1
|
Mei HR, Lam M, Kulkarni SR, Ashina H, Ashina M, Dussor G. Meningeal K ATP channels contribute to behavioral responses in preclinical migraine models. Pain 2025; 166:398-407. [PMID: 39661370 PMCID: PMC11723816 DOI: 10.1097/j.pain.0000000000003385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/27/2024] [Indexed: 12/12/2024]
Abstract
ABSTRACT Human experimental studies have shown that levcromakalim, an ATP-sensitive potassium (K ATP ) channel opener, induces migraine attacks in people with migraine but not in healthy volunteers. However, the exact site of action for K ATP channels in migraine pathophysiology remains unclear. This study investigates the role of these channels in the meninges in eliciting behavioral hypersensitivity responses in mice. The effects of K ATP channel signaling were assessed using preclinical migraine models induced by repetitive stress or dural stimulation. Prolactin, CGRP, sodium nitroprusside (SNP), and K ATP channel openers or blockers were administered systemically or onto the dura of mice followed by behavioral testing using periorbital von Frey or facial grimace measurements. Repetitive stress sensitized mice to a normally subthreshold systemic dose of levcromakalim. The K ATP blocker glibenclamide significantly reduced responses to systemic SNP following repetitive stress. In naive mice, direct dural application of levcromakalim or SNP elicited periorbital hypersensitivity. Responses to dural levcromakalim were inhibited by coinjection with glibenclamide or sumatriptan. By contrast, injection of levcromakalim in the periorbital skin did not induce hypersensitivity. Moreover, repetitive stress sensitized mice to dural injection of normally subthreshold doses of levcromakalim or SNP. Finally, dural coinjection of glibenclamide inhibited periorbital hypersensitivity induced by CGRP or prolactin in female mice. These studies demonstrate that the meninges can be one site of action for the migraine-triggering effects of K ATP channel openers. They also show that NO donors, CGRP, and prolactin can produce behavioral hypersensitivity through opening of K ATP channels in the meninges.
Collapse
Affiliation(s)
- Hao-Ruei Mei
- Department of Neuroscience, The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
| | - Myan Lam
- Department of Neuroscience, The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
- Department of Psychology, The University of Texas at Dallas, Richardson, TX, USA
| | - Shrivatsa Ravindra Kulkarni
- Department of Neuroscience, The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregory Dussor
- Department of Neuroscience, The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
2
|
Fila M, Przyslo L, Derwich M, Pawlowska E, Blasiak J. Sexual Dimorphism in Migraine. Focus on Mitochondria. Curr Pain Headache Rep 2025; 29:11. [PMID: 39760955 DOI: 10.1007/s11916-024-01317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE OF REVIEW Migraine prevalence in females is up to 3 times higher than in males and females show higher frequency, longer duration, and increased severity of headache attacks, but the reason for that difference is not known. This narrative review presents the main aspects of sex dimorphism in migraine prevalence and discusses the role of sex-related differences in mitochondrial homeostasis in that dimorphism. The gender dimension is also shortly addressed. RECENT FINDINGS The imbalance between energy production and demand in the brain susceptible to migraine is an important element of migraine pathogenesis. Mitochondria are the main energy source in the brain and mitochondrial impairment is reported in both migraine patients and animal models of human migraine. However, it is not known whether the observed changes are consequences of primary disturbance of mitochondrial homeostasis or are secondary to the migraine-affected hyperexcitable brain. Sex hormones regulate mitochondrial homeostasis, and several reports suggest that the female hormones may act protectively against mitochondrial impairment, contributing to more effective energy production in females, which may be utilized in the mechanisms responsible for migraine progression. Migraine is characterized by several comorbidities that are characterized by sex dimorphism in their prevalence and impairments in mitochondrial functions. Mitochondria may play a major role in sexual dimorphism in migraine through the involvement in energy production, the dependence on sex hormones, and the involvement in sex-dependent comorbidities. Studies on the role of mitochondria in sex dimorphism in migraine may contribute to precise personal therapeutic strategies.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Marcin Derwich
- Department of Developmental Dentistry, Medical University of Lodz, 90-647, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, 90-647, Lodz, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-420, Plock, Poland.
| |
Collapse
|
3
|
Fitzek MP, Boucherie DM, de Vries T, Handtmann C, Fathi H, Raffaelli B, MaassenVanDenBrink A. Migraine in men. J Headache Pain 2025; 26:3. [PMID: 39754046 PMCID: PMC11697684 DOI: 10.1186/s10194-024-01936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Migraine is a common primary headache disorder, less frequently affecting men than women, and often regarded as predominantly a "women's disease." Despite this, migraine in men presents with unique characteristics in terms of symptoms, treatment responses, comorbidities, and pain perception. Historically, research has focused more on migraine in women, overlooking critical male-specific aspects. RESULTS This review delves into the epidemiology, clinical presentation, and particular challenges of diagnosing and managing migraine in men. It addresses sex-specific triggers, hormonal influences, and comorbid conditions affecting migraine prevalence and severity in men. Additionally, the review evaluates current therapeutic strategies, underscoring the necessity for individualized approaches. Men with migraine often exhibit atypical symptoms compared to the ICHD-3 criteria and are less likely to report common associated symptoms. They also tend to have fewer psychological comorbidities, respond more favorably to pharmacological treatments, yet are less likely to seek medical support. The reasons for these sex disparities are complex, involving biological, psychosocial, and cultural factors, such as brain structural differences, differences in functional responses to painful stimuli, hormonal effects, and behavioral influences like adherence to masculine norms and stigma. CONCLUSION Men are underrepresented in clinical migraine research. In contrast, preclinical studies often focus solely in male animals as a result of various misconceptions. This disparity necessitates greater focus on sex-specific aspects of migraine to enhance diagnosis, treatment, and research. Addressing stigma, increasing healthcare access, and ensuring balanced sex and gender representation in future studies is crucial for a comprehensive understanding and effective management of migraine for all patients.
Collapse
Affiliation(s)
- Mira P Fitzek
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Junior Clinician Scientist Program, Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Deirdre M Boucherie
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, PO Box 2040, Rotterdam, CA, 3000, The Netherlands
| | - Tessa de Vries
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, PO Box 2040, Rotterdam, CA, 3000, The Netherlands
| | - Cleo Handtmann
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Haniyeh Fathi
- Student Research Committee, Alborz University of Medical Science, Karaj, Iran
| | - Bianca Raffaelli
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Antoinette MaassenVanDenBrink
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, PO Box 2040, Rotterdam, CA, 3000, The Netherlands.
| |
Collapse
|
4
|
Lee GJ, Hode V, Georgieva T, Rau J, Dodick DW, Schwedt TJ, Neugebauer V, Porreca F, Navratilova E. Prolactin-induced sensitization of trigeminal nociceptors promotes migraine co-morbidity in endometriosis. Cephalalgia 2025; 45:3331024241313378. [PMID: 39814523 DOI: 10.1177/03331024241313378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
BACKGROUND Women with endometriosis are more likely to have migraine. The mechanisms underlying this co-morbidity are unknown. Prolactin, a neurohormone secreted and released into circulation from the anterior pituitary, can sensitize sensory neurons from female, but not male, rodents, monkeys and human donors. METHODS We used a syngeneic model of endometriosis to determine whether elevated prolactin levels can sensitize trigeminal ganglion neurons and increase vulnerability to migraine pain. RESULTS Mice with endometriotic lesions showed increased serum prolactin levels and developed persistent abdominal, but not cephalic, allodynia. However, inhalation of a transient receptor potential ankyrin 1 agonist, umbellulone, a known environmental trigger of headache in some patients, elicited cephalic allodynia in mice with endometriosis but not sham controls, suggesting that endometriosis can promote sensitization of trigeminal neurons and migraine attacks. Endometriosis dysregulated the expression of prolactin receptor isoforms in trigeminal neurons and increased their excitability measured by in vitro patch clamp electrophysiology. Inhibition of pituitary prolactin following a 2-week treatment with a dopamine receptor agonist, cabergoline, prevented cephalic allodynia elicited by activation of trigeminal afferents with umbellulone. Cabergoline treatment also normalized the expression of prolactin receptor isoforms in trigeminal ganglia and the hyperexcitability of trigeminal neurons. CONCLUSIONS These data demonstrate that circulating prolactin in endometriosis promotes vulnerability to migraine through sensitization of trigeminal afferents. Clinically available dopamine receptor agonists or novel monoclonal antibodies targeting prolactin signaling may be effective for migraine prevention in women with endometriosis.
Collapse
Affiliation(s)
- Grace J Lee
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Veronica Hode
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Teodora Georgieva
- GEMM Core, BIO5 Institute, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jill Rau
- Neurology, HonorHealth, Scottsdale, AZ, USA
| | - David W Dodick
- Atria Academy of Science and Medicine, New York, NY, USA
| | | | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
5
|
Lin K, Stiles J, Tambo W, Ajmal E, Piao Q, Powell K, Li C. Bimodal functions of calcitonin gene-related peptide in the brain. Life Sci 2024; 359:123177. [PMID: 39486618 DOI: 10.1016/j.lfs.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
AIMS Calcitonin gene-related peptide (CGRP) is a pluripotent neuropeptide crucial for maintaining vascular homeostasis, yet its full therapeutic potential remains incompletely exploited. Within the brain, CGRP demonstrates a distinct bimodal effect, contributing to neuroprotection in ischemic conditions while inducing neuronal sensitization and inflammation in non-ischemic settings. Despite extensive research on CGRP, the absence of a definitive determinant for this observed dichotomy has limited its potential for therapeutic applications in the brain. This review examines the effects of CGRP in both physiological and pathological conditions, aiming to identify a unifying factor that could enhance its therapeutic applicability. MATERIALS AND METHODS This comprehensive literature review analyzes the molecular pathways associated with CGRP and the specific cellular responses observed in these contexts. Additionally, the review investigates the psychological implications of CGRP in relation to cerebral perfusion levels, aiming to elucidate its underlying factors. KEY FINDINGS Reviewing the literature reveals that, elevated levels of CGRP in non-ischemic conditions exert detrimental effects on brain function, while they confer protective effects in the context of ischemia. These encompass anti-oxidative, anti-inflammatory, anti-apoptotic, and angiogenic properties, along with behavioral normalization. Current findings indicate promising therapeutic avenues for CGRP beyond the acute phases of cerebral injury, extending to neurodegenerative and psychological disorders associated with cerebral hypoperfusion, as well as chronic recovery following acute cerebral injuries. SIGNIFICANCE Improved understanding of CGRP's bimodal properties, alongside advancements in CGRP delivery methodologies and brain ischemia detection technologies, paves the way for realizing its untapped potential and broad therapeutic benefits in diverse pathological conditions.
Collapse
Affiliation(s)
- Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Emory University, Atlanta, GA, USA
| | - Jacob Stiles
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; The College of William & Mary, Williamsburg, VA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Quanyu Piao
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
6
|
Chasseloup F, Bernard V, Chanson P. Prolactin: structure, receptors, and functions. Rev Endocr Metab Disord 2024; 25:953-966. [PMID: 39476210 DOI: 10.1007/s11154-024-09915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 12/08/2024]
Abstract
Prolactin (PRL) is a 23-kDa protein synthesized and secreted by lactotroph cells of the anterior pituitary gland but also by other peripheral tissues. PRL binds directly to a unique transmembrane receptor (PRLR), and the JAK2/signal transducer and activator of transcription 5 (Stat5) pathway is considered the major downstream pathway for PRLR signaling. To a lesser extent, PRL may be cleaved into the shorter 16-kDa PRL, also called vasoinhibin, whose signaling is not fully known. According to rodent models of PRL signaling inactivation and the identification of human genetic alterations in PRL signaling, a growing number of biological processes are partly mediated by PRL or its downstream effectors. In this review, we focused on PRL structure and signaling and its canonical function in reproduction. In addition to regulating reproductive functions, PRL also plays a role in behavior, notably in initiating nurturing and maternal behavior. We also included recent insights into PRL function in several fields, including migraines, metabolic homeostasis, inflammatory and autoimmune disease, and cancer. Despite the complexity of understanding the many functions of PRL, new research in this field offers interesting perspectives on physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Fanny Chasseloup
- Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse (HYPO), Hôpital Bicêtre, INSERM, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, 94275, France
| | - Valérie Bernard
- Department of Gynecology and Reproductive Medicine, CHU de Bordeaux, Bordeaux, F-33000, France
- Univ. Bordeaux, Bordeaux Institute in Oncology-BRIC-BioGo Team, INSERM U1312, Bordeaux, F-33000, France
| | - Philippe Chanson
- Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse (HYPO), Hôpital Bicêtre, INSERM, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, 94275, France.
