 38 m/s, with values ranging from 41.9 to 45 m/s in the median nerve and from 42 to 42.3 m/s in the ulnar nerve. They presented with a very mild phenotype, with CMT Neuropathy Score version 2 (CMTNSv2) of 6 and 5, respectively. In contrast, affected family members within both kinships exhibited a classical phenotype with more severe disease manifestation (CMTNSv2 ranging from 12 to 20) and motor NCVs below 30 m/s. CONCLUSION These cases, although very rare, highlight the importance of testing PMP22 duplication in patients with intermediate conduction velocities.
Collapse
Affiliation(s)
- Pedro José Tomaselli
- Clinical Hospital of Ribeirão Preto, Department of Neurosciences and Behaviour SciencesUniversity of São PauloRibeirão PretoBrazil
| | - Julian Blake
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of Clinical NeurophysiologyNorfolk and Norwich University HospitalNorwichUK
| | - James M. Polke
- UCLH Neurogenetics LaboratoryNational Hospital for Neurology and NeurosurgeryLondonUK
| | | | - Mary M. Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Wilson Marques Júnior
- Clinical Hospital of Ribeirão Preto, Department of Neurosciences and Behaviour SciencesUniversity of São PauloRibeirão PretoBrazil
| | - Matilde Laurá
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
7
|
Murray GC, Hines TJ, Tadenev ALD, Xu I, Züchner S, Burgess RW. Testing SIPA1L2 as a modifier of CMT1A using mouse models. J Neuropathol Exp Neurol 2024; 83:318-330. [PMID: 38472136 PMCID: PMC11029467 DOI: 10.1093/jnen/nlae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is a demyelinating peripheral neuropathy caused by the duplication of peripheral myelin protein 22 (PMP22), leading to muscle weakness and loss of sensation in the hands and feet. A recent case-only genome-wide association study of CMT1A patients conducted by the Inherited Neuropathy Consortium identified a strong association between strength of foot dorsiflexion and variants in signal induced proliferation associated 1 like 2 (SIPA1L2), indicating that it may be a genetic modifier of disease. To validate SIPA1L2 as a candidate modifier and to assess its potential as a therapeutic target, we engineered mice with deletion of exon 1 (including the start codon) of the Sipa1l2 gene and crossed them to the C3-PMP22 mouse model of CMT1A. Neuromuscular phenotyping showed that Sipa1l2 deletion in C3-PMP22 mice preserved muscular endurance assayed by inverted wire hang duration and changed femoral nerve axon morphometrics such as myelin thickness. Gene expression changes suggest involvement of Sipa1l2 in cholesterol biosynthesis, a pathway that is also implicated in C3-PMP22 mice. Although Sipa1l2 deletion did impact CMT1A-associated phenotypes, thereby validating a genetic interaction, the overall effect on neuropathy was mild.
Collapse
Affiliation(s)
- George C Murray
- The Jackson Laboratory, Bar Harbor, Maine, USA
- The Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, USA
| | | | | | - Isaac Xu
- Department of Human Genetics and John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephan Züchner
- Department of Human Genetics and John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, Maine, USA
- The Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, USA
| |
Collapse
|
8
|
Murray GC, Hines TJ, Tadenev ALD, Xu I, Züchner S, Burgess RW. Testing SIPA1L2 as a modifier of CMT1A using mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569428. [PMID: 38076977 PMCID: PMC10705403 DOI: 10.1101/2023.11.30.569428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Charcot-Marie-Tooth 1A is a demyelinating peripheral neuropathy caused by the duplication of peripheral myelin protein 22 (PMP22), which produces muscle weakness and loss of sensation in the hands and feet. A recent case-only genome wide association study by the Inherited Neuropathy Consortium identified a strong association between variants in signal induced proliferation associated 1 like 2 (SIPA1L2) and strength of foot dorsiflexion. To validate SIPA1L2 as a candidate modifier, and to assess its potential as a therapeutic target, we engineered mice with a deletion in SIPA1L2 and crossed them to the C3-PMP22 mouse model of CMT1A. We performed neuromuscular phenotyping and identified an interaction between Sipa1l2 deletion and muscular endurance decrements assayed by wire-hang duration in C3-PMP22 mice, as well as several interactions in femoral nerve axon morphometrics such as myelin thickness. Gene expression changes suggested an involvement of Sipa1l2 in cholesterol biosynthesis, which was also implicated in C3-PMP22 mice. Though several interactions between Sipa1l2 deletion and CMT1A-associated phenotypes were identified, validating a genetic interaction, the overall effect on neuropathy was small.
Collapse
Affiliation(s)
- George C Murray
- The Jackson Laboratory, Bar Harbor, ME 04609
- The Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME 04469
| | | | | | - Isaac Xu
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Züchner
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609
- The Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME 04469
| |
Collapse
|
9
|
Prediction of Regulatory SNPs in Putative Minor Genes of the Neuro-Cardiovascular Variant in Fabry Reveals Insights into Autophagy/Apoptosis and Fibrosis. BIOLOGY 2022; 11:biology11091287. [PMID: 36138766 PMCID: PMC9495465 DOI: 10.3390/biology11091287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Even though a mutation in monogenic diseases leads to a “classic” manifestation, many disorders exhibit great clinical variability that could be due to modifying genes also called minor genes. Fabry disease (FD) is an X-linked inborn error resulting from the deficient or absent activity of alpha-galactosidase A (α-GAL) enzyme, that leads to deposits of globotriaosylceramide. With our proprietary software SNPclinic v.1.0, we analyzed 110 single nucleotide polymorphisms (SNPs) in the proximal promoter of 14 genes that could modify the FD phenotype FD. We found seven regulatory-SNP (rSNPs) in three genes (IL10, TGFB1 and EDN1) in five cell lines relevant to FD (Cardiac myocytes and fibroblasts, Astrocytes-cerebellar, endothelial cells and T helper cells 1-TH1). Each SNP was confirmed as a true rSNP in public eQTL databases, and additional software suggested the prediction of variants. The two proposed rSNPs in IL10, could explain components for the regulation of active B cells that influence the fibrosis process. The three predicted rSNPs in TGFB1, could act in apoptosis-autophagy regulation. The two putative rSNPs in EDN1, putatively regulate chronic inflammation. The seven rSNPs described here could act to modulate Fabry’s clinical phenotype so we propose that IL10, TGFB1 and EDN1 be considered minor genes in FD.
