1
|
Van Maldegem M, Vohryzek J, Atasoy S, Alnagger N, Cardone P, Bonhomme V, Vanhaudenhuyse A, Demertzi A, Jaquet O, Bahri MA, Nunez P, Kringelbach ML, Stamatakis EA, Luppi AI. Connectome harmonic decomposition tracks the presence of disconnected consciousness during ketamine-induced unresponsiveness. Br J Anaesth 2025; 134:1088-1104. [PMID: 39933965 PMCID: PMC11947573 DOI: 10.1016/j.bja.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 12/07/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Ketamine, in doses suitable to induce anaesthesia in humans, gives rise to a unique state of unresponsiveness accompanied by vivid experiences and sensations, making it possible to disentangle the correlated but distinct concepts of conscious awareness and behavioural responsiveness. This distinction is often overlooked in the study of consciousness. METHODS The mathematical framework of connectome harmonic decomposition (CHD) was used to view functional magnetic resonance imaging (fMRI) signals during ketamine-induced unresponsiveness as distributed patterns across spatial scales. The connectome harmonic signature of this particular state was mapped onto signatures of other states of consciousness for comparison. RESULTS An increased prevalence of fine-grained connectome harmonics was found in fMRI signals obtained during ketamine-induced unresponsiveness, indicating higher granularity. After statistical assessment, the ketamine sedation harmonic signature showed alignment with signatures of LSD-induced (fixed effect =0.0113 [0.0099, 0.0127], P<0.001) or ketamine-induced (fixed effect =0.0087 [0.0071, 0.0103], P<0.001) psychedelic states, and misalignment with signatures seen in unconscious individuals owing to propofol sedation (fixed effect =-0.0213 [-0.0245, -0.0181], P<0.001) or brain injury (fixed effect =-0.0205 [-0.0234, -0.0178], P<0.001). CONCLUSIONS The CHD framework, which only requires resting-state fMRI data and can be applied retrospectively, has the ability to track alterations in conscious awareness in the absence of behavioural responsiveness on a group level. This is possible because of ketamine's unique property of decoupling these two facets, and is important for consciousness and anaesthesia research.
Collapse
Affiliation(s)
- Milan Van Maldegem
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK.
| | - Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Naji Alnagger
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Vincent Bonhomme
- Anaesthesia and Perioperative Neuroscience, GIGA-Consciousness, University of Liege, Liege, Belgium; Department of Anesthesia and Intensive Care Medicine, University Hospital of Liege, Liege, Belgium
| | - Audrey Vanhaudenhuyse
- Conscious Care Lab, GIGA-Consciousness, University of Liege, Liege, Belgium; Algology Interdisciplinary Centre, University Hospital of Liege, Liege, Belgium
| | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-CRC Human Imaging Unit, University of Liege, Liege, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liege, Liege, Belgium
| | - Oceane Jaquet
- Department of Anesthesia and Intensive Care Medicine, University Hospital of Liege, Liege, Belgium
| | | | - Pablo Nunez
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Andrea I Luppi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK; Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Division of Information Engineering, University of Cambridge, Cambridge, UK; St John's College, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Halkiopoulos C, Gkintoni E, Aroutzidis A, Antonopoulou H. Advances in Neuroimaging and Deep Learning for Emotion Detection: A Systematic Review of Cognitive Neuroscience and Algorithmic Innovations. Diagnostics (Basel) 2025; 15:456. [PMID: 40002607 PMCID: PMC11854508 DOI: 10.3390/diagnostics15040456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The following systematic review integrates neuroimaging techniques with deep learning approaches concerning emotion detection. It, therefore, aims to merge cognitive neuroscience insights with advanced algorithmic methods in pursuit of an enhanced understanding and applications of emotion recognition. Methods: The study was conducted following PRISMA guidelines, involving a rigorous selection process that resulted in the inclusion of 64 empirical studies that explore neuroimaging modalities such as fMRI, EEG, and MEG, discussing their capabilities and limitations in emotion recognition. It further evaluates deep learning architectures, including neural networks, CNNs, and GANs, in terms of their roles in classifying emotions from various domains: human-computer interaction, mental health, marketing, and more. Ethical and practical challenges in implementing these systems are also analyzed. Results: The review identifies fMRI as a powerful but resource-intensive modality, while EEG and MEG are more accessible with high temporal resolution but limited by spatial accuracy. Deep learning models, especially CNNs and GANs, have performed well in classifying emotions, though they do not always require large and diverse datasets. Combining neuroimaging data with behavioral and cognitive features improves classification performance. However, ethical challenges, such as data privacy and bias, remain significant concerns. Conclusions: The study has emphasized the efficiencies of neuroimaging and deep learning in emotion detection, while various ethical and technical challenges were also highlighted. Future research should integrate behavioral and cognitive neuroscience advances, establish ethical guidelines, and explore innovative methods to enhance system reliability and applicability.
