1
|
Calakos N, Zech M. Emerging Molecular-Genetic Families in Dystonia: Endosome-Autophagosome-Lysosome and Integrated Stress Response Pathways. Mov Disord 2024. [PMID: 39467044 DOI: 10.1002/mds.30037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
Advances in genetic technologies and disease modeling have greatly accelerated the pace of introducing and validating molecular-genetic contributors to disease. In dystonia, there is a growing convergence across multiple distinct forms of the disease onto core biological processes. Here, we discuss two of these, the endosome-autophagosome-lysosome pathway and the integrated stress response, to highlight recent advances in the field. Using these two pathomechanisms as examples, we further discuss the opportunities that molecular-genetic grouping of dystonias present to transform dystonia care. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicole Calakos
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael Zech
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
2
|
Couto B, Galosi S, Steel D, Kurian MA, Friedman J, Gorodetsky C, Lang AE. Severe Acute Motor Exacerbations (SAME) across Metabolic, Developmental and Genetic Disorders. Mov Disord 2024; 39:1446-1467. [PMID: 39119747 DOI: 10.1002/mds.29905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Acute presentation of severe motor disorders is a diagnostic and management challenge. We define severe acute motor exacerbations (SAME) as acute/subacute motor symptoms that persist for hours-to-days with a severity that compromise vital signs (temperature, breath, and heart rate) and bulbar function (swallowing/dysphagia). Phenomenology includes dystonia, choreoathetosis, combined movement disorders, weakness, and hemiplegic attacks. SAME can develop in diverse diseases and can be preceded by triggers or catabolic states. Recent descriptions of SAME in complex neurodevelopmental and epileptic encephalopathies have broadened appreciation of this presentation beyond inborn errors of metabolism. A high degree of clinical suspicion is required to identify appropriately targeted investigations and management. We conducted a comprehensive literature analysis of etiologies. Reported triggers are described and classified as per pathophysiological mechanism. A video of six cases displaying multiple SAME with diverse outcomes is provided. We identified 50 different conditions that manifest SAME, some associated with developmental regression. Etiologies include disorders of metabolism: energy substrate, amino acids, complex molecules, vitamins/cofactors, minerals, and neurotransmitters/synaptic vesicle cycling. Non-metabolic neurodegenerative and genetic disorders that present with movement disorders and epilepsy can additionally manifest SAME. A limited number of triggers are grouped here, together with an approach to investigations and general management strategies. Several neurogenetic and neurometabolic disorders manifest SAME. Identifying triggers can help in certain cases narrow the differential diagnosis and guide the expeditious application of targeted therapies to minimize adverse developmental and neurological consequences. This process may inform pathogenesis and eventually improve our understanding of the mechanisms that lead to the development of SAME. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Blas Couto
- Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Instituto de Neurociencia Cognitiva y Traslacional, INECO-Favaloro-CONICET, Buenos Aires, Argentina
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Dora Steel
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California San Diego, San Diego, California, USA
- Division of Neurology, Rady Children's Hospital; Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Carolina Gorodetsky
- Division of Neurology, Pediatric Deep Brain Stimulation Program, Movement Disorder and Neuromodulation Program at the Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Neurology, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Idiiatullina E, Al-Azab M, Lin M, Hrovat-Schaale K, Liu Z, Li X, Guo C, Chen X, Li Y, Gao S, Cui J, Zhou W, Liu L, Zhang Y, Masters SL. Heterozygous de novo dominant negative mutation of REXO2 results in interferonopathy. Nat Commun 2024; 15:6685. [PMID: 39107301 PMCID: PMC11303720 DOI: 10.1038/s41467-024-50878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Mitochondrial RNA (mtRNA) in the cytosol can trigger the innate immune sensor MDA5, and autoinflammatory disease due to type I IFN. Here, we show that a dominant negative mutation in the gene encoding the mitochondrial exonuclease REXO2 may cause interferonopathy by triggering the MDA5 pathway. A patient characterized by this heterozygous de novo mutation (p.T132A) presented with persistent skin rash featuring hyperkeratosis, parakeratosis and acanthosis, with infiltration of lymphocytes and eosinophils around small blood vessels. In addition, circulating IgE levels and inflammatory cytokines, including IFNα, are found consistently elevated. Transcriptional analysis highlights a type I IFN gene signature in PBMC. Mechanistically, REXO2 (T132A) lacks the ability to cleave RNA and inhibits the activity of wild-type REXO2. This leads to an accumulation of mitochondrial dsRNA in the cytosol, which is recognized by MDA5, leading to the associated type I IFN gene signature. These results demonstrate that in the absence of appropriate regulation by REXO2, aberrant cellular nucleic acids may accumulate and continuously trigger innate sensors, resulting in an inborn error of immunity.
Collapse
Affiliation(s)
- Elina Idiiatullina
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- Department of Therapy and Nursing, Bashkir State Medical University, Ufa, Russia
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, USA
| | - Mahmoud Al-Azab
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- Department of Medical Microbiology, Faculty of Medicine, University of Science and Technology, Aden, Yemen
| | - Meng Lin
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Katja Hrovat-Schaale
- Department of Therapy and Nursing, Bashkir State Medical University, Ufa, Russia
- Department of Medical Microbiology, Faculty of Medicine, University of Science and Technology, Aden, Yemen
| | - Ziyang Liu
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiaotian Li
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Caiqin Guo
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xixi Chen
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Yaoying Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Cui
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Zhou
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.
| | - Yuxia Zhang
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.
| | - Seth L Masters
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Australia.
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
4
|
Lockshin ER, Calakos N. The integrated stress response in brain diseases: A double-edged sword for proteostasis and synapses. Curr Opin Neurobiol 2024; 87:102886. [PMID: 38901329 DOI: 10.1016/j.conb.2024.102886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
The integrated stress response (ISR) is a highly conserved biochemical pathway that regulates protein synthesis. The ISR is activated in response to diverse stressors to restore cellular homeostasis. As such, the ISR is implicated in a wide range of diseases, including brain disorders. However, in the brain, the ISR also has potent influence on processes beyond proteostasis, namely synaptic plasticity, learning and memory. Thus, in the setting of brain diseases, ISR activity may have dual effects on proteostasis and synaptic function. In this review, we consider the ISR's contribution to brain disorders through the lens of its potential effects on synaptic plasticity. From these examples, we illustrate that at times ISR activity may be a "double-edged sword". We also highlight its potential as a therapeutic target to improve circuit function in brain diseases independent of its role in disease pathogenesis.