Collapse
|
10
|
Chen T, Peng Y, Hu W, Shi H, Li P, Que Y, Qiu J, Qiu X, Gao B, Zhou H, Chen Y, Zhu Y, Li S, Liang A, Gao W, Huang D. Irisin enhances chondrogenic differentiation of human mesenchymal stem cells via Rap1/PI3K/AKT axis. Stem Cell Res Ther 2022; 13:392. [PMID: 35922833 PMCID: PMC9351134 DOI: 10.1186/s13287-022-03092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/17/2022] [Indexed: 12/11/2022] Open
Abstract
Background Human mesenchymal stem cells (hMSCs) have been proven to have inherent chondrogenic differentiation potential, which appears to be used in cartilage regeneration. Increasing evidence suggests that irisin enhances osteoblast differentiation of MSCs, but little is known about its potential on chondrogenic differentiation. Methods In the study, we investigated the effects of irisin on chondrogenic differentiation of hMSCs using a high-density pellet culture system. The cartilage pellets were evaluated by morphology, and the metabolism of cartilage matrix was detected by qPCR, western blot and immunohistochemistry. Next, RNA-seq was performed to explore the underlying mechanism. Furthermore, using the transduction of plasmid, miRNAs mimics and inhibitor, the activation of Rap1/PI3K/AKT axis, the expression level of SIPA1L2, and the functional verification of miR-125b-5p were detected on day 7 of chondrogenic differentiation of hMSCs. Results Compared with the controls, we found that irisin treatment could significantly enhance the chondrogenic differentiation of hMSCs, enlarge the induced-cartilage tissue and up-regulate the expression levels of cartilage markers. RNA-seq indicated that irisin activated the Rap1 and PI3K/AKT signaling pathway, and the lower expression level of SIPA1L2 and the higher expression level of miR-125b-5p were found in irisin-treated group. Further, we found that irisin treatment could up-regulate the expression level of miR-125b-5p, targeting SIPA1L2 and consequently activating the Rap1/PI3K/AKT axis on the process of chondrogenic differentiation of hMSCs. Conclusions Collectively, our study reveals that irisin can enhance chondrogenic differentiation of hMSCs via the Rap1/PI3K/AKT pathway, suggesting that irisin possesses prospects in cartilage regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03092-8.
Collapse
Affiliation(s)
- Taiqiu Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Huihong Shi
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Pengfei Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Yichen Que
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Jincheng Qiu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Bo Gao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Hang Zhou
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Yuanxin Zhu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Shaoguang Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China.
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Jamiri Z, Khosravi R, Heidari MM, Kiani E, Gharechahi J. A nonsense mutation in MME gene associates with autosomal recessive late-onset Charcot-Marie-Tooth disease. Mol Genet Genomic Med 2022; 10:e1913. [PMID: 35212467 PMCID: PMC9034668 DOI: 10.1002/mgg3.1913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 01/02/2023] Open
Abstract
Background The genetic cause for the majority of patients with late‐onset axonal form of neuropathies have remained unknown. In this study we aimed to identify the causal mutation in a family with multiple affected individuals manifesting a range of phenotypic features consistent with late‐onset sensorimotor axonal polyneuropathy. Methods Whole exome sequencing (WES) followed by targeted variant screening and prioritization was performed to identify the candidate mutation. The co‐segregation of the mutation with the phenotype was confirmed by Sanger sequencing. Results We identified a nonsense mutation (c.1564C>T; p.Q522*) in membrane metalloendopeptidase (MME) gene as the cause of the disease condition. The mutation has a combined annotation‐ dependent depletion (CADD) score 45 and predicted to be deleterious based on various algorithms. The mutation was inherited in an autosomal recessive mode and further confirmed to co‐segregate with the disease phenotype in the family and showed to has the required criteria including rarity and deleteriousness to be considered as pathogenic. Conclusion The MME gene encodes for the membrane bound endopeptidase neprilysin (NEP) which is involved in processing of various peptide substrates. The identified mutation causes a complete loss of carboxy‐terminal region of the NEP protein which contains the zinc binding site and the catalytic domain and thus considered to be a loss‐of‐function mutation. The loss of NEP activity is likely associated with impaired myelination and axonal injury which is hallmark of CMT diseases.
