1
|
Herlopian A. Networks through the lens of high-frequency oscillations. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1462672. [PMID: 39679263 PMCID: PMC11638840 DOI: 10.3389/fnetp.2024.1462672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/22/2024] [Indexed: 12/17/2024]
Abstract
To date, there is no neurophysiologic or neuroimaging biomarker that can accurately delineate the epileptogenic network. High-frequency oscillations (HFO) have been proposed as biomarkers for epileptogenesis and the epileptogenic network. The pathological HFO have been associated with areas of seizure onset and epileptogenic tissue. Several studies have demonstrated that the resection of areas with high rates of pathological HFO is associated with favorable postoperative outcomes. Recent studies have demonstrated the spatiotemporal organization of HFO into networks and their potential role in defining epileptogenic networks. Our review will present the existing literature on HFO-associated networks, specifically focusing on their role in defining epileptogenic networks and their potential significance in surgical planning.
Collapse
Affiliation(s)
- Aline Herlopian
- Yale Comprehensive Epilepsy Center, Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Weiss SA, Sperling MR, Engel J, Liu A, Fried I, Wu C, Doyle W, Mikell C, Mofakham S, Salamon N, Sim MS, Bragin A, Staba R. Simulated resections and responsive neurostimulator placement can optimize postoperative seizure outcomes when guided by fast ripple networks. Brain Commun 2024; 6:fcae367. [PMID: 39464217 PMCID: PMC11503960 DOI: 10.1093/braincomms/fcae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
In medication-resistant epilepsy, the goal of epilepsy surgery is to make a patient seizure free with a resection/ablation that is as small as possible to minimize morbidity. The standard of care in planning the margins of epilepsy surgery involves electroclinical delineation of the seizure-onset zone and incorporation of neuroimaging findings from MRI, PET, single-photon emission CT and magnetoencephalography modalities. Resecting cortical tissue generating high-frequency oscillations has been investigated as a more efficacious alternative to targeting the seizure-onset zone. In this study, we used a support vector machine (SVM), with four distinct fast ripple (FR: 350-600 Hz on oscillations, 200-600 Hz on spikes) metrics as factors. These metrics included the FR resection ratio, a spatial FR network measure and two temporal FR network measures. The SVM was trained by the value of these four factors with respect to the actual resection boundaries and actual seizure-free labels of 18 patients with medically refractory focal epilepsy. Leave-one-out cross-validation of the trained SVM in this training set had an accuracy of 0.78. We next used a simulated iterative virtual resection targeting the FR sites that were of highest rate and showed most temporal autonomy. The trained SVM utilized the four virtual FR metrics to predict virtual seizure freedom. In all but one of the nine patients who were seizure free after surgery, we found that the virtual resections sufficient for virtual seizure freedom were larger in volume (P < 0.05). In nine patients who were not seizure free, a larger virtual resection made five virtually seizure free. We also examined 10 medically refractory focal epilepsy patients implanted with the responsive neurostimulator system and virtually targeted the responsive neurostimulator system stimulation contacts proximal to sites generating FR at highest rates to determine if the simulated value of the stimulated seizure-onset zone and stimulated FR metrics would trend towards those patients with a better seizure outcome. Our results suggest the following: (i) FR measures can accurately predict whether a resection, defined by the standard of care, will result in seizure freedom; (ii) utilizing FR alone for planning an efficacious surgery can be associated with larger resections; (iii) when FR metrics predict the standard-of-care resection will fail, amending the boundaries of the planned resection with certain FR-generating sites may improve outcome and (iv) more work is required to determine whether targeting responsive neurostimulator system stimulation contact proximal to FR generating sites will improve seizure outcome.
Collapse
Affiliation(s)
- Shennan Aibel Weiss
- Department of Neurology, State University of New York Downstate, Brooklyn, NY 11203, USA
- Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY 11203, USA
- Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY 11203, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anli Liu
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Chengyuan Wu
- Department of Neuroradiology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Werner Doyle
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Charles Mikell
- Department of Neurosurgery, State University of New York Stony Brook, Stony Brook, NY 11790, USA
| | - Sima Mofakham
- Department of Neurosurgery, State University of New York Stony Brook, Stony Brook, NY 11790, USA
| | - Noriko Salamon
- Department of Neuroradiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Myung Shin Sim
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Jahromi S, Matarrese MA, Fabbri L, Tamilia E, Perry MS, Madsen JR, Bolton J, Stone SS, Pearl PL, Papadelis C. Overlap of spike and ripple propagation onset predicts surgical outcome in epilepsy. Ann Clin Transl Neurol 2024; 11:2530-2547. [PMID: 39374135 PMCID: PMC11514932 DOI: 10.1002/acn3.52156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 10/09/2024] Open
Abstract
OBJECTIVE Interictal biomarkers are critical for identifying the epileptogenic focus. However, spikes and ripples lack specificity while fast ripples lack sensitivity. These biomarkers propagate from more epileptogenic onset to areas of spread. The pathophysiological mechanism of these propagations is elusive. Here, we examine zones where spikes and high frequency oscillations co-occur (SHFO), the spatiotemporal propagations of spikes, ripples, and fast ripples, and evaluate the spike-ripple onset overlap (SRO) as an epilepsy biomarker. METHODS We retrospectively analyzed intracranial EEG data from 41 patients with drug-resistant epilepsy. We mapped propagations of spikes, ripples, and fast ripples, and identified their onset and spread zones, as well as SHFO and SRO. We then estimated the SRO prognostic value in predicting surgical outcome and compared it to onset and spread zones of spike, ripple, and fast ripple propagations, and SHFO. RESULTS We detected spikes and ripples in all patients and fast ripples in 12 patients (29%). We observed spike and ripple propagations in 40 (98%) patients. Spike and ripple onsets overlapped in 35 (85%) patients. In good outcome patients, SRO showed higher specificity and precision (p < 0.05) in predicting resection compared to onset and zones of spikes, ripples, and SHFO. Only SRO resection predicted outcome (p = 0.01) with positive and negative predictive values of 82% and 57%, respectively. INTERPRETATION SRO is a specific and precise biomarker of the epileptogenic zone whose removal predicts outcome. SRO is present in most patients with drug-resistant epilepsy. Such a biomarker may reduce prolonged intracranial monitoring and improve outcome.
Collapse
Affiliation(s)
- Saeed Jahromi
- Neuroscience Research CenterJane and John Justin Institute for Mind Health, Cook Children's Health Care SystemFort WorthTexasUSA
- Department of BioengineeringThe University of Texas at ArlingtonArlingtonTexasUSA
| | - Margherita A.G. Matarrese
- Neuroscience Research CenterJane and John Justin Institute for Mind Health, Cook Children's Health Care SystemFort WorthTexasUSA
- Department of BioengineeringThe University of Texas at ArlingtonArlingtonTexasUSA
- Research Unit of Intelligent Health Technology for Health and Wellbeing, Department of EngineeringUniversità Campus Bio‐Medico di RomaRomeItaly
| | - Lorenzo Fabbri
- Neuroscience Research CenterJane and John Justin Institute for Mind Health, Cook Children's Health Care SystemFort WorthTexasUSA
- Department of BioengineeringThe University of Texas at ArlingtonArlingtonTexasUSA
| | - Eleonora Tamilia
- Fetal‐Neonatal Neuroimaging and Developmental Science CenterBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - M. Scott Perry
- Neuroscience Research CenterJane and John Justin Institute for Mind Health, Cook Children's Health Care SystemFort WorthTexasUSA
| | - Joseph R. Madsen
- Division of Epilepsy Surgery, Department of NeurosurgeryBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jeffrey Bolton
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Scellig S.D. Stone
- Division of Epilepsy Surgery, Department of NeurosurgeryBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Phillip L. Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Christos Papadelis
- Neuroscience Research CenterJane and John Justin Institute for Mind Health, Cook Children's Health Care SystemFort WorthTexasUSA
- Department of BioengineeringThe University of Texas at ArlingtonArlingtonTexasUSA
- Burnett School of MedicineTexas Christian UniversityFort WorthTexasUSA
| |
Collapse
|
4
|
Wilson W, Pittman DJ, Dykens P, Mosher V, Gill L, Peedicail J, George AG, Beers CA, Goodyear B, LeVan P, Federico P. The hemodynamic response to co-occurring interictal epileptiform discharges and high-frequency oscillations localizes the seizure-onset zone. Epilepsia 2024; 65:2764-2776. [PMID: 39101302 DOI: 10.1111/epi.18071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVE To use intracranial electroencephalography (EEG) to characterize functional magnetic resonance imaging (fMRI) activation maps associated with high-frequency oscillations (HFOs) (80-250 Hz) and examine their proximity to HFO- and seizure-generating tissue. METHODS Forty-five patients implanted with intracranial depth electrodes underwent a simultaneous EEG-fMRI study at 3 T. HFOs were detected algorithmically from cleaned EEG and visually confirmed by an experienced electroencephalographer. HFOs that co-occurred with interictal epileptiform discharges (IEDs) were subsequently identified. fMRI activation maps associated with HFOs were generated that occurred either independently of IEDs or within ±200 ms of an IED. For all significant analyses, the Maximum, Second Maximum, and Closest activation clusters were identified, and distances were measured to both the electrodes where the HFOs were observed and the electrodes involved in seizure onset. RESULTS We identified 108 distinct groups of HFOs from 45 patients. We found that HFOs with IEDs produced fMRI clusters that were closer to the local field potentials of the corresponding HFOs observed within the EEG than HFOs without IEDs. In addition to the fMRI clusters being closer to the location of the EEG correlate, HFOs with IEDs generated Maximum clusters with greater z-scores and larger volumes than HFOs without IEDs. We also observed that HFOs with IEDs resulted in more discrete activation maps. SIGNIFICANCE Intracranial EEG-fMRI can be used to probe the hemodynamic response to HFOs. The hemodynamic response associated with HFOs that co-occur with IEDs better identifies known epileptic tissue than HFOs that occur independently.
Collapse
Affiliation(s)
- William Wilson
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Daniel J Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Perry Dykens
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Victoria Mosher
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Laura Gill
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joseph Peedicail
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antis G George
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Craig A Beers
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Bradley Goodyear
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pierre LeVan
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paolo Federico
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Schlafly ED, Carbonero D, Chu CJ, Kramer MA. A data augmentation procedure to improve detection of spike ripples in brain voltage recordings. Neurosci Res 2024:S0168-0102(24)00096-8. [PMID: 39102943 DOI: 10.1016/j.neures.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Epilepsy is a major neurological disorder characterized by recurrent, spontaneous seizures. For patients with drug-resistant epilepsy, treatments include neurostimulation or surgical removal of the epileptogenic zone (EZ), the brain region responsible for seizure generation. Precise targeting of the EZ requires reliable biomarkers. Spike ripples - high-frequency oscillations that co-occur with large amplitude epileptic discharges - have gained prominence as a candidate biomarker. However, spike ripple detection remains a challenge. The gold-standard approach requires an expert manually visualize and interpret brain voltage recordings, which limits reproducibility and high-throughput analysis. Addressing these limitations requires more objective, efficient, and automated methods for spike ripple detection, including approaches that utilize deep neural networks. Despite advancements, dataset heterogeneity and scarcity severely limit machine learning performance. Our study explores long-short term memory (LSTM) neural network architectures for spike ripple detection, leveraging data augmentation to improve classifier performance. We highlight the potential of combining training on augmented and in vivo data for enhanced spike ripple detection and ultimately improving diagnostic accuracy in epilepsy treatment.
Collapse
Affiliation(s)
- Emily D Schlafly
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA.
| | - Daniel Carbonero
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Mark A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA; Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
6
|
Li Z, Zhao B, Hu W, Zhang C, Wang X, Liu C, Mo J, Guo Z, Yang B, Yao Y, Shao X, Zhang J, Zhang K. Practical measurements distinguishing physiological and pathological stereoelectroencephalography channels based on high-frequency oscillations in the human brain. Epilepsia Open 2024; 9:1287-1299. [PMID: 38808652 PMCID: PMC11296094 DOI: 10.1002/epi4.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVE The present study aimed to identify various distinguishing features for use in the accurate classification of stereoelectroencephalography (SEEG) channels based on high-frequency oscillations (HFOs) inside and outside the epileptogenic zone (EZ). METHODS HFOs were detected in patients with focal epilepsy who underwent SEEG. Subsequently, HFOs within the seizure-onset and early spread zones were defined as pathological HFOs, whereas others were defined as physiological. Three features of HFOs were identified at the channel level, namely, morphological repetition, rhythmicity, and phase-amplitude coupling (PAC). A machine-learning (ML) classifier was then built to distinguish two HFO types at the channel level by application of the above-mentioned features, and the contributions were quantified. Further verification of the characteristics and classifier performance was performed in relation to various conscious states, imaging results, EZ location, and surgical outcomes. RESULTS Thirty-five patients were included in this study, from whom 166 104 pathological HFOs in 255 channels and 53 374 physiological HFOs in 282 channels were entered into the analysis pipeline. The results revealed that the morphological repetitions of pathological HFOs were markedly higher than those of the physiological HFOs; this was also observed for rhythmicity and PAC. The classifier exhibited high accuracy in differentiating between the two forms of HFOs, as indicated by an area under the curve (AUC) of 0.89. Both PAC and rhythmicity contributed significantly to this distinction. The subgroup analyses supported these findings. SIGNIFICANCE The suggested HFO features can accurately distinguish between pathological and physiological channels substantially improving its usefulness in clinical localization. PLAIN LANGUAGE SUMMARY In this study, we computed three quantitative features associated with HFOs in each SEEG channel and then constructed a machine learning-based classifier for the classification of pathological and physiological channels. The classifier performed well in distinguishing the two channel types under different levels of consciousness as well as in terms of imaging results, EZ location, and patient surgical outcomes.