Collapse
Affiliation(s)
- Elana R Lockshin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Nicole Calakos
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Timsina J, Dinasarapu A, Kilic-Berkmen G, Budde J, Sung YJ, Klein AM, Cruchaga C, Jinnah HA. Blood-Based Proteomics for Adult-Onset Focal Dystonias. Ann Neurol 2024; 96:110-120. [PMID: 38578115 PMCID: PMC11186717 DOI: 10.1002/ana.26929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES The adult-onset focal dystonias are characterized by over-active muscles leading to abnormal movements. For most cases, the etiology and pathogenesis remain unknown. In the current study, unbiased proteomics methods were used to identify potential changes in blood plasma proteins. METHODS A large-scale unbiased proteomics screen was used to compare proteins (N = 6,345) in blood plasma of normal healthy controls (N = 49) with adult-onset focal dystonia (N = 143) consisting of specific subpopulations of cervical dystonia (N = 45), laryngeal dystonia (N = 49), and blepharospasm (N = 49). Pathway analyses were conducted to identify relevant biological pathways. Finally, protein changes were used to build a prediction model for dystonia. RESULTS After correction for multiple comparisons, 15 proteins were associated with adult-onset focal dystonia. Subgroup analyses revealed some proteins were shared across the dystonia subgroups while others were unique to 1 subgroup. The top biological pathways involved changes in the immune system, metal ion transport, and reactive oxygen species. A 4-protein model showed high accuracy in discriminating control individuals from dystonia cases [average area under the curve (AUC) = 0.89]. INTERPRETATION These studies provide novel insights into the etiopathogenesis of dystonia, as well as novel potential biomarkers. ANN NEUROL 2024;96:110-120.
Collapse
Affiliation(s)
- Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashok Dinasarapu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Gamze Kilic-Berkmen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam M. Klein
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurologic Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - H. A. Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
6
|
Wu R, Chen WT, Dou WK, Zhou HM, Shi M. Whole-exome sequencing in a cohort of Chinese patients with isolated cervical dystonia. Heliyon 2024; 10:e31885. [PMID: 38845987 PMCID: PMC11153233 DOI: 10.1016/j.heliyon.2024.e31885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Background Dystonia is a kind of movement disorder but its pathophysiological mechanisms are still largely unknown. Recent evidence reveals that genetical defects may play important roles in the pathogenesis of dystonia. Objectives and Methods -To explore possible causative genes in Chinese dystonia patients, DNA samples from 42 sporadic patients with isolated cervical dystonia were subjected to whole-exome sequencing. Rare deleterious variants associated with dystonia phenotype were screened out and then classified according to the American College of Medical Genetics and Genomics (ACMG) criteria. Phenolyzer was used for analyzing the most probable candidates correlated with dystonia phenotype, and SWISS-MODEL server was for predicting the 3D structures of variant proteins. Results Among 42 patients (17 male and 25 female) recruited, a total of 36 potentially deleterious variants of dystonia-associated genes were found in 30 patients (30/42, 71.4 %). Four disease-causing variants including a pathogenic variant in PLA2G6 (c.797G > C) and three likely pathogenic variants in DCTN1 (c.73C > T), SPR (c.1A > C) and TH (c.56C > G) were found in four patients separately. Other 32 variants were classified as uncertain significance in 26 patients. Phenolyzer prioritized genes TH, PLA2G6 and DCTN1 as the most probable candidates correlated with dystonia phenotype. Although 3D prediction of DCTN1 and PLA2G6 variant proteins detected no obvious structural alterations, the mutation in DCTN1 (c.73C > T:p.Arg25Trp) was closely adjacent to its key functional domain. Conclusion Our whole-exome sequencing results identified a novel variant in DCTN1 in sporadic Chinese patients with isolated cervical dystonia, which however, needs our further study on its exact role in dystonia pathogenesis.
Collapse
Affiliation(s)
- Rui Wu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
- Department of Neurology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi Province, China
| | - Wen-Tian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Wei-Kang Dou
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Hui-Min Zhou
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ming Shi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| |
Collapse
|
7
|
Burnett SB, Culver AM, Simon TA, Rowson T, Frederick K, Palmer K, Murray SA, Davis SW, Patel RC. A frameshift mutation in the murine Prkra gene causes dystonia and exhibits abnormal cerebellar development and reduced eIF2α phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597421. [PMID: 38895245 PMCID: PMC11185611 DOI: 10.1101/2024.06.04.597421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mutations in Prkra gene, which encodes PACT/RAX cause early onset primary dystonia DYT-PRKRA, a movement disorder that disrupts coordinated muscle movements. PACT/RAX activates protein kinase R (PKR, aka EIF2AK2) by a direct interaction in response to cellular stressors to mediate phosphorylation of the α subunit of the eukaryotic translation initiation factor 2 (eIF2α). Mice homozygous for a naturally arisen, recessively inherited frameshift mutation, Prkra lear-5J exhibit progressive dystonia. In the present study, we investigate the biochemical and developmental consequences of the Prkra lear-5J mutation. Our results indicate that the truncated PACT/RAX protein retains its ability to interact with PKR, however, it inhibits PKR activation. Furthermore, mice homozygous for the mutation have abnormalities in the cerebellar development as well as a severe lack of dendritic arborization of Purkinje neurons. Additionally, reduced eIF2α phosphorylation is noted in the cerebellums and Purkinje neurons of the homozygous Prkra lear-5J mice. These results indicate that PACT/RAX mediated regulation of PKR activity and eIF2α phosphorylation plays a role in cerebellar development and contributes to the dystonia phenotype resulting from this mutation.
Collapse
Affiliation(s)
| | | | | | | | | | - Kristina Palmer
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | | | | | | |
Collapse
|
8
|
Lewis SA, Forstrom J, Tavani J, Schafer R, Tiede Z, Padilla-Lopez SR, Kruer MC. eIF2α phosphorylation evokes dystonia-like movements with D2-receptor and cholinergic origin and abnormal neuronal connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594240. [PMID: 38798458 PMCID: PMC11118466 DOI: 10.1101/2024.05.14.594240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dystonia is the 3rd most common movement disorder. Dystonia is acquired through either injury or genetic mutations, with poorly understood molecular and cellular mechanisms. Eukaryotic initiation factor alpha (eIF2α) controls cell state including neuronal plasticity via protein translation control and expression of ATF4. Dysregulated eIF2α phosphorylation (eIF2α-P) occurs in dystonia patients and models including DYT1, but the consequences are unknown. We increased/decreased eIF2α-P and tested motor control and neuronal properties in a Drosophila model. Bidirectionally altering eIF2α-P produced dystonia-like abnormal posturing and dyskinetic movements in flies. These movements were also observed with expression of the DYT1 risk allele. We identified cholinergic and D2-receptor neuroanatomical origins of these dyskinetic movements caused by genetic manipulations to dystonia molecular candidates eIF2α-P, ATF4, or DYT1, with evidence for decreased cholinergic release. In vivo, increased and decreased eIF2α-P increase synaptic connectivity at the NMJ with increased terminal size and bouton synaptic release sites. Long-term treatment of elevated eIF2α-P with ISRIB restored adult longevity, but not performance in a motor assay. Disrupted eIF2α-P signaling may alter neuronal connectivity, change synaptic release, and drive motor circuit changes in dystonia.