| |
Collapse
|
7
|
Yang C, Wei C, Alam S, Chen X, McKemy DD. The neurotrophic factor artemin and its receptor GFRα3 mediate migraine-like pain via the ion channel TRPM8. Cephalalgia 2024; 44:3331024241297679. [PMID: 39552306 DOI: 10.1177/03331024241297679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
BACKGROUND Migraine has a strong genetic foundation, including both monogenic and polygenic types. The former are rare, with most migraine considered polygenic, supported by genome-wide association studies (GWAS) identifying numerous genetic variants linked with migraine risk. Surprisingly, some of the most common mutations are associated with transient receptor potential melastatin 8 (TRPM8), a non-selective cation channel that is the primary sensor of cold temperatures in cutaneous primary afferents of the somatosensory system. However, it is unlikely that the temperature sensitivity of TRPM8 is relevant in migraine-related tissues, such as the meninges, suggesting other activation mechanisms underly its role in migraine pathogenesis. Thus, to define the basis of the channel's involvement, we reasoned that cellular processes that increase cold sensitivity in the skin, such as the neurotrophic factor artemin, via its receptor glial cell-line derived neurotrophic factor family receptor alpha-3 (GFRα3), also mediate TRPM8-associated migraine-like pain in the meninges. METHODS To investigate the role of artemin and GFRα3 in preclinical rodent migraine models, we infused nitroglycerin acutely and chronically, and measured changes in periorbital and hind paw mechanical sensitivity in male and female mice lacking GFRα3, after neutralization of free artemin with specific monoclonal antibodies, or by systemic treatment with a TRPM8-specific antagonist. Further, in mice lacking GFRα3 we tested the effects of supradural infusions of a mix of inflammatory mediators, as well as tested if dura stimulation with artemin or a TRPM8-specific agonist induce migraine-related pain in mice. RESULTS We find that mechanical allodynia induced by systemic nitroglycerin, or supradural infusion of inflammatory mediators, involves GFRα3. In addition, neutralization of circulating artemin reduces the nitroglycerin phenotype, demonstrating the importance of this neurotrophic pathway in headaches. Further, we show TRPM8 expression in the meninges, and that direct supradural infusion of either a TRPM8-specific agonist or artemin itself produces mechanical allodynia, with the latter dependent on TRPM8 and ameliorated by concurrent treatment with sumatriptan. CONCLUSIONS These results indicate that neuroinflammatory events in the meninges can produce migraine-like pain in mice via artemin and GFRα3, likely acting upstream of TRPM8, providing a novel pathway that may contribute to headaches or migraine pathogenesis.
Collapse
Affiliation(s)
- Chenyu Yang
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Chao Wei
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sanaa Alam
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Xunyang Chen
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David D McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Christensen SL, Levy D. Meningeal brain borders and migraine headache genesis. Trends Neurosci 2024; 47:918-932. [PMID: 39304416 PMCID: PMC11563857 DOI: 10.1016/j.tins.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Migraine is a highly prevalent and disabling pain disorder that affects >1 billion people worldwide. One central hypothesis points to the cranial meninges as a key site underlying migraine headache genesis through complex interplay between meningeal sensory nerves, blood vessels, and adjacent immune cells. How these interactions might generate migraine headaches remains incompletely understood and a subject of much debate. In this review we discuss clinical and preclinical evidence supporting the concept that meningeal sterile inflammation, involving neurovascular and neuroimmune interactions, underlies migraine headache genesis. We examine downstream signaling pathways implicated in the development of migraine pain in response to exogenous events such as infusing migraine-triggering chemical substances. We further discuss cortex-to-meninges signaling pathways that could underlie migraine pain in response to endogenous events, such as cortical spreading depolarization (CSD), and explore future directions for the field.
Collapse
Affiliation(s)
- Sarah Louise Christensen
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Danish Headache Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark; Translational Research Centre, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
10
|
Grattan DR. Does the brain make prolactin? J Neuroendocrinol 2024; 36:e13432. [PMID: 39041379 DOI: 10.1111/jne.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The prolactin receptor (Prlr) is widely expressed in the brain, particularly in the hypothalamus. Prolactin also has an increasing range of well-characterised effects on central nervous system function. Because of this, over many years, there has been interest in whether the hormone itself is also expressed within the brain, perhaps acting as a neuropeptide to regulate brain function via its receptor in neurons. The aim of this invited review is to critically evaluate the evidence for brain production of prolactin. Unlike the evidence for the Prlr, evidence for brain prolactin is inconsistent and variable. A range of different antibodies have been used, each characterising a different distribution of prolactin-like immunoreactivity. Prolactin mRNA has been detected in the brain, but only at levels markedly lower than seen in the pituitary gland. Importantly, it has largely only been detected by highly sensitive amplification-based techniques, and the extreme sensitivity means there is a risk of false-positive data. Modern in situ hybridisation methods and single-cell RNA sequencing have not provided supporting evidence, but it is hard to prove a negative! Finally, I acknowledge and discuss the possibility that prolactin might be produced in the brain under specific circumstances, such as to promote a neuroprotective response to cell damage. Collectively, however, based on this analysis, I have formed the opinion that brain production of prolactin is unlikely, and even if occurs, it is of little physiological consequence. Most, if not all of the brain actions of prolactin can be explained by pituitary prolactin gaining access to the brain.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
11
|
Yang C, Wei C, Alam S, Chen X, McKemy DD. The neurotrophic factor artemin and its receptor GFRα3 mediate migraine-like pain via the ion channel TRPM8. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611532. [PMID: 39314341 PMCID: PMC11419092 DOI: 10.1101/2024.09.09.611532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Migraine has a strong genetic foundation, including both monogenic and polygenic types. The former are rare, with most migraine considered polygenic, supported by genome-wide association studies (GWAS) identifying numerous genetic variants associated with migraine risk. Surprisingly, some of the most common mutations are associated with TRPM8, a non-selective cation channel that is the primary sensor of cold temperatures in primary afferent neurons of the somatosensory system. However, it is unlikely that the temperature sensitivity of TRPM8 underlies its role in migraine pathogenesis. To define the basis of the channel's involvement, we reasoned that cellular processes that increase cold sensitivity in the skin, such as the neurotrophic factor artemin, via its receptor GFRα3, also mediate TRPM8-associated migraine-like pain in the meninges. Methods To investigate the role of artemin and GFRα3 in preclinical rodent migraine models, we infused nitroglycerin acutely and chronically, and measured changes in periorbital and hind paw mechanical sensitivity in male and female mice lacking GFRα3, after neutralization of free artemin with specific monoclonal antibodies, or by systemic treatment with a TRPM8-specific antagonist. Further, in wildtypes and mice lacking either GFRα3 or TRPM8, we tested the effects of supradural infusions of a mix of inflammatory mediators, artemin, and a TRPM8-specific agonist on migraine-related pain in mice. Results We find that mechanical allodynia induced by systemic nitroglycerin, or supradural infusion of inflammatory mediators, involves GFRα3. In addition, neutralization of circulating artemin reduces the nitroglycerin phenotype, demonstrating the importance of this neurotrophic pathway. Further, we show TRPM8 expression in the meninges and that direct supradural infusion of either a TRPM8-specific agonist or artemin itself produces mechanical allodynia, the latter dependent on TRPM8 and ameliorated by concurrent treatment with sumatriptan. Conclusions These results indicate that neuroinflammatory events in the meninges can produce migraine-like pain in mice via artemin and GFRα3, likely acting upstream of TRPM8, providing a novel pathway that may contribute to migraine pathogenesis.
Collapse
Affiliation(s)
- Chenyu Yang
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Chao Wei
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - Sanaa Alam
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Xunyang Chen
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - David D. McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
12
|
David ET, Yousuf MS, Mei HR, Jain A, Krishnagiri S, Elahi H, Venkatesan R, Srikanth KD, Dussor G, Dalva MB, Price TJ. ephrin-B2 promotes nociceptive plasticity and hyperalgesic priming through EphB2-MNK-eIF4E signaling in both mice and humans. Pharmacol Res 2024; 206:107284. [PMID: 38925462 DOI: 10.1016/j.phrs.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Ephrin-B-EphB signaling can promote pain through ligand-receptor interactions between peripheral cells, like immune cells expressing ephrin-Bs, and EphB receptors expressed by DRG neurons. Previous studies have shown increased ephrin-B2 expression in peripheral tissues like synovium of rheumatoid and osteoarthritis patients, indicating the clinical significance of this signaling. The primary goal of this study was to understand how ephrin-B2 acts on mouse and human DRG neurons, which express EphB receptors, to promote pain and nociceptor plasticity. We hypothesized that ephrin-B2 would promote nociceptor plasticity and hyperalgesic priming through MNK-eIF4E signaling, a critical mechanism for nociceptive plasticity induced by growth factors, cytokines and nerve injury. Both male and female mice developed dose-dependent mechanical hypersensitivity in response to ephrin-B2, and both sexes showed hyperalgesic priming when challenged with PGE2 injection either to the paw or the cranial dura. Acute nociceptive behaviors and hyperalgesic priming were blocked in mice lacking MNK1 (Mknk1 knockout mice) and by eFT508, a specific MNK inhibitor. Sensory neuron-specific knockout of EphB2 using Pirt-Cre demonstrated that ephrin-B2 actions require this receptor. In Ca2+-imaging experiments on cultured DRG neurons, ephrin-B2 treatment enhanced Ca2+ transients in response to PGE2 and these effects were absent in DRG neurons from MNK1-/- and EphB2-PirtCre mice. In experiments on human DRG neurons, ephrin-B2 increased eIF4E phosphorylation and enhanced Ca2+ responses to PGE2 treatment, both blocked by eFT508. We conclude that ephrin-B2 acts directly on mouse and human sensory neurons to induce nociceptor plasticity via MNK-eIF4E signaling, offering new insight into how ephrin-B signaling promotes pain.
Collapse
Affiliation(s)
- Eric T David
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Muhammad Saad Yousuf
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Hao-Ruei Mei
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Ashita Jain
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Sharada Krishnagiri
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Hajira Elahi
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Rupali Venkatesan
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Kolluru D Srikanth
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA
| | - Gregory Dussor
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Matthew B Dalva
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA
| | - Theodore J Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA.
| |
Collapse
|
13
|
Mogil JS, Parisien M, Esfahani SJ, Diatchenko L. Sex differences in mechanisms of pain hypersensitivity. Neurosci Biobehav Rev 2024; 163:105749. [PMID: 38838876 DOI: 10.1016/j.neubiorev.2024.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Sahel J Esfahani
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
14
|
Dalkara T, Kaya Z, Erdener ŞE. Unraveling the interplay of neuroinflammatory signaling between parenchymal and meningeal cells in migraine headache. J Headache Pain 2024; 25:124. [PMID: 39080518 PMCID: PMC11290240 DOI: 10.1186/s10194-024-01827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The initiation of migraine headaches and the involvement of neuroinflammatory signaling between parenchymal and meningeal cells remain unclear. Experimental evidence suggests that a cascade of inflammatory signaling originating from neurons may extend to the meninges, thereby inducing neurogenic inflammation and headache. This review explores the role of parenchymal inflammatory signaling in migraine headaches, drawing upon recent advancements. BODY: Studies in rodents have demonstrated that sterile meningeal inflammation can stimulate and sensitize meningeal nociceptors, culminating in headaches. The efficacy of relatively blood-brain barrier-impermeable anti-calcitonin gene-related peptide antibodies and triptans in treating migraine attacks, both with and without aura, supports the concept of migraine pain originating in meninges. Additionally, PET studies utilizing inflammation markers have revealed meningeal inflammatory activity in patients experiencing migraine with aura, particularly over the occipital cortex generating visual auras. The parenchymal neuroinflammatory signaling involving neurons, astrocytes, and microglia, which eventually extends to the meninges, can link non-homeostatic perturbations in the insensate brain to pain-sensitive meninges. Recent experimental research has brought deeper insight into parenchymal signaling mechanisms: Neuronal pannexin-1 channels act as stress sensors, initiating the inflammatory signaling by inflammasome formation and high-mobility group box-1 release in response to transient perturbations such as cortical spreading depolarization (CSD) or synaptic metabolic insufficiency caused by transcriptional changes induced by migraine triggers like sleep deprivation and stress. After a single CSD, astrocytes respond by upregulating the transcription of proinflammatory enzymes and mediators, while microglia are involved in restoring neuronal structural integrity; however, repeated CSDs may prompt microglia to adopt a pro-inflammatory state. Transcriptional changes from pro- to anti-inflammatory within 24 h may serve to dampen the inflammatory signaling. The extensive coverage of brain surface and perivascular areas by astrocyte endfeet suggests their role as an interface for transporting inflammatory mediators to the cerebrospinal fluid to contribute to meningeal nociception. CONCLUSION We propose that neuronal stress induced by CSD or synaptic activity-energy mismatch may initiate a parenchymal inflammatory signaling cascade, transmitted to the meninges, thereby triggering lasting headaches characteristic of migraine, with or without aura. This neuroinflammatory interplay between parenchymal and meningeal cells points to the potential for novel targets for migraine treatment and prophylaxis.