Collapse
Affiliation(s)
- Constantinos Halkiopoulos
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| | - Evgenia Gkintoni
- Department of Educational Sciences and Social Work, University of Patras, 26504 Patras, Greece
| | - Anthimos Aroutzidis
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| | - Hera Antonopoulou
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| |
Collapse
|
3
|
Liu D, Wang N, Song M, Chai X, He Q, Cao T, Kong D, Song Z, Zhang G, Liu L, Wang X, Chen G, Yin S, Yang Y, Zhao J. Global glucose metabolism rate as diagnostic marker for disorder of consciousness of patients: quantitative FDG-PET study. Front Neurol 2025; 15:1425271. [PMID: 39830198 PMCID: PMC11739340 DOI: 10.3389/fneur.2024.1425271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
Objective This study was to employ 18F-flurodeoxyglucose (FDG-PET) to evaluate the resting-state brain glucose metabolism in a sample of 46 patients diagnosed with disorders of consciousness (DoC). The aim was to identify objective quantitative metabolic indicators and predictors that could potentially indicate the level of awareness in these patients. Methods A cohort of 46 patients underwent Coma Recovery Scale-Revised (CRS-R) assessments in order to distinguish between the minimally conscious state (MCS) and the unresponsive wakefulness syndrome (UWS). Additionally, resting-state FDG-PET data were acquired from both the patient group and a control group consisting of 10 healthy individuals. The FDG-PET data underwent reorientation, spatial normalization to a stereotaxic space, and smoothing. The normalization procedure utilized a customized template following the methodology outlined by Phillips et al. Mean cortical metabolism of the overall sample was utilized for distinguishing between UWS and MCS, as well as for predicting the outcome at a 1-year follow-up through the application of receiver operating characteristic (ROC) analysis. Results We used Global Glucose Metabolism as the Diagnostic Marker. A one-way ANOVA revealed that there was a statistically significant difference in cortical metabolic index between two groups (F(2, 53) = 7.26, p < 0.001). Multiple comparisons found that the mean of cortical metabolic index was significantly different between MCS (M = 4.19, SD = 0.64) and UWS group (M = 2.74, SD = 0.94,p < 0.001). Also, the mean of cortical metabolic index was significantly different between MCS and healthy group (M = 7.88, SD = 0.80,p < 0.001). Using the above diagnostic criterion, the diagnostic accuracy yielded an area under the curve (AUC) of 0.89 across the pooled cohort (95%CI 0.79-0.99). There was an 85% correct classification between MCS and UWS, with 88% sensitivity and 81% specificity for MCS. The best classification rate in the derivation cohort was achieved at a metabolic index of 3.32 (41% of the mean cortical metabolic index in healthy controls). Conclusion Our findings demonstrate that conscious awareness requires a minimum of 41% of normal cortical activity, as indicated by metabolic rates.
Collapse
Affiliation(s)
- Dongsheng Liu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| | - Nan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ming Song
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaoke Chai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianqing Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dawei Kong
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| | - Zhuhuan Song
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Guangming Zhang
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| | - Lei Liu
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| | - Xiaosong Wang
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| | - Guoqiang Chen
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| | - Shaoya Yin
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Brain-Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Center for Neurological Disorders, Beijing, China
- National Research Center for Rehabilitation Technical Aids, Beijing, China
- Chinese Institute for Brain Research Beijing, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
4
|
Sala A, Gosseries O, Laureys S, Annen J. Advances in neuroimaging in disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:97-127. [PMID: 39986730 DOI: 10.1016/b978-0-443-13408-1.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Disorders of consciousness (DoC) are a heterogeneous spectrum of clinical conditions, including coma, unresponsive wakefulness syndrome, and minimally conscious state. DoC are clinically defined on the basis of behavioral cues expressed by the patients, on the assumption that such behavioral responses of the patient are representative of the patient's degree of consciousness impairment. However, many studies have highlighted the issues arising from formulating a DoC diagnosis merely on behavioral assessment. Overcoming the limitations of behavioral assessment, neuroimaging provides a direct window on the cerebral activity of the patient, bypassing the motor, perceptual, or cognitive deficits that might hamper the patient's ability to produce an appropriate behavioral response. This chapter provides an overview of available molecular, functional, and structural neuroimaging evidence in patients with DoC. This chapter introduces the neuroimaging tools available in the clinical settings of nuclear medicine and neuroradiology and presents the evidence on the role of neuroimaging tools to improve the clinical management of DoC patients, from the standpoint of differential diagnosis and prognosis. Last, we outline the open questions in the field, and point at actions that are urgently needed to fully exploit neuroimaging tools to advance scientific understanding and clinical management of DoC.
Collapse
Affiliation(s)
- Arianna Sala
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium; Department of Data Analysis, University of Ghent, Ghent, Belgium
| |
Collapse
|
5
|
Blain-Moraes S, Sarwal A, Hemphill JC. The Curing Coma Campaign: A platform for advancing science and clinical care worldwide. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:265-280. [PMID: 39986725 DOI: 10.1016/b978-0-443-13408-1.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Recovery from coma or impaired consciousness is often the central issue in acute neurologic conditions such as traumatic brain injury, hypoxic-ischemic brain injury, stroke, and central nervous system infections. Recent advances in the science underpinning acute disorders of consciousness (DoC) have also served to highlight further scientific gaps and the lack of a coordinated approach to improving care for these patients. The Curing Coma Campaign (CCC) was initiated by the Neurocritical Care Society in 2019 as a platform to bring together the scientific, clinical, and