Collapse
Affiliation(s)
- Zilin Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chang Liu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhihao Guo
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Bowen Yang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yuan Yao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| |
Collapse
|
7
|
Song S, Dai Y, Yao Y, Liu J, Yao D, Cao Y, Lin B, Zheng Y, Xu R, Cui Y, Guo D. The high frequency oscillations in the amygdala, hippocampus, and temporal cortex during mesial temporal lobe epilepsy. Cogn Neurodyn 2024; 18:1627-1639. [PMID: 39104697 PMCID: PMC11297867 DOI: 10.1007/s11571-023-10059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 12/18/2023] [Indexed: 08/07/2024] Open
Abstract
The mesial temporal lobe epilepsy (MTLE) seizures are believed to originate from medial temporal structures, including the amygdala, hippocampus, and temporal cortex. Thus, the seizures onset zones (SOZs) of MTLE locate in these regions. However, whether the neural features of SOZs are specific to different medial temporal structures are still unclear and need more investigation. To address this question, the present study tracked the features of two different high frequency oscillations (HFOs) in the SOZs of these regions during MTLE seizures from 10 drug-resistant MTLE patients, who received the stereo electroencephalography (SEEG) electrodes implantation surgery in the medial temporal structures. Remarkable difference of HFOs features, including the proportions of HFOs contacts, percentages of HFOs contacts with significant coupling and firing rates of HFOs, could be observed in the SOZs among three medial temporal structures during seizures. Specifically, we found that the amygdala might contribute to the generation of MTLE seizures, while the hippocampus plays a critical role for the propagation of MTLE seizures. In addition, the HFOs firing rates in SOZ regions were significantly larger than those in NonSOZ regions, suggesting the potential biomarkers of HFOs for MTLE seizure. Moreover, there existed higher percentages of SOZs contacts in the HFOs contacts than in all SEEG contacts, especially those with significant coupling to slow oscillations, implying that specific HFOs features would help identify the SOZ regions. Taken together, our results displayed the features of HFOs in different medial temporal structures during MTLE seizures, and could deepen our understanding concerning the neural mechanism of MTLE.
Collapse
Affiliation(s)
- Shiwei Song
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian China
| | - Yihai Dai
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian China
| | - Yutong Yao
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
| | - Jie Liu
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
| | - Dezhong Yao
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Yifei Cao
- Fujian Medical University, Fuzhou, 350004 Fujian China
| | - Bingling Lin
- Fujian Medical University, Fuzhou, 350004 Fujian China
| | - Yuetong Zheng
- Fujian Medical University, Fuzhou, 350004 Fujian China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
| | - Yan Cui
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
| | - Daqing Guo
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 China
| |
Collapse
|
8
|
Shi W, Shaw D, Walsh KG, Han X, Eden UT, Richardson RM, Gliske SV, Jacobs J, Brinkmann BH, Worrell GA, Stacey WC, Frauscher B, Thomas J, Kramer MA, Chu CJ. Spike ripples localize the epileptogenic zone best: an international intracranial study. Brain 2024; 147:2496-2506. [PMID: 38325327 PMCID: PMC11224608 DOI: 10.1093/brain/awae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/10/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
We evaluated whether spike ripples, the combination of epileptiform spikes and ripples, provide a reliable and improved biomarker for the epileptogenic zone compared with other leading interictal biomarkers in a multicentre, international study. We first validated an automated spike ripple detector on intracranial EEG recordings. We then applied this detector to subjects from four centres who subsequently underwent surgical resection with known 1-year outcomes. We evaluated the spike ripple rate in subjects cured after resection [International League Against Epilepsy Class 1 outcome (ILAE 1)] and those with persistent seizures (ILAE 2-6) across sites and recording types. We also evaluated available interictal biomarkers: spike, spike-gamma, wideband high frequency oscillation (HFO, 80-500 Hz), ripple (80-250 Hz) and fast ripple (250-500 Hz) rates using previously validated automated detectors. The proportion of resected events was computed and compared across subject outcomes and biomarkers. Overall, 109 subjects were included. Most spike ripples were removed in subjects with ILAE 1 outcome (P < 0.001), and this was qualitatively observed across all sites and for depth and subdural electrodes (P < 0.001 and P < 0.001, respectively). Among ILAE 1 subjects, the mean spike ripple rate was higher in the resected volume (0.66/min) than in the non-removed tissue (0.08/min, P < 0.001). A higher proportion of spike ripples were removed in subjects with ILAE 1 outcomes compared with ILAE 2-6 outcomes (P = 0.06). Among ILAE 1 subjects, the proportion of spike ripples removed was higher than the proportion of spikes (P < 0.001), spike-gamma (P < 0.001), wideband HFOs (P < 0.001), ripples (P = 0.009) and fast ripples (P = 0.009) removed. At the individual level, more subjects with ILAE 1 outcomes had the majority of spike ripples removed (79%, 38/48) than spikes (69%, P = 0.12), spike-gamma (69%, P = 0.12), wideband HFOs (63%, P = 0.03), ripples (45%, P = 0.01) or fast ripples (36%, P < 0.001) removed. Thus, in this large, multicentre cohort, when surgical resection was successful, the majority of spike ripples were removed. Furthermore, automatically detected spike ripples localize the epileptogenic tissue better than spikes, spike-gamma, wideband HFOs, ripples and fast ripples.
Collapse
Affiliation(s)
- Wen Shi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Dana Shaw
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215, USA
| | - Katherine G Walsh
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Xue Han
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Uri T Eden
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Robert M Richardson
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stephen V Gliske
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Julia Jacobs
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Freiburg 79106, Germany
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Benjamin H Brinkmann
- Bioelectronics Neurophysiology and Engineering Lab, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A Worrell
- Bioelectronics Neurophysiology and Engineering Lab, Mayo Clinic, Rochester, MN 55905, USA
| | - William C Stacey
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 0G4, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC 27708, USA
| | - John Thomas
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 0G4, Canada
| | - Mark A Kramer
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Cai Z, Jiang X, Bagić A, Worrell GA, Richardson M, He B. Spontaneous HFO Sequences Reveal Propagation Pathways for Precise Delineation of Epileptogenic Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592202. [PMID: 38746136 PMCID: PMC11092614 DOI: 10.1101/2024.05.02.592202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Epilepsy, a neurological disorder affecting millions worldwide, poses great challenges in precisely delineating the epileptogenic zone - the brain region generating seizures - for effective treatment. High-frequency oscillations (HFOs) are emerging as promising biomarkers; however, the clinical utility is hindered by the difficulties in distinguishing pathological HFOs from non- epileptiform activities at single electrode and single patient resolution and understanding their dynamic role in epileptic networks. Here, we introduce an HFO-sequencing approach to analyze spontaneous HFOs traversing cortical regions in 40 drug-resistant epilepsy patients. This data- driven method automatically detected over 8.9 million HFOs, pinpointing pathological HFO- networks, and unveiled intricate millisecond-scale spatiotemporal dynamics, stability, and functional connectivity of HFOs in prolonged intracranial EEG recordings. These HFO sequences demonstrated a significant improvement in localization of epileptic tissue, with an 818.47% increase in concordance with seizure-onset zone (mean error: 2.92 mm), compared to conventional benchmarks. They also accurately predicted seizure outcomes for 90% AUC based on pre-surgical information using generalized linear models. Importantly, this mapping remained reliable even with short recordings (mean standard deviation: 3.23 mm for 30-minute segments). Furthermore, HFO sequences exhibited distinct yet highly repetitive spatiotemporal patterns, characterized by pronounced synchrony and predominant inward information flow from periphery towards areas involved in propagation, suggesting a crucial role for excitation-inhibition balance in HFO initiation and progression. Together, these findings shed light on the intricate organization of epileptic network and highlight the potential of HFO-sequencing as a translational tool for improved diagnosis, surgical targeting, and ultimately, better outcomes for vulnerable patients with drug-resistant epilepsy. One Sentence Summary Pathological fast brain oscillations travel like traffic along varied routes, outlining recurrently visited neural sites emerging as critical hotspots in epilepsy network.
Collapse
|
10
|
Stergiadis C, Kazis D, Klados MA. Epileptic tissue localization using graph-based networks in the high frequency oscillation range of intracranial electroencephalography. Seizure 2024; 117:28-35. [PMID: 38308906 DOI: 10.1016/j.seizure.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
PURPOSE High frequency oscillations (HFOs) are an emerging biomarker of epilepsy. However, very few studies have investigated the functional connectivity of interictal iEEG signals in the frequency range of HFOs. Here, we study the corresponding functional networks using graph theory, and we assess their predictive value for automatic electrode classification in a cohort of 20 drug resistant patients. METHODS Coherence-based connectivity analysis was performed on the iEEG recordings, and six different local graph measures were computed in both sub-bands of the HFO frequency range (80-250 Hz and 250-500 Hz). Correlation analysis was implemented between the local graph measures and the ripple and fast ripple rates. Finally, the WEKA software was employed for training and testing different predictive models on the aforementioned local graph measures. RESULTS The ripple rate was significantly correlated with five out of six local graph measures in the functional network. For fast ripples, their rate was also significantly (but negatively) correlated with most of the local metrics. The results from WEKA showed that the Logistic Regression algorithm was able to classify highly HFO-contaminated electrodes with an accuracy of 82.5 % for ripples and 75.4 % for fast ripples. CONCLUSION Functional connectivity networks in the HFO band could represent an alternative to the direct use of distinct HFO events, while also providing important insights about hub epileptic areas that can represent possible surgical targets. Automatic electrode classification through FC-based classifiers can help bypass the burden of manual HFO annotation, providing at the same time similar amount of information about the epileptic tissue.
Collapse
Affiliation(s)
- Christos Stergiadis
- Department of Electronic Engineering, University of York, York, YO10 5DD, UK
| | - Dimitrios Kazis
- 3rd Neurological Department, Aristotle University of Thessaloniki Faculty of Health Sciences, Exohi, 57010 Thessaloniki, Greece
| | - Manousos A Klados
- Department of Psychology, University of York Europe Campus, CITY College 24, Proxenou Koromila Street, 546 22 Thessaloniki, Greece; Neuroscience Research Center (NEUREC), University of York Europe Campus, City College, Thessaloniki, Greece.
| |
Collapse
|
11
|
Sun L, Feng C, Zhang E, Chen H, Jin W, Zhu J, Yu L. High-performance prediction of epilepsy surgical outcomes based on the genetic neural networks and hybrid iEEG marker. Sci Rep 2024; 14:6198. [PMID: 38486013 PMCID: PMC10940588 DOI: 10.1038/s41598-024-56827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Accurately identification of the seizure onset zone (SOZ) is pivotal for successful surgery in patients with medically refractory epilepsy. The purpose of this study is to improve the performance of model predicting the epilepsy surgery outcomes using genetic neural network (GNN) model based on a hybrid intracranial electroencephalography (iEEG) marker. We extracted 21 SOZ related markers based on iEEG data from 79 epilepsy patients. The least absolute shrinkage and selection operator (LASSO) regression was employed to integrated seven markers, selected after testing in pairs with all 21 biomarkers and 7 machine learning models, into a hybrid marker. Based on the hybrid marker, we devised a GNN model and compared its predictive performance for surgical outcomes with six other mainstream machine-learning models. Compared to the mainstream models, underpinning the GNN with the hybrid iEEG marker resulted in a better prediction of surgical outcomes, showing a significant increase of the prediction accuracy from approximately 87% to 94.3% (P = 0.0412). This study suggests that the hybrid iEEG marker can improve the performance of model predicting the epilepsy surgical outcomes, and validates the effectiveness of the GNN in characterizing and analyzing complex relationships between clinical data variables.
Collapse
Affiliation(s)
- Lipeng Sun
- Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Feng
- Department of Neurosurgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- School of Medicine, Epilepsy Center, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - En Zhang
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Huan Chen
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Canada
| | - Weifeng Jin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junming Zhu
- Department of Neurosurgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
- School of Medicine, Epilepsy Center, Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
12
|
Lin J, Smith GC, Gliske SV, Zochowski M, Shedden K, Stacey WC. High frequency oscillation network dynamics predict outcome in non-palliative epilepsy surgery. Brain Commun 2024; 6:fcae032. [PMID: 38384998 PMCID: PMC10881100 DOI: 10.1093/braincomms/fcae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/28/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
High frequency oscillations are a promising biomarker of outcome in intractable epilepsy. Prior high frequency oscillation work focused on counting high frequency oscillations on individual channels, and it is still unclear how to translate those results into clinical care. We show that high frequency oscillations arise as network discharges that have valuable properties as predictive biomarkers. Here, we develop a tool to predict patient outcome before surgical resection is performed, based on only prospective information. In addition to determining high frequency oscillation rate on every channel, we performed a correlational analysis to evaluate the functional connectivity of high frequency oscillations in 28 patients with intracranial electrodes. We found that high frequency oscillations were often not solitary events on a single channel, but part of a local network discharge. Eigenvector and outcloseness centrality were used to rank channel importance within the connectivity network, then used to compare patient outcome by comparison with the seizure onset zone or a proportion within the proposed resected channels (critical resection percentage). Combining the knowledge of each patient's seizure onset zone resection plan along with our computed high frequency oscillation network centralities and high frequency oscillation rate, we develop a Naïve Bayes model that predicts outcome (positive predictive value: 100%) better than predicting based upon fully resecting the seizure onset zone (positive predictive value: 71%). Surgical margins had a large effect on outcomes: non-palliative patients in whom most of the seizure onset zone was resected ('definitive surgery', ≥ 80% resected) had predictable outcomes, whereas palliative surgeries (<80% resected) were not predictable. These results suggest that the addition of network properties of high frequency oscillations is more accurate in predicting patient outcome than seizure onset zone alone in patients with most of the seizure onset zone removed and offer great promise for informing clinical decisions in surgery for refractory epilepsy.