Collapse
Affiliation(s)
- Turgay Dalkara
- Departments of Neuroscience and, Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey.
| | - Zeynep Kaya
- Department of Neurology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
15
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
16
|
Li C, Ajmal E, Alok K, Powell K, Wadolowski S, Tambo W, Turpin J, Barthélemy E, Al-Abed Y, LeDoux D. CGRP as a potential mediator for the sexually dimorphic responses to traumatic brain injury. Biol Sex Differ 2024; 15:44. [PMID: 38816868 PMCID: PMC11138127 DOI: 10.1186/s13293-024-00619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The outcomes of traumatic brain injury (TBI) exhibit variance contingent upon biological sex. Although female sex hormones exert neuroprotective effects, the administration of estrogen and progesterone has not yielded conclusive results. Hence, it is conceivable that additional mediators, distinct from female sex hormones, merit consideration due to their potential differential impact on TBI outcomes. Calcitonin gene-related peptide (CGRP) exhibits sexually dimorphic expression and demonstrates neuroprotective effects in acute brain injuries. In this study, we aimed to examine sex-based variations in TBI structural and functional outcomes with respect to CGRP expression. METHODS Male and female Sprague Dawley rats were exposed to controlled cortical impact to induce severe TBI, followed by interventions with and without CGRP inhibition. In the acute phase of TBI, the study centered on elucidating the influence of CGRP on oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) and endothelial nitric oxide synthase (eNOS) signaling in the peri-impact tissue. Subsequently, during the chronic phase of TBI, the investigation expanded to evaluate CGRP expression in relation to lesion volume, microvascular dysfunction, and white matter injury, as well as working and spatial memory, anxiety-like, and depression-like behaviors in subjects of both sexes. RESULTS Female rats exhibited elevated levels of CGRP in the peri-impact brain tissue during both baseline conditions and in the acute and chronic phases of TBI, in comparison to age-matched male counterparts. Enhanced CGRP levels in specific brain sub-regions among female rats correlated with superior structural and functional outcomes following TBI compared to their male counterparts. CGRP inhibition induced heightened oxidative stress and a reduction in the expression of Nrf2 and eNOS in both male and female rats, with the observed alteration being more pronounced in females than in males. CONCLUSIONS This study marks the inaugural identification of CGRP as a downstream mediator contributing to the sexually dimorphic response observed in TBI outcomes.
Collapse
Affiliation(s)
- Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, 11030, USA.
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, 11203, USA
| | - Khaled Alok
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Steven Wadolowski
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Justin Turpin
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| | - Ernest Barthélemy
- Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, 11203, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - David LeDoux
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| |
Collapse
|
17
|
Zhang X, Zhang W, Wang Y, Zhang Y, Zhang D, Qin G, Zhou J, Chen L. SIRT1-regulated ROS generation activates NMDAR2B phosphorylation to promote central sensitization and allodynia in a male chronic migraine rat model. Front Mol Neurosci 2024; 17:1387481. [PMID: 38840778 PMCID: PMC11150646 DOI: 10.3389/fnmol.2024.1387481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
Background Central sensitization is one of the pivotal pathological mechanisms in chronic migraine (CM). Silent information regulator 1 (SIRT1) was shown to be involved in CM, but its specific mechanism is unclear. Reactive oxygen species (ROS) are increasingly regarded as important signaling molecules in several models of pain. However, studies about the role of ROS in the central sensitization of CM model are rare. We thus explored the specific process of SIRT1 involvement in the central sensitization of CM, focusing on the ROS pathway. Methods Inflammatory soup was repeatedly administered to male Sprague-Dawley rats to establish a CM model. The SIRT1 expression level in trigeminal nucleus caudalis (TNC) tissues was assessed by qRT-PCR and Western blotting analysis. The levels of ROS were detected by a Tissue Reactive Oxygen Detection Kit, DHE staining, and the fluorescence signal intensity of 8-OHdG. A ROS scavenger (tempol), a SIRT1 activator (SRT1720), a SIRT1 inhibitor (EX527), and a mitochondrial fission inhibitor (Mdivi-1) were used to investigate the specific molecular mechanisms involved. NMDAR2B, CGRP, ERK, and mitochondrial fission-related protein were evaluated by Western blotting, and the CGRP level in frozen sections of the TNC was detected via immunofluorescence staining. Results After repeated inflammatory soup infusion and successful establishment of the CM rat model, SIRT1 expression was found to be significantly reduced, accompanied by elevated ROS levels. Treatment with Tempol, SRT1720, or Mdivi-1 alleviated allodynia and reduced the increase in NMDAR2B phosphorylation and CGRP and ERK phosphorylation in the CM rat. In contrast, EX527 had the opposite effect in CM rat. SRT1720 and EX527 decreased and increased ROS levels, respectively, in CM rats, and tempol reversed the aggravating effect of EX527 in CM rats. Furthermore, the regulatory effect of SIRT1 on ROS may include the involvement of the mitochondrial fission protein DRP1. Conclusion The results indicate the importance of SIRT1 in CM may be due to its role in regulating the production of ROS, which are involved in modulating central sensitization in CM. These findings could lead to new ideas for CM treatment with the use of SIRT1 agonists and antioxidants.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanyun Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Singh S, Kopruszinski CM, Watanabe M, Dodick DW, Navratilova E, Porreca F. Female-selective mechanisms promoting migraine. J Headache Pain 2024; 25:63. [PMID: 38658853 PMCID: PMC11040950 DOI: 10.1186/s10194-024-01771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Sexual dimorphism has been revealed for many neurological disorders including chronic pain. Prelicinal studies and post-mortem analyses from male and female human donors reveal sexual dimorphism of nociceptors at transcript, protein and functional levels suggesting different mechanisms that may promote pain in men and women. Migraine is a common female-prevalent neurological disorder that is characterized by painful and debilitating headache. Prolactin is a neurohormone that circulates at higher levels in females and that has been implicated clinically in migraine. Prolactin sensitizes sensory neurons from female mice, non-human primates and humans revealing a female-selective pain mechanism that is conserved evolutionarily and likely translationally relevant. Prolactin produces female-selective migraine-like pain behaviors in rodents and enhances the release of calcitonin gene-related peptide (CGRP), a neurotransmitter that is causal in promoting migraine in many patients. CGRP, like prolactin, produces female-selective migraine-like pain behaviors. Consistent with these observations, publicly available clinical data indicate that small molecule CGRP-receptor antagonists are preferentially effective in treatment of acute migraine therapy in women. Collectively, these observations support the conclusion of qualitative sex differences promoting migraine pain providing the opportunity to tailor therapies based on patient sex for improved outcomes. Additionally, patient sex should be considered in design of clinical trials for migraine as well as for pain and reassessment of past trials may be warranted.
Collapse
Affiliation(s)
- Shagun Singh
- Banner - University Medicine Sunrise Primary Care, Tucson, AZ, 85750, USA
| | - Caroline M Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Moe Watanabe
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
- Atria Academy of Science and Medicine, New York, NY, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA.
| |
Collapse
|
19
|
Li H, Ward SJ. Paclitaxel-Associated Mechanical Sensitivity and Neuroinflammation Are Sex-, Time-, and Site-Specific and Prevented through Cannabigerol Administration in C57Bl/6 Mice. Int J Mol Sci 2024; 25:4277. [PMID: 38673862 PMCID: PMC11050247 DOI: 10.3390/ijms25084277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most prevalent and dose-limiting complications in chemotherapy patients. One identified mechanism underlying CIPN is neuroinflammation. Most of this research has been conducted in only male or female rodent models, making direct comparisons regarding the role of sex differences in the neuroimmune underpinnings of CIPN limited. Moreover, most measurements have focused on the dorsal root ganglia (DRG) and/or spinal cord, while relatively few studies have been aimed at characterizing neuroinflammation in the brain, for example the periaqueductal grey (PAG). The overall goals of the present study were to determine (1) paclitaxel-associated changes in markers of inflammation in the PAG and DRG in male and female C57Bl6 mice and (2) determine the effect of prophylactic administration of an anti-inflammatory cannabinoid, cannabigerol (CBG). In Experiment 1, male and female mice were treated with paclitaxel (8-32 mg/kg/injection, Days 1, 3, 5, and 7) and mechanical sensitivity was measured using Von Frey filaments on Day 7 (Cohort 1) and Day 14 (Cohort 2). Cohorts were euthanized on Day 8 or 15, respectively, and DRG and PAG were harvested for qPCR analysis of the gene expression of markers of pain and inflammation Aig1, Gfap, Ccl2, Cxcl9, Tlr4, Il6, and Calca. In Experiment 2, male and female mice were treated with vehicle or 10 mg/kg CBG i.p. 30 min prior to each paclitaxel injection. Mechanical sensitivity was measured on Day 14. Mice were euthanized on Day 15, and PAG were harvested for qPCR analysis of the gene expression of Aig1, Gfap, Ccl2, Cxcl9, Tlr4, Il6, and Calca. Paclitaxel produced a transient increase in potency to produce mechanical sensitivity in male versus female mice. Regarding neuroinflammation, more gene expression changes were apparent earlier in the DRG and at a later time point in the PAG. Also, more changes were observed in females in the PAG than males. Overall, sex differences were observed for most markers at both time points and regions. Importantly, in both the DRG and PAG, most increases in markers of neuroinflammation and pain occurred at paclitaxel doses higher than those associated with significant changes in the mechanical threshold. Two analytes that demonstrated the most compelling sexual dimorphism and that changed more in males were Cxcl9 and Ccl2, and Tlr4 in females. Lastly, prophylactic administration of CBG protected the male and female mice from increased mechanical sensitivity and female mice from neuroinflammation in the PAG. Future studies are warranted to explore how these sex differences may shed light on the mechanisms of CIPN and how non-psychoactive cannabinoids such as CBG may engage these targets to prevent or attenuate the effects of paclitaxel and other chemotherapeutic agents on the nervous system.
Collapse
Affiliation(s)
| | - Sara Jane Ward
- Center for Substance Abuse Research, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
20
|
Sacco S, Porreca F. Breaking barriers in migraine care: Advancing gender medicine to bridge the gap for men. Cephalalgia 2024; 44:3331024241238157. [PMID: 38501883 DOI: 10.1177/03331024241238157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, USA
- Mayo Clinic Arizona, Phoenix, Arizona, USA
| |
Collapse
|
21
|
Godley F, Meitzen J, Nahman-Averbuch H, O'Neal MA, Yeomans D, Santoro N, Riggins N, Edvinsson L. How Sex Hormones Affect Migraine: An Interdisciplinary Preclinical Research Panel Review. J Pers Med 2024; 14:184. [PMID: 38392617 PMCID: PMC10889915 DOI: 10.3390/jpm14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Sex hormones and migraine are closely interlinked. Women report higher levels of migraine symptoms during periods of sex hormone fluctuation, particularly during puberty, pregnancy, and perimenopause. Ovarian steroids, such as estrogen and progesterone, exert complex effects on the peripheral and central nervous systems, including pain, a variety of special sensory and autonomic functions, and affective processing. A panel of basic scientists, when challenged to explain what was known about how sex hormones affect the nervous system, focused on two hormones: estrogen and oxytocin. Notably, other hormones, such as progesterone, testosterone, and vasopressin, are less well studied but are also highlighted in this review. When discussing what new therapeutic agent might be an alternative to hormone therapy and menopause replacement therapy for migraine treatment, the panel pointed to oxytocin delivered as a nasal spray. Overall, the conclusion was that progress in the preclinical study of hormones on the nervous system has been challenging and slow, that there remain substantial gaps in our understanding of the complex roles sex hormones play in migraine, and that opportunities remain for improved or novel therapeutic agents. Manipulation of sex hormones, perhaps through biochemical modifications where its positive effects are selected for and side effects are minimized, remains a theoretical goal, one that might have an impact on migraine disease and other symptoms of menopause. This review is a call to action for increased interest and funding for preclinical research on sex hormones, their metabolites, and their receptors. Interdisciplinary research, perhaps facilitated by a collaborative communication network or panel, is a possible strategy to achieve this goal.