Collapse
Affiliation(s)
- Sara A Lewis
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jacob Forstrom
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jennifer Tavani
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Robert Schafer
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Zach Tiede
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Sergio R Padilla-Lopez
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Michael C Kruer
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Programs in Neuroscience, Molecular & Cellular Biology, and Biomedical Informatics, Arizona State University, Tempe, AZ USA
| |
Collapse
|
9
|
Dorrity TJ, Shin H, Gertie JA, Chung H. The Sixth Sense: Self-nucleic acid sensing in the brain. Adv Immunol 2024; 161:53-83. [PMID: 38763702 PMCID: PMC11186578 DOI: 10.1016/bs.ai.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Our innate immune system uses pattern recognition receptors (PRRs) as a first line of defense to detect microbial ligands and initiate an immune response. Viral nucleic acids are key ligands for the activation of many PRRs and the induction of downstream inflammatory and antiviral effects. Initially it was thought that endogenous (self) nucleic acids rarely activated these PRRs, however emerging evidence indicates that endogenous nucleic acids are able to activate host PRRs in homeostasis and disease. In fact, many regulatory mechanisms are in place to finely control and regulate sensing of self-nucleic acids by PRRs. Sensing of self-nucleic acids is particularly important in the brain, as perturbations to nucleic acid sensing commonly leads to neuropathology. This review will highlight the role of nucleic acid sensors in the brain, both in disease and homeostasis. We also indicate the source of endogenous stimulatory nucleic acids where known and summarize future directions for the study of this growing field.
Collapse
Key Words
- Brain
- DNA sensing PRRs: cGAS, AIM2, TLR9
- Neurodegeneration: Aicardi-Goutieres syndrome (AGS), Alzheimer's disease, Amyotrophic lateral sclerosis, Stroke, Traumatic brain injury
- Neurodevelopment
- Neuroinflammation
- Nuecleic acid immunity
- Pattern recognition receptors (PRRs)
- RNA sensing PRRs: MDA5, RIG-I, PKR, TLR3, TLR7/8
Collapse
Affiliation(s)
- Tyler J Dorrity
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Heegwon Shin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Jake A Gertie
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States; Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Hachung Chung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
10
|
Calakos N, Caffall ZF. The integrated stress response pathway and neuromodulator signaling in the brain: lessons learned from dystonia. J Clin Invest 2024; 134:e177833. [PMID: 38557486 PMCID: PMC10977992 DOI: 10.1172/jci177833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and in the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an "always-on" mode, rather than the more canonical "on-demand" response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group's initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.
Collapse
Affiliation(s)
- Nicole Calakos
- Department of Neurology
- Department of Neurobiology, and
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | | |
Collapse
|
11
|
Dhar D, Holla VV, Kumari R, Yadav R, Kamble N, Muthusamy B, Pal PK. Clinical and genetic profile of patients with dystonia: An experience from a tertiary neurology center from India. Parkinsonism Relat Disord 2024; 120:105986. [PMID: 38219528 DOI: 10.1016/j.parkreldis.2023.105986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND The genetics of dystonia have varied across different ethnicities worldwide. Its significance has become more apparent with the advent of deep brain stimulation. OBJECTIVE To study the clinico-genetic profile of patients with probable genetic dystonia using whole exome sequencing (WES). METHODS A prospective, cross-sectional study was conducted from May 2021 to September 2022, enrolling patients with dystonia of presumed genetic etiology for WES. The study compared genetically-determined cases harboring pathogenic/likely-pathogenic variants (P/LP subgroup) with the presumed idiopathic or unsolved cases. RESULTS We recruited 65 patients (males, 69.2%) whose mean age of onset (AAO) and assessment were 25.0 ± 16.6 and 31.7 ± 15.2 years, respectively. Fifteen had pathogenic/likely-pathogenic variants (yield = 23.1%), 16 (24.6%) had variants of uncertain significance (VUS), 2 were heterozygous carriers while the remaining 32 cases tested negative (presumed idiopathic group). The P/LP subgroup had a significantly younger AAO (16.8 ± 12.3 vs 31.3 ± 17.0 years, p = 0.009), longer duration of illness (10.9 ± 10.3 vs 4.8 ± 4.3 years, p = 0.006), higher prevalence of generalized dystonia (n = 12, 80.0% vs n = 10, 31.3%, p = 0.004), lower-limb onset (n = 5, 33.3% vs n = 1, 3.1%, p = 0.009), higher motor (p = 0.035) and disability scores (p = 0.042). The classical DYT genes with pathogenic/likely pathogenic variants included 3 cases each of TOR1A, and KMT2B, and single cases each of SGCE, EIF2AK2, and VPS16. Non-DYT pathogenic/likely-pathogenic cases included PINK1, PANK2, CTSF, POLG, MICU1, and TSPOAP1. CONCLUSIONS The yield of WES was 23.1% among cases of probable genetic dystonia. Pathogenic or likely pathogenic variants in TOR1A, KMT2B, and SGCE genes were commoner. The absence of family history emphasizes the importance of accurate assessment of clinical predictors before genetic testing.
Collapse
Affiliation(s)
- Debjyoti Dhar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Riyanka Kumari
- Institute of Bioinformatics, International Technology Park, Bengaluru 560066, India; Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bengaluru 560066, India; Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India.