Collapse
Affiliation(s)
- Jack Lin
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Garnett C Smith
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen V Gliske
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michal Zochowski
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Physics and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kerby Shedden
- Department of Statistics and Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - William C Stacey
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Neurology, Ann Arbor VA Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Chvojka J, Prochazkova N, Rehorova M, Kudlacek J, Kylarova S, Kralikova M, Buran P, Weissova R, Balastik M, Jefferys JGR, Novak O, Jiruska P. Mouse model of focal cortical dysplasia type II generates a wide spectrum of high-frequency activities. Neurobiol Dis 2024; 190:106383. [PMID: 38114051 DOI: 10.1016/j.nbd.2023.106383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
High-frequency oscillations (HFOs) represent an electrographic biomarker of endogenous epileptogenicity and seizure-generating tissue that proved clinically useful in presurgical planning and delineating the resection area. In the neocortex, the clinical observations on HFOs are not sufficiently supported by experimental studies stemming from a lack of realistic neocortical epilepsy models that could provide an explanation of the pathophysiological substrates of neocortical HFOs. In this study, we explored pathological epileptiform network phenomena, particularly HFOs, in a highly realistic murine model of neocortical epilepsy due to focal cortical dysplasia (FCD) type II. FCD was induced in mice by the expression of the human pathogenic mTOR gene mutation during embryonic stages of brain development. Electrographic recordings from multiple cortical regions in freely moving animals with FCD and epilepsy demonstrated that the FCD lesion generates HFOs from all frequency ranges, i.e., gamma, ripples, and fast ripples up to 800 Hz. Gamma-ripples were recorded almost exclusively in FCD animals, while fast ripples occurred in controls as well, although at a lower rate. Gamma-ripple activity is particularly valuable for localizing the FCD lesion, surpassing the utility of fast ripples that were also observed in control animals, although at significantly lower rates. Propagating HFOs occurred outside the FCD, and the contralateral cortex also generated HFOs independently of the FCD, pointing to a wider FCD network dysfunction. Optogenetic activation of neurons carrying mTOR mutation and expressing Channelrhodopsin-2 evoked fast ripple oscillations that displayed spectral and morphological profiles analogous to spontaneous oscillations. This study brings experimental evidence that FCD type II generates pathological HFOs across all frequency bands and provides information about the spatiotemporal properties of each HFO subtype in FCD. The study shows that mutated neurons represent a functionally interconnected and active component of the FCD network, as they can induce interictal epileptiform phenomena and HFOs.
Collapse
Affiliation(s)
- Jan Chvojka
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Natalie Prochazkova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Rehorova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kudlacek
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Salome Kylarova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Kralikova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peter Buran
- Laboratory of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Romana Weissova
- Laboratory of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Balastik
- Laboratory of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - John G R Jefferys
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Novak
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
14
|
Li Z, Zhao B, Hu W, Zhang C, Wang X, Zhang J, Zhang K. Machine learning-based classification of physiological and pathological high-frequency oscillations recorded by stereoelectroencephalography. Seizure 2023; 113:58-65. [PMID: 37984126 DOI: 10.1016/j.seizure.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
OBJECTIVE High-frequency oscillations (HFOs) are an efficient indicator to locate the epileptogenic zone (EZ). However, physiological HFOs produced in the normal brain region may interfere with EZ localization. The present study aimed to build a machine learning-based classifier to distinguish the properties of each HFO event based on features in different domains. METHODS HFOs were detected in focal epilepsy patients from two different hospitals who underwent stereoelectroencephalography and subsequent resection surgery. Subsequently, 37 features in four different domains (time, frequency and time-frequency, entropy-based and nonlinear) were extracted for each HFO. After extraction, a fast correlation-based filter (FCBF) algorithm was applied for feature selection. The machine learning classifier was trained on the feature matrix with and without FCBF and then tested on the data set from patients in another hospital. RESULTS A dataset was compiled, consisting of 89,844 pathological HFOs and 23,613 physiological HFOs from 17 patients assigned to the training dataset. Additionally, 12,695 pathological HFOs and 5,599 physiological HFOs from 9 patients were assigned to the testing dataset. Four features (ripple band power, arithmetic mean, Petrosian fractal dimension and zero crossings) were obtained for classifier training after FCBF. The classifier showed an area under the curve (AUC) of 0.95/0.98 for FCBF/no FCBF features in the training dataset and AUC of 0.82/0.90 for FCBF/no FCBF features in the testing dataset. Our findings indicated that the classifier utilizing all features demonstrated superior performance compared to the one relying on FCBF-processed features. CONCLUSION Our classifier could reliably differentiate pathological HFOs from physiological ones, which could promote the development of HFOs in EZ localization.
Collapse
Affiliation(s)
- Zilin Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
15
|
Makhalova J, Madec T, Medina Villalon S, Jegou A, Lagarde S, Carron R, Scavarda D, Garnier E, Bénar CG, Bartolomei F. The role of quantitative markers in surgical prognostication after stereoelectroencephalography. Ann Clin Transl Neurol 2023; 10:2114-2126. [PMID: 37735846 PMCID: PMC10646998 DOI: 10.1002/acn3.51900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Stereoelectroencephalography (SEEG) is the reference method in the presurgical exploration of drug-resistant focal epilepsy. However, prognosticating surgery on an individual level is difficult. A quantified estimation of the most epileptogenic regions by searching for relevant biomarkers can be proposed for this purpose. We investigated the performances of ictal (Epileptogenicity Index, EI; Connectivity EI, cEI), interictal (spikes, high-frequency oscillations, HFO [80-300 Hz]; Spikes × HFO), and combined (Spikes × EI; Spikes × cEI) biomarkers in predicting surgical outcome and searched for prognostic factors based on SEEG-signal quantification. METHODS Fifty-three patients operated on following SEEG were included. We compared, using precision-recall, the epileptogenic zone quantified using different biomarkers (EZq ) against the visual analysis (EZC ). Correlations between the EZ resection rates or the EZ extent and surgical prognosis were analyzed. RESULTS EI and Spikes × EI showed the best precision against EZc (0.74; 0.70), followed by Spikes × cEI and cEI, whereas interictal markers showed lower precision. The EZ resection rates were greater in seizure-free than in non-seizure-free patients for the EZ defined by ictal biomarkers and were correlated with the outcome for EI and Spikes × EI. No such correlation was found for interictal markers. The extent of the quantified EZ did not correlate with the prognosis. INTERPRETATION Ictal or combined ictal-interictal markers overperformed the interictal markers both for detecting the EZ and predicting seizure freedom. Combining ictal and interictal epileptogenicity markers improves detection accuracy. Resection rates of the quantified EZ using ictal markers were the only statistically significant determinants for surgical prognosis.
Collapse
Affiliation(s)
- Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance
| | - Tanguy Madec
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Aude Jegou
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Stanislas Lagarde
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Romain Carron
- APHM, Timone Hospital, Functional, and Stereotactic NeurosurgeryMarseilleFrance
| | | | - Elodie Garnier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | | | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| |
Collapse
|
16
|
Weiss SA, Fried I, Engel J, Sperling MR, Wong RKS, Nir Y, Staba RJ. Fast ripples reflect increased excitability that primes epileptiform spikes. Brain Commun 2023; 5:fcad242. [PMID: 37869578 PMCID: PMC10587774 DOI: 10.1093/braincomms/fcad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 10/24/2023] Open
Abstract
The neuronal circuit disturbances that drive inter-ictal and ictal epileptiform discharges remain elusive. Using a combination of extra-operative macro-electrode and micro-electrode inter-ictal recordings in six pre-surgical patients during non-rapid eye movement sleep, we found that, exclusively in the seizure onset zone, fast ripples (200-600 Hz), but not ripples (80-200 Hz), frequently occur <300 ms before an inter-ictal intra-cranial EEG spike with a probability exceeding chance (bootstrapping, P < 1e-5). Such fast ripple events are associated with higher spectral power (P < 1e-10) and correlated with more vigorous neuronal firing than solitary fast ripple (generalized linear mixed-effects model, P < 1e-9). During the intra-cranial EEG spike that follows a fast ripple, action potential firing is lower than during an intra-cranial EEG spike alone (generalized linear mixed-effects model, P < 0.05), reflecting an inhibitory restraint of intra-cranial EEG spike initiation. In contrast, ripples do not appear to prime epileptiform spikes. We next investigated the clinical significance of pre-spike fast ripple in a separate cohort of 23 patients implanted with stereo EEG electrodes, who underwent resections. In non-rapid eye movement sleep recordings, sites containing a high proportion of fast ripple preceding intra-cranial EEG spikes correlate with brain areas where seizures begin more than solitary fast ripple (P < 1e-5). Despite this correlation, removal of these sites does not guarantee seizure freedom. These results are consistent with the hypothesis that fast ripple preceding EEG spikes reflect an increase in local excitability that primes EEG spike discharges preferentially in the seizure onset zone and that epileptogenic brain regions are necessary, but not sufficient, for initiating inter-ictal epileptiform discharges.
Collapse
Affiliation(s)
- Shennan A Weiss
- Department of Neurology, State University of New York Downstate, Brooklyn, NY 11203, USA
- Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY 11203, USA
- Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY 11203, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jerome Engel
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Michael R Sperling
- Departments of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert K S Wong
- Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY 11203, USA
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Richard J Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Matarrese MAG, Loppini A, Fabbri L, Tamilia E, Perry MS, Madsen JR, Bolton J, Stone SSD, Pearl PL, Filippi S, Papadelis C. Spike propagation mapping reveals effective connectivity and predicts surgical outcome in epilepsy. Brain 2023; 146:3898-3912. [PMID: 37018068 PMCID: PMC10473571 DOI: 10.1093/brain/awad118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
Neurosurgical intervention is the best available treatment for selected patients with drug resistant epilepsy. For these patients, surgical planning requires biomarkers that delineate the epileptogenic zone, the brain area that is indispensable for the generation of seizures. Interictal spikes recorded with electrophysiological techniques are considered key biomarkers of epilepsy. Yet, they lack specificity, mostly because they propagate across brain areas forming networks. Understanding the relationship between interictal spike propagation and functional connections among the involved brain areas may help develop novel biomarkers that can delineate the epileptogenic zone with high precision. Here, we reveal the relationship between spike propagation and effective connectivity among onset and areas of spread and assess the prognostic value of resecting these areas. We analysed intracranial EEG data from 43 children with drug resistant epilepsy who underwent invasive monitoring for neurosurgical planning. Using electric source imaging, we mapped spike propagation in the source domain and identified three zones: onset, early-spread and late-spread. For each zone, we calculated the overlap and distance from surgical resection. We then estimated a virtual sensor for each zone and the direction of information flow among them via Granger causality. Finally, we compared the prognostic value of resecting these zones, the clinically-defined seizure onset zone and the spike onset on intracranial EEG channels by estimating their overlap with resection. We observed a spike propagation in source space for 37 patients with a median duration of 95 ms (interquartile range: 34-206), a spatial displacement of 14 cm (7.5-22 cm) and a velocity of 0.5 m/s (0.3-0.8 m/s). In patients with good surgical outcome (25 patients, Engel I), the onset had higher overlap with resection [96% (40-100%)] than early-spread [86% (34-100%), P = 0.01] and late-spread [59% (12-100%), P = 0.002], and it was also closer to resection than late-spread [5 mm versus 9 mm, P = 0.007]. We found an information flow from onset to early-spread in 66% of patients with good outcomes, and from early-spread to onset in 50% of patients with poor outcome. Finally, resection of spike onset, but not area of spike spread or the seizure onset zone, predicted outcome with positive predictive value of 79% and negative predictive value of 56% (P = 0.04). Spatiotemporal mapping of spike propagation reveals information flow from onset to areas of spread in epilepsy brain. Surgical resection of the spike onset disrupts the epileptogenic network and may render patients with drug resistant epilepsy seizure-free without having to wait for a seizure to occur during intracranial monitoring.
Collapse
Affiliation(s)
- Margherita A G Matarrese
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children’s Health Care System, Fort Worth, TX, USA
- Laboratory of Nonlinear Physics and Mathematical Modeling, Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Alessandro Loppini
- Laboratory of Nonlinear Physics and Mathematical Modeling, Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Lorenzo Fabbri
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children’s Health Care System, Fort Worth, TX, USA
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children’s Health Care System, Fort Worth, TX, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey Bolton
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Scellig S D Stone
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Simonetta Filippi
- Laboratory of Nonlinear Physics and Mathematical Modeling, Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Christos Papadelis
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children’s Health Care System, Fort Worth, TX, USA
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA
- School of Medicine, Texas Christian University, Fort Worth, TX, USA
| |
Collapse
|
18
|
Ye H, He C, Hu W, Xiong K, Hu L, Chen C, Xu S, Xu C, Wang Y, Ding Y, Wu Y, Zhang K, Wang S, Wang S. Pre-ictal fluctuation of EEG functional connectivity discriminates seizure phenotypes in mesial temporal lobe epilepsy. Clin Neurophysiol 2023; 151:107-115. [PMID: 37245497 DOI: 10.1016/j.clinph.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE We explored whether quantifiable differences between clinical seizures (CSs) and subclinical seizures (SCSs) occur in the pre-ictal state. METHODS We analyzed pre-ictal stereo-electroencephalography (SEEG) retrospectively across mesial temporal lobe epilepsy patients with recorded CSs and SCSs. Power spectral density and functional connectivity (FC) were quantified within and between the seizure onset zone (SOZ) and the early propagation zone (PZ), respectively. To evaluate the fluctuation of neural connectivity, FC variability was computed. Measures were further verified by a logistic regression model to evaluate their classification potentiality through the area under the receiver-operating-characteristics curve (AUC). RESULTS Fifty-four pre-ictal SEEG epochs (27 CSs and 27 SCSs) were selected among 14 patients. Within the SOZ, pre-ictal FC variability of CSs was larger than SCSs in 1-45 Hz during 30 seconds before seizure onset. Pre-ictal FC variability between the SOZ and PZ was larger in SCSs than CSs in 55-80 Hz within 1 minute before onset. Using these two variables, the logistic regression model achieved an AUC of 0.79 when classifying CSs and SCSs. CONCLUSIONS Pre-ictal FC variability within/between epileptic zones, not signal power or FC value, distinguished SCSs from CSs. SIGNIFICANCE Pre-ictal epileptic network stability possibly marks seizure phenotypes, contributing insights into ictogenesis and potentially helping seizure prediction.