Collapse
Affiliation(s)
- Zeinab Jamiri
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Rana Khosravi
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | | | - Ebrahim Kiani
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Grosz BR, Stevanovski I, Negri S, Ellis M, Barnes S, Reddel S, Vucic S, Nicholson GA, Cortese A, Kumar KR, Deveson IW, Kennerson ML. Long read sequencing overcomes challenges in the diagnosis of
SORD
neuropathy. J Peripher Nerv Syst 2022; 27:120-126. [DOI: 10.1111/jns.12485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Bianca R Grosz
- Northcott Neuroscience Laboratory ANZAC Research Institute Concord NSW Australia
| | - Igor Stevanovski
- Kinghorn Centre for Clinical Genomics Garvan Institute of Medical Research Sydney NSW Australia
| | - Sara Negri
- Istituiti Clinici Scientifici Maugeri IRCCS Environmental Research Center Pavia Italy
| | - Melina Ellis
- Northcott Neuroscience Laboratory ANZAC Research Institute Concord NSW Australia
- Sydney Medical School University of Sydney Camperdown NSW Australia
| | - Stephanie Barnes
- Sydney Medical School University of Sydney Camperdown NSW Australia
- Department of Neurology Concord Repatriation General Hospital Concord NSW Australia
- Faculty of Medicine University of Notre Dame Sydney Australia
- Department of Neurology Hornsby Ku‐ring‐Gai Hospital Sydney Australia
| | - Stephen Reddel
- Sydney Medical School University of Sydney Camperdown NSW Australia
- Department of Neurology Concord Repatriation General Hospital Concord NSW Australia
| | - Steve Vucic
- Sydney Medical School University of Sydney Camperdown NSW Australia
- Department of Neurology Concord Repatriation General Hospital Concord NSW Australia
| | - Garth A Nicholson
- Sydney Medical School University of Sydney Camperdown NSW Australia
- Department of Neurology Concord Repatriation General Hospital Concord NSW Australia
- Molecular Medicine Laboratory Concord Repatriation General Hospital Concord NSW Australia
| | - Andrea Cortese
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases UCL Queen Square Institute of Neurology London UK
- Department of Brain and Behavioral Sciences University of Pavia Pavia Italy
| | - Kishore R Kumar
- Kinghorn Centre for Clinical Genomics Garvan Institute of Medical Research Sydney NSW Australia
- Sydney Medical School University of Sydney Camperdown NSW Australia
- Department of Neurology Concord Repatriation General Hospital Concord NSW Australia
- Molecular Medicine Laboratory Concord Repatriation General Hospital Concord NSW Australia
| | - Ira W Deveson
- Kinghorn Centre for Clinical Genomics Garvan Institute of Medical Research Sydney NSW Australia
- St Vincent’s Clinical School University of New South Wales Sydney NSW Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory ANZAC Research Institute Concord NSW Australia
- Sydney Medical School University of Sydney Camperdown NSW Australia
- Molecular Medicine Laboratory Concord Repatriation General Hospital Concord NSW Australia
| |
Collapse
|
13
|
Abstract
Demyelinating forms of Charcot-Marie-Tooth disease (CMT) are genetically and phenotypically heterogeneous and result from highly diverse biological mechanisms including gain of function (including dominant negative effects) and loss of function. While no definitive treatment is currently available, rapid advances in defining the pathomechanisms of demyelinating CMT have led to promising pre-clinical studies, as well as emerging clinical trials. Especially promising are the recently completed pre-clinical genetic therapy studies in PMP-22, GJB1, and SH3TC2-associated neuropathies, particularly given the success of similar approaches in humans with spinal muscular atrophy and transthyretin familial polyneuropathy. This article focuses on neuropathies related to mutations in PMP-22, MPZ, and GJB1, which together comprise the most common forms of demyelinating CMT, as well as on select rarer forms for which promising treatment targets have been identified. Clinical characteristics and pathomechanisms are reviewed in detail, with emphasis on therapeutically targetable biological pathways. Also discussed are the challenges facing the CMT research community in its efforts to advance the rapidly evolving biological insights to effective clinical trials. These considerations include the limitations of currently available animal models, the need for personalized medicine approaches/allele-specific interventions for select forms of demyelinating CMT, and the increasing demand for optimal clinical outcome assessments and objective biomarkers.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA.
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
14
|
Martinez NJ, Braisted JC, Dranchak PK, Moran JJ, Larson H, Queme B, Pak E, Dutra A, Rai G, Cheng KCC, Svaren J, Inglese J. Genome-Edited Coincidence and PMP22-HiBiT Fusion Reporter Cell Lines Enable an Artifact-Suppressive Quantitative High-Throughput Screening Strategy for PMP22 Gene-Dosage Disorder Drug Discovery. ACS Pharmacol Transl Sci 2021; 4:1422-1436. [PMID: 34423274 DOI: 10.1021/acsptsci.1c00110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Charcot-Marie-Tooth 1A (CMT1A) is the most common form of hereditary peripheral neuropathies, characterized by genetic duplication of the critical myelin gene Peripheral Myelin Protein 22 (PMP22). PMP22 overexpression results in abnormal Schwann cell differentiation, leading to axonal loss and muscle wasting. Since regulation of PMP22 expression is a major target of therapeutic discovery for CMT1A, we sought to establish unbiased approaches that allow the identification of therapeutic agents for this disease. Using genome editing, we generated a coincidence reporter assay that accurately monitors Pmp22 transcript levels in the S16 rat Schwann cell line, while reducing reporter-based false positives. A quantitative high-throughput screen (qHTS) of 42 577 compounds using this assay revealed diverse novel chemical classes that reduce endogenous Pmp22 transcript levels. Moreover, some of these classes show pharmacological specificity in reducing Pmp22 over another major myelin-associated gene, Mpz (Myelin protein zero). Finally, to investigate whether compound-mediated reduction of Pmp22 transcripts translates to reduced PMP22 protein levels, we edited the S16 genome to generate a reporter assay that expresses a PMP22-HiBiT fusion protein using CRISPR/Cas9. Overall, we present a screening platform that combines genome edited cell lines encoding reporters that monitor transcriptional and post-translational regulation of PMP22 with titration-based screening (e.g., qHTS), which could be efficiently incorporated into drug discovery campaigns for CMT1A.
Collapse
Affiliation(s)
- Natalia J Martinez
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - John C Braisted
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Patricia K Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - John J Moran
- Department of Comparative Biosciences, and Waisman Center, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Hunter Larson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Bryan Queme
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Evgenia Pak
- National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland 20817, United States
| | - Amalia Dutra
- National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland 20817, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ken Chih-Chien Cheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - John Svaren
- Department of Comparative Biosciences, and Waisman Center, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States.,National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland 20817, United States
| |
Collapse
|
15
|
Wu R, Lv H, Wang H, Wang Z, Yuan Y. The Pathological Features of Common Hereditary Mitochondrial Dynamics Neuropathy. Front Neurosci 2021; 15:705277. [PMID: 34366782 PMCID: PMC8341155 DOI: 10.3389/fnins.2021.705277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023] Open
Abstract
Objectives Mitofusin 2 and ganglioside-induced differentiation-associated protein 1 are two main mitochondrial dynamics-related proteins. Dysfunction of these two proteins leads to different subtypes of Charcot–Marie–Tooth disease type 2A (CMT2A) and CMT2K. This study aims to report the pathological difference between CMT2A and CMT2K in a large cohort. Methods Thirty patients with molecularly confirmed CMT2A and nine with CMT2K were identified by next-generation sequencing. Sural nerve biopsies were performed in 29 patients. Results The patients with both diseases showed length-dependent neuropathy with distal weakness, sensory loss, and no deep tendon reflex. Optic neuropathy appeared in 3/30 (10%) patients with CMT2A. Tendon contracture appeared in 4/9 (50.0%) patients with CMT2K. Sural biopsy revealed the loss of both myelinated and unmyelinated nerve fibers. Closely packed, irregularly oriented neurofilaments were observed in axons of unmyelinated nerve fibers in both diseases. Another important finding was the ubiquitous presence of smaller, rounded, and fragmented mitochondria in CMT2A and elongated mitochondria in CMT2K in the myelinated and unmyelinated axons. Conclusion This study confirmed large diversity in phenotypes between CMT2A and CMT2K. Mitochondrial dynamics-related variations can induce different mitochondrial morphological changes and neurofilament accumulation in axons.