Collapse
Affiliation(s)
- Frederick Godley
- Association of Migraine Disorders, P.O. Box 870, North Kingstown, RI 02852, USA
| | - John Meitzen
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Hadas Nahman-Averbuch
- Division of Clinical and Translational Research, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - David Yeomans
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nina Riggins
- Brain Performance Center and Research Institute, San Diego, CA 92122, USA
| | - Lars Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, 22185 Lund, Sweden
| |
Collapse
|
22
|
Viudez-Martínez A, Torregrosa AB, Navarrete F, García-Gutiérrez MS. Understanding the Biological Relationship between Migraine and Depression. Biomolecules 2024; 14:163. [PMID: 38397400 PMCID: PMC10886628 DOI: 10.3390/biom14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Migraine is a highly prevalent neurological disorder. Among the risk factors identified, psychiatric comorbidities, such as depression, seem to play an important role in its onset and clinical course. Patients with migraine are 2.5 times more likely to develop a depressive disorder; this risk becomes even higher in patients suffering from chronic migraine or migraine with aura. This relationship is bidirectional, since depression also predicts an earlier/worse onset of migraine, increasing the risk of migraine chronicity and, consequently, requiring a higher healthcare expenditure compared to migraine alone. All these data suggest that migraine and depression may share overlapping biological mechanisms. Herein, this review explores this topic in further detail: firstly, by introducing the common epidemiological and risk factors for this comorbidity; secondly, by focusing on providing the cumulative evidence of common biological aspects, with a particular emphasis on the serotoninergic system, neuropeptides such as calcitonin-gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), substance P, neuropeptide Y and orexins, sexual hormones, and the immune system; lastly, by remarking on the future challenges required to elucidate the etiopathological mechanisms of migraine and depression and providing updated information regarding new key targets for the pharmacological treatment of these clinical entities.
Collapse
Affiliation(s)
- Adrián Viudez-Martínez
- Hospital Pharmacy Service, Hospital General Dr. Balmis de Alicante, 03010 Alicante, Spain;
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
23
|
Zhang D, Chen Y, Wei Y, Chen H, Wu Y, Wu L, Li J, Ren Q, Miao C, Zhu T, Liu J, Ke B, Zhou C. Spatial transcriptomics and single-nucleus RNA sequencing reveal a transcriptomic atlas of adult human spinal cord. eLife 2024; 12:RP92046. [PMID: 38289829 PMCID: PMC10945563 DOI: 10.7554/elife.92046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Despite the recognized importance of the spinal cord in sensory processing, motor behaviors, and neural diseases, the underlying organization of neuronal clusters and their spatial location remain elusive. Recently, several studies have attempted to define the neuronal types and functional heterogeneity in the spinal cord using single-cell or single-nucleus RNA sequencing in animal models or developing humans. However, molecular evidence of cellular heterogeneity in the adult human spinal cord is limited. Here, we classified spinal cord neurons into 21 subclusters and determined their distribution from nine human donors using single-nucleus RNA sequencing and spatial transcriptomics. Moreover, we compared the human findings with previously published single-nucleus data of the adult mouse spinal cord, which revealed an overall similarity in the neuronal composition of the spinal cord between the two species while simultaneously highlighting some degree of heterogeneity. Additionally, we examined the sex differences in the spinal neuronal subclusters. Several genes, such as SCN10A and HCN1, showed sex differences in motor neurons. Finally, we classified human dorsal root ganglia (DRG) neurons using spatial transcriptomics and explored the putative interactions between DRG and spinal cord neuronal subclusters. In summary, these results illustrate the complexity and diversity of spinal neurons in humans and provide an important resource for future research to explore the molecular mechanisms underlying spinal cord physiology and diseases.
Collapse
Affiliation(s)
- Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| | - Yali Chen
- Department of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| | - Yiyong Wei
- Department of Anesthesiology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)ShenhenChina
| | - Hongjun Chen
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yujie Wu
- Department of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| | - Lin Wu
- Department of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| | - Jin Li
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Qiyang Ren
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
24
|
Hovhannisyan AH, Lindquist KA, Belugin S, Mecklenburg J, Ibrahim T, Tram M, Corey TM, Salmon AB, Perez D, Ruparel S, Akopian AN. Sensory innervation of masseter, temporal and lateral pterygoid muscles in common marmosets. Sci Rep 2023; 13:23062. [PMID: 38155190 PMCID: PMC10754842 DOI: 10.1038/s41598-023-49882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
Myogenous temporomandibular disorders is associated with an increased responsiveness of nerves innervating the masseter (MM), temporal (TM), and lateral pterygoid muscles (LPM). This study aimed to examine sensory nerve types innervating MM, TM and LPM of adult non-human primate-common marmosets. Sensory nerves were localized in specific regions of these muscles. Pgp9.5, marker for all nerves, and NFH, a marker for A-fibers, showed that masticatory muscles were primarily innervated with A-fibers. The proportion of C- to A-fibers was highest in LPM, and lowest in MM. All C-fibers (pgp9.5+/NFH-) observed in masticatory muscles were peptidergic (CGRP+) and lacked mrgprD and CHRNA3, a silent nociceptive marker. TrpV1 was register in 17% of LPM nerves. All fibers in masticatory muscles were labeled with GFAP+, a myelin sheath marker. There were substantially more peptidergic A-fibers (CGRP+/NFH+) in TM and LPM compared to MM. MM, TM and LPM NFH+ fibers contained different percentages of trkC+ and parvalbumin+, but not trkB+ fibers. Tyrosine hydroxylase antibodies, which did not label TG, highlighted sympathetic fibers around blood vessels of the masticatory muscles. Overall, masticatory muscle types of marmosets have similarities and differences in innervation patterns.
Collapse
Affiliation(s)
- Anahit H Hovhannisyan
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Karen A Lindquist
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sergei Belugin
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jennifer Mecklenburg
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Tarek Ibrahim
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Meilinn Tram
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tatiana M Corey
- Departments of Laboratory Animal Resources, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Adam B Salmon
- Departments of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, Geriatric Research Education and Clinical Center San Antonio, San Antonio, TX, 78229, USA
| | - Daniel Perez
- Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Shivani Ruparel
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Departments of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Armen N Akopian
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Departments of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
25
|
Rees TA, Labastida-Ramírez A, Rubio-Beltrán E. Calcitonin/PAC 1 receptor splice variants: a blind spot in migraine research. Trends Pharmacol Sci 2023; 44:651-663. [PMID: 37543479 PMCID: PMC10529278 DOI: 10.1016/j.tips.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 08/07/2023]
Abstract
The neuropeptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) and their receptors are linked to migraine neurobiology. Recent antimigraine therapeutics targeting the signaling of these neuropeptides are effective; however, some patients respond suboptimally, indicating an incomplete understanding of migraine pathophysiology. The CGRP- and PACAP-responsive receptors can be differentially spliced. It is known that receptor splice variants can have different pathophysiological effects in other receptor-mediated pain pathways. Despite considerable knowledge on the structural and pharmacological differences of the CGRP- and PACAP-responsive receptor splice variants and their expression in migraine-relevant tissues, their role in migraine is rarely considered. Here we shine a spotlight on the calcitonin and PACAP (PAC1) receptor splice variants and examine what implications they may have for drug activity and design.
Collapse
Affiliation(s)
- Tayla A Rees
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Alejandro Labastida-Ramírez
- Headache Group, Wolfson Center for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eloisa Rubio-Beltrán
- Headache Group, Wolfson Center for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
26
|
Harriott AM, Waruinge A, Appiah-Danquah V, Berhanu L, Morais A, Ayata C. The effect of sex and estrus cycle stage on optogenetic spreading depression induced migraine-like pain phenotypes. J Headache Pain 2023; 24:85. [PMID: 37464297 PMCID: PMC10355061 DOI: 10.1186/s10194-023-01621-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Migraine is more prevalent in females, raising the possibility that sex and gonadal hormones modulate migraine. We recently demonstrated that minimally invasive optogenetic spreading depolarization (opto-SD) elicits robust periorbital allodynia. The objective of this study was to test the hypothesis that opto-SD induced migraine-like pain behavior is worse in females and varies during the estrus cycle. METHODS Single or repeated opto-SDs were induced in male and female adult Thy1-ChR2-YFP transgenic mice. Von Frey monofilaments were used to test periorbital mechanical allodynia. Mouse grimace was also examined under increasing light intensity to quantify spontaneous discomfort and light-aversive behavior. Vaginal smears were obtained for estrus cycle staging at the end of behavioral testing. RESULTS A multi-variable regression analysis was performed using a male and female cohort to test the effect of independent variables on periorbital allodynia. Opto-SD predicted lower periorbital thresholds as compared with sham stimulation (p < 0.0001). Additionally, female sex predicted lower periorbital thresholds compared with males (p = 0.011). There were significant interactions between opto-SD and time (interaction p = 0.030) as animals tended to recover from opto-SD allodynia over time, and between sex and time (p = 0.020) as females tended to take longer to recover. Proestrus, estrus (PE) and metestrus, diestrus (MD) stages were combined to represent high versus low circulating estradiol relative to progesterone, respectively. Multi-variable regression revealed an effect of estrus cycle (p = 0.015) on periorbital thresholds. In the sham group, PE had lower thresholds than MD. However, there was no interaction between opto-SD and the estrus cycle (p = 0.364). Grimace scores were also examined at incremental light intensities. There was an effect of opto-SD (p < 0.0001), light intensity (p = 0.001) and estrus cycle (p = 0.024) on grimace without interaction among them (three-way ANOVA). CONCLUSIONS Female sex and estrus stages with high circulating estradiol relative to progesterone lower trigeminal pain thresholds and augment photosensitivity. In females, opto-SD increased pain behavior and photosensitivity irrespective of the estrus stage.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Neurovascular Research Laboratory, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | - Leah Berhanu
- Cambridge Rindge and Latin School, Boston, MA, USA
| | - Andreia Morais
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
27
|
Abstract
Migraine is a complex neurovascular pain disorder linked to the meninges, a border tissue innervated by neuropeptide-containing primary afferent fibers chiefly from the trigeminal nerve. Electrical or mechanical stimulation of this nerve surrounding large blood vessels evokes headache patterns as in migraine, and the brain, blood, and meninges are likely sources of headache triggers. Cerebrospinal fluid may play a significant role in migraine by transferring signals released from the brain to overlying pain-sensitive meningeal tissues, including dura mater. Interactions between trigeminal afferents, neuropeptides, and adjacent meningeal cells and tissues cause neurogenic inflammation, a critical target for current prophylactic and abortive migraine therapies. Here we review the importance of the cranial meninges to migraine headaches, explore the properties of trigeminal meningeal afferents, and briefly review emerging concepts, such as meningeal neuroimmune interactions, that may one day prove therapeutically relevant.
Collapse
Affiliation(s)
- Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA;
| | - Michael A Moskowitz
- Center for Systems Biology and Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
28
|
Chen SP. Migraine and treatment-resistant depression. PROGRESS IN BRAIN RESEARCH 2023; 281:149-173. [PMID: 37806714 DOI: 10.1016/bs.pbr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Migraine and major depressive disorders (MDD) or treatment resistant depression (TRD) represent a significant global burden and are often comorbid, further complicating diagnosis and treatment. Epidemiological studies have demonstrated a bidirectional relationship between migraine and MDD/TRD, with patients suffering from one disorder exhibiting a heightened risk of developing the other. This association is believed to result from shared genetic factors, neurotransmitter dysregulation, inflammation, hormonal alteration, and other conditions comorbid with both disorders. Emerging evidence suggests that therapeutics targeting common pathways in both disorders may be beneficial for comorbid patients. Novel therapeutics for migraine or MDD/TRD, such as calcitonin gene-related peptide (CGRP)-targeting therapy, onabotulinumtoxinA, ketamine/esketamine, vagus nerve stimulation or transcranial magnetic stimulation, may be helpful in selected patients with comorbid migraine-MDD/TRD. Nevertheless, continued efforts are needed to improve early detection and intervention, to better understand the complex interplay between genetic, environmental, and psychosocial factors contributing to this comorbidity, to identify novel therapeutic targets, and ultimately, to alleviate the disease burden caused by this comorbidity.