Collapse
Affiliation(s)
- Hongyi Ye
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenmin He
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kai Xiong
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Lingli Hu
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sha Xu
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Basic Medical College, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Basic Medical College, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yao Ding
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingcai Wu
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shan Wang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Shuang Wang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Barth KJ, Sun J, Chiang CH, Qiao S, Wang C, Rahimpour S, Trumpis M, Duraivel S, Dubey A, Wingel KE, Voinas AE, Ferrentino B, Doyle W, Southwell DG, Haglund MM, Vestal M, Harward SC, Solzbacher F, Devore S, Devinsky O, Friedman D, Pesaran B, Sinha SR, Cogan GB, Blanco J, Viventi J. Flexible, high-resolution cortical arrays with large coverage capture microscale high-frequency oscillations in patients with epilepsy. Epilepsia 2023; 64:1910-1924. [PMID: 37150937 PMCID: PMC10524535 DOI: 10.1111/epi.17642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
OBJECTIVE Effective surgical treatment of drug-resistant epilepsy depends on accurate localization of the epileptogenic zone (EZ). High-frequency oscillations (HFOs) are potential biomarkers of the EZ. Previous research has shown that HFOs often occur within submillimeter areas of brain tissue and that the coarse spatial sampling of clinical intracranial electrode arrays may limit the accurate capture of HFO activity. In this study, we sought to characterize microscale HFO activity captured on thin, flexible microelectrocorticographic (μECoG) arrays, which provide high spatial resolution over large cortical surface areas. METHODS We used novel liquid crystal polymer thin-film μECoG arrays (.76-1.72-mm intercontact spacing) to capture HFOs in eight intraoperative recordings from seven patients with epilepsy. We identified ripple (80-250 Hz) and fast ripple (250-600 Hz) HFOs using a common energy thresholding detection algorithm along with two stages of artifact rejection. We visualized microscale subregions of HFO activity using spatial maps of HFO rate, signal-to-noise ratio, and mean peak frequency. We quantified the spatial extent of HFO events by measuring covariance between detected HFOs and surrounding activity. We also compared HFO detection rates on microcontacts to simulated macrocontacts by spatially averaging data. RESULTS We found visually delineable subregions of elevated HFO activity within each μECoG recording. Forty-seven percent of HFOs occurred on single 200-μm-diameter recording contacts, with minimal high-frequency activity on surrounding contacts. Other HFO events occurred across multiple contacts simultaneously, with covarying activity most often limited to a .95-mm radius. Through spatial averaging, we estimated that macrocontacts with 2-3-mm diameter would only capture 44% of the HFOs detected in our μECoG recordings. SIGNIFICANCE These results demonstrate that thin-film microcontact surface arrays with both highresolution and large coverage accurately capture microscale HFO activity and may improve the utility of HFOs to localize the EZ for treatment of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Katrina J. Barth
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - James Sun
- Center for Neural Science, New York University, New York, NY, USA
| | - Chia-Han Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Shaoyu Qiao
- Center for Neural Science, New York University, New York, NY, USA
| | - Charles Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Shervin Rahimpour
- Department of Neurosurgery, Clinical Neuroscience Center, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Michael Trumpis
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Agrita Dubey
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katie E. Wingel
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex E. Voinas
- Center for Neural Science, New York University, New York, NY, USA
| | | | - Werner Doyle
- Department of Neurosurgery, NYU Langone Medical Center, New York City, NY, USA
| | - Derek G. Southwell
- Department of Neurobiology, Duke School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Michael M. Haglund
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Matthew Vestal
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Stephen C. Harward
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Florian Solzbacher
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, USA
| | - Sasha Devore
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Orrin Devinsky
- Department of Neurosurgery, NYU Langone Medical Center, New York City, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Comprehensive Epilepsy Center, NYU Langone Health, New York, NY, USA
| | - Daniel Friedman
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Bijan Pesaran
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saurabh R. Sinha
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory B. Cogan
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Duke Comprehensive Epilepsy Center, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Justin Blanco
- Department of Electrical and Computer Engineering, United States Naval Academy, Annapolis, MD, USA
| | - Jonathan Viventi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Duke Comprehensive Epilepsy Center, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
20
|
Frauscher B, Bénar CG, Engel JJ, Grova C, Jacobs J, Kahane P, Wiebe S, Zjilmans M, Dubeau F. Neurophysiology, Neuropsychology, and Epilepsy, in 2022: Hills We Have Climbed and Hills Ahead. Neurophysiology in epilepsy. Epilepsy Behav 2023; 143:109221. [PMID: 37119580 DOI: 10.1016/j.yebeh.2023.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023]
Abstract
Since the discovery of the human electroencephalogram (EEG), neurophysiology techniques have become indispensable tools in our armamentarium to localize epileptic seizures. New signal analysis techniques and the prospects of artificial intelligence and big data will offer unprecedented opportunities to further advance the field in the near future, ultimately resulting in improved quality of life for many patients with drug-resistant epilepsy. This article summarizes selected presentations from Day 1 of the two-day symposium "Neurophysiology, Neuropsychology, Epilepsy, 2022: Hills We Have Climbed and the Hills Ahead". Day 1 was dedicated to highlighting and honoring the work of Dr. Jean Gotman, a pioneer in EEG, intracranial EEG, simultaneous EEG/ functional magnetic resonance imaging, and signal analysis of epilepsy. The program focused on two main research directions of Dr. Gotman, and was dedicated to "High-frequency oscillations, a new biomarker of epilepsy" and "Probing the epileptic focus from inside and outside". All talks were presented by colleagues and former trainees of Dr. Gotman. The extended summaries provide an overview of historical and current work in the neurophysiology of epilepsy with emphasis on novel EEG biomarkers of epilepsy and source imaging and concluded with an outlook on the future of epilepsy research, and what is needed to bring the field to the next level.
Collapse
Affiliation(s)
- B Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| | - C G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - J Jr Engel
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - C Grova
- Multimodal Functional Imaging Lab, PERFORM Centre, Department of Physics, Concordia University, Montreal, QC, Canada; Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, QC, Canada; Montreal Neurological Institute and Hospital, Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
| | - J Jacobs
- Department of Pediatric and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - P Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Department of Neurology, 38000 Grenoble, France
| | - S Wiebe
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - M Zjilmans
- Stichting Epilepsie Instellingen Nederland, The Netherlands; Brain Center, University Medical Center Utrecht, The Netherlands
| | - F Dubeau
- Montreal Neurological Institute and Hospital, Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Weiss SA, Fried I, Engel J, Sperling MR, Wong RK, Nir Y, Staba RJ. Fast ripples reflect increased excitability that primes epileptiform spikes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.26.23287702. [PMID: 37034609 PMCID: PMC10081394 DOI: 10.1101/2023.03.26.23287702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The neuronal circuit disturbances that drive interictal and ictal epileptiform discharges remains elusive. Using a combination of extraoperative macro- and micro-electrode interictal recordings in six presurgical patients during non-rapid eye movement (REM) sleep we found that, exclusively in the seizure onset zone, fast ripples (FR; 200-600Hz), but not ripples (80-200 Hz), frequently occur <300 msec before an interictal intracranial EEG (iEEG) spike with a probability exceeding chance (bootstrapping, p<1e-5). Such FR events are associated with higher spectral power (p<1e-10) and correlated with more vigorous neuronal firing than solitary FR (generalized linear mixed-effects model, GLMM, p<1e-3) irrespective of FR power. During the iEEG spike that follows a FR, action potential firing is lower than during a iEEG spike alone (GLMM, p<1e-10), reflecting an inhibitory restraint of iEEG spike initiation. In contrast, ripples do not appear to prime epileptiform spikes. We next investigated the clinical significance of pre-spike FR in a separate cohort of 23 patients implanted with stereo EEG electrodes who underwent resections. In non-REM sleep recordings, sites containing a high proportion of FR preceding iEEG spikes correlate with brain areas where seizures begin more than solitary FR (p<1e-5). Despite this correlation, removal of these sites does not guarantee seizure freedom. These results are consistent with the hypothesis that FR preceding EEG spikes reflect an increase in local excitability that primes EEG spike discharges preferentially in the seizure onset zone and that epileptogenic brain regions are necessary, but not sufficient, for initiating interictal epileptiform discharges.
Collapse
Affiliation(s)
- Shennan A Weiss
- Dept. of Neurology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, USA
| | - Itzhak Fried
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Jerome Engel
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Michael R. Sperling
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Robert K.S. Wong
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Richard J Staba
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| |
Collapse
|
22
|
Shen M, Zhang L, Gong Y, Li L, Liu X. Epileptic Tissue Localization through Skewness-Based Functional Connectivity in the High-Frequency Band of Intracranial EEG. Bioengineering (Basel) 2023; 10:bioengineering10040461. [PMID: 37106648 PMCID: PMC10136084 DOI: 10.3390/bioengineering10040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Functional connectivity analysis of intracranial electroencephalography (iEEG) plays an important role in understanding the mechanism of epilepsy and seizure dynamics. However, existing connectivity analysis is only suitable for low-frequency bands below 80 Hz. High-frequency oscillations (HFOs) and high-frequency activity (HFA) in the high-frequency band (80-500 Hz) are thought to be specific biomarkers in epileptic tissue localization. However, the transience in duration and variability of occurrence time and amplitudes of these events pose a challenge for conducting effective connectivity analysis. To deal with this problem, we proposed skewness-based functional connectivity (SFC) in the high-frequency band and explored its utility in epileptic tissue localization and surgical outcome evaluation. SFC comprises three main steps. The first step is the quantitative measurement of amplitude distribution asymmetry between HFOs/HFA and baseline activity. The second step is functional network construction on the basis of rank correlation of asymmetry across time. The third step is connectivity strength extraction from the functional network. Experiments were conducted in two separate datasets which consist of iEEG recordings from 59 patients with drug-resistant epilepsy. Significant difference (p<0.001) in connectivity strength was found between epileptic and non-epileptic tissue. Results were quantified via the receiver operating characteristic curve and the area under the curve (AUC). Compared with low-frequency bands, SFC demonstrated superior performance. With respect to pooled and individual epileptic tissue localization for seizure-free patients, AUCs were 0.66 (95% confidence interval (CI): 0.63-0.69) and (0.63 95% CI 0.56-0.71), respectively. For surgical outcome classification, the AUC was 0.75 (95% CI 0.59-0.85). Therefore, SFC can act as a promising assessment tool in characterizing the epileptic network and potentially provide better treatment options for patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Mu Shen
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Lin Zhang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yi Gong
- School of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing 100096, China
| | - Lei Li
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xianzeng Liu
- Department of Neurology, Peking University International Hospital, and Peking University Clinical Research Institute, Beijing 102206, China
| |
Collapse
|
23
|
Shahabi H, Nair DR, Leahy RM. Multilayer brain networks can identify the epileptogenic zone and seizure dynamics. eLife 2023; 12:e68531. [PMID: 36929752 PMCID: PMC10065796 DOI: 10.7554/elife.68531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/16/2023] [Indexed: 03/18/2023] Open
Abstract
Seizure generation, propagation, and termination occur through spatiotemporal brain networks. In this paper, we demonstrate the significance of large-scale brain interactions in high-frequency (80-200Hz) for the identification of the epileptogenic zone (EZ) and seizure evolution. To incorporate the continuity of neural dynamics, here we have modeled brain connectivity constructed from stereoelectroencephalography (SEEG) data during seizures using multilayer networks. After introducing a new measure of brain connectivity for temporal networks, named multilayer eigenvector centrality (mlEVC), we applied a consensus hierarchical clustering on the developed model to identify the EZ as a cluster of nodes with distinctive brain connectivity in the ictal period. Our algorithm could successfully predict electrodes inside the resected volume as EZ for 88% of participants, who all were seizure-free for at least 12 months after surgery. Our findings illustrated significant and unique desynchronization between EZ and the rest of the brain in the early to mid-seizure. We showed that aging and the duration of epilepsy intensify this desynchronization, which can be the outcome of abnormal neuroplasticity. Additionally, we illustrated that seizures evolve with various network topologies, confirming the existence of different epileptogenic networks in each patient. Our findings suggest not only the importance of early intervention in epilepsy but possible factors that correlate with disease severity. Moreover, by analyzing the propagation patterns of different seizures, we demonstrate the necessity of collecting sufficient data for identifying epileptogenic networks.
Collapse
Affiliation(s)
- Hossein Shahabi
- Signal and Image Processing Institute, University of Southern CaliforniaLos AngelesUnited States
| | - Dileep R Nair
- Epilepsy Center, Cleveland Clinic Neurological InstituteClevelandUnited States
| | - Richard M Leahy
- Signal and Image Processing Institute, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
24
|
Weiss SA, Eliashiv D, Stern J, Rubinstein D, Fried I, Wu C, Sharan A, Engel J, Staba R, Sperling MR. Stimulation better targets fast-ripple generating networks in super responders to the responsive neurostimulator system. Epilepsia 2023; 64:e48-e55. [PMID: 36906958 DOI: 10.1111/epi.17582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
How responsive neurostimulation (RNS) decreases seizure frequency is unclear. Stimulation may alter epileptic networks during inter-ictal epochs. Definitions of the epileptic network vary but fast ripples (FRs) may be an important substrate. We, therefore, examined whether stimulation of FR-generating networks differed in RNS super responders and intermediate responders. In 10 patients, with subsequent RNS placement, we detected FRs from stereo-electroencephalography (SEEG) contacts during pre-surgical evaluation. The normalized coordinates of the SEEG contacts were compared with those of the eight RNS contacts, and RNS-stimulated SEEG contacts were defined as those within 1.5 cm3 of the RNS contacts. We compared the post-RNS placement seizure outcome to (1) the ratio of stimulated SEEG contacts in the seizure-onset zone (SOZ stimulation ratio [SR]); (2) the ratio of FR events on stimulated contacts (FR SR); and (3) the global efficiency of the FR temporal correlational network on stimulated contacts (FR SGe). We found that the SOZ SR (p = .18) and FR SR (p = .06) did not differ in the RNS super responders and intermediate responders, but the FR SGe did (p = .02). In super responders, highly active desynchronous sites of the FR network were stimulated. RNS that better targets FR networks, as compared to the SOZ, may reduce epileptogenicity more.