Collapse
Affiliation(s)
- Rui Wu
- Department of Neurology, Peking University First Hospital, Beijing, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hui Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
16
|
Subréville M, Bonello-Palot N, Yahiaoui D, Beloribi-Djefaflia S, Fernandes S, Stojkovic T, Cassereau J, Péréon Y, Echaniz-Laguna A, Violleau MH, Soulages A, Louis SL, Masingue M, Magot A, Delmont E, Sacconi S, Adams D, Labeyrie C, Genestet S, Noury JB, Chanson JB, Lévy N, Juntas-Morales R, Tard C, Sole G, Attarian S. Genotype-phenotype correlation in French patients with myelin protein zero gene-related inherited neuropathy. Eur J Neurol 2021; 28:2913-2921. [PMID: 34060176 DOI: 10.1111/ene.14948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Preparations for clinical trials of unfolded protein response (UPR) inhibitors (such as Sephin1) that target the upregulated UPR in patients with Charcot-Marie-Tooth disease (CMT) carrying MPZ mutations are currently underway. The inclusion criteria for these trials are still being formulated. Our objective was to characterize the relation between genotypes and phenotypes in patients with CMT caused by MPZ mutations, and to refine the inclusion criteria for future trials. METHODS Clinical and neurophysiological data of CMT patients with MPZ mutations were retrospectively collected at 11 French reference centers. RESULTS Forty-four mutations in MPZ were identified in 91 patients from 61 families. There was considerable heterogeneity. The same mutation was found to cause either axonal or demyelinating neuropathy. Three groups were identified according to the age at disease onset. CMT Examination Score (CMTES) tended to be higher in the early (≤22 years) and adult (23-47 years) onset groups (mean CMTESv2 = 10.4 and 10.0, respectively) than in the late onset group (>47 years, mean CMTESv2 = 8.6, p = 0.47). There was a significant positive correlation between CMTESv2 and the age of patients in Groups I (p = 0.027) and II (p = 0.023), indicating that clinical severity progressed with age in these patients. CONCLUSIONS To optimize the selection of CMT patients carrying MPZ mutations for the upcoming trials, inclusion criteria should take into account the pathophysiology of the disease (upregulated UPR). Recruited patients should have a mild to moderate disease severity and a disease onset at between 18 and 50 years, as these patients exhibit significant disease progression over time.
Collapse
Affiliation(s)
- Marie Subréville
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
| | | | - Douniazed Yahiaoui
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
| | | | - Sara Fernandes
- CEReSS-Health Service Research and Quality of Life Center, Aix-Marseille University, Marseille, France
| | - Tanya Stojkovic
- Reference Center for Neuromuscular Diseases North/East/Ile de France, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Julien Cassereau
- Reference Center for Neuromuscular Disorders AOC and National Reference Center for Neurogenetic Diseases, Angers University Hospital, Angers, France
| | - Yann Péréon
- Department of Clinical Neurophysiology, Reference Center for NMD, CHU Nantes, Nantes, France
| | - Andoni Echaniz-Laguna
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France.,French National Reference Center for Rare Neuropathies, Le Kremlin-Bicêtre, France.,Inserm U1195 and Paris-Sud University, Le Kremlin-Bicêtre, France
| | | | - Antoine Soulages
- Reference Center for Neuromuscular Disorders AOC, CHU de Bordeaux, Bordeaux, France
| | - Sarah Léonard Louis
- Reference Center for Neuromuscular Diseases North/East/Ile de France, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marion Masingue
- Reference Center for Neuromuscular Diseases North/East/Ile de France, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Armelle Magot
- Department of Clinical Neurophysiology, Reference Center for NMD, CHU Nantes, Nantes, France
| | - Emilien Delmont
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
| | - Sabrina Sacconi
- Peripheral Nervous System Service, Muscle et SLA, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - David Adams
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France
| | - Céline Labeyrie
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France
| | | | | | - Jean-Baptiste Chanson
- Department of Neurology, Hôpital de Hautepierre, CHU de Strasbourg, Strasbourg, France
| | - Nicolas Lévy
- Marseille Medical Genetics, Aix-Marseille University-Inserm UMR 1251, Marseille, France
| | - Raul Juntas-Morales
- Reference Center for Neuromuscular Disorders AOC, Department of Neurology, CHU Montpellier, Montpellier, France
| | - Céline Tard
- Inserm U1171, Department of Neurology, Reference Center for Neuromuscular Diseases North/East/Ile de France, CHU Lille, Lille University, Lille, France
| | - Guilhem Sole
- Reference Center for Neuromuscular Disorders AOC, CHU de Bordeaux, Bordeaux, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France.,Marseille Medical Genetics, Aix-Marseille University-Inserm UMR 1251, Marseille, France
| |
Collapse
|
17
|
Matsuda N, Ootsuki K, Kobayashi S, Nemoto A, Kubo H, Usami SI, Kanani K. A novel case of concurrent occurrence of demyelinating-polyneuropathy-causing PMP22 duplication and SOX10 gene mutation producing severe hypertrophic neuropathy. BMC Neurol 2021; 21:243. [PMID: 34171997 PMCID: PMC8228911 DOI: 10.1186/s12883-021-02256-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hereditary motor and sensory neuropathy, also referred to as Charcot-Marie-Tooth disease (CMT), is most often caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. This duplication causes CMT type 1A (CMT1A). CMT1A rarely occurs in combination with other hereditary neuromuscular disorders. However, such rare genetic coincidences produce a severe phenotype and have been reported in terms of "double trouble" overlapping syndrome. Waardenburg syndrome (WS) is the most common form of a hereditary syndromic deafness. It is primarily characterized by pigmentation anomalies and classified into four major phenotypes. A mutation in the SRY sex determining region Y-box 10 (SOX10) gene causes WS type 2 or 4 and peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, WS, and Hirschsprung disease. We describe a 11-year-old boy with extreme hypertrophic neuropathy because of a combination of CMT1A and WS type 2. This is the first published case on the co-occurrence of CMT1A and WS type 2. CASE PRESENTATION The 11-year-old boy presented with motor developmental delay and a deterioration in unstable walking at 6 years of age. In addition, he