Collapse
Affiliation(s)
- Shih-Pin Chen
- Department of Medical Research & Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
29
|
Kopruszinski CM, Watanabe M, Martinez AL, Moreira de Souza LH, Dodick DW, Moutal A, Neugebauer V, Porreca F, Navratilova E. Kappa opioid receptor agonists produce sexually dimorphic and prolactin-dependent hyperalgesic priming. Pain 2023; 164:e263-e273. [PMID: 36625833 PMCID: PMC10285741 DOI: 10.1097/j.pain.0000000000002835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023]
Abstract
ABSTRACT Repeated stress produces hyperalgesic priming in preclinical models, but underlying mechanisms remain uncertain. As stress engages kappa opioid receptors (KORs), we hypothesized that repeated administration of KOR agonists might mimic, in part, stress-induced hyperalgesic priming. The potential contribution of circulating prolactin (PRL) and dysregulation of the expression of PRL receptor (PRLR) isoforms in sensory neurons after KOR agonist administration was also investigated. Mice received 3 daily doses of U-69593 or nalfurafine as a "first-hit" stimulus followed by assessment of periorbital tactile allodynia. Sixteen days after the first KOR agonist administration, animals received a subthreshold dose of inhalational umbellulone, a TRPA1 agonist, as the second-hit stimulus and periorbital allodynia was assessed. Cabergoline, a dopamine D2 receptor agonist, was used to inhibit circulating PRL in additional cohorts. Prolactin receptor isoforms were quantified in the V1 region of the trigeminal ganglion after repeated doses of U-69593. In both sexes, KOR agonists increased circulating PRL and produced allodynia that resolved within 14 days. Hyperalgesic priming, revealed by umbellulone-induced allodynia in animals previously treated with the KOR agonists, also occurred in both sexes. However, repeated U-69593 downregulated the PRLR long isoform in trigeminal neurons only in female mice. Umbellulone-induced allodynia was prevented by cabergoline co-treatment during priming with KOR agonists in female, but not male, mice. Hyperalgesic priming therefore occurs in both sexes after either biased or nonbiased KOR agonists. However, a PRL/PRLR-dependence is observed only in female nociceptors possibly contributing to pain in stress-related pain disorders in females.
Collapse
Affiliation(s)
- Caroline M. Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Moe Watanabe
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Ashley L. Martinez
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Luiz Henrique Moreira de Souza
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - David W. Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
30
|
Lee GJ, Porreca F, Navratilova E. Prolactin and pain of endometriosis. Pharmacol Ther 2023; 247:108435. [PMID: 37169264 DOI: 10.1016/j.pharmthera.2023.108435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Women experience chronic pain more often than men with some pain conditions being specific to women while others are more prevalent in women. Prolactin, a neuropeptide hormone with higher serum levels in women, has recently been demonstrated in preclinical studies to sensitize nociceptive sensory neurons in a sexually dimorphic manner. Dysregulation of prolactin and prolactin receptors may be responsible for increased pain especially in female predominant conditions such as migraine, fibromyalgia, and pelvic pain. In this review, we focus on the role of prolactin in endometriosis, a condition characterized by pelvic pain and infertility that affects a large proportion of women during their reproductive age. We discuss the symptoms and pathology of endometriosis and discuss how different sources of prolactin secretion may contribute to this disease. We highlight our current understanding of prolactin-mediated mechanisms of nociceptor sensitization in females and how this mechanism may apply to endometriosis. Lastly, we report the results of a systematic review of clinical studies conducted by searching the PubMed and EMBASE databases to identify association between endometriosis and blood levels of prolactin. The results of this search strongly indicate that serum prolactin levels are increased in patients with endometriosis and support the possibility that high levels of prolactin may promote pelvic pain in these patients and increase vulnerability to other comorbid pain conditions likely by dysregulating prolactin receptor expression. Targeting of prolactin and prolactin receptors may improve management of pain associated with endometriosis.
Collapse
Affiliation(s)
- Grace J Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
31
|
Mitchell ME, Cook LC, Shiers S, Tavares-Ferreira D, Akopian AN, Dussor G, Price TJ. Characterization of Fragile X Mental Retardation Protein expression in human nociceptors and their axonal projections to the spinal dorsal horn. J Comp Neurol 2023; 531:814-835. [PMID: 36808110 PMCID: PMC10038933 DOI: 10.1002/cne.25463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
Fragile X Mental Retardation Protein (FMRP) regulates activity-dependent RNA localization and local translation to modulate synaptic plasticity throughout the central nervous system. Mutations in the FMR1 gene that hinder or ablate FMRP function cause Fragile X Syndrome (FXS), a disorder associated with sensory processing dysfunction. FXS premutations are associated with increased FMRP expression and neurological impairments including sex dimorphic presentations of chronic pain. In mice, FMRP ablation causes dysregulated dorsal root ganglion (DRG) neuron excitability and synaptic vesicle exocytosis, spinal circuit activity, and decreased translation-dependent nociceptive sensitization. Activity-dependent, local translation is a key mechanism for enhancing primary nociceptor excitability that promotes pain in animals and humans. These works indicate that FMRP likely regulates nociception and pain at the level of the primary nociceptor or spinal cord. Therefore, we sought to better understand FMRP expression in the human DRG and spinal cord using immunostaining in organ donor tissues. We find that FMRP is highly expressed in DRG and spinal neuron subsets with substantia gelatinosa exhibiting the most abundant immunoreactivity in spinal synaptic fields. Here, it is expressed in nociceptor axons. FMRP puncta colocalized with Nav1.7 and TRPV1 receptor signals suggesting a pool of axoplasmic FMRP localizes to plasma membrane-associated loci in these branches. Interestingly, FMRP puncta exhibited notable colocalization with calcitonin gene-related peptide (CGRP) immunoreactivity selectively in female spinal cord. Our results support a regulatory role for FMRP in human nociceptor axons of the dorsal horn and implicate it in the sex dimorphic actions of CGRP signaling in nociceptive sensitization and chronic pain.
Collapse
Affiliation(s)
- Molly E Mitchell
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Lauren C Cook
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Stephanie Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Diana Tavares-Ferreira
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Armen N Akopian
- Department of Endodontics, UT Health San Antonio, San Antonio, Texas, USA
| | - Gregory Dussor
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
32
|
Hovhannisyan AH, Lindquist K, Belugin S, Mecklenburg J, Ibrahim T, Tram M, Corey T, Salmon A, Ruparel S, Ruparel S, Akopian A. Sensory innervation of masseter, temporal and lateral pterygoid muscles in common marmosets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528062. [PMID: 36798270 PMCID: PMC9934658 DOI: 10.1101/2023.02.10.528062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Myogenous temporomandibular disorders (TMDM) is associated with an increased responsiveness of nerves innervating the masseter (MM), temporal (TM), medial pterygoid (MPM) and lateral pterygoid muscles (LPM). This study aimed to examine sensory nerve types innervating MM, TM and LPM of adult non-human primate - common marmosets. Sensory nerves are localized in specific regions of these muscles. Pgp9.5, marker for all nerves, and NFH, a marker for A-fibers, showed that masticatory muscles were predominantly innervated with A-fibers. The proportion of C- to A-fibers was highest in LPM, and minimal (6-8%) in MM. All C-fibers (pgp9.5+/NFH-) observed in masticatory muscles were peptidergic (CGRP+) and lacked mrgprD, trpV1 and CHRNA3, a silent nociceptive marker. All fibers in masticatory muscles were labeled with GFAP+, a myelin sheath marker. There were substantially more peptidergic A-fibers (CGRP+/NFH+) in TM and LPM compared to MM. Almost all A-fibers in MM expressed trkC, with some of them having trkB and parvalbumin. In contrast, a lesser number of TM and LPM nerves expressed trkC, and lacked trkB. Tyrosine hydroxylase antibodies, which did not label TG, highlighted sympathetic fibers around blood vessels of the masticatory muscles. Overall, masticatory muscle types of marmosets have distinct and different innervation patterns.
Collapse
|
33
|
Mason BN, Hassler SN, DeFea K, Boitano S, Vagner J, Price TJ, Dussor G. PAR2 activation in the dura causes acute behavioral responses and priming to glyceryl trinitrate in a mouse migraine model. J Headache Pain 2023; 24:42. [PMID: 37072694 PMCID: PMC10114383 DOI: 10.1186/s10194-023-01574-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Migraine is a severely debilitating disorder that affects millions of people worldwide. Studies have indicated that activation of protease-activated receptor-2 (PAR2) in the dura mater causes headache responses in preclinical models. It is also well known that vasodilators such as nitric oxide (NO) donors can trigger migraine attacks in migraine patients but not controls. In the current study we examined whether activation of PAR2 in the dura causes priming to the NO donor glyceryl trinitrate (GTN). METHODS A preclinical behavioral model of migraine was used where stimuli (PAR2 agonists: 2at-LIGRL-NH2 (2AT) or neutrophil elastase (NE); and IL-6) were applied to the mouse dura through an injection made at the intersection of the lamdoidal and sagittal sutures on the skull. Following dural injection, periorbital von Frey thresholds and facial grimace responses were measured until their return to baseline. GTN was then given by intraperitoneal injection and periorbital hypersensitivity and facial grimace responses observed until they returned to baseline. RESULTS We found that application of the selective PAR2 agonist 2at-LIGRL-NH2 (2AT) onto the dura causes headache-related behavioral responses in WT but not PAR2-/- mice with no differences between sexes. Additionally, dural PAR2 activation with 2AT caused priming to GTN (1 mg/kg) at 14 days after primary dural stimulation. PAR2-/- mice showed no priming to GTN. We also tested behavioral responses to the endogenous protease neutrophil elastase, which can cleave and activate PAR2. Dural neutrophil elastase caused both acute responses and priming to GTN in WT but not PAR2-/- mice. Finally, we show that dural IL-6 causes acute responses and priming to GTN that is identical in WT and PAR2-/- mice, indicating that IL-6 does not act through PAR2 in this model. CONCLUSIONS These results indicate that PAR2 activation in the meninges can cause acute headache behavioral responses and priming to an NO donor, and support further exploration of PAR2 as a novel therapeutic target for migraine.
Collapse
Affiliation(s)
- Bianca N Mason
- Department of Neuroscience, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Shayne N Hassler
- Department of Neuroscience, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
| | | | - Scott Boitano
- Department of Physiology, University of Arizona, Tucson, 85724, USA
| | - Josef Vagner
- Bio5 Institute, University of Arizona, Tucson, AZ, 85724, USA
| | - Theodore J Price
- Department of Neuroscience, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Greg Dussor
- Department of Neuroscience, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA.
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
34
|
Szewczyk AK, Ulutas S, Aktürk T, Al-Hassany L, Börner C, Cernigliaro F, Kodounis M, Lo Cascio S, Mikolajek D, Onan D, Ragaglini C, Ratti S, Rivera-Mancilla E, Tsanoula S, Villino R, Messlinger K, Maassen Van Den Brink A, de Vries T. Prolactin and oxytocin: potential targets for migraine treatment. J Headache Pain 2023; 24:31. [PMID: 36967387 PMCID: PMC10041814 DOI: 10.1186/s10194-023-01557-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
Migraine is a severe neurovascular disorder of which the pathophysiology is not yet fully understood. Besides the role of inflammatory mediators that interact with the trigeminovascular system, cyclic fluctuations in sex steroid hormones are involved in the sex dimorphism of migraine attacks. In addition, the pituitary-derived hormone prolactin and the hypothalamic neuropeptide oxytocin have been reported to play a modulating role in migraine and contribute to its sex-dependent differences. The current narrative review explores the relationship between these two hormones and the pathophysiology of migraine. We describe the physiological role of prolactin and oxytocin, its relationship to migraine and pain, and potential therapies targeting these hormones or their receptors.In summary, oxytocin and prolactin are involved in nociception in opposite ways. Both operate at peripheral and central levels, however, prolactin has a pronociceptive effect, while oxytocin appears to have an antinociceptive effect. Therefore, migraine treatment targeting prolactin should aim to block its effects using prolactin receptor antagonists or monoclonal antibodies specifically acting at migraine-pain related structures. This action should be local in order to avoid a decrease in prolactin levels throughout the body and associated adverse effects. In contrast, treatment targeting oxytocin should enhance its signalling and antinociceptive effects, for example using intranasal administration of oxytocin, or possibly other oxytocin receptor agonists. Interestingly, the prolactin receptor and oxytocin receptor are co-localized with estrogen receptors as well as calcitonin gene-related peptide and its receptor, providing a positive perspective on the possibilities for an adequate pharmacological treatment of these nociceptive pathways. Nevertheless, many questions remain to be answered. More particularly, there is insufficient data on the role of sex hormones in men and the correct dosing according to sex differences, hormonal changes and comorbidities. The above remains a major challenge for future development.