| |
Collapse
|
12
|
Thomsen M, Marth K, Loens S, Everding J, Junker J, Borngräber F, Ott F, Jesús S, Gelderblom M, Odorfer T, Kuhlenbäumer G, Kim HJ, Schaeffer E, Becktepe J, Kasten M, Brüggemann N, Pfister R, Kollewe K, Krauss JK, Lohmann E, Hinrichs F, Berg D, Jeon B, Busch H, Altenmüller E, Mir P, Kamm C, Volkmann J, Zittel S, Ferbert A, Zeuner KE, Rolfs A, Bauer P, Kühn AA, Bäumer T, Klein C, Lohmann K. Large-Scale Screening: Phenotypic and Mutational Spectrum in Isolated and Combined Dystonia Genes. Mov Disord 2024; 39:526-538. [PMID: 38214203 DOI: 10.1002/mds.29693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Pathogenic variants in several genes have been linked to genetic forms of isolated or combined dystonia. The phenotypic and genetic spectrum and the frequency of pathogenic variants in these genes have not yet been fully elucidated, neither in patients with dystonia nor with other, sometimes co-occurring movement disorders such as Parkinson's disease (PD). OBJECTIVES To screen >2000 patients with dystonia or PD for rare variants in known dystonia-causing genes. METHODS We screened 1207 dystonia patients from Germany (DysTract consortium), Spain, and South Korea, and 1036 PD patients from Germany for pathogenic variants using a next-generation sequencing gene panel. The impact on DNA methylation of KMT2B variants was evaluated by analyzing the gene's characteristic episignature. RESULTS We identified 171 carriers (109 with dystonia [9.0%]; 62 with PD [6.0%]) of 131 rare variants (minor allele frequency <0.005). A total of 52 patients (48 dystonia [4.0%]; four PD [0.4%, all with GCH1 variants]) carried 33 different (likely) pathogenic variants, of which 17 were not previously reported. Pathogenic biallelic variants in PRKRA were not found. Episignature analysis of 48 KMT2B variants revealed that only two of these should be considered (likely) pathogenic. CONCLUSION This study confirms pathogenic variants in GCH1, GNAL, KMT2B, SGCE, THAP1, and TOR1A as relevant causes in dystonia and expands the mutational spectrum. Of note, likely pathogenic variants only in GCH1 were also found among PD patients. For DYT-KMT2B, the recently described episignature served as a reliable readout to determine the functional effect of newly identified variants. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katrin Marth
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Rostock, Rostock, Germany
| | - Sebastian Loens
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Institute of Systems Motor Science, CBBM, University of Lübeck, Lübeck, Germany
| | - Judith Everding
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johanna Junker
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Fabian Ott
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Odorfer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Eva Schaeffer
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jos Becktepe
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Katja Kollewe
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Ebba Lohmann
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Frauke Hinrichs
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Christoph Kamm
- Department of Neurology, University Hospital Rostock, Rostock, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Kirsten E Zeuner
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Arndt Rolfs
- Medical Faculty, University of Rostock, Rostock, Germany
- Agyany Pharmaceuticals, Jerusalem, Israel
| | | | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, CBBM, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center of Rare Diseases, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Thomsen M, Lange LM, Zech M, Lohmann K. Genetics and Pathogenesis of Dystonia. ANNUAL REVIEW OF PATHOLOGY 2024; 19:99-131. [PMID: 37738511 DOI: 10.1146/annurev-pathmechdis-051122-110756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.
Collapse
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| |
Collapse
|
14
|
Harrer P, Škorvánek M, Kittke V, Dzinovic I, Borngräber F, Thomsen M, Mandel V, Svorenova T, Ostrozovicova M, Kulcsarova K, Berutti R, Busch H, Ott F, Kopajtich R, Prokisch H, Kumar KR, Mencacci NE, Kurian MA, Di Fonzo A, Boesch S, Kühn AA, Blümlein U, Lohmann K, Haslinger B, Weise D, Jech R, Winkelmann J, Zech M. Dystonia Linked to EIF4A2 Haploinsufficiency: A Disorder of Protein Translation Dysfunction. Mov Disord 2023; 38:1914-1924. [PMID: 37485550 DOI: 10.1002/mds.29562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Protein synthesis is a tightly controlled process, involving a host of translation-initiation factors and microRNA-associated repressors. Variants in the translational regulator EIF2AK2 were first linked to neurodevelopmental-delay phenotypes, followed by their implication in dystonia. Recently, de novo variants in EIF4A2, encoding eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), have been described in pediatric cases with developmental delay and intellectual disability. OBJECTIVE We sought to characterize the role of EIF4A2 variants in dystonic conditions. METHODS We undertook an unbiased search for likely deleterious variants in mutation-constrained genes among 1100 families studied with dystonia. Independent cohorts were screened for EIF4A2 variants. Western blotting and immunocytochemical studies were performed in patient-derived fibroblasts. RESULTS We report the discovery of a novel heterozygous EIF4A2 frameshift deletion (c.896_897del) in seven patients from two unrelated families. The disease was characterized by adolescence- to adulthood-onset dystonia with tremor. In patient-derived fibroblasts, eIF4A2 production amounted to only 50% of the normal quantity. Reduction of eIF4A2 was associated with abnormally increased levels of IMP1, a target of Ccr4-Not, the complex that interacts with eIF4A2 to mediate microRNA-dependent translational repression. By complementing the analyses with fibroblasts bearing EIF4A2 biallelic mutations, we established a correlation between IMP1 expression alterations and eIF4A2 functional dosage. Moreover, eIF4A2 and Ccr4-Not displayed significantly diminished colocalization in dystonia patient cells. Review of international databases identified EIF4A2 deletion variants (c.470_472del, c.1144_1145del) in another two dystonia-affected pedigrees. CONCLUSIONS Our findings demonstrate that EIF4A2 haploinsufficiency underlies a previously unrecognized dominant dystonia-tremor syndrome. The data imply that translational deregulation is more broadly linked to both early neurodevelopmental phenotypes and later-onset dystonic conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Philip Harrer
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matej Škorvánek
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Volker Kittke
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ivana Dzinovic
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Friederike Borngräber
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Vanessa Mandel
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Tatiana Svorenova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Miriam Ostrozovicova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Kristina Kulcsarova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Riccardo Berutti
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Fabian Ott
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Robert Kopajtich
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kishore R Kumar
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Neurology Department, Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Niccolo E Mencacci
- Ken and Ruth Davee Department of Neurology, Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Manju A Kurian
- Department of Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Blümlein
- Department of Pediatrics, Carl-Thiem-Klinikum Cottbus, Cottbus, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - David Weise
- Department of Neurology, Asklepios Fachklinikum Stadtroda, Stadtroda, Germany
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Robert Jech
- Department of Neurology, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
15
|
Fan Y, Si Z, Wang L, Zhang L. DYT- TOR1A dystonia: an update on pathogenesis and treatment. Front Neurosci 2023; 17:1216929. [PMID: 37638318 PMCID: PMC10448058 DOI: 10.3389/fnins.2023.1216929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
DYT-TOR1A dystonia is a neurological disorder characterized by involuntary muscle contractions and abnormal movements. It is a severe genetic form of dystonia caused by mutations in the TOR1A gene. TorsinA is a member of the AAA + family of adenosine triphosphatases (ATPases) involved in a variety of cellular functions, including protein folding, lipid metabolism, cytoskeletal organization, and nucleocytoskeletal coupling. Almost all patients with TOR1A-related dystonia harbor the same mutation, an in-frame GAG deletion (ΔGAG) in the last of its 5 exons. This recurrent variant results in the deletion of one of two tandem glutamic acid residues (i.e., E302/303) in a protein named torsinA [torsinA(△E)]. Although the mutation is hereditary, not all carriers will develop DYT-TOR1A dystonia, indicating the involvement of other factors in the disease process. The current understanding of the pathophysiology of DYT-TOR1A dystonia involves multiple factors, including abnormal protein folding, signaling between neurons and glial cells, and dysfunction of the protein quality control system. As there are currently no curative treatments for DYT-TOR1A dystonia, progress in research provides insight into its pathogenesis, leading to potential therapeutic and preventative strategies. This review summarizes the latest research advances in the pathogenesis, diagnosis, and treatment of DYT-TOR1A dystonia.