had congenital hearing loss and heterochromia iridis. The neurological examination revealed weakness in the distal limbs with pes cavus. He was diagnosed with CMT1A by the fluorescence in situ hybridization method. His paternal pedigree had a history of CMT1A. However, no family member had congenital hearing loss. His clinical manifestation was apparently severe than those of his relatives with CMT1A. In addition, a whole-body magnetic resonance neurography revealed an extreme enlargement of his systemic cranial and spinal nerves. Subsequently, a genetic analysis revealed a heterozygous frameshift mutation c.876delT (p.F292Lfs*19) in the SOX10 gene. He was eventually diagnosed with WS type 2. CONCLUSIONS We described a patient with a genetically confirmed overlapping diagnoses of CMT1A and WS type 2. The double trouble with the genes created a significant impact on the peripheral nerves system. Severe phenotype in the proband can be attributed to the cumulative effect of mutations in both PMP22 and SOX10 genes, responsible for demyelinating neuropathy.
Collapse
Affiliation(s)
- Nozomu Matsuda
- Department of Neurology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan.
| | - Koushi Ootsuki
- Department of Otorhinolaryngology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shunsuke Kobayashi
- Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Ayaka Nemoto
- Advanced Clinical Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Hitoshi Kubo
- Advanced Clinical Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan.,Preparing Section for New Faculty of Medical Science, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Kazuaki Kanani
- Department of Neurology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| |
Collapse
|
18
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
19
|
Warman-Chardon J, Jasmin BJ, Kothary R, Parks RJ. Report on the 5th Ottawa International Conference on Neuromuscular Disease & Biology -October 17-19, 2019, Ottawa, Canada. J Neuromuscul Dis 2021; 8:323-334. [PMID: 33492242 DOI: 10.3233/jnd-219001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jodi Warman-Chardon
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Bernard J Jasmin
- Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Rashmi Kothary
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| | - Robin J Parks
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| |
Collapse
|
20
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
21
|
Mroczek M, Sanchez MG. Genetic modifiers and phenotypic variability in neuromuscular disorders. J Appl Genet 2020; 61:547-558. [PMID: 32918245 DOI: 10.1007/s13353-020-00580-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Neuromuscular disorders are mostly rare diseases with autosomal dominant, recessive, or X-linked inheritance. Interestingly, among patients carrying the same mutations, a range of phenotypic severity is reported. This phenotypic variability in neuromuscular disorders is still not fully understood. This review will focus on genetic modifiers and will briefly describe metabolic pathways, in which they are involved. Genetic modifiers are variants in the same or other genes that modulate the phenotype. Proteins encoded by genetic modifiers in neuromuscular diseases are taking part in different metabolic processes, most commonly in inflammation, growth and regeneration, endoplasmic reticulum metabolism, and cytoskeletal activities. Recent advances in omics technologies, development of computational algorithms, and establishing large international consortia intensified discovery sped up investigation of genetic modifiers. As more individuals affected by neuromuscular disorders are tested, it is often suggested that classic models of genetic causation cannot explain phenotypic variability. There is a growing interest in their discovery and identifying shared metabolic pathways can contribute to design targeted therapies. We provide an update on variants acting as genetic modifiers in neuromuscular disorders and strategies used for their discovery.
Collapse
Affiliation(s)
- Magdalena Mroczek
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Maria Gabriela Sanchez
- Molecular Biology Department, Simon Bolivar University, Sartenejas Valley, Caracas, Venezuela
| |
Collapse
|
22
|
Visigalli D, Capodivento G, Basit A, Fernández R, Hamid Z, Pencová B, Gemelli C, Marubbi D, Pastorino C, Luoma AM, Riekel C, Kirschner DA, Schenone A, Fernández JA, Armirotti A, Nobbio L. Exploiting Sphingo- and Glycerophospholipid Impairment to Select Effective Drugs and Biomarkers for CMT1A. Front Neurol 2020; 11:903. [PMID: 32982928 PMCID: PMC7477391 DOI: 10.3389/fneur.2020.00903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/14/2020] [Indexed: 01/12/2023] Open
Abstract
In Charcot-Marie-Tooth type 1A (CMT1A), Schwann cells exhibit a preponderant transcriptional deficiency of genes involved in lipid biosynthesis. This perturbed lipid metabolism affects the peripheral nerve physiology and the structure of peripheral myelin. Nevertheless, the identification and functional characterization of the lipid species mainly responsible for CMT1A myelin impairment currently lack. This is critical in the pathogenesis of the neuropathy since lipids are many and complex molecules which play essential roles in the cell, including the structural components of cellular membranes, cell signaling, and membrane trafficking. Moreover, lipids themselves are able to modify gene transcription, thereby affecting the genotype-phenotype correlation of well-defined inherited diseases, including CMT1A. Here we report for the first time a comprehensive lipid profiling in experimental and human CMT1A, demonstrating a previously unknown specific alteration of sphingolipid (SP) and glycerophospholipid (GP) metabolism. Notably, SP, and GP changes even emerge in biological fluids of CMT1A rat and human patients, implying a systemic metabolic dysfunction for these specific lipid classes. Actually, SP and GP are not merely reduced; their expression is instead aberrant, contributing to the ultrastructural abnormalities that we detailed by X-ray diffraction in rat and human internode myelin. The modulation of SP and GP pathways in myelinating dorsal root ganglia cultures clearly sustains this issue. In fact, just selected molecules interacting with these pathways are able to modify the altered geometric parameters of CMT1A myelinated fibers. Overall, we propose to exploit the present SP and GP metabolism impairment to select effective drugs and validate a set of reliable biomarkers, which remain a challenge in CMT1A neuropathy.