Collapse
Affiliation(s)
- Anna K Szewczyk
- Doctoral School, Medical University of Lublin, Lublin, Poland
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Samiye Ulutas
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Tülin Aktürk
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Linda Al-Hassany
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Corinna Börner
- Department of Pediatrics - Dr. von Hauner Children's Hospital, LMU Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Federica Cernigliaro
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - Michalis Kodounis
- First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Lo Cascio
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - David Mikolajek
- Department of Neurology, City Hospital Ostrava, Ostrava, Czech Republic
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Chiara Ragaglini
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Susanna Ratti
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Eduardo Rivera-Mancilla
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sofia Tsanoula
- Department of Neurology, 401 Military Hospital of Athens, Athens, Greece
| | - Rafael Villino
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antoinette Maassen Van Den Brink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tessa de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
35
|
Shen BQ, Sankaranarayanan I, Price TJ, Tavares-Ferreira D. Sex-differences in prostaglandin signaling: a semi-systematic review and characterization of PTGDS expression in human sensory neurons. Sci Rep 2023; 13:4670. [PMID: 36949072 PMCID: PMC10033690 DOI: 10.1038/s41598-023-31603-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
There is increasing evidence of sex differences in underlying mechanisms causing pain in preclinical models, and in clinical populations. There are also important disconnects between clinical pain populations and the way preclinical pain studies are conducted. For instance, osteoarthritis pain more frequently affects women, but most preclinical studies have been conducted using males in animal models. The most widely used painkillers, nonsteroidal anti-inflammatory drugs (NSAIDs), act on the prostaglandin pathway by inhibiting cyclooxygenase (COX) enzymes. The purpose of this study was to analyze the preclinical and clinical literature on the role of prostaglandins and COX in inflammation and pain. We aimed to specifically identify studies that used both sexes and investigate whether any sex-differences in the action of prostaglandins and COX inhibition had been reported, either in clinical or preclinical studies. We conducted a PubMed search and identified 369 preclinical studies and 100 clinical studies that matched our inclusion/exclusion criteria. Our analysis shows that only 17% of preclinical studies on prostaglandins used both sexes and, out of those, only 19% analyzed or reported data separated by sex. In contrast, 79% of the clinical studies analyzed used both sexes. However, only 6% of those reported data separated by sex. Interestingly, 14 out of 15 preclinical studies and 5 out of 6 clinical studies that analyzed data separated by sex have identified sex-differences. This builds on the increasing evidence of sex-differences in prostaglandin signaling and the importance of sex as a biological variable in data analysis. The preclinical literature identifies a sex difference in prostaglandin D2 synthase (PTGDS) expression where it is higher in female than in male rodents in the nervous system. We experimentally validated that PTGDS expression is higher in female human dorsal root ganglia (DRG) neurons recovered from organ donors. Our semi-systematic literature review reveals a need for continued inclusivity of both male and female animals in prostaglandins studies and data analysis separated by sex in preclinical and clinical studies. Our finding of sex-differences in neuronal PTGDS expression in humans exemplifies the need for a more comprehensive understanding of how the prostaglandin system functions in the DRG in rodents and humans.
Collapse
Affiliation(s)
- Breanna Q Shen
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
36
|
Al-Karagholi MAM, Kalatharan V, Ghanizada H, Gram C, Dussor G, Ashina M. Prolactin in headache and migraine: A systematic review of clinical studies. Cephalalgia 2023; 43:3331024221136286. [PMID: 36718026 DOI: 10.1177/03331024221136286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To systemically review clinical studies investigating the role of prolactin and its receptors in headache and migraine. BACKGROUND Migraine prevalence is more common in women compared to men. As prolactin is a crucial regulator of the hypothalamus-pituitary-gonadal axis, prolactin and its receptors might contribute to signaling mechanisms underlying migraine. METHODS In this systematic review, we searched PubMed and EMBASE with the terms: prolactin, hyperprolactinemia, macroprolactinemia, hypoprolactinemia, migraine, headache, head pain and trigeminal pain pathway for clinical studies investigating prolactin signaling in headache and migraine. Two reviewers independently screened 841 articles for population, intervention, comparison, outcome, and study design. Studies were restricted to the English language and were excluded if they had a nonexperimental methodology. RESULTS Nineteen clinical studies met the inclusion criteria and were included in the qualitative and quantitative analysis. The main findings were that serum prolactin levels were found to be higher in individuals with migraine compared to healthy controls, and prolactinomas (prolactin-secreting pituitary adenomas) were correlated with higher incidence of headache in otherwise healthy individuals and migraine attacks in individuals with migraine. CONCLUSION Considerable evidence suggests a key role of prolactin and its receptors in migraine pathophysiology. Further randomized and placebo-controlled clinical studies targeting prolactin signaling are needed to further clarify influences of prolactin in migraine attack initiation.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Veberka Kalatharan
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Christian Gram
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, USA
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark.,Danish Headache Knowledge Center on Headache Disorders, Rigshospitalet - Glostrup, Glostrup, Denmark
| |
Collapse
|
37
|
Maciuba S, Bowden GD, Stratton HJ, Wisniewski K, Schteingart CD, Almagro JC, Valadon P, Lowitz J, Glaser SM, Lee G, Dolatyari M, Navratilova E, Porreca F, Rivière PJ. Discovery and characterization of prolactin neutralizing monoclonal antibodies for the treatment of female-prevalent pain disorders. MAbs 2023; 15:2254676. [PMID: 37698877 PMCID: PMC10498814 DOI: 10.1080/19420862.2023.2254676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Prolactin (PRL) has recently been demonstrated to elicit female-selective nociceptor sensitization and increase pain-like behaviors in female animals. Here we report the discovery and characterization of first-in-class, humanized PRL neutralizing monoclonal antibodies (PRL mAbs). We obtained two potent and selective PRL mAbs, PL 200,031 and PL 200,039. PL 200,031 was engineered as human IgG1 whereas PL 200,039 was reformatted as human IgG4. Both mAbs have sub-nanomolar affinity for human PRL (hPRL) and produce concentration-dependent and complete inhibition of hPRL signaling at the hPRL receptor (hPRLR). These two PRL mAbs are selective for hPRL as they do not inhibit other hPRLR agonists such as human growth hormone or placental lactogen. They also cross-react with non-human primate PRL but not with rodent PRL. Further, both mAbs show long clearance half-lives after intravenous administration in FcRn-humanized mice. Consistent with their isotypes, these mAbs only differ in binding affinities to Fcγ receptors, as expected by design. Finally, PL 200,019, the murine parental mAb of PL 200,031 and PL 200,039, fully blocked stress-induced and PRL-dependent pain behaviors in female PRL-humanized mice, thereby providing in vivo preclinical proof-of-efficacy for PRL mAbs in mechanisms relevant to pain in females.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Grace Lee
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Mahdi Dolatyari
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
38
|
Cabañero D, Villalba-Riquelme E, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. ThermoTRP channels in pain sexual dimorphism: new insights for drug intervention. Pharmacol Ther 2022; 240:108297. [PMID: 36202261 DOI: 10.1016/j.pharmthera.2022.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Chronic pain is a major burden for the society and remains more prevalent and severe in females. The presence of chronic pain is linked to persistent alterations in the peripheral and the central nervous system. One of the main types of peripheral pain transducers are the transient receptor potential channels (TRP), also known as thermoTRP channels, which intervene in the perception of hot and cold external stimuli. These channels, and especially TRPV1, TRPA1 and TRPM8, have been subjected to profound investigation because of their role as thermosensors and also because of their implication in acute and chronic pain. Surprisingly, their sensitivity to endogenous signaling has been far less studied. Cumulative evidence suggests that the function of these channels may be differently modulated in males and females, in part through sexual hormones, and this could constitute a significant contributor to the sex differences in chronic pain. Here, we review the exciting advances in thermoTRP pharmacology for males and females in two paradigmatic types of chronic pain with a strong peripheral component: chronic migraine and chemotherapy-induced peripheral neuropathy (CIPN). The possibilities of peripheral druggability offered by these channels and the differential exploitation for men and women represent a development opportunity that will lead to a significant increment of the armamentarium of analgesic medicines for personalized chronic pain treatment.
Collapse
Affiliation(s)
- David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Eva Villalba-Riquelme
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
39
|
Garelja ML, Hay DL. A narrative review of the calcitonin peptide family and associated receptors as migraine targets: Calcitonin gene-related peptide and beyond. Headache 2022; 62:1093-1104. [PMID: 36226379 PMCID: PMC9613588 DOI: 10.1111/head.14388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/08/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To summarize the pharmacology of the calcitonin peptide family of receptors and explore their relationship to migraine and current migraine therapies. BACKGROUND Therapeutics that dampen calcitonin gene-related peptide (CGRP) signaling are now in clinical use to prevent or treat migraine. However, CGRP belongs to a broader peptide family, including the peptides amylin and adrenomedullin. Receptors for this family are complex, displaying overlapping pharmacologic profiles. Despite the focus on CGRP and the CGRP receptor in migraine research, recent evidence implicates related peptides and receptors in migraine. METHODS This narrative review summarizes literature encompassing the current pharmacologic understanding of the calcitonin peptide family, and the evidence that links specific members of this family to migraine and migraine-like behaviors. RESULTS Recent work links amylin and adrenomedullin to migraine-like behavior in rodent models and migraine-like attacks in individuals with migraine. We collate novel information that suggests females may be more sensitive to amylin and CGRP in the context of migraine-like behaviors. We report that drugs designed to antagonize the canonical CGRP receptor also antagonize a second CGRP-responsive receptor and speculate as to whether this influences therapeutic efficacy. We also discuss the specificity of current drugs with regards to CGRP isoforms and how this may influence therapeutic profiles. Lastly, we emphasize that receptors related to, but distinct from, the canonical CGRP receptor may represent underappreciated and novel drug targets. CONCLUSION Multiple peptides within the calcitonin family have been linked to migraine. The current focus on CGRP and its canonical receptor may be obscuring pathways to further therapeutics. Drug discovery schemes that take a wider view of the receptor family may lead to the development of new anti-migraine drugs with favorable clinical profiles. We also propose that understanding these related peptides and receptors may improve our interpretation regarding the mechanism of action of current drugs.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| | - Debbie L. Hay
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand,Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
40
|
Kaur S, Hickman TM, Lopez-Ramirez A, McDonald H, Lockhart LM, Darwish O, Averitt DL. Estrogen modulation of the pronociceptive effects of serotonin on female rat trigeminal sensory neurons is timing dependent and dosage dependent and requires estrogen receptor alpha. Pain 2022; 163:e899-e916. [PMID: 35121697 PMCID: PMC9288423 DOI: 10.1097/j.pain.0000000000002604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The role of the major estrogen estradiol (E2) on orofacial pain conditions remains controversial with studies reporting both a pronociceptive and antinociceptive role of E2. E2 modulation of peripheral serotonergic activity may be one mechanism underlying the female prevalence of orofacial pain disorders. We recently reported that female rats in proestrus and estrus exhibit greater serotonin (5HT)-evoked orofacial nocifensive behaviors compared with diestrus and male rats. Further coexpression of 5HT 2A receptor mRNA in nociceptive trigeminal sensory neurons that express transient receptor potential vanilloid 1 ion channels contributes to pain sensitization. E2 may exacerbate orofacial pain through 5HT-sensitive trigeminal nociceptors, but whether low or high E2 contributes to orofacial pain and by what mechanism remains unclear. We hypothesized that steady-state exposure to a proestrus level of E2 exacerbates 5HT-evoked orofacial nocifensive behaviors in female rats, explored the transcriptome of E2-treated female rats, and determined which E2 receptor contributes to sensitization of female trigeminal sensory neurons. We report that a diestrus level of E2 is protective against 5HT-evoked orofacial pain behaviors, which increase with increasing E2 concentrations, and that E2 differentially alters several pain genes in the trigeminal ganglia. Furthermore, E2 receptors coexpressed with 5HT 2A and transient receptor potential vanilloid 1 and enhanced capsaicin-evoked signaling in the trigeminal ganglia through estrogen receptor α. Overall, our data indicate that low, but not high, physiological levels of E2 protect against orofacial pain, and we provide evidence that estrogen receptor α receptor activation, but not others, contributes to sensitization of nociceptive signaling in trigeminal sensory neurons.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Department of Biology, Texas Woman’s University, Denton, TX 76204
| | | | | | - Hanna McDonald
- Department of Biology, Texas Woman’s University, Denton, TX 76204
| | | | - Omar Darwish
- Department of Mathematics and Computer Science, Texas Woman’s University, Denton, TX 76204
| | | |
Collapse
|
41
|
Yang L, Xu M, Bhuiyan SA, Li J, Zhao J, Cohrs RJ, Susterich JT, Signorelli S, Green U, Stone JR, Levy D, Lennerz JK, Renthal W. Human and mouse trigeminal ganglia cell atlas implicates multiple cell types in migraine. Neuron 2022; 110:1806-1821.e8. [PMID: 35349784 PMCID: PMC9338779 DOI: 10.1016/j.neuron.2022.03.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/28/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022]
Abstract
Sensitization of trigeminal ganglion neurons contributes to primary headache disorders such as migraine, but the specific neuronal and non-neuronal trigeminal subtypes that are involved remain unclear. We thus developed a cell atlas in which human and mouse trigeminal ganglia are transcriptionally and epigenomically profiled at single-cell resolution. These data describe evolutionarily conserved and human-specific gene expression patterns within each trigeminal ganglion cell type, as well as the transcription factors and gene regulatory elements that contribute to cell-type-specific gene expression. We then leveraged these data to identify trigeminal ganglion cell types that are implicated both by human genetic variation associated with migraine and two mouse models of headache. This trigeminal ganglion cell atlas improves our understanding of the cell types, genes, and epigenomic features involved in headache pathophysiology and establishes a rich resource of cell-type-specific molecular features to guide the development of more selective treatments for headache and facial pain.