Collapse
Affiliation(s)
- Shennan Aibel Weiss
- Department Of Neurology, State University of New York Downstate, Brooklyn, New York, 11203, USA.,Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203, USA.,Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, New York, USA
| | - Dawn Eliashiv
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - John Stern
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Daniel Rubinstein
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Chengyuan Wu
- Department of Neuroradiology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA.,Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| |
Collapse
|
25
|
Azeem A, von Ellenrieder N, Royer J, Frauscher B, Bernhardt B, Gotman J. Integration of white matter architecture to stereo-EEG better describes epileptic spike propagation. Clin Neurophysiol 2023; 146:135-146. [PMID: 36379837 DOI: 10.1016/j.clinph.2022.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Stereo-electroencephalography (SEEG)-derived epilepsy networks are used to better understand a patient's epilepsy; however, a unimodal approach provides an incomplete picture. We combine tractography and SEEG to determine the relationship between spike propagation and the white matter architecture and to improve our understanding of spike propagation mechanisms. METHODS Probablistic tractography from diffusion imaging (dMRI) of matched subjects from the Human Connectome Project (HCP) was combined with patient-specific SEEG-derived spike propagation networks. Two regions-of-interest (ROIs) with a significant spike propagation relationship constituted a Propagation Pair. RESULTS In 56 of 59 patients, Propagation Pairs were more often tract-connected as compared to all ROI pairs (p < 0.01; d = -1.91). The degree of spike propagation between tract-connected ROIs was greater (39 ± 21%) compared to tract-unconnected ROIs (31 ± 18%; p < 0.0001). Within the same network, ROIs receiving propagation earlier were more often tract-connected to the source (59.7%) as compared to late receivers (25.4%; p < 0.0001). CONCLUSIONS Brain regions involved in spike propagation are more likely to be connected by white matter tracts. Between nodes, presence of tracts suggests a direct course of propagation, whereas the absence of tracts suggests an indirect course of propagation. SIGNIFICANCE We demonstrate a logical and consistent relationship between spike propagation and the white matter architecture.
Collapse
Affiliation(s)
- Abdullah Azeem
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| | - Nicolás von Ellenrieder
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jessica Royer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Birgit Frauscher
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Neurology & Neurosurgery, Montreal Neurological Hospital, Montréal, QC, Canada
| | - Boris Bernhardt
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jean Gotman
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
26
|
Chloride ion dysregulation in epileptogenic neuronal networks. Neurobiol Dis 2023; 177:106000. [PMID: 36638891 DOI: 10.1016/j.nbd.2023.106000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
GABA is the major inhibitory neurotransmitter in the mature CNS. When GABAA receptors are activated the membrane potential is driven towards hyperpolarization due to chloride entry into the neuron. However, chloride ion dysregulation that alters the ionic gradient can result in depolarizing GABAergic post-synaptic potentials instead. In this review, we highlight that GABAergic inhibition prevents and restrains focal seizures but then reexamine this notion in the context of evidence that a static and/or a dynamic chloride ion dysregulation, that increases intracellular chloride ion concentrations, promotes epileptiform activity and seizures. To reconcile these findings, we hypothesize that epileptogenic pathologically interconnected neuron (PIN) microcircuits, representing a small minority of neurons, exhibit static chloride dysregulation and should exhibit depolarizing inhibitory post-synaptic potentials (IPSPs). We speculate that chloride ion dysregulation and PIN cluster activation may generate fast ripples and epileptiform spikes as well as initiate the hypersynchronous seizure onset pattern and microseizures. Also, we discuss the genetic, molecular, and cellular players important in chloride dysregulation which regulate epileptogenesis and initiate the low-voltage fast seizure onset pattern. We conclude that chloride dysregulation in neuronal networks appears to be critical for epileptogenesis and seizure genesis, but feed-back and feed-forward inhibitory GABAergic neurotransmission plays an important role in preventing and restraining seizures as well.
Collapse
|
27
|
Weiss SA, Fried I, Wu C, Sharan A, Rubinstein D, Engel J, Sperling MR, Staba RJ. Graph theoretical measures of fast ripple networks improve the accuracy of post-operative seizure outcome prediction. Sci Rep 2023; 13:367. [PMID: 36611059 PMCID: PMC9825369 DOI: 10.1038/s41598-022-27248-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Fast ripples (FR) are a biomarker of epileptogenic brain, but when larger portions of FR generating regions are resected seizure freedom is not always achieved. To evaluate and improve the diagnostic accuracy of FR resection for predicting seizure freedom we compared the FR resection ratio (RR) with FR network graph theoretical measures. In 23 patients FR were semi-automatically detected and quantified in stereo EEG recordings during sleep. MRI normalization and co-registration localized contacts and relation to resection margins. The number of FR, and graph theoretical measures, which were spatial (i.e., FR rate-distance radius) or temporal correlational (i.e., FR mutual information), were compared with the resection margins and with seizure outcome We found that the FR RR did not correlate with seizure-outcome (p > 0.05). In contrast, the FR rate-distance radius resected difference and the FR MI mean characteristic path length RR did correlate with seizure-outcome (p < 0.05). Retesting of positive FR RR patients using either FR rate-distance radius resected difference or the FR MI mean characteristic path length RR reduced seizure-free misclassifications from 44 to 22% and 17%, respectively. These results indicate that graph theoretical measures of FR networks can improve the diagnostic accuracy of the resection of FR events for predicting seizure freedom.
Collapse
Affiliation(s)
- Shennan A. Weiss
- grid.262863.b0000 0001 0693 2202Department of Neurology, State University of New York Downstate, Brooklyn, USA ,grid.262863.b0000 0001 0693 2202Department of Physiology and Pharmacology, State University of New York Downstate, 450 Clarkson Avenue, MSC 1213, Brooklyn, NY 11203 USA ,grid.422616.50000 0004 0443 7226Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY USA
| | - Itzhak Fried
- grid.19006.3e0000 0000 9632 6718Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Chengyuan Wu
- grid.265008.90000 0001 2166 5843Department of Neuroradiology, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Ashwini Sharan
- grid.265008.90000 0001 2166 5843Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Daniel Rubinstein
- grid.265008.90000 0001 2166 5843Department of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, USA
| | - Jerome Engel
- grid.19006.3e0000 0000 9632 6718Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA ,grid.19006.3e0000 0000 9632 6718Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, USA ,grid.19006.3e0000 0000 9632 6718Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine at UCLA, Brain Research Institute, Los Angeles, CA 90095 USA
| | - Michael R. Sperling
- grid.265008.90000 0001 2166 5843Department of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, USA
| | - Richard J. Staba
- grid.19006.3e0000 0000 9632 6718Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| |
Collapse
|
28
|
Weiss SA, Sheybani L, Seenarine N, Fried I, Wu C, Sharan A, Engel J, Sperling MR, Nir Y, Staba RJ. Delta oscillation coupled propagating fast ripples precede epileptiform discharges in patients with focal epilepsy. Neurobiol Dis 2022; 175:105928. [DOI: 10.1016/j.nbd.2022.105928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
|
29
|
Liu R, Xing Y, Zhang H, Wang J, Lai H, Cheng L, Li D, Yu T, Yan X, Xu C, Piao Y, Zeng L, Loh HH, Zhang G, Yang X. Imbalance between the function of Na+-K+-2Cl and K+-Cl impairs Cl– homeostasis in human focal cortical dysplasia. Front Mol Neurosci 2022; 15:954167. [PMID: 36324524 PMCID: PMC9621392 DOI: 10.3389/fnmol.2022.954167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Altered expression patterns of Na+-K+-2Cl– (NKCC1) and K+-Cl– (KCC2) co-transporters have been implicated in the pathogenesis of epilepsy. Here, we assessed the effects of imbalanced NKCC1 and KCC2 on γ-aminobutyric acidergic (GABAergic) neurotransmission in certain brain regions involved in human focal cortical dysplasia (FCD). Materials and methods We sought to map a micro-macro neuronal network to better understand the epileptogenesis mechanism. In patients with FCD, we resected cortical tissue from the seizure the onset zone (SOZ) and the non-seizure onset zone (non-SOZ) inside the epileptogenic zone (EZ). Additionally, we resected non-epileptic neocortical tissue from the patients with mesial temporal lobe epilepsy (MTLE) as control. All of tissues were analyzed using perforated patch recordings. NKCC1 and KCC2 co-transporters expression and distribution were analyzed by immunohistochemistry and western blotting. Results Results revealed that depolarized GABAergic signals were observed in pyramidal neurons in the SOZ and non-SOZ groups compared with the control group. The total number of pyramidal neurons showing GABAergic spontaneous postsynaptic currents was 11/14, 7/17, and 0/12 in the SOZ, non-SOZ, and control groups, respectively. The depolarizing GABAergic response was significantly dampened by the specific NKCC1 inhibitor bumetanide (BUM). Patients with FCD exhibited higher expression and internalized distribution of KCC2, particularly in the SOZ group. Conclusion Our results provide evidence of a potential neurocircuit underpinning SOZ epileptogenesis and non-SOZ seizure susceptibility. Imbalanced function of NKCC1 and KCC2 may affect chloride ion homeostasis in neurons and alter GABAergic inhibitory action, thereby contributing to epileptogenesis in FCDs. Maintaining chloride ion homeostasis in the neurons may represent a new avenue for the development of novel anti-seizure medications (ASMs).
Collapse
Affiliation(s)
- Ru Liu
- Guangzhou Laboratory, Guangzhou, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Xing
- Guangzhou Laboratory, Guangzhou, China
| | | | - Junling Wang
- Guangzhou Laboratory, Guangzhou, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | - Lipeng Cheng
- Guangzhou Laboratory, Guangzhou, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Donghong Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Yu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Yan
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cuiping Xu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yueshan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Linghui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou, China
| | | | - Guojun Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Guojun Zhang,
| | - Xiaofeng Yang
- Guangzhou Laboratory, Guangzhou, China
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xiaofeng Yang,
| |
Collapse
|
30
|
Curot J, Barbeau E, Despouy E, Denuelle M, Sol JC, Lotterie JA, Valton L, Peyrache A. Local neuronal excitation and global inhibition during epileptic fast ripples in humans. Brain 2022; 146:561-575. [PMID: 36093747 PMCID: PMC9924905 DOI: 10.1093/brain/awac319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
Understanding the neuronal basis of epileptic activity is a major challenge in neurology. Cellular integration into larger scale networks is all the more challenging. In the local field potential, interictal epileptic discharges can be associated with fast ripples (200-600 Hz), which are a promising marker of the epileptogenic zone. Yet, how neuronal populations in the epileptogenic zone and in healthy tissue are affected by fast ripples remain unclear. Here, we used a novel 'hybrid' macro-micro depth electrode in nine drug-resistant epileptic patients, combining classic depth recording of local field potentials (macro-contacts) and two or three tetrodes (four micro-wires bundled together) enabling up to 15 neurons in local circuits to be simultaneously recorded. We characterized neuronal responses (190 single units) with the timing of fast ripples (2233 fast ripples) on the same hybrid and other electrodes that target other brain regions. Micro-wire recordings reveal signals that are not visible on macro-contacts. While fast ripples detected on the closest macro-contact to the tetrodes were always associated with fast ripples on the tetrodes, 82% of fast ripples detected on tetrodes were associated with detectable fast ripples on the nearest macro-contact. Moreover, neuronal recordings were taken in and outside the epileptogenic zone of implanted epileptic subjects and they revealed an interlay of excitation and inhibition across anatomical scales. While fast ripples were associated with increased neuronal activity in very local circuits only, they were followed by inhibition in large-scale networks (beyond the epileptogenic zone, even in healthy cortex). Neuronal responses to fast ripples were homogeneous in local networks but differed across brain areas. Similarly, post-fast ripple inhibition varied across recording locations and subjects and was shorter than typical inter-fast ripple intervals, suggesting that this inhibition is a fundamental refractory process for the networks. These findings demonstrate that fast ripples engage local and global networks, including healthy tissue, and point to network features that pave the way for new diagnostic and therapeutic strategies. They also reveal how even localized pathological brain dynamics can affect a broad range of cognitive functions.