Collapse
Affiliation(s)
- Davide Visigalli
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Giovanna Capodivento
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Abdul Basit
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Zeeshan Hamid
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Barbora Pencová
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Chiara Gemelli
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Daniela Marubbi
- DIMES, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Oncologia Cellulare Genoa, Genoa, Italy
| | - Cecilia Pastorino
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Adrienne M Luoma
- Department of Biology, Boston College, Boston, MA, United States
| | | | | | - Angelo Schenone
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Lucilla Nobbio
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| |
Collapse
|
23
|
Lee AJ, Nam DE, Choi YJ, Noh SW, Nam SH, Lee HJ, Kim SJ, Song GJ, Choi BO, Chung KW. Paternal gender specificity and mild phenotypes in Charcot-Marie-Tooth type 1A patients with de novo 17p12 rearrangements. Mol Genet Genomic Med 2020; 8:e1380. [PMID: 32648354 PMCID: PMC7507087 DOI: 10.1002/mgg3.1380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 01/06/2023] Open
Abstract
Background Charcot–Marie–Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) are developed by duplication and deletion of the 17p12 (PMP22) region, respectively. Methods De novo rates were determined in 211 CMT1A or HNPP trio families, and then, analyzed gender‐specific genetic features and clinical phenotypes of the de novo cases. Results This study identified 40 de novo cases (19.0%). Paternal origin was highly frequent compared to maternal origin (p = .005). Most de novo CMT1A rearrangements occurred between non‐sister chromatids (p = .003), but it was interesting that three of the four sister chromatids exchange cases were observed in the less frequent maternal origin. Paternal ages at the affected child births were slightly higher in the de novo CMT1A group than in the non‐de novo CMT1A control group (p = .0004). For the disability score of CMTNS, the de novo CMT1A group had a slightly lower value compared to the control group (p = .005). Electrophysiological studies showed no significant differences between the two groups. Conclusion This study suggests that de novo CMT1A patients tend to have milder symptoms and that the paternal ages at child births in the de novo group are higher than those of the non‐de novo group.
Collapse
Affiliation(s)
- Ah J Lee
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Da E Nam
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Yu J Choi
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Seung W Noh
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Soo H Nam
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Hye J Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung J Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gyun J Song
- Department of Medical Science, Institute for Bio-Medical Convergence, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| | - Byung-Ok Choi
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki W Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| |
Collapse
|
24
|
Pantera H, Hu B, Moiseev D, Dunham C, Rashid J, Moran JJ, Krentz K, Rubinstein CD, Won S, Li J, Svaren J. Pmp22 super-enhancer deletion causes tomacula formation and conduction block in peripheral nerves. Hum Mol Genet 2020; 29:1689-1699. [PMID: 32356557 PMCID: PMC7322568 DOI: 10.1093/hmg/ddaa082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 11/12/2022] Open
Abstract
Copy number variation of the peripheral nerve myelin gene Peripheral Myelin Protein 22 (PMP22) causes multiple forms of inherited peripheral neuropathy. The duplication of a 1.4 Mb segment surrounding this gene in chromosome 17p12 (c17p12) causes the most common form of Charcot-Marie-Tooth disease type 1A, whereas the reciprocal deletion of this gene causes a separate neuropathy termed hereditary neuropathy with liability to pressure palsies (HNPP). PMP22 is robustly induced in Schwann cells in early postnatal development, and several transcription factors and their cognate regulatory elements have been implicated in coordinating the gene's proper expression. We previously found that a distal super-enhancer domain was important for Pmp22 expression in vitro, with particular impact on a Schwann cell-specific alternative promoter. Here, we investigate the consequences of deleting this super-enhancer in vivo. We find that loss of the super-enhancer in mice reduces Pmp22 expression throughout development and into adulthood, with greater impact on the Schwann cell-specific promoter. Additionally, these mice display tomacula formed by excessive myelin folding, a pathological hallmark of HNPP, as have been previously observed in heterozygous Pmp22 mice as well as sural biopsies from patients with HNPP. Our findings demonstrate a mechanism by which smaller copy number variations, not including the Pmp22 gene, are sufficient to reduce gene expression and phenocopy a peripheral neuropathy caused by the HNPP-associated deletion encompassing PMP22.