Collapse
Affiliation(s)
- Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mengyi Xu
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shamsuddin A Bhuiyan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jia Li
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jun Zhao
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Randall J Cohrs
- Departments of Neurology and Immunology/Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Justin T Susterich
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sylvia Signorelli
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - James R Stone
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dan Levy
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Watanabe M, Kopruszinski CM, Moutal A, Ikegami D, Khanna R, Chen Y, Ross S, Mackenzie K, Stratton J, Dodick DW, Navratilova E, Porreca F. Dysregulation of serum prolactin links the hypothalamus with female nociceptors to promote migraine. Brain 2022; 145:2894-2909. [PMID: 35325034 PMCID: PMC9890468 DOI: 10.1093/brain/awac104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/17/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Migraine headache results from activation of meningeal nociceptors, however, the hypothalamus is activated many hours before the emergence of pain. How hypothalamic neural mechanisms may influence trigeminal nociceptor function remains unknown. Stress is a common migraine trigger that engages hypothalamic dynorphin/kappa opioid receptor (KOR) signalling and increases circulating prolactin. Prolactin acts at both long and short prolactin receptor isoforms that are expressed in trigeminal afferents. Following downregulation of the prolactin receptor long isoform, prolactin signalling at the prolactin receptor short isoform sensitizes nociceptors selectively in females. We hypothesized that stress may activate the kappa opioid receptor on tuberoinfundibular dopaminergic neurons to increase circulating prolactin leading to female-selective sensitization of trigeminal nociceptors through dysregulation of prolactin receptor isoforms. A mouse two-hit hyperalgesic priming model of migraine was used. Repeated restraint stress promoted vulnerability (i.e. first-hit priming) to a subsequent subthreshold (i.e. second-hit) stimulus from inhalational umbellulone, a TRPA1 agonist. Periorbital cutaneous allodynia served as a surrogate of migraine-like pain. Female and male KORCre; R26lsl-Sun1-GFP mice showed a high percentage of KORCre labelled neurons co-localized in tyrosine hydroxylase-positive cells in the hypothalamic arcuate nucleus. Restraint stress increased circulating prolactin to a greater degree in females. Stress-primed, but not control, mice of both sexes developed periorbital allodynia following inhalational umbellulone. Gi-DREADD activation (i.e. inhibition through Gi-coupled signalling) in KORCre neurons in the arcuate nucleus also increased circulating prolactin and repeated chemogenetic manipulation of these neurons primed mice of both sexes to umbellulone. Clustered regularly interspaced short palindromic repeats-Cas9 deletion of the arcuate nucleus KOR prevented restraint stress-induced prolactin release in female mice and priming from repeated stress episodes in both sexes. Inhibition of circulating prolactin occurred with systemic cabergoline, a dopamine D2 receptor agonist, blocked priming selectively in females. Repeated restraint stress downregulated the prolactin receptor long isoform in the trigeminal ganglia of female mice. Deletion of prolactin receptor in trigeminal ganglia by nasal clustered regularly interspaced short palindromic repeats-Cas9 targeting both prolactin receptor isoforms prevented stress-induced priming in female mice. Stress-induced activation of hypothalamic KOR increases circulating prolactin resulting in trigeminal downregulation of prolactin receptor long and pain responses to a normally innocuous TRPA1 stimulus. These are the first data that provide a mechanistic link between stress-induced hypothalamic activation and the trigeminal nociceptor effectors that produce trigeminal sensitization and migraine-like pain. This sexually dimorphic mechanism may help to explain female prevalence of migraine. KOR antagonists, currently in phase II clinical trials, may be useful as migraine preventives in both sexes, while dopamine agonists and prolactin/ prolactin receptor antibodies may improve therapy for migraine, and other stress-related neurological disorders, in females.
Collapse
Affiliation(s)
| | | | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Daigo Ikegami
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Yanxia Chen
- Present address: The Solomon H. Snyder Department of Neuroscience, Department of Neurosurgery, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Sarah Ross
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kimberly Mackenzie
- Teva Pharmaceutical Industries, Ltd., Biologics Discovery, Redwood City, CA 94063, USA
| | - Jennifer Stratton
- Teva Pharmaceutical Industries, Ltd., Biologics Discovery, Redwood City, CA 94063, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Edita Navratilova
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Frank Porreca
- Correspondence to: Frank Porreca, PhD Department of Pharmacology University of Arizona College of Medicine Tucson AZ 85724, USA E-mail:
| |
Collapse
|
43
|
Dedek A, Xu J, Lorenzo LÉ, Godin AG, Kandegedara CM, Glavina G, Landrigan JA, Lombroso PJ, De Koninck Y, Tsai EC, Hildebrand ME. Sexual dimorphism in a neuronal mechanism of spinal hyperexcitability across rodent and human models of pathological pain. Brain 2022; 145:1124-1138. [PMID: 35323848 PMCID: PMC9050559 DOI: 10.1093/brain/awab408] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
The prevalence and severity of many chronic pain syndromes differ across sex, and recent studies have identified differences in immune signalling within spinal nociceptive circuits as a potential mediator. Although it has been proposed that sex-specific pain mechanisms converge once they reach neurons within the superficial dorsal horn, direct investigations using rodent and human preclinical pain models have been lacking. Here, we discovered that in the Freund’s adjuvant in vivo model of inflammatory pain, where both male and female rats display tactile allodynia, a pathological coupling between KCC2-dependent disinhibition and N-methyl-D-aspartate receptor (NMDAR) potentiation within superficial dorsal horn neurons was observed in male but not female rats. Unlike males, the neuroimmune mediator brain-derived neurotrophic factor (BDNF) failed to downregulate inhibitory signalling elements (KCC2 and STEP61) and upregulate excitatory elements (pFyn, GluN2B and pGluN2B) in female rats, resulting in no effect of ex vivo brain-derived neurotrophic factor on synaptic NMDAR responses in female lamina I neurons. Importantly, this sex difference in spinal pain processing was conserved from rodents to humans. As in rodents, ex vivo spinal treatment with BDNF downregulated markers of disinhibition and upregulated markers of facilitated excitation in superficial dorsal horn neurons from male but not female human organ donors. Ovariectomy in female rats recapitulated the male pathological pain neuronal phenotype, with BDNF driving a coupling between disinhibition and NMDAR potentiation in adult lamina I neurons following the prepubescent elimination of sex hormones in females. This discovery of sexual dimorphism in a central neuronal mechanism of chronic pain across species provides a foundational step towards a better understanding and treatment for pain in both sexes.
Collapse
Affiliation(s)
- Annemarie Dedek
- Department of Neuroscience, Carleton University, K1S 5B6 Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, K1Y 4M9 Ontario, Canada
| | - Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | - Antoine G Godin
- CERVO Brain Research Centre, Quebec Mental Health Institute, Quebec G1E 1T2, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec G1V 0A6, Canada
| | - Chaya M Kandegedara
- Department of Neuroscience, Carleton University, K1S 5B6 Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, K1Y 4M9 Ontario, Canada
| | - Geneviève Glavina
- CERVO Brain Research Centre, Quebec Mental Health Institute, Quebec G1E 1T2, Canada
| | | | - Paul J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Yves De Koninck
- CERVO Brain Research Centre, Quebec Mental Health Institute, Quebec G1E 1T2, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec G1V 0A6, Canada
| | - Eve C Tsai
- Neuroscience Program, Ottawa Hospital Research Institute, K1Y 4M9 Ontario, Canada.,Brain and Mind Research Institute, University of Ottawa, Ontario K1N 6N5, Canada.,Department of Surgery, Division of Neurosurgery, The Ottawa Hospital, Ontario K1Y 4E9, Canada
| | - Michael E Hildebrand
- Department of Neuroscience, Carleton University, K1S 5B6 Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, K1Y 4M9 Ontario, Canada
| |
Collapse
|
44
|
Abstract
We aimed to investigate a sexually dimorphic role of calcitonin gene-related peptide (CGRP) in rodent models of pain. Based on findings in migraine where CGRP has a preferential pain-promoting effect in female rodents, we hypothesized that CGRP antagonists and antibodies would attenuate pain sensitization more efficaciously in female than male mice and rats. In hyperalgesic priming induced by activation of interleukin 6 signaling, CGRP receptor antagonists olcegepant and CGRP8-37 both given intrathecally, blocked, and reversed hyperalgesic priming only in females. A monoclonal antibody against CGRP, given systemically, blocked priming specifically in female rodents but failed to reverse it. In the spared nerve injury model, there was a transient effect of both CGRP antagonists, given intrathecally, on mechanical hypersensitivity in female mice only. Consistent with these findings, intrathecally applied CGRP caused a long-lasting, dose-dependent mechanical hypersensitivity in female mice but more transient effects in males. This CGRP-induced mechanical hypersensitivity was reversed by olcegepant and the KCC2 enhancer CLP257, suggesting a role for anionic plasticity in the dorsal horn in the pain-promoting effects of CGRP in females. In spinal dorsal horn slices, CGRP shifted GABAA reversal potentials to significantly more positive values, but, again, only in female mice. Therefore, CGRP may regulate KCC2 expression and/or activity downstream of CGRP receptors specifically in females. However, KCC2 hypofunction promotes mechanical pain hypersensitivity in both sexes because CLP257 alleviated hyperalgesic priming in male and female mice. We conclude that CGRP promotes pain plasticity in female rodents but has a limited impact in males.SIGNIFICANCE STATEMENT The majority of patients impacted by chronic pain are women. Mechanistic studies in rodents are creating a clear picture that molecular events promoting chronic pain are different in male and female animals. We sought to build on evidence showing that CGRP is a more potent and efficacious promoter of headache in female than in male rodents. To test this, we used hyperalgesic priming and the spared nerve injury neuropathic pain models in mice. Our findings show a clear sex dimorphism wherein CGRP promotes pain in female but not male mice, likely via a centrally mediated mechanism of action. Our work suggests that CGRP receptor antagonists could be tested for efficacy in women for a broader variety of pain conditions.
Collapse
|
45
|
Mecklenburg J, Wangzhou A, Hovhannisyan AH, Barba-Escobedo P, Shein SA, Zou Y, Weldon K, Lai Z, Goffin V, Dussor G, Tumanov AV, Price TJ, Akopian AN. Sex-dependent pain trajectories induced by prolactin require an inflammatory response for pain resolution. Brain Behav Immun 2022; 101:246-263. [PMID: 35065194 PMCID: PMC9173405 DOI: 10.1016/j.bbi.2022.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 11/23/2022] Open
Abstract
Pain development and resolution patterns in many diseases are sex-dependent. This study aimed to develop pain models with sex-dependent resolution trajectories, and identify factors linked to resolution of pain in females and males. Using different intra-plantar (i.pl.) treatment protocols with prolactin (PRL), we established models with distinct, sex-dependent patterns for development and resolution of pain. An acute PRL-evoked pain trajectory, in which hypersensitivity is fully resolved within 1 day, showed substantial transcriptional changes after pain-resolution in female and male hindpaws and in the dorsal root ganglia (DRG). This finding supports the notion that pain resolution is an active process. Prolonged treatment with PRL high dose (1 μg) evoked mechanical hypersensitivity that resolved within 5-7 days in mice of both sexes and exhibited a pro-inflammatory transcriptional response in the hindpaw, but not DRG, at the time point preceding resolution. Flow cytometry analysis linked pro-inflammatory responses in female hindpaws to macrophages/monocytes, especially CD11b+/CD64+/MHCII+ cell accumulation. Prolonged low dose PRL (0.1 μg) treatment caused non-resolving mechanical hypersensitivity only in females. This effect was independent of sensory neuronal PRLR and was associated with a lack of immune response in the hindpaw, although many genes underlying tissue damage were affected. We conclude that different i.pl. PRL treatment protocols generates distinct, sex-specific pain hypersensitivity resolution patterns. PRL-induced pain resolution is preceded by a pro-inflammatory macrophage/monocyte-associated response in the hindpaws of mice of both sexes. On the other hand, the absence of a peripheral inflammatory response creates a permissive condition for PRL-induced pain persistency in females.