Collapse
Affiliation(s)
- Jonathan Curot
- Correspondence to: Jonathan Curot, MD, PhD CerCo CNRS UMR 5549, Université Toulouse III CHU Purpan, Pavillon Baudot, 31052 Toulouse Cedex, France E-mail:
| | - Emmanuel Barbeau
- Brain and Cognition Research Center (CerCo), Centre National de la Recherche Scientifique, UMR5549, Toulouse, France,Faculty of Health, University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Elodie Despouy
- Brain and Cognition Research Center (CerCo), Centre National de la Recherche Scientifique, UMR5549, Toulouse, France
| | - Marie Denuelle
- Departments of Neurology and Neurosurgery, Toulouse University Hospital, Toulouse, France,Brain and Cognition Research Center (CerCo), Centre National de la Recherche Scientifique, UMR5549, Toulouse, France
| | - Jean Christophe Sol
- Departments of Neurology and Neurosurgery, Toulouse University Hospital, Toulouse, France,Faculty of Health, University of Toulouse, Paul Sabatier University, Toulouse, France,Toulouse Neuro Imaging Center (ToNIC), INSERM, U1214, Toulouse, France
| | - Jean-Albert Lotterie
- Departments of Neurology and Neurosurgery, Toulouse University Hospital, Toulouse, France,Toulouse Neuro Imaging Center (ToNIC), INSERM, U1214, Toulouse, France
| | - Luc Valton
- Departments of Neurology and Neurosurgery, Toulouse University Hospital, Toulouse, France,Brain and Cognition Research Center (CerCo), Centre National de la Recherche Scientifique, UMR5549, Toulouse, France
| | - Adrien Peyrache
- Correspondence may also be addressed to: Adrien Peyrache, PhD Montreal Neurological Institute Department of Neurology and Neurosurgery McGill University, 3810 University Street Montreal, Quebec, Canada E-mail:
| |
Collapse
|
31
|
Li X, Zhang H, Lai H, Wang J, Wang W, Yang X. High-Frequency Oscillations and Epileptogenic Network. Curr Neuropharmacol 2022; 20:1687-1703. [PMID: 34503414 PMCID: PMC9881061 DOI: 10.2174/1570159x19666210908165641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is a network disease caused by aberrant neocortical large-scale connectivity spanning regions on the scale of several centimeters. High-frequency oscillations, characterized by the 80-600 Hz signals in electroencephalography, have been proven to be a promising biomarker of epilepsy that can be used in assessing the severity and susceptibility of epilepsy as well as the location of the epileptogenic zone. However, the presence of a high-frequency oscillation network remains a topic of debate as high-frequency oscillations have been previously thought to be incapable of propagation, and the relationship between high-frequency oscillations and the epileptogenic network has rarely been discussed. Some recent studies reported that high-frequency oscillations may behave like networks that are closely relevant to the epileptogenic network. Pathological highfrequency oscillations are network-driven phenomena and elucidate epileptogenic network development; high-frequency oscillations show different characteristics coincident with the epileptogenic network dynamics, and cross-frequency coupling between high-frequency oscillations and other signals may mediate the generation and propagation of abnormal discharges across the network.
Collapse
Affiliation(s)
- Xiaonan Li
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | | | | | - Jiaoyang Wang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Wei Wang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaofeng Yang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China,Address correspondence to this author at the Bioland Laboratory, Guangzhou, China; Tel: 86+ 18515855127; E-mail:
| |
Collapse
|
32
|
Wang Y, Xu J, Liu T, Chen F, Chen S, Yuan L, Zhai F, Liang S. Diagnostic value of high-frequency oscillations for the epileptogenic zone: A systematic review and meta-analysis. Seizure 2022; 99:82-90. [DOI: 10.1016/j.seizure.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
|
33
|
Liu B, Ran X, Yi Y, Zhang X, Chen H, Hu Y. Anticonvulsant Effect of Carbenoxolone on Chronic Epileptic Rats and Its Mechanism Related to Connexin and High-Frequency Oscillations. Front Mol Neurosci 2022; 15:870947. [PMID: 35615064 PMCID: PMC9125185 DOI: 10.3389/fnmol.2022.870947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 12/03/2022] Open
Abstract
Objective This study was designed to investigate the influence and mechanism of gap junction carbenoxolone (CBX) on dynamic changes in the spectral power of ripples and fast ripples (FRs) in the hippocampus of chronic epileptic rats. Methods The lithium-pilocarpine (PILO) status epilepticus (SE) model (PILO group) and the CBX pretreatment model (CBX + PILO group) were established to analyze dynamic changes in the spectral power of ripples and FRs, and the dynamic expression of connexin (CX)26, CX32, CX36, and CX43 in the hippocampus of chronic epileptic rats. Results Within 28 days after SE, the number of spontaneous recurrent seizures (SRSs) in the PILO group was significantly higher than that in the CBX + PILO group. The average spectral power of FRs in the PILO group was significantly higher than the baseline level at 1 and 7 days after SE. The average spectral power of FRs in the PILO group was significantly higher than that in the CBX + PILO group at 1, 7, and 14 days after SE. Seizures induced an increase in CX43 expression at 1 and 7 days after SE, but had no significant effect on CX26, CX36, or CX32. CBX pretreatment did not affect the expression of CXs in the hippocampus of normal rats, but it inhibited the expression of CX43 in epileptic rats. The number of SRSs at 2 and 4 weeks after SE had the highest correlation with the average spectral power of FRs; the average spectral power of FRs was moderately correlated with the expression of CX43. Conclusion The results of this study indicate that the energy of FRs may be regulated by its interference with the expression of CX43, and thus, affect seizures. Blocking the expression of CX43 thereby reduces the formation of pathological high-frequency oscillations (HFOs), making it a promising strategy for the treatment of chronic epilepsy.
Collapse
Affiliation(s)
- Benke Liu
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Xiao Ran
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Yanjun Yi
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Xinyu Zhang
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Hengsheng Chen
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Yue Hu
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- *Correspondence: Yue Hu,
| |
Collapse
|
34
|
Billardello R, Ntolkeras G, Chericoni A, Madsen JR, Papadelis C, Pearl PL, Grant PE, Taffoni F, Tamilia E. Novel User-Friendly Application for MRI Segmentation of Brain Resection following Epilepsy Surgery. Diagnostics (Basel) 2022; 12:diagnostics12041017. [PMID: 35454065 PMCID: PMC9032020 DOI: 10.3390/diagnostics12041017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Delineation of resected brain cavities on magnetic resonance images (MRIs) of epilepsy surgery patients is essential for neuroimaging/neurophysiology studies investigating biomarkers of the epileptogenic zone. The gold standard to delineate the resection on MRI remains manual slice-by-slice tracing by experts. Here, we proposed and validated a semiautomated MRI segmentation pipeline, generating an accurate model of the resection and its anatomical labeling, and developed a graphical user interface (GUI) for user-friendly usage. We retrieved pre- and postoperative MRIs from 35 patients who had focal epilepsy surgery, implemented a region-growing algorithm to delineate the resection on postoperative MRIs and tested its performance while varying different tuning parameters. Similarity between our output and hand-drawn gold standards was evaluated via dice similarity coefficient (DSC; range: 0-1). Additionally, the best segmentation pipeline was trained to provide an automated anatomical report of the resection (based on presurgical brain atlas). We found that the best-performing set of parameters presented DSC of 0.83 (0.72-0.85), high robustness to seed-selection variability and anatomical accuracy of 90% to the clinical postoperative MRI report. We presented a novel user-friendly open-source GUI that implements a semiautomated segmentation pipeline specifically optimized to generate resection models and their anatomical reports from epilepsy surgery patients, while minimizing user interaction.
Collapse
Affiliation(s)
- Roberto Billardello
- Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Newborn Medicine Division, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (G.N.); (A.C.); (P.E.G.)
- Advanced Robotics and Human-Centered Technologies-CREO Lab, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Correspondence: (R.B.); (E.T.)
| | - Georgios Ntolkeras
- Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Newborn Medicine Division, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (G.N.); (A.C.); (P.E.G.)
- Baystate Children’s Hospital, Springfield, MA 01199, USA
| | - Assia Chericoni
- Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Newborn Medicine Division, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (G.N.); (A.C.); (P.E.G.)
- Advanced Robotics and Human-Centered Technologies-CREO Lab, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Joseph R. Madsen
- Epilepsy Surgery Program, Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children’s Health Care System, Fort Worth, TX 76104, USA;
| | - Phillip L. Pearl
- Division of Epilepsy and Clinical Neurophysiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Patricia Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Newborn Medicine Division, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (G.N.); (A.C.); (P.E.G.)
| | - Fabrizio Taffoni
- Advanced Robotics and Human-Centered Technologies-CREO Lab, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Eleonora Tamilia
- Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Newborn Medicine Division, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (G.N.); (A.C.); (P.E.G.)
- Correspondence: (R.B.); (E.T.)
| |
Collapse
|
35
|
Weiss SA, Pastore T, Orosz I, Rubinstein D, Gorniak R, Waldman Z, Fried I, Wu C, Sharan A, Slezak D, Worrell G, Engel J, Sperling MR, Staba RJ. Graph theoretical measures of fast ripples support the epileptic network hypothesis. Brain Commun 2022; 4:fcac101. [PMID: 35620169 PMCID: PMC9128387 DOI: 10.1093/braincomms/fcac101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/10/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
The epileptic network hypothesis and epileptogenic zone hypothesis are two
theories of ictogenesis. The network hypothesis posits that coordinated activity
among interconnected nodes produces seizures. The epileptogenic zone hypothesis
posits that distinct regions are necessary and sufficient for seizure
generation. High-frequency oscillations, and particularly fast ripples, are
thought to be biomarkers of the epileptogenic zone. We sought to test these
theories by comparing high-frequency oscillation rates and networks in surgical
responders and non-responders, with no appreciable change in seizure frequency
or severity, within a retrospective cohort of 48 patients implanted with
stereo-EEG electrodes. We recorded inter-ictal activity during non-rapid eye
movement sleep and semi-automatically detected and quantified high-frequency
oscillations. Each electrode contact was localized in normalized coordinates. We
found that the accuracy of seizure onset zone electrode contact classification
using high-frequency oscillation rates was not significantly different in
surgical responders and non-responders, suggesting that in non-responders the
epileptogenic zone partially encompassed the seizure onset zone(s)
(P > 0.05). We also found that in the
responders, fast ripple on oscillations exhibited a higher spectral content in
the seizure onset zone compared with the non-seizure onset zone
(P < 1 × 10−5).
By contrast, in the non-responders, fast ripple had a lower spectral content in
the seizure onset zone
(P < 1 × 10−5).
We constructed two different networks of fast ripple with a spectral content
>350 Hz. The first was a rate–distance network that
multiplied the Euclidian distance between fast ripple-generating contacts by the
average rate of fast ripple in the two contacts. The radius of the
rate–distance network, which excluded seizure onset zone nodes,
discriminated non-responders, including patients not offered resection or
responsive neurostimulation due to diffuse multifocal onsets, with an accuracy
of 0.77 [95% confidence interval (CI) 0.56–0.98]. The second fast
ripple network was constructed using the mutual information between the timing
of the events to measure functional connectivity. For most non-responders, this
network had a longer characteristic path length, lower mean local efficiency in
the non-seizure onset zone, and a higher nodal strength among non-seizure onset
zone nodes relative to seizure onset zone nodes. The graphical theoretical
measures from the rate–distance and mutual information networks of 22
non- responsive neurostimulation treated patients was used to train a support
vector machine, which when tested on 13 distinct patients classified
non-responders with an accuracy of 0.92 (95% CI 0.75–1). These
results indicate patients who do not respond to surgery or those not selected
for resection or responsive neurostimulation can be explained by the epileptic
network hypothesis that is a decentralized network consisting of widely
distributed, hyperexcitable fast ripple-generating nodes.
Collapse
Affiliation(s)
- Shennan A Weiss
- Dept. of Neurology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, USA
| | - Tomas Pastore
- Dept. of Computer Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Iren Orosz
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Daniel Rubinstein
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Richard Gorniak
- Dept. of Neuroradiology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Zachary Waldman
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Itzhak Fried
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Chengyuan Wu
- Dept. of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Ashwini Sharan
- Dept. of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Diego Slezak
- Dept. of Computer Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Gregory Worrell
- Dept. of Neurology, Mayo Systems Electrophysiology Laboratory (MSEL), USA
- Dept. of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Jerome Engel
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Michael R. Sperling
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Richard J Staba
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| |
Collapse
|
36
|
Localization of seizure onset zone with epilepsy propagation networks based on graph convolutional network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Das R, Luczak A. Epileptic seizures and link to memory processes. AIMS Neurosci 2022; 9:114-127. [PMID: 35434278 PMCID: PMC8941196 DOI: 10.3934/neuroscience.2022007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Epileptogenesis is a complex and not well understood phenomenon. Here, we explore the hypothesis that epileptogenesis could be "hijacking" normal memory processes, and how this hypothesis may provide new directions for epilepsy treatment. First, we review similarities between the hypersynchronous circuits observed in epilepsy and memory consolidation processes involved in strengthening neuronal connections. Next, we describe the kindling model of seizures and its relation to long-term potentiation model of synaptic plasticity. We also examine how the strengthening of epileptic circuits is facilitated during the physiological slow wave sleep, similarly as episodic memories. Furthermore, we present studies showing that specific memories can directly trigger reflex seizures. The neuronal hypersynchrony in early stages of Alzheimer's disease, and the use of anti-epileptic drugs to improve the cognitive symptoms in this disease also suggests a connection between memory systems and epilepsy. Given the commonalities between memory processes and epilepsy, we propose that therapies for memory disorders might provide new avenues for treatment of epileptic patients.