Collapse
Affiliation(s)
- Yuhang Fan
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| | - Zhibo Si
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Linlin Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Zhang
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Wang Y, Zhao Y, Pan H, Zeng Q, Zhou X, Xiang Y, Zhou Z, Xu Q, Sun Q, Tan J, Yan X, Li J, Guo J, Tang B, Yu Q, Liu Z. Genetic analysis of dystonia-related genes in Parkinson's disease. Front Aging Neurosci 2023; 15:1207114. [PMID: 37304079 PMCID: PMC10250656 DOI: 10.3389/fnagi.2023.1207114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Objective Parkinson's disease (PD) and dystonia are two closely related movement disorders with overlaps in clinical phenotype. Variants in several dystonia-related genes were demonstrated to be associated with PD; however, genetic evidence for the involvement of dystonia-related genes in PD has not been fully studied. Here, we comprehensively investigated the association between rare variants in dystonia-related genes and PD in a large Chinese cohort. Methods We comprehensively analyzed the rare variants of 47 known dystonia-related genes by mining the whole-exome sequencing (WES) and whole-genome sequencing (WGS) data from 3,959 PD patients and 2,931 healthy controls. We initially identified potentially pathogenic variants of dystonia-related genes in patients with PD based on different inheritance models. Sequence kernel association tests were conducted in the next step to detect the association between the burden of rare variants and the risk for PD. Results We found that five patients with PD carried potentially pathogenic biallelic variants in recessive dystonia-related genes including COL6A3 and TH. Additionally, we identified 180 deleterious variants in dominant dystonia-related genes based on computational pathogenicity predictions and four of which were considered as potentially pathogenic variants (p.W591X and p.G820S in ANO3, p.R678H in ADCY5, and p.R458Q in SLC2A1). A gene-based burden analysis revealed the increased burden of variant subgroups of TH, SQSTM1, THAP1, and ADCY5 in sporadic early-onset PD, whereas COL6A3 was associated with sporadic late-onset PD. However, none of them reached statistical significance after the Bonferroni correction. Conclusion Our findings indicated that rare variants in several dystonia-related genes are suggestively associated with PD, and taken together, the role of COL6A3 and TH genes in PD is highlighted.
Collapse
Affiliation(s)
- Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhou Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Qiao Yu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Marie V. What have we learned about the biology of dystonia from deep brain stimulation? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:481-491. [PMID: 37482401 DOI: 10.1016/bs.irn.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Deep brain stimulation has dramatically changed the management of patients with dystonia, therapeutic approach of dystonia with marked improvement of dystonia and functional disability. However, despite decades of experience and identification of good prognosis factors, prediction of beneficial effect at the individual level is still a challenge. There is inter-individual variability in therapeutic outcome. Genetic factors are identified but subgroups of patients still have relapse or worsening of dystonia in short or long term. Possible "biological factors" underlying such a difference among patients are discussed, including structural or functional differences including altered plasticity.
Collapse
Affiliation(s)
- Vidailhet Marie
- Sorbonne Université, Paris Brain Institute - ICM, Inserm CNRS, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Paris, France.
| |
Collapse
|
18
|
Di Fonzo A, Jinnah HA, Zech M. Dystonia genes and their biological pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:61-103. [PMID: 37482402 DOI: 10.1016/bs.irn.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
High-throughput sequencing has been instrumental in uncovering the spectrum of pathogenic genetic alterations that contribute to the etiology of dystonia. Despite the immense heterogeneity in monogenic causes, studies performed during the past few years have highlighted that many rare deleterious variants associated with dystonic presentations affect genes that have roles in certain conserved pathways in neural physiology. These various gene mutations that appear to converge towards the disruption of interconnected cellular networks were shown to produce a wide range of different dystonic disease phenotypes, including isolated and combined dystonias as well as numerous clinically complex, often neurodevelopmental disorder-related conditions that can manifest with dystonic features in the context of multisystem disturbances. In this chapter, we summarize the manifold dystonia-gene relationships based on their association with a discrete number of unifying pathophysiological mechanisms and molecular cascade abnormalities. The themes on which we focus comprise dopamine signaling, heavy metal accumulation and calcifications in the brain, nuclear envelope function and stress response, gene transcription control, energy homeostasis, lysosomal trafficking, calcium and ion channel-mediated signaling, synaptic transmission beyond dopamine pathways, extra- and intracellular structural organization, and protein synthesis and degradation. Enhancing knowledge about the concept of shared etiological pathways in the pathogenesis of dystonia will motivate clinicians and researchers to find more efficacious treatments that allow to reverse pathologies in patient-specific core molecular networks and connected multipathway loops.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
19
|
Thomsen M, Lange LM, Klein C, Lohmann K. MDSGene: Extending the List of Isolated Dystonia Genes by VPS16, EIF2AK2, and AOPEP. Mov Disord 2023; 38:507-508. [PMID: 36670070 DOI: 10.1002/mds.29327] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
Indelicato E, Boesch S, Baumgartner M, Plecko B, Winkelmann J, Zech M. Confirmation of a Causal Role for SHQ1 Variants in Early Infantile-Onset Recessive Dystonia. Mov Disord 2023; 38:355-357. [PMID: 36416405 DOI: 10.1002/mds.29281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuela Baumgartner
- Abteilung für Entwicklungsneurologie und Neuropädiatrie, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| | - Barbara Plecko
- Department of Paediatrics and Adolescent Medicine, Division of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
21
|
Macintosh J, Thiffault I, Pastinen T, Sztriha L, Bernard G. A Recurrent De Novo Variant in EIF2AK2 Causes a Hypomyelinating Leukodystrophy. Child Neurol Open 2023; 10:2329048X231176673. [PMID: 37284702 PMCID: PMC10240855 DOI: 10.1177/2329048x231176673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
De novo pathogenic variants in EIF2AK2 have recently been reported as a novel genetic cause of leukoencephalopathy. Here, we describe a male individual who presented in the first year of life with clinical features resembling Pelizaeus-Merzbacher disease (PMD), including nystagmus, hypotonia, and global developmental delay, and which later progressed to include ataxia and spasticity. Brain MRI at the age of two revealed diffuse hypomyelination. This report adds to the limited number of individuals published and further reinforces de novo variants in EIF2AK2 as a molecular cause of a leukodystrophy that clinically and radiologically resembles PMD.