Collapse
Affiliation(s)
- Jennifer Mecklenburg
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX 78229, United States
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas (UTD), Richardson, TX 75080, United States
| | - Anahit H Hovhannisyan
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX 78229, United States
| | - Priscilla Barba-Escobedo
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX 78229, United States
| | - Sergey A Shein
- Departments of Microbiology, Immunology & Molecular Genetics, the School of Medicine, UTHSCSA, San Antonio, TX 78229, United States
| | - Yi Zou
- Molecular Medicine, The School of Medicine, UTHSCSA, San Antonio, TX 78229, United States
| | - Korri Weldon
- Molecular Medicine, The School of Medicine, UTHSCSA, San Antonio, TX 78229, United States
| | - Zhao Lai
- Molecular Medicine, The School of Medicine, UTHSCSA, San Antonio, TX 78229, United States; Greehey Children's Cancer Research Institute, UTHSCSA, United States
| | | | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas (UTD), Richardson, TX 75080, United States
| | - Alexei V Tumanov
- Departments of Microbiology, Immunology & Molecular Genetics, the School of Medicine, UTHSCSA, San Antonio, TX 78229, United States
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas (UTD), Richardson, TX 75080, United States
| | - Armen N Akopian
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX 78229, United States; Departments of Pharmacology, The School of Medicine, UTHSCSA, San Antonio, TX 78229, United States.
| |
Collapse
|
46
|
Ikegami D, Navratilova E, Yue X, Moutal A, Kopruszinski CM, Khanna R, Patwardhan A, Dodick DW, Porreca F. A prolactin-dependent sexually dimorphic mechanism of migraine chronification. Cephalalgia 2022; 42:197-208. [PMID: 34510920 PMCID: PMC11668309 DOI: 10.1177/03331024211039813] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Determination of possible sex differences in mechanisms promoting migraine progression and the contribution of prolactin and the prolactin long (PRLR-L) and short (PRLR-S) receptor isoforms. BACKGROUND The majority of patients with chronic migraine and medication overuse headache are female. Prolactin is present at higher levels in women and increases migraine. Prolactin signaling at the PRLR-S selectively sensitizes nociceptors in female rodents, while expression of the PRLR-L is protective. METHODS Medication overuse headache was modeled by repeated sumatriptan administration in male and female mice. Periorbital and hindpaw cutaneous allodynia served as a surrogate of migraine-like pain. PRLR-L and PRLR-S isoforms were measured in the trigeminal ganglion with western blotting. Possible co-localization of PRLR with serotonin 5HT1B and 5HT1D receptors was determined with RNAscope. Cabergoline, a dopamine receptor agonist that inhibits circulating prolactin, was co-administered with sumatriptan. Nasal administration of CRISPR/Cas9 plasmid was used to edit expression of both PRLR isoforms. RESULTS PRLR was co-localized with 5HT1B or 5HT1D receptors in the ophthalmic region of female trigeminal ganglion. A single injection of sumatriptan increased serum PRL levels in female mice. Repeated sumatriptan promoted cutaneous allodynia in both sexes but down-regulated trigeminal ganglion PRLR-L, without altering PRLR-S, only in females. Co-administration of sumatriptan with cabergoline prevented allodynia and down-regulation of PRLR-L only in females. CRISPR/Cas9 editing of both PRLR isoforms in the trigeminal ganglion prevented sumatriptan-induced periorbital allodynia in females. INTERPRETATION We identified a sexually dimorphic mechanism of migraine chronification that involves down-regulation of PRLR-L and increased signaling of circulating prolactin at PRLR-S. These studies reveal a previously unrecognized neuroendocrine mechanism linking the hypothalamus to nociceptor sensitization that increases the risk of migraine pain in females and suggest opportunities for novel sex-specific therapies including gene editing through nasal delivery of CRISPR/Cas9 constructs.
Collapse
Affiliation(s)
- Daigo Ikegami
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
- Departments of Neurology and Neuroscience, Mayo Clinic, Scottsdale, AZ 85259
| | - Xu Yue
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | | | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Amol Patwardhan
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - David W Dodick
- Departments of Neurology and Neuroscience, Mayo Clinic, Scottsdale, AZ 85259
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
- Departments of Neurology and Neuroscience, Mayo Clinic, Scottsdale, AZ 85259
| |
Collapse
|
47
|
Mason BN, Kallianpur R, Price TJ, Akopian AN, Dussor G. Prolactin signaling modulates stress-induced behavioral responses in a preclinical mouse model of migraine. Headache 2022; 62:11-25. [PMID: 34967003 PMCID: PMC8809368 DOI: 10.1111/head.14248] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim of this study was to determine if prolactin signaling modulates stress-induced behavioral responses in a preclinical migraine model. BACKGROUND Migraine is one of the most complex and prevalent disorders. The involvement of sex-selective hormones in migraine pathology is highly likely as migraine is more common in women and its frequency correlates with reproductive stages. Prolactin has been shown to be a worsening factor for migraine. Normally prolactin levels are low; however levels can surge during stress. Dopamine receptor agonists, which suppress pituitary prolactin release, are an effective migraine treatment in a subset of patients. Previously, we showed that administration of prolactin onto the dura mater induces female-specific behavioral responses, suggesting that prolactin may play a sex-specific role in migraine. METHODS The effects of prolactin signaling were assessed using a preclinical migraine model we published recently in which behavioral sensitization is induced by repeated stress. Plasma prolactin levels were assessed in naïve and stressed CD-1 mice (n = 3-5/group) and transgenic mice with conditional deletion of the Prlr in Nav1.8-positive sensory neurons (Prlr conditional knock-out [CKO]; n = 3/group). To assess the contribution of prolactin release during stress, naïve or stressed male and female CD-1 mice were treated with the prolactin release inhibitor bromocriptine (2 mg/kg; n = 7-12/group) or vehicle for 5 days (8-12/group) and tested for facial hypersensitivity following stress. Additionally, the contribution of ovarian hormones in regulating the prolactin-induced responses was assessed in ovariectomized female CD-1 mice (n = 6-10/group). Furthermore, the contribution of Prlr activation on Nav1.8-positive sensory neurons was assessed. Naïve or stressed male and female Prlr CKO mice and their control littermates were tested for facial hypersensitivity (n = 8-9/group). Immunohistochemistry was used to confirm loss of Prlr in Nav1.8-positive neurons in Prlr CKO mice. The total sample size is n = 245; the full analysis sample size is n = 221. RESULTS Stress significantly increased prolactin levels in vehicle-treated female mice (39.70 ± 2.77; p < 0.0001). Bromocriptine significantly reduced serum prolactin levels in stressed female mice compared to vehicle-treated mice (-44.85 ± 3.1; p < 0.0001). Additionally, no difference was detected between female stressed mice that received bromocriptine compared to naïve mice treated with bromocriptine (-0.70 ± 2.9; p = 0.995). Stress also significantly increased serum prolactin levels in male mice, although to a much smaller extent than in females (0.61 ± 0.08; p < 0.001). Bromocriptine significantly reduced serum prolactin levels in stressed males compared to those treated with vehicle (-0.49 ± 0.08; p = 0.002). Furthermore, bromocriptine attenuated stress-induced behavioral responses in female mice compared to those treated with vehicle (maximum effect observed on day 4 post stress [0.21 ± 0.08; p = 0.03]). Bromocriptine did not attenuate stress-induced behavior in males at any timepoint compared to those treated with vehicle. Moreover, loss of ovarian hormones did not affect the ability of bromocriptine to attenuate stress responses compared to vehicle-treated ovariectomy mice that were stressed (maximum effect observed on day 4 post stress [0.29 ± 0.078; p = 0.013]). Similar to CD-1 mice, stress increased serum prolactin levels in both Prlr CKO female mice (27.74 ± 9.96; p = 0.047) and control littermates (28.68 ± 9.9; p = 0.041) compared to their naïve counterparts. There was no significant increase in serum prolactin levels detected in male Prlr CKO mice or control littermates. Finally, conditional deletion of Prlr from Nav1.8-positive sensory neurons led to a female-specific attenuation of stress-induced behavioral responses (maximum effect observed on day 7 post stress [0.32 ± 0.08; p = 0.007]) compared to control littermates. CONCLUSION These data demonstrate that prolactin plays a female-specific role in stress-induced behavioral responses in this preclinical migraine model through activation of Prlr on sensory neurons. They also support a role for prolactin in migraine mechanisms in females and suggest that modulation of prolactin signaling may be an effective therapeutic strategy in some cases.
Collapse
Affiliation(s)
- Bianca N. Mason
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX USA
| | - Rohini Kallianpur
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX USA
| | - Theodore J. Price
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX USA
| | - Armen N. Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, TX USA
| | - Gregory Dussor
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX USA
| |
Collapse
|
48
|
Abstract
Injury-free pain conditions, defined as functional pain syndromes, are more prevalent and more disabling in women. Mechanisms of sexual dimorphism in functional pain are now emerging from preclinical studies, suggesting an opportunity to advance the development of sex-specific therapies that may improve treatment of pain in women.
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Mayo Clinic, Scottsdale, AZ 85259, USA
| |
Collapse
|
49
|
A link between migraine and prolactin: the way forward. Future Sci OA 2021; 7:FSO748. [PMID: 34737888 PMCID: PMC8558870 DOI: 10.2144/fsoa-2021-0047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
Migraine is an incapacitating neurological disorder that predominantly affects women. Sex and other hormones (e.g., oxytocin, and prolactin) may play a role in sexual dimorphic features of migraine. Initially, prolactin was recognized for its modulatory action in milk production and secretion; later, its roles in the regulation of the endocrine, immune and nervous systems were discovered. Higher prolactin levels in individuals with migraine were found in earlier studies, with a female sex-dominant trend. Studies that are more recent have identified that the expression of prolactin receptor in response to neuronal excitability and stress depends on sex with a dominant role in females. These findings have opened up potentials for explanation of sex-related pathophysiology of migraine, but have left some unanswered questions. This focused review examines the past and present of the link between prolactin and migraine, and presents open questions and directions for future experimental and clinical efforts. Sex hormones (e.g., estrogen and progesterone) have been investigated to explain the sex-related manifestation of migraine, which is predominant in females. Prolactin is known for promoting lactation, but accumulating evidence supports that it can promote pain in females. An increasing number of studies have shown that the expression of a prolactin receptor in female nociceptors and their responses to external stimuli such as stress are different, which can help explain the female sex-dominant feature of migraine. In this focused review, the current knowledge is presented and the directions where prolactin research in migraine may evolve are proposed. The ultimate goal is to shape an overview toward considering sex-based treatments for migraine with highlighting the role of prolactin.
Collapse
|
50
|
Hormonal influences in migraine - interactions of oestrogen, oxytocin and CGRP. Nat Rev Neurol 2021; 17:621-633. [PMID: 34545218 DOI: 10.1038/s41582-021-00544-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Migraine is ranked as the second highest cause of disability worldwide and the first among women aged 15-49 years. Overall, the incidence of migraine is threefold higher among women than men, though the frequency and severity of attacks varies during puberty, the menstrual cycle, pregnancy, the postpartum period and menopause. Reproductive hormones are clearly a key influence in the susceptibility of women to migraine. A fall in plasma oestrogen levels can trigger attacks of migraine without aura, whereas higher oestrogen levels seem to be protective. The basis of these effects is unknown. In this Review, we discuss what is known about sex hormones and their receptors in migraine-related areas in the CNS and the peripheral trigeminovascular pathway. We consider the actions of oestrogen via its multiple receptor subtypes and the involvement of oxytocin, which has been shown to prevent migraine attacks. We also discuss possible interactions of these hormones with the calcitonin gene-related peptide (CGRP) system in light of the success of anti-CGRP treatments. We propose a simple model to explain the hormone withdrawal trigger in menstrual migraine, which could provide a foundation for improved management and therapy for hormone-related migraine in women.
Collapse
|