Collapse
Affiliation(s)
- Ritwik Das
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Artur Luczak
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
38
|
Cui D, Gao R, Xu C, Yan H, Zhang X, Yu T, Zhang G. Ictal onset stereoelectroencephalography patterns in temporal lobe epilepsy: type, distribution, and prognostic value. Acta Neurochir (Wien) 2022; 164:555-563. [PMID: 35041086 DOI: 10.1007/s00701-022-05122-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the different ictal onset stereoelectroencephalography patterns (IOPs) in patients with drug-resistant temporal lobe epilepsy (TLE). We examined whether the IOPs relate to different TLE subtypes, MRI findings, and underlying pathologies, and we evaluated their prognostic value for predicting the surgical outcome. METHODS We retrospectively analyzed data from patients with TLE who underwent stereoelectroencephalography (SEEG) monitoring followed by surgical resection between January 2018 and January 2020. The SEEG recordings were independently analyzed by two epileptologists. RESULTS Forty-five patients were included in the study, and 61seizures were analyzed. Five IOPs were identified: low voltage fast activity (LVFA; 44.3%), spike-and-wave activity (16.4%), low frequency high-amplitude periodic spikes (LFPS; 18%), a burst of high-amplitude polyspikes (8.2%), and rhythmic sharp activity at ≤ 13 Hz (13.1%). Thirty-two patients were found to have a single IOP, while the other 13 patients had two or more IOPs. All five IOPs were found to occur in the medial temporal lobe epilepsy (MTLE), while four IOPs occurred in the lateral temporal lobe epilepsy (LTLE). The LFPS was a common IOP that could distinguish MTLE from LTLE (x2 = 7.046, p = 0.011). Among the MTLE patients, the LFPS was exclusively seen in cases of hippocampal sclerosis (x2 = 5.058, p = 0.038), while the LVFA was associated with nonspecific histology (x2 = 6.077, p = 0.023). The IOPs were not found to differ according to whether the MRI scans were positive or negative. After surgery, patients achieved the higher seizure-free rate at 81.8% and 77.8%, respectively, if the LFPS and LVFA were the predominant patterns. Multiple IOPs or a negative MRI did not indicate a poor prognosis. CONCLUSIONS Five distinct IOPs were identified in the patients with TLE. The differences found have important clinical implications and could provide complementary information for surgical decision-making, especially in MRI-negative patients.
Collapse
Affiliation(s)
- Deqiu Cui
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Cuiping Xu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Hao Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
39
|
Tong X, Wang J, Qin L, Zhou J, Guan Y, Zhai F, Teng P, Wang M, Li T, Wang X, Luan G. Analysis of power spectrum and phase lag index changes following deep brain stimulation of the anterior nucleus of the thalamus in patients with drug-resistant epilepsy: A retrospective study. Seizure 2022; 96:6-12. [PMID: 35042005 DOI: 10.1016/j.seizure.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES The mechanisms underlying the anterior nucleus of the thalamus (ANT) deep brain stimulation (DBS) for the treatment of drug-resistant epilepsy (DRE) have not been fully explored. The present study aimed to measure the changes in whole-brain activity generated by ANT DBS using interictal electroencephalography (EEG). MATERIALS AND METHODS Interictal EEG signals were retrospectively collected in 20 DRE patients who underwent ANT DBS surgery. Patients were classified as responders or non-responders depending on their response to ANT DBS treatment. The power spectrum (PS) and Phase Lag Index (PLI) were determined and data analyzed using a paired sample t-test to evaluate activity differences between pre-and-post-treatment on different frequency categories. Student's t-test, Mann-Whitney test (non-parametric test) and Fisher exact test were used to compare groups in terms of clinical variables and EEG metrics. P values < 0.05 were considered statistically significant, and FDR-corrected values were used for multiple testing. RESULTS PS analysis revealed that whole-brain spectral power had a significant decrease in the beta (p = 0.005) and gamma (p = 0.037) bands following ANT DBS treatment in responders. The analysis of scalp topographic images of all patients showed that ANT DBS decreases PS in the beta band at the F3, F7 and Cz electrode sites. The findings indicated a decrease in PS in the gamma band at the Fp2, F3, Cz, T3, T5 and Oz electrode sites. After ANT DBS treatment, PLI analysis showed a significant decrease in PLI between Fp1 and T3 in the gamma band in responders. CONCLUSION The findings showed that ANT DBS induces a decrease in power in the left frontal lobe, left temporal lobe and midline areas in the beta and gamma bands. Lower whole-brain power in the beta and gamma bands can be used as biomarkers for a favorable therapeutic response to ANT DBS, and decreased synchronization between the left frontal pole and temporal lobe in the gamma band can also be used as a biomarker for effective clinical stimulation to guide postoperative programming.
Collapse
Affiliation(s)
- Xuezhi Tong
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jing Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Lang Qin
- McGovern Institute for Brain Research, Peking University, Beijing 100093, China; Center for MRI Research, Peking University, Beijing 100093, China
| | - Jian Zhou
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Feng Zhai
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Pengfei Teng
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Mengyang Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; Beijing Key Laboratory of Epilepsy, Beijing 100093, China
| | - Xiongfei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; Beijing Key Laboratory of Epilepsy, Beijing 100093, China; Epilepsy Institute, Beijing Institute for Brain Disorders, Beijing 100093, China
| | - Guoming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; Beijing Key Laboratory of Epilepsy, Beijing 100093, China; Epilepsy Institute, Beijing Institute for Brain Disorders, Beijing 100093, China
| |
Collapse
|
40
|
Prognostic value of high-frequency oscillations combined with multimodal imaging methods for epilepsy surgery. Chin Med J (Engl) 2021; 135:1087-1095. [PMID: 35773966 PMCID: PMC9276102 DOI: 10.1097/cm9.0000000000001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: The combination of high-frequency oscillations (HFOs) with single-mode imaging methods has been proved useful in identifying epileptogenic zones, whereas few studies have examined HFOs combined with multimodal imaging methods. The aim of this study was to evaluate the prognostic value of ripples, an HFO subtype with a frequency of 80 to 200 Hz is combined with multimodal imaging methods in predicting epilepsy surgery outcome. Methods: HFOs were analyzed in 21 consecutive medically refractory epilepsy patients who underwent epilepsy surgery. All patients underwent positron emission tomography (PET) and deep electrode implantation for stereo-electroencephalography (SEEG); 11 patients underwent magnetoencephalography (MEG). Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy in predicting surgical outcome were calculated for ripples combined with PET, MEG, both PET and MEG, and PET combined with MEG. Kaplan-Meier survival analyses were conducted in each group to estimate prognostic value. Results: The study included 13 men and 8 women. Accuracy for ripples, PET, and MEG alone in predicting surgical outcome was 42.9%, 42.9%, and 81.8%, respectively. Accuracy for ripples combined with PET and MEG was the highest. Resection of regions identified by ripples, MEG dipoles, and combined PET findings was significantly associated with better surgical outcome (P < 0.05). Conclusions: Intracranial electrodes are essential to detect regions which generate ripples and to remove these areas which indicate good surgical outcome for medically intractable epilepsy. With the assistance of presurgical noninvasive imaging examinations, PET and MEG, for example, the SEEG electrodes would identify epileptogenic regions more effectively.
Collapse
|
41
|
Wijdenes P, Haider K, Gavrilovici C, Gunning B, Wolff MD, Lijnse T, Armstrong R, Teskey GC, Rho JM, Dalton C, Syed NI. Three dimensional microelectrodes enable high signal and spatial resolution for neural seizure recordings in brain slices and freely behaving animals. Sci Rep 2021; 11:21952. [PMID: 34754055 PMCID: PMC8578611 DOI: 10.1038/s41598-021-01528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022] Open
Abstract
Neural recordings made to date through various approaches—both in-vitro or in-vivo—lack high spatial resolution and a high signal-to-noise ratio (SNR) required for detailed understanding of brain function, synaptic plasticity, and dysfunction. These shortcomings in turn deter the ability to further design diagnostic, therapeutic strategies and the fabrication of neuro-modulatory devices with various feedback loop systems. We report here on the simulation and fabrication of fully configurable neural micro-electrodes that can be used for both in vitro and in vivo applications, with three-dimensional semi-insulated structures patterned onto custom, fine-pitch, high density arrays. These microelectrodes were interfaced with isolated brain slices as well as implanted in brains of freely behaving rats to demonstrate their ability to maintain a high SNR. Moreover, the electrodes enabled the detection of epileptiform events and high frequency oscillations in an epilepsy model thus offering a diagnostic potential for neurological disorders such as epilepsy. These microelectrodes provide unique opportunities to study brain activity under normal and various pathological conditions, both in-vivo and in in-vitro, thus furthering the ability to develop drug screening and neuromodulation systems that could accurately record and map the activity of large neural networks over an extended time period.
Collapse
Affiliation(s)
- P Wijdenes
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - K Haider
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - C Gavrilovici
- Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - B Gunning
- Department of Cell Biology and Anatomy, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - M D Wolff
- Department of Cell Biology and Anatomy, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - T Lijnse
- Department of Electrical and Computer Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - R Armstrong
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - G C Teskey
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - J M Rho
- Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Departments of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, CA, USA
| | - C Dalton
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Department of Electrical and Computer Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Naweed I Syed
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada. .,Department of Cell Biology and Anatomy, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada. .,Cumming School of Medicine, University of Calgary, 3330-Hospital Drive, NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
42
|
Papadelis C, Perry MS. Localizing the Epileptogenic Zone with Novel Biomarkers. Semin Pediatr Neurol 2021; 39:100919. [PMID: 34620466 PMCID: PMC8501232 DOI: 10.1016/j.spen.2021.100919] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
Several noninvasive methods, such as high-density EEG or magnetoencephalography, are currently used to delineate the epileptogenic zone (EZ) during the presurgical evaluation of patients with drug resistant epilepsy (DRE). Yet, none of these methods can reliably identify the EZ by their own. In most cases a multimodal approach is needed. Challenging cases often require the implantation of intracranial electrodes, either through stereo-taxic EEG or electro-corticography. Recently, a growing body of literature introduces novel biomarkers of epilepsy that can be used for analyzing both invasive as well as noninvasive electrophysiological data. Some of these biomarkers are able to delineate the EZ with high precision, augment the presurgical evaluation, and predict the surgical outcome of patients with DRE undergoing surgery. However, the use of these epilepsy biomarkers in clinical practice is limited. Here, we summarize and discuss the latest technological advances in the presurgical neurophysiological evaluation of children with DRE with emphasis on electric and magnetic source imaging, high frequency oscillations, and functional connectivity.
Collapse
Affiliation(s)
- Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX; School of Medicine, Texas Christian University and University of North Texas Health Science Center, Fort Worth, TX; Department of Bioengineering, University of Texas at Arlington, Arlington, TX; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| | - M Scott Perry
- Jane and John Justin Neurosciences Center, Cook Children’s Health Care System, Fort Worth, TX, USA
| |
Collapse
|
43
|
Epileptic Mechanisms Shared by Alzheimer's Disease: Viewed via the Unique Lens of Genetic Epilepsy. Int J Mol Sci 2021; 22:ijms22137133. [PMID: 34281185 PMCID: PMC8268161 DOI: 10.3390/ijms22137133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Our recent work on genetic epilepsy (GE) has identified common mechanisms between GE and neurodegenerative diseases including Alzheimer's disease (AD). Although both disorders are seemingly unrelated and occur at opposite ends of the age spectrum, it is likely there are shared mechanisms and studies on GE could provide unique insights into AD pathogenesis. Neurodegenerative diseases are typically late-onset disorders, but the underlying pathology may have already occurred long before the clinical symptoms emerge. Pathophysiology in the early phase of these diseases is understudied but critical for developing mechanism-based treatment. In AD, increased seizure susceptibility and silent epileptiform activity due to disrupted excitatory/inhibitory (E/I) balance has been identified much earlier than cognition deficit. Increased epileptiform activity is likely a main pathology in the early phase that directly contributes to impaired cognition. It is an enormous challenge to model the early phase of pathology with conventional AD mouse models due to the chronic disease course, let alone the complex interplay between subclinical nonconvulsive epileptiform activity, AD pathology, and cognition deficit. We have extensively studied GE, especially with gene mutations that affect the GABA pathway such as mutations in GABAA receptors and GABA transporter 1. We believe that some mouse models developed for studying GE and insights gained from GE could provide unique opportunity to understand AD. These include the pathology in early phase of AD, endoplasmic reticulum (ER) stress, and E/I imbalance as well as the contribution to cognitive deficit. In this review, we will focus on the overlapping mechanisms between GE and AD, the insights from mutations affecting GABAA receptors, and GABA transporter 1. We will detail mechanisms of E/I imbalance and the toxic epileptiform generation in AD, and the complex interplay between ER stress, impaired membrane protein trafficking, and synaptic physiology in both GE and AD.
Collapse
|
44
|
Nadalin JK, Eden UT, Han X, Richardson RM, Chu CJ, Kramer MA. Application of a convolutional neural network for fully-automated detection of spike ripples in the scalp electroencephalogram. J Neurosci Methods 2021; 360:109239. [PMID: 34090917 DOI: 10.1016/j.jneumeth.2021.109239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/17/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND A reliable biomarker to identify cortical tissue responsible for generating epileptic seizures is required to guide prognosis and treatment in epilepsy. Combined spike ripple events are a promising biomarker for epileptogenic tissue that currently require expert review for accurate identification. This expert review is time consuming and subjective, limiting reproducibility and high-throughput applications. NEW METHOD To address this limitation, we develop a fully-automated method for spike ripple detection. The method consists of a convolutional neural network trained to compute the probability that a spectrogram image contains a spike ripple. RESULTS We validate the proposed spike ripple detector on expert-labeled data and show that this detector accurately separates subjects with low and high seizure risks. COMPARISON WITH EXISTING METHOD The proposed method performs as well as existing methods that require manual validation of candidate spike ripple events. The introduction of a fully automated method reduces subjectivity and increases rigor and reproducibility of this epilepsy biomarker. CONCLUSION We introduce and validate a fully-automated spike ripple detector to support utilization of this epilepsy biomarker in clinical and translational work.