Collapse
Affiliation(s)
- Julia Macintosh
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Isabelle Thiffault
- Genomic Medicine Center, Children’s Mercy Hospital, Kansas City, MO, USA
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children’s Mercy Hospital, Kansas City, MO, USA
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - László Sztriha
- Department of Pediatrics Szent-Györgyi Albert Medical Center, University of Szeged, Szeged, Hungary
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Department Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Frederick K, Patel RC. Luteolin protects DYT- PRKRA cells from apoptosis by suppressing PKR activation. Front Pharmacol 2023; 14:1118725. [PMID: 36874028 PMCID: PMC9974672 DOI: 10.3389/fphar.2023.1118725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
DYT-PRKRA is a movement disorder caused by mutations in the PRKRA gene, which encodes for PACT, the protein activator of interferon-induced, double-stranded RNA (dsRNA)-activated protein kinase PKR. PACT brings about PKR's catalytic activation by a direct binding in response to stress signals and activated PKR phosphorylates the translation initiation factor eIF2α. Phosphorylation of eIF2α is the central regulatory event that is part of the integrated stress response (ISR), an evolutionarily conserved intracellular signaling network essential for adapting to environmental stresses to maintain healthy cells. A dysregulation of either the level or the duration of eIF2α phosphorylation in response to stress signals causes the normally pro-survival ISR to become pro-apoptotic. Our research has established that the PRKRA mutations reported to cause DYT-PRKRA lead to enhanced PACT-PKR interactions causing a dysregulation of ISR and an increased sensitivity to apoptosis. We have previously identified luteolin, a plant flavonoid, as an inhibitor of the PACT-PKR interaction using high-throughput screening of chemical libraries. Our results presented in this study indicate that luteolin is markedly effective in disrupting the pathological PACT-PKR interactions to protect DYT-PRKRA cells against apoptosis, thus suggesting a therapeutic option for using luteolin to treat DYT-PRKRA and possibly other diseases resulting from enhanced PACT-PKR interactions.
Collapse
Affiliation(s)
- Kenneth Frederick
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Rekha C Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
23
|
Chen K, Wu T, Wang D, Li R, Shen X, Zhao T, Ozato K, Li R. Transcriptomics and quantitative proteomics reveal changes after second stimulation of bone marrow-derived macrophages from lupus-prone MRL/lpr mice. Front Immunol 2022; 13:1004232. [PMID: 36341359 PMCID: PMC9627492 DOI: 10.3389/fimmu.2022.1004232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Innate immune memory can cause the occurrence and exacerbation of autoimmune diseases, and it is as well as being strongly associated with the pathogenesis of systemic lupus erythematosus (SLE), however, the specific mechanism remains to be further studied. We learned that IFN-γ stimulation generated innate immune memory in bone marrow-derived macrophages (BMDMs) and activated memory interferon-stimulated genes (ISGs). This research used IFN-γ and lipopolysaccharide (LPS) to treat BMDMs with lupus-prone MRL/lpr mice and showed that particular memory ISGs were substantially elevated in prestimulated macrophages. In order to identify the differentially expressed genes (DEGs), researchers turned to RNA-seq. GO and KEGG analysis showed that up-regulated DEGs were enriched in defense and innate immune responses, and were related to the expression of pattern recognition receptors (PRRs)-related pathways in macrophages. TMT-based proteome analysis revealed differentially expressed proteins (DEPs) up-regulated in BMDMs were abundant in metabolic pathways such as glucose metabolism. Our study found that after the secondary stimulation of MRL/lpr mice, the expression of PRRs in innate immune cells was changed, and IFN-related pathways were activated to release a large number of ISGs to promote the secondary response. At the same time, related metabolic modes such as glycolysis were enhanced, and epigenetic changes may occur. Therefore, SLE is brought on, maintained, and worsened by a variety of factors that work together to produce innate immune memory.
Collapse
Affiliation(s)
- Keyue Chen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tiyun Wu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Danyan Wang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Li
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangfeng Shen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Keiko Ozato, ; Rongqun Li,
| | - Rongqun Li
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Keiko Ozato, ; Rongqun Li,
| |
Collapse
|
24
|
Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F, Zhang L. Role of pyroptosis in inflammation and cancer. Cell Mol Immunol 2022; 19:971-992. [PMID: 35970871 PMCID: PMC9376585 DOI: 10.1038/s41423-022-00905-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Pyroptosis is a form of programmed cell death mediated by gasdermin and is a product of continuous cell expansion until the cytomembrane ruptures, resulting in the release of cellular contents that can activate strong inflammatory and immune responses. Pyroptosis, an innate immune response, can be triggered by the activation of inflammasomes by various influencing factors. Activation of these inflammasomes can induce the maturation of caspase-1 or caspase-4/5/11, both of which cleave gasdermin D to release its N-terminal domain, which can bind membrane lipids and perforate the cell membrane. Here, we review the latest advancements in research on the mechanisms of pyroptosis, newly discovered influencing factors, antitumoral properties, and applications in various diseases. Moreover, this review also provides updates on potential targeted therapies for inflammation and cancers, methods for clinical prevention, and finally challenges and future directions in the field.
Collapse
Affiliation(s)
- Xiang Wei
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Feng Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, PR China
| | - Xiaoxue Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Haiyan Yan
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, PR China
| | - Ting Liu
- Department of Cell Biology and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, PR China
| | - Jun Huang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang, 310030, PR China.