Collapse
Affiliation(s)
- Harrison Pantera
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bo Hu
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Daniel Moiseev
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Chris Dunham
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Jibraan Rashid
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - John J Moran
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kathleen Krentz
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - C Dustin Rubinstein
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Seongsik Won
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jun Li
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
25
|
Lavin KM, Ge Y, Sealfon SC, Nair VD, Wilk K, McAdam JS, Windham ST, Kumar PL, McDonald MLN, Bamman MM. Rehabilitative Impact of Exercise Training on Human Skeletal Muscle Transcriptional Programs in Parkinson's Disease. Front Physiol 2020; 11:653. [PMID: 32625117 PMCID: PMC7311784 DOI: 10.3389/fphys.2020.00653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is the most common motor neurodegenerative disease, and neuromuscular function deficits associated with PD contribute to disability. Targeting these symptoms, our laboratory has previously evaluated 16-week high-intensity resistance exercise as rehabilitative training (RT) in individuals with PD. We reported significant improvements in muscle mass, neuromuscular function (strength, power, and motor unit activation), indices of neuromuscular junction integrity, total and motor scores on the unified Parkinson's disease rating scale (UPDRS), and total and sub-scores on the 39-item PD Quality of Life Questionnaire (PDQ-39), supporting the use of RT to reverse symptoms. Our objective was to identify transcriptional networks that may contribute to RT-induced neuromuscular remodeling in PD. We generated transcriptome-wide skeletal muscle RNA-sequencing in 5 participants with PD [4M/1F, 67 ± 2 years, Hoehn and Yahr stages 2 (n = 3) and 3 (n = 2)] before and after 16-week high intensity RT to identify transcriptional networks that may in part underpin RT-induced neuromuscular remodeling in PD. Following RT, 304 genes were significantly upregulated, notably related to remodeling and nervous system/muscle development. Additionally, 402 genes, primarily negative regulators of muscle adaptation, were downregulated. We applied the recently developed Pathway-Level Information ExtractoR (PLIER) method to reveal coordinated gene programs (as latent variables, LVs) that differed in skeletal muscle among young (YA) and old (OA) healthy adults and PD (n = 12 per cohort) at baseline and in PD pre- vs. post-RT. Notably, one LV associated with angiogenesis, axon guidance, and muscle remodeling was significantly lower in PD than YA at baseline and was significantly increased by exercise. A different LV annotated to denervation, autophagy, and apoptosis was increased in both PD and OA relative to YA and was also reduced by 16-week RT in PD. Thus, this analysis identified two novel skeletal muscle transcriptional programs that are dysregulated by PD and aging, respectively. Notably, RT has a normalizing effect on both programs in individuals with PD. These results identify potential molecular transducers of the RT-induced improvements in neuromuscular remodeling and motor function that may aid in optimizing exercise rehabilitation strategies for individuals with PD.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venugopalan D. Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Katarzyna Wilk
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeremy S. McAdam
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel T. Windham
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Preeti Lakshman Kumar
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Merry-Lynn N. McDonald
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marcas M. Bamman
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Birmingham/Atlanta VA Geriatric Research, Education, and Clinical Center, Birmingham, AL, United States
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
26
|
Nabirotchkin S, Peluffo AE, Rinaudo P, Yu J, Hajj R, Cohen D. Next-generation drug repurposing using human genetics and network biology. Curr Opin Pharmacol 2020; 51:78-92. [PMID: 31982325 DOI: 10.1016/j.coph.2019.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Drug repurposing has attracted increased attention, especially in the context of drug discovery rates that remain too low despite a recent wave of approvals for biological therapeutics (e.g. gene therapy). These new biological entities-based treatments have high costs that are difficult to justify for small markets that include rare diseases. Drug repurposing, involving the identification of single or combinations of existing drugs based on human genetics data and network biology approaches represents a next-generation approach that has the potential to increase the speed of drug discovery at a lower cost. This Pharmacological Perspective reviews progress and perspectives in combining human genetics, especially genome-wide association studies, with network biology to drive drug repurposing for rare and common diseases with monogenic or polygenic etiologies. Also, highlighted here are important features of this next generation approach to drug repurposing, which can be combined with machine learning methods to meet the challenges of personalized medicine.
Collapse
Affiliation(s)
- Serguei Nabirotchkin
- Network Biology & Drug Discovery Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Alex E Peluffo
- Data Science Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France.
| | - Philippe Rinaudo
- Data Science Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Jinchao Yu
- Data Science Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Rodolphe Hajj
- Preclinical Research and Pharmacology Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Daniel Cohen
- Chief Executive Officer, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| |
Collapse
|
27
|
A de novo EGR2 variant, c.1232A > G p.Asp411Gly, causes severe early-onset Charcot-Marie-Tooth Neuropathy Type 3 (Dejerine-Sottas Neuropathy). Sci Rep 2019; 9:19336. [PMID: 31852952 PMCID: PMC6920433 DOI: 10.1038/s41598-019-55875-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/03/2019] [Indexed: 01/04/2023] Open
Abstract
EGR2 (early growth response 2) is a crucial transcription factor for the myelination of the peripheral nervous system. Mutations in EGR2 are reported to cause a heterogenous spectrum of peripheral neuropathy with wide variation in both severity and age of onset, including demyelinating and axonal forms of Charcot-Marie Tooth (CMT) neuropathy, Dejerine-Sottas neuropathy (DSN/CMT3), and congenital hypomyelinating neuropathy (CHN/CMT4E). Here we report a sporadic de novo EGR2 variant, c.1232A > G (NM_000399.5), causing a missense p.Asp411Gly substitution and discovered through whole-exome sequencing (WES) of the proband. The resultant phenotype is severe demyelinating DSN with onset at two years of age, confirmed through nerve biopsy and electrophysiological examination. In silico analyses showed that the Asp411 residue is evolutionarily conserved, and the p.Asp411Gly variant was predicted to be deleterious by multiple in silico analyses. A luciferase-based reporter assay confirmed the reduced ability of p.Asp411Gly EGR2 to activate a PMP22 (peripheral myelin protein 22) enhancer element compared to wild-type EGR2. This study adds further support to the heterogeneity of EGR2-related peripheral neuropathies and provides strong functional evidence for the pathogenicity of the p.Asp411Gly EGR2 variant.
Collapse
|
28
|
Pantera H, Shy ME, Svaren J. Regulating PMP22 expression as a dosage sensitive neuropathy gene. Brain Res 2019; 1726:146491. [PMID: 31586623 DOI: 10.1016/j.brainres.2019.146491] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Structural variation in the human genome has emerged as a major cause of disease as genomic data have accumulated. One of the most common structural variants associated with human disease causes the heritable neuropathy known as Charcot-Marie-Tooth (CMT) disease type 1A. This 1.4 Mb duplication causes nearly half of the CMT cases that are genetically diagnosed. The PMP22 gene is highly induced in Schwann cells during development, although its precise role in myelin formation and homeostasis is still under active investigation. The PMP22 gene can be considered as a nucleoprotein complex with enzymatic activity to produce the PMP22 transcript, and the complex is allosterically regulated by transcription factors that respond to intracellular signals and epigenomic modifications. The control of PMP22 transcript levels has been one of the major therapeutic targets of therapy development, and this review summarizes those approaches as well as efforts to characterize the regulation of the PMP22 gene.
Collapse
Affiliation(s)
- Harrison Pantera
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin, Madison, WI, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
29
|
Next-generation sequencing in Charcot-Marie-Tooth disease: opportunities and challenges. Nat Rev Neurol 2019; 15:644-656. [PMID: 31582811 DOI: 10.1038/s41582-019-0254-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 01/08/2023]
Abstract
Charcot-Marie-Tooth disease and the related disorders hereditary motor neuropathy and hereditary sensory neuropathy, collectively termed CMT, are the commonest group of inherited neuromuscular diseases, and they exhibit wide phenotypic and genetic heterogeneity. CMT is usually characterized by distal muscle atrophy, often with foot deformity, weakness and sensory loss. In the past decade, next-generation sequencing (NGS) technologies have revolutionized genomic medicine and, as these technologies are being applied to clinical practice, they are changing our diagnostic approach to CMT. In this Review, we discuss the application of NGS technologies, including disease-specific gene panels, whole-exome sequencing, whole-genome sequencing (WGS), mitochondrial sequencing and high-throughput transcriptome sequencing, to the diagnosis of CMT. We discuss the growing challenge of variant interpretation and consider how the clinical phenotype can be combined with genetic, bioinformatic and functional evidence to assess the pathogenicity of genetic variants in patients with CMT. WGS has several advantages over the other techniques that we discuss, which include unparalleled coverage of coding, non-coding and intergenic areas of both nuclear and mitochondrial genomes, the ability to identify structural variants and the opportunity to perform genome-wide dense homozygosity mapping. We propose an algorithm for incorporating WGS into the CMT diagnostic pathway.
Collapse
|
30
|
Bis-Brewer DM, Fazal S, Züchner S. Genetic modifiers and non-Mendelian aspects of CMT. Brain Res 2019; 1726:146459. [PMID: 31525351 DOI: 10.1016/j.brainres.2019.146459] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are amongst the most common inherited diseases in neurology. While great strides have been made to identify the genesis of these diseases, a diagnostic gap of 30-60% remains. Classic models of genetic causation may be limited to fully close this gap and, thus, we review the current state and future role of alternative, non-Mendelian forms of genetics in CMT. Promising synergies exist to further define the full genetic architecture of inherited neuropathies, including affordable whole-genome sequencing, increased data aggregation and clinical collaboration, improved bioinformatics and statistical methodology, and vastly improved computational resources. Given the recent advances in genetic therapies for rare diseases, it becomes a matter of urgency to diagnose CMT patients with great fidelity. Otherwise, they will not be able to benefit from such therapeutic options, or worse, suffer harm when pathogenicity of genetic variation is falsely evaluated. In addition, the newly identified modifier and risk genes may offer alternative targets for pharmacotherapy of inherited and, potentially, even acquired forms of neuropathies.
Collapse
Affiliation(s)
- Dana M Bis-Brewer
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sarah Fazal
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
31
|
Tao F, Beecham GW, Rebelo AP, Blanton SH, Moran JJ, Lopez-Anido C, Svaren J, Abreu L, Rizzo D, Kirk CA, Wu X, Feely S, Verhamme C, Saporta MA, Herrmann DN, Day JW, Sumner CJ, Lloyd TE, Li J, Yum SW, Taroni F, Baas F, Choi BO, Pareyson D, Scherer SS, Reilly MM, Shy ME, Züchner S. Modifier Gene Candidates in Charcot-Marie-Tooth Disease Type 1A: A Case-Only Genome-Wide Association Study. J Neuromuscul Dis 2019; 6:201-211. [PMID: 30958311 PMCID: PMC6597974 DOI: 10.3233/jnd-190377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 1A (CMT1A) is caused by a uniform 1.5-Mb duplication on chromosome 17p, which includes the PMP22 gene. Patients often present the classic neuropathy phenotype, but also with high clinical variability. OBJECTIVE We aimed to identify genetic variants that are potentially associated with specific clinical outcomes in CMT1A. METHODS We genotyped over 600,000 genomic markers using DNA samples from 971 CMT1A patients and performed a case-only genome-wide association study (GWAS) to identify potential genetic association in a subset of 644 individuals of European ancestry. A total of 14 clinical outcomes were analyzed in this study. RESULTS The analyses yielded suggestive association signals in four clinical outcomes: difficulty with eating utensils (lead SNP rs4713376, chr6 : 30773314, P = 9.91×10-7, odds ratio = 3.288), hearing loss (lead SNP rs7720606, chr5 : 126551732, P = 2.08×10-7, odds ratio = 3.439), decreased ability to feel (lead SNP rs17629990, chr4 : 171224046, P = 1.63×10-7, odds ratio = 0.336), and CMT neuropathy score (lead SNP rs12137595, chr1 : 4094068, P = 1.14×10-7, beta = 3.014). CONCLUSIONS While the results require validation in future genetic and functional studies, the detected association signals may point to novel genetic modifiers in CMT1A.
Collapse
Affiliation(s)
- Feifei Tao
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Gary W. Beecham
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Adriana P. Rebelo
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Susan H. Blanton
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - John J. Moran
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI, USA
| | - Camila Lopez-Anido
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI, USA
| | - John Svaren
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI, USA
| | - Lisa Abreu
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Devon Rizzo
- Data Management and Coordinating Center, Rare Diseases Clinical Research Network, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL, USA
| | - Callyn A. Kirk
- Data Management and Coordinating Center, Rare Diseases Clinical Research Network, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL, USA
| | - Xingyao Wu
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Shawna Feely
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Camiel Verhamme
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | | | - David N. Herrmann
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - John W. Day
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas E. Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sabrina W. Yum
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Franco Taroni
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Davide Pareyson
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Steven S. Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary M. Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK
| | - Michael E. Shy
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Stephan Züchner
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - the Inherited Neuropathy Consortium
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI, USA
- Data Management and Coordinating Center, Rare Diseases Clinical Research Network, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
- Department of Neurology, University of Miami, Miami, FL, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
- Department of Neurology, Stanford University, Palo Alto, CA, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|