Collapse
Affiliation(s)
- Jessica K Nadalin
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, United States
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, United States; Center for Systems Neuroscience, Boston University, Boston, MA 02215, United States
| | - Xue Han
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, United States; Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Mark A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, United States; Center for Systems Neuroscience, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
45
|
Shi LJ, Wei BX, Xu L, Lin YC, Wang YP, Zhang JC. Magnetoencephalography for epileptic focus localization based on Tucker decomposition with ripple window. CNS Neurosci Ther 2021; 27:820-830. [PMID: 33942534 PMCID: PMC8193700 DOI: 10.1111/cns.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS To improve the Magnetoencephalography (MEG) spatial localization precision of focal epileptic. METHODS 306-channel simulated or real clinical MEG is estimated as a lower-dimensional tensor by Tucker decomposition based on Higher-order orthogonal iteration (HOOI) before the inverse problem using linearly constraint minimum variance (LCMV). For simulated MEG data, the proposed method is compared with dynamic imaging of coherent sources (DICS), multiple signal classification (MUSIC), and LCMV. For clinical real MEG of 31 epileptic patients, the ripples (80-250 Hz) were detected to compare the source location precision with spikes using the proposed method or the dipole-fitting method. RESULTS The experimental results showed that the positional accuracy of the proposed method was higher than that of LCMV, DICS, and MUSIC for simulation data. For clinical real MEG data, the positional accuracy of the proposed method was higher than that of dipole-fitting regardless of whether the time window was ripple window or spike window. Also, the positional accuracy of the ripple window was higher than that of the spike window regardless of whether the source location method was the proposed method or the dipole-fitting method. For both shallow and deep sources, the proposed method provided effective performance. CONCLUSION Tucker estimation of MEG for source imaging by ripple window is a promising approach toward the presurgical evaluation of epileptics.
Collapse
Affiliation(s)
- Li-Juan Shi
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Bo-Xuan Wei
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.,Hefei Innovation Research Institute, Beihang University, Hefei, Anhui, China
| | - Lu Xu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Yi-Cong Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Brain Functional Disease and Neuromodulation of Beijing Key Laboratory, Beijing, China
| | - Yu-Ping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Brain Functional Disease and Neuromodulation of Beijing Key Laboratory, Beijing, China
| | - Ji-Cong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.,Hefei Innovation Research Institute, Beihang University, Hefei, Anhui, China
| |
Collapse
|
46
|
Xiang J, Maue E, Tong H, Mangano FT, Greiner H, Tenney J. Neuromagnetic high frequency spikes are a new and noninvasive biomarker for localization of epileptogenic zones. Seizure 2021; 89:30-37. [PMID: 33975080 DOI: 10.1016/j.seizure.2021.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE One barrier hindering high frequency brain signals (HFBS, >80 Hz) from wide clinical applications is that the brain generates both pathological and physiological HFBS. This study was to find specific biomarkers for localizing epileptogenic zones (EZs). METHODS Twenty three children with drug-resistant epilepsy and age/sex matched healthy controls were studied with magnetoencephalography (MEG). High frequency oscillations (HFOs, > 4 oscillatory waveforms) and high frequency spikes (HFSs, > 1 spiky or sharp waveforms) in 80-250 Hz and 250-600 Hz bands were blindly detected with an artificial intelligence method and validated with visual inspection. The magnitude of HFOs and HFSs were quantified with spectral analyses. Sources of HFSs and HFOs were localized and compared with clinical EZs determined by invasive recordings and surgical outcomes. RESULTS HFOs in 80-250 Hz and 250-600 Hz were identified in both epilepsy patients (18/23, 12/23, respectively) and healthy controls (6/23, 4/23, respectively). HFSs in 80-250 Hz and 250-600 Hz were detected in patients (16/23, 11/23, respectively) but not in healthy controls. A combination of HFOs and HFSs localized EZs for 22 (22/23, 96%) patients. CONCLUSIONS The results indicate, for the first time, that HFSs are a newer and more specific biomarker than HFOs for localizing EZs because HFOs appeared in both epilepsy patients and healthy controls while HFSs appeared only in epilepsy patients.
Collapse
Affiliation(s)
- Jing Xiang
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Ellen Maue
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Han Tong
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Francesco T Mangano
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Hansel Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jeffrey Tenney
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
47
|
Tamilia E, Matarrese MAG, Ntolkeras G, Grant PE, Madsen JR, Stufflebeam SM, Pearl PL, Papadelis C. Noninvasive Mapping of Ripple Onset Predicts Outcome in Epilepsy Surgery. Ann Neurol 2021; 89:911-925. [PMID: 33710676 PMCID: PMC8229023 DOI: 10.1002/ana.26066] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Intracranial electroencephalographic (icEEG) studies show that interictal ripples propagate across the brain of children with medically refractory epilepsy (MRE), and the onset of this propagation (ripple onset zone [ROZ]) estimates the epileptogenic zone. It is still unknown whether we can map this propagation noninvasively. The goal of this study is to map ripples (ripple zone [RZ]) and their propagation onset (ROZ) using high-density EEG (HD-EEG) and magnetoencephalography (MEG), and to estimate their prognostic value in pediatric epilepsy surgery. METHODS We retrospectively analyzed simultaneous HD-EEG and MEG data from 28 children with MRE who underwent icEEG and epilepsy surgery. Using electric and magnetic source imaging, we estimated virtual sensors (VSs) at brain locations that matched the icEEG implantation. We detected ripples on VSs, defined the virtual RZ and virtual ROZ, and estimated their distance from icEEG. We assessed the predictive value of resecting virtual RZ and virtual ROZ for postsurgical outcome. Interictal spike localization on HD-EEG and MEG was also performed and compared with ripples. RESULTS We mapped ripple propagation in all patients with HD-EEG and in 27 (96%) patients with MEG. The distance from icEEG did not differ between HD-EEG and MEG when mapping the RZ (26-27mm, p = 0.6) or ROZ (22-24mm, p = 0.4). Resecting the virtual ROZ, but not virtual RZ or the sources of spikes, was associated with good outcome for HD-EEG (p = 0.016) and MEG (p = 0.047). INTERPRETATION HD-EEG and MEG can map interictal ripples and their propagation onset (virtual ROZ). Noninvasively mapping the ripple onset may augment epilepsy surgery planning and improve surgical outcome of children with MRE. ANN NEUROL 2021;89:911-925.
Collapse
Affiliation(s)
- Eleonora Tamilia
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Department of MedicineBoston Children's Hospital, Harvard Medical SchoolBostonMA
- Fetal‐Neonatal Neuroimaging and Developmental Science CenterBoston Children's Hospital, Harvard Medical SchoolBostonMA
| | - Margherita A. G. Matarrese
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Department of MedicineBoston Children's Hospital, Harvard Medical SchoolBostonMA
- Laboratory of Nonlinear Physics and Mathematical Modeling, Department of EngineeringUniversity Bio‐Medico Campus of RomeRomeItaly
| | - Georgios Ntolkeras
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Department of MedicineBoston Children's Hospital, Harvard Medical SchoolBostonMA
- Fetal‐Neonatal Neuroimaging and Developmental Science CenterBoston Children's Hospital, Harvard Medical SchoolBostonMA
| | - P. Ellen Grant
- Fetal‐Neonatal Neuroimaging and Developmental Science CenterBoston Children's Hospital, Harvard Medical SchoolBostonMA
| | - Joseph R. Madsen
- Epilepsy Surgery Program, Department of NeurosurgeryBoston Children's Hospital, Harvard Medical SchoolBostonMA
| | - Steve M. Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Phillip L. Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMA
| | - Christos Papadelis
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Department of MedicineBoston Children's Hospital, Harvard Medical SchoolBostonMA
- Jane and John Justin Neurosciences CenterCook Children's Health Care SystemFort WorthTX
- School of Medicine, Texas Christian University and University of North Texas Health Science CenterFort WorthTX
- Department of BioengineeringUniversity of Texas at ArlingtonArlingtonTX
| |
Collapse
|
48
|
Harrach MA, Benquet P, Wendling F. Long term evolution of fast ripples during epileptogenesis. J Neural Eng 2021; 18. [PMID: 33849005 DOI: 10.1088/1741-2552/abf774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/13/2021] [Indexed: 11/12/2022]
Abstract
Objective.Fast ripples (FRs) have received considerable attention in the last decade since they represent an electrophysiological biomarker of the epileptogenic zone (EZ). However, the real dynamics underlying the occurrence, amplitude, and time-frequency content of FRs generation during epileptogenesis are still not well understood. This work aims at characterizing and explaining the evolution of these features.Approach.Intracortical electroencephalographic signals recorded in a kainate mouse model of temporal lobe epilepsy were processed in order to compute specific FR features. Then realistic physiologically based computational modeling was employed to explore the different elements that can explain the mechanisms of epileptogenesis and simulate the recorded FR in the early and late latent period.Main results.Results indicated that continuous changes of FR features are mainly portrayed by the epileptic (pathological) tissue size and synaptic properties. Furthermore, the microelectrodes characteristics were found to dramatically affect the observability and spectral/temporal content of FRs. Consequently, FRs evolution seems to mirror the continuous pathophysiological mechanism changes that occur during epileptogenesis as long as the microelectrode properties are taken into account.Significance.Our study suggests that FRs can account for the pathophysiological changes which might explain the EZ generation and evolution and can contribute in the treatment plan of pharmaco-resistant epilepsies.
Collapse
Affiliation(s)
- Mariam Al Harrach
- Laboratoire Traitement du Signal et de l'Image (LTSI-U1099), Université de Rennes 1, INSERM, 35000 Rennes, France
| | - Pascal Benquet
- Laboratoire Traitement du Signal et de l'Image (LTSI-U1099), Université de Rennes 1, INSERM, 35000 Rennes, France
| | - Fabrice Wendling
- Laboratoire Traitement du Signal et de l'Image (LTSI-U1099), Université de Rennes 1, INSERM, 35000 Rennes, France
| |
Collapse
|
49
|
Xiang J, Maue E, Fujiwara H, Mangano FT, Greiner H, Tenney J. Delineation of epileptogenic zones with high frequency magnetic source imaging based on kurtosis and skewness. Epilepsy Res 2021; 172:106602. [PMID: 33713889 DOI: 10.1016/j.eplepsyres.2021.106602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Neuromagnetic high frequency brain signals (HFBS, > 80 Hz) are a new biomarker for localization of epileptogenic zones (EZs) for pediatric epilepsy. METHODS Twenty three children with drug-resistant epilepsy and age/sex matched healthy controls were studied with magnetoencephalography (MEG). Epileptic HFBS in 80-250 Hz and 250-600 Hz were quantitatively determined by comparing with normative controls in terms of kurtosis and skewness. Magnetic sources of epileptic HFBS were localized and then compared to clinical EZs determined by invasive recordings and surgical outcomes. RESULTS Kurtosis and skewness of HFBS were significantly elevated in epilepsy patients compared to healthy controls (p < 0,001 and p < 0.0001, respectively). Sources of elevated MEG signals in comparison to normative data were co-localized to EZs for 22 (22/23, 96 %) patients. CONCLUSIONS The results indicate, for the first time, that epileptic HFBS can be noninvasively quantified by measuring kurtosis and skewness in MEG data. Magnetic source imaging based on kurtosis and skewness can accurately localize EZs. SIGNIFICANCE Source imaging of kurtosis and skewness of MEG HFBS provides a novel way for preoperative localization of EZs for epilepsy surgery.
Collapse
Affiliation(s)
- Jing Xiang
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Ellen Maue
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hisako Fujiwara
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francesco T Mangano
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hansel Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey Tenney
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
50
|
Bruder JC, Schmelzeisen C, Lachner-Piza D, Reinacher P, Schulze-Bonhage A, Jacobs J. Physiological Ripples Associated With Sleep Spindles Can Be Identified in Patients With Refractory Epilepsy Beyond Mesio-Temporal Structures. Front Neurol 2021; 12:612293. [PMID: 33643198 PMCID: PMC7902925 DOI: 10.3389/fneur.2021.612293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: High frequency oscillations (HFO) are promising biomarkers of epileptic tissue. While group analysis suggested a correlation between surgical removal of HFO generating tissue and seizure free outcome, HFO could not predict seizure outcome on an individual patient level. One possible explanation is the lack of differentiation between physiological and epileptic HFO. In the mesio-temporal lobe, a proportion of physiological ripples can be identified by their association with scalp sleep spindles. Spike associated ripples in contrast can be considered epileptic. This study investigated whether categorizing ripples by the co-occurrence with sleep spindles or spikes improves outcome prediction after surgery. Additionally, it aimed to investigate whether spindle-ripple association is limited to the mesio-temporal lobe structures or visible across the whole brain. Methods: We retrospectively analyzed EEG of 31 patients with chronic intracranial EEG. Sleep spindles in scalp EEG and ripples and epileptic spikes in iEEG were automatically detected. Three ripple subtypes were obtained: SpindleR, Non-SpindleR, and SpikeR. Rate ratios between removed and non-removed brain areas were calculated. We compared the distinct ripple subtypes and their rates in different brain regions, inside and outside seizure onset areas and between patients with good and poor seizure outcome. Results: SpindleR were found across all brain regions. SpikeR had significantly higher rates in the SOZ than in Non-SOZ channels. A significant positive correlation between removal of ripple-events and good outcome was found for the mixed ripple group (rs = 0.43, p = 0.017) and for ripples not associated with spindles (rs=0.40, p = 0.044). Also, a significantly high proportion of spikes associated with ripples were removed in seizure free patients (p = 0.036). Discussion: SpindleR are found in mesio-temporal and neocortical structures, indicating that ripple-spindle-coupling might have functional importance beyond mesio-temporal structures. Overall, the proportion of SpindleR was low and separating spindle and spike associated ripples did not improve outcome prediction in our patient group. SpindleR analysis therefore can be a tool to identify physiological events but needs to be used in combination with other methods to have clinical relevance.
Collapse
Affiliation(s)
- Jonas C Bruder
- Department of Neuropediatrics and Muscular Disease, University Medical Center, Freiburg, Germany
| | - Christoph Schmelzeisen
- Department of Neuropediatrics and Muscular Disease, University Medical Center, Freiburg, Germany
| | - Daniel Lachner-Piza
- Department of Neuropediatrics and Muscular Disease, University Medical Center, Freiburg, Germany
| | - Peter Reinacher
- Stereotactic & Functional Neurosurgery, University Medical Center, Freiburg, Germany
| | | | - Julia Jacobs
- Department of Neuropediatrics and Muscular Disease, University Medical Center, Freiburg, Germany.,Epilepsy Center, University Medical Center, Freiburg, Germany
| |
Collapse
|