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Fangwei Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, PR China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
25
|
Di Fonzo A, Albanese A, Jinnah HH. The apparent paradox of phenotypic diversity and shared mechanisms across dystonia syndromes. Curr Opin Neurol 2022; 35:502-509. [PMID: 35856917 PMCID: PMC9309988 DOI: 10.1097/wco.0000000000001076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We describe here how such mechanisms shared by different genetic forms can give rise to motor performance dysfunctions with a clinical aspect of dystonia. RECENT FINDINGS The continuing discoveries of genetic causes for dystonia syndromes are transforming our view of these disorders. They share unexpectedly common underlying mechanisms, including dysregulation in neurotransmitter signaling, gene transcription, and quality control machinery. The field has further expanded to include forms recently associated with endolysosomal dysfunction. SUMMARY The discovery of biological pathways shared between different monogenic dystonias is an important conceptual advance in the understanding of the underlying mechanisms, with a significant impact on the pathophysiological understanding of clinical phenomenology. The functional relationship between dystonia genes could revolutionize current dystonia classification systems, classifying patients with different monogenic forms based on common pathways. The most promising effect of these advances is on future mechanism-based therapeutic approaches.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neurology Unit, Milan, Italy
| | - Alberto Albanese
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Hyder H. Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Emory University School of Medicine, Atlanta GA, 30322, USA
| |
Collapse
|
26
|
Dzinovic I, Winkelmann J, Zech M. Genetic intersection between dystonia and neurodevelopmental disorders: Insights from genomic sequencing. Parkinsonism Relat Disord 2022; 102:131-140. [DOI: 10.1016/j.parkreldis.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
27
|
Hu YM, Ran R, Yang C, Liu SM. The diagnostic and prognostic implications of PRKRA expression in HBV-related hepatocellular carcinoma. Infect Agent Cancer 2022; 17:34. [PMID: 35729579 PMCID: PMC9211784 DOI: 10.1186/s13027-022-00430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) accounts for more than half of total HCC patients in developing countries. Currently, HBV-related HCC diagnosis and prognosis still lack specific biomarkers. Here, we investigated if PRKRA expression in peripheral blood could be a potential biomarker for the diagnosis/prognosis of HBV-related HCC. Methods The expression of PRKRA in HBV-related HCC was firstly analyzed using TCGA and GEO databases. The results were confirmed in a validation cohort including 152 blood samples from 77 healthy controls and 75 HCC patients, 60 of which were infected with HBV. The potential diagnostic and prognostic values of PRKRA were also evaluated by the area under the receiver operator characteristic curve (AUROC) and Kaplan–Meier method, respectively. Results PRKRA was significantly upregulated in HCC patients, especially in those with HBV infections. In addition, the combination of PRKRA expression in peripheral blood with serum AFP and CEA levels displayed a better diagnostic performance (AUROC = 0.908, 95% CI 0.844–0.972; p < 0.001). Notably, when serum AFP is less than 200 ng/mL, PRKRA expression demonstrated better diagnostic capability. Furthermore, PRKRA expression levels were associated with expression of EIF2AK2 and inflammatory cytokine genes. Conclusions Triple combination testing of blood PRKRA expression, serum AFP and CEA levels could be a noninvasive strategy for diagnosis; and the elevation of PRKRA expression could predicate poor prognosis for HBV-related HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-022-00430-6.
Collapse
Affiliation(s)
- Yi-Min Hu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Ruoxi Ran
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Chaoqi Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
28
|
Diaw SH, Ott F, Münchau A, Lohmann K, Busch H. Emerging role of a systems biology approach to elucidate factors of reduced penetrance: transcriptional changes in THAP1-linked dystonia as an example. MED GENET-BERLIN 2022; 34:131-141. [PMID: 38835919 PMCID: PMC11006298 DOI: 10.1515/medgen-2022-2126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Pathogenic variants in THAP1 can cause dystonia with a penetrance of about 50 %. The underlying mechanisms are unknown and can be considered as means of endogenous disease protection. Since THAP1 encodes a transcription factor, drivers of this variability putatively act at the transcriptome level. Several transcriptome studies tried to elucidate THAP1 function in diverse cellular and mouse models, including mutation carrier-derived cells and iPSC-derived neurons, unveiling various differentially expressed genes and affected pathways. These include nervous system development, dopamine signalling, myelination, or cell-cell adhesion. A network diffusion analysis revealed mRNA splicing, mitochondria, DNA repair, and metabolism as significant pathways that may represent potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Sokhna Haissatou Diaw
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Fabian Ott
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
29
|
Innate Immunity: A Balance between Disease and Adaption to Stress. Biomolecules 2022; 12:biom12050737. [PMID: 35625664 PMCID: PMC9138980 DOI: 10.3390/biom12050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Since first being documented in ancient times, the relation of inflammation with injury and disease has evolved in complexity and causality. Early observations supported a cause (injury) and effect (inflammation) relationship, but the number of pathologies linked to chronic inflammation suggests that inflammation itself acts as a potent promoter of injury and disease. Additionally, results from studies over the last 25 years point to chronic inflammation and innate immune signaling as a critical link between stress (exogenous and endogenous) and adaptation. This brief review looks to highlight the role of the innate immune response in disease pathology, and recent findings indicating the innate immune response to chronic stresses as an influence in driving adaptation.
Collapse
|
30
|
Vaughn LS, Frederick K, Burnett SB, Sharma N, Bragg DC, Camargos S, Cardoso F, Patel RC. DYT- PRKRA Mutation P222L Enhances PACT's Stimulatory Activity on Type I Interferon Induction. Biomolecules 2022; 12:713. [PMID: 35625640 PMCID: PMC9138762 DOI: 10.3390/biom12050713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
DYT-PRKRA (dystonia 16 or DYT-PRKRA) is caused by mutations in the PRKRA gene that encodes PACT, the protein activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR). PACT participates in several cellular pathways, of which its role as a PKR activator protein during integrated stress response (ISR) is the best characterized. Previously, we have established that the DYT-PRKRA mutations cause enhanced activation of PKR during ISR to sensitize DYT-PRKRA cells to apoptosis. In this study, we evaluate if the most prevalent substitution mutation reported in DYT-PRKRA patients alters PACT's functional role in induction of type I IFNs via the retinoic acid-inducible gene I (RIG-I) signaling. Our results indicate that the P222L mutation augments PACT's ability to induce IFN β in response to dsRNA and the basal expression of IFN β and IFN-stimulated genes (ISGs) is higher in DYT-PRKRA patient cells compared to cells from the unaffected controls. Additionally, IFN β and ISGs are also induced at higher levels in DYT-PRKRA cells in response to dsRNA. These results offer a new avenue for investigations directed towards understanding the underlying molecular pathomechanisms in DYT-PRKRA.
Collapse
Affiliation(s)
- Lauren S. Vaughn
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Kenneth Frederick
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Samuel B. Burnett
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; (N.S.); (D.C.B.)
| | - D. Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; (N.S.); (D.C.B.)
| | - Sarah Camargos
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.C.); (F.C.)
| | - Francisco Cardoso
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.C.); (F.C.)
| | - Rekha C. Patel
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| |
Collapse
|
31
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
32
|
Chen YG, Hur S. Cellular origins of dsRNA, their recognition and consequences. Nat Rev Mol Cell Biol 2022; 23:286-301. [PMID: 34815573 PMCID: PMC8969093 DOI: 10.1038/s41580-021-00430-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 01/02/2023]
Abstract
Double-stranded RNA (dsRNA) is associated with most viral infections - it either constitutes the viral genome (in the case of dsRNA viruses) or is generated in host cells during viral replication. Hence, nearly all organisms have the capability of recognizing dsRNA and mounting a response, the primary aim of which is to mitigate the potential infection. In vertebrates, a set of innate immune receptors for dsRNA induce a multitude of cell-intrinsic and cell-extrinsic immune responses upon dsRNA recognition. Notably, recent studies showed that vertebrate cells can accumulate self-derived dsRNAs or dsRNA-like species upon dysregulation of several cellular processes, activating the very same immune pathways as in infected cells. On the one hand, such aberrant immune activation in the absence of infection can lead to pathogenesis of immune disorders, such as Aicardi-Goutières syndrome. On the other hand, the same innate immune reaction can be induced in a controlled setting for a therapeutic benefit, as occurs in immunotherapies. In this Review, we describe mechanisms by which immunostimulatory dsRNAs are generated in mammalian cells, either by viruses or by the host cells, and how cells respond to them, with the focus on recent developments regarding the role of cellular dsRNAs in immune modulation.
Collapse
Affiliation(s)
- Y Grace Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Sun Hur
- Harvard Medical School & Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
33
|
Magrinelli F, Moualek D, Tazir M, Pacha LA, Verghese A, Bhatia KP, Maroofian R, Houlden H. Heterozygous EIF2AK2 Variant Causes Adolescence-Onset Generalized Dystonia Partially Responsive to DBS. Mov Disord Clin Pract 2022; 9:268-271. [PMID: 35146068 PMCID: PMC8810423 DOI: 10.1002/mdc3.13371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- Department of NeurosciencesBiomedicine and Movement Sciences, University of VeronaVeronaItaly
| | - Dalila Moualek
- Service de NeurologieCHU Mustapha BachaAlgerAlgeria
- Laboratoire de Recherche en NeurosciencesUniversité Benyoucef BenkheddaAlgerAlgeria
| | - Meriem Tazir
- Service de NeurologieCHU Mustapha BachaAlgerAlgeria
- Laboratoire de Recherche en NeurosciencesUniversité Benyoucef BenkheddaAlgerAlgeria
| | - Lamia Ali Pacha
- Service de NeurologieCHU Mustapha BachaAlgerAlgeria
- Laboratoire de Recherche en NeurosciencesUniversité Benyoucef BenkheddaAlgerAlgeria
| | - Alice Verghese
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Kailash P. Bhatia
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Reza Maroofian
- Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Henry Houlden
- Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| |
Collapse
|
34
|
Classification of Dystonia. Life (Basel) 2022; 12:life12020206. [PMID: 35207493 PMCID: PMC8875209 DOI: 10.3390/life12020206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 12/23/2022] Open
Abstract
Dystonia is a hyperkinetic movement disorder characterized by abnormal movement or posture caused by excessive muscle contraction. Because of its wide clinical spectrum, dystonia is often underdiagnosed or misdiagnosed. In clinical practice, dystonia could often present in association with other movement disorders. An accurate physical examination is essential to describe the correct phenomenology. To help clinicians reaching the proper diagnosis, several classifications of dystonia have been proposed. The current classification consists of axis I, clinical characteristics, and axis II, etiology. Through the application of this classification system, movement disorder specialists could attempt to correctly characterize dystonia and guide patients to the most effective treatment. The aim of this article is to describe the phenomenological spectrum of dystonia, the last approved dystonia classification, and new emerging knowledge.
Collapse
|
35
|
Waller SE, Morales‐Briceño H, Williams L, Mohammad SS, Fellner A, Kumar KR, Tchan M, Fung VS. Possible
EIF2AK2
‐Associated Stress‐Related Neurological Decompensation with Combined Dystonia and Striatal Lesions. Mov Disord Clin Pract 2021; 9:240-244. [DOI: 10.1002/mdc3.13384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sophie E. Waller
- Movement Disorders Unit, Neurology Department Westmead Hospital Westmead New South Wales Australia
| | - Hugo Morales‐Briceño
- Movement Disorders Unit, Neurology Department Westmead Hospital Westmead New South Wales Australia
- Sydney Medical School University of Sydney Sydney NSW Australia
| | - Laura Williams
- Movement Disorders Unit, Neurology Department Westmead Hospital Westmead New South Wales Australia
| | - Shekeeb S. Mohammad
- The Children's Hospital at Westmead Clinical School University of Sydney Westmead New South Wales Australia
| | - Avi Fellner
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital Petah Tikva Israel
- The Neurology Department Rabin Medical Center, Belinson Hospital Petah Tikva Israel
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research Darlinghurst New South Wales Australia
| | - Kishore R. Kumar
- Sydney Medical School University of Sydney Sydney NSW Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- Molecular Medicine Laboratory and Neurology Department Concord Repatriation General Hospital Concord New South Wales Australia
| | - Michel Tchan
- Sydney Medical School University of Sydney Sydney NSW Australia
- Department of Clinical Genetics Westmead Hospital Westmead New South Wales Australia
| | - Victor S.C. Fung
- Movement Disorders Unit, Neurology Department Westmead Hospital Westmead New South Wales Australia
- Sydney Medical School University of Sydney Sydney NSW Australia
| |
Collapse
|
36
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Musacchio T, Zech M, Reich MM, Winkelmann J, Volkmann J. A Recurrent EIF2AK2 Missense Variant Causes Autosomal-Dominant Isolated Dystonia. Ann Neurol 2021; 89:1257-1258. [PMID: 33866603 DOI: 10.1002/ana.26081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/24/2023]
Affiliation(s)
- Thomas Musacchio
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Martin M Reich
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany.,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
38
|
The importance of genetic testing for dystonia patients and translational research. J Neural Transm (Vienna) 2021; 128:473-481. [PMID: 33876307 PMCID: PMC8099821 DOI: 10.1007/s00702-021-02329-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022]
Abstract
Genetic testing through a variety of methods is a fundamental but underutilized approach for establishing the precise genetic diagnosis in patients with heritable forms of dystonia. Our knowledge of numerous dystonia-related genes, variants that they may contain, associated clinical presentations, and molecular disease mechanism may have significant translational potential for patients with genetically confirmed dystonia or their family members. Importantly, genetic testing permits the assembly of patient cohorts pertinent for dystonia-related research and developing therapeutics. Here we review the genetic testing approaches relevant to dystonia patients, and summarize and illustrate the multifold benefits of establishing an accurate molecular diagnosis for patients imminently or for translational research in the long run.
Collapse
|
39
|
Gonzalez-Latapi P, Marotta N, Mencacci NE. Emerging and converging molecular mechanisms in dystonia. J Neural Transm (Vienna) 2021; 128:483-498. [DOI: 10.1007/s00702-020-02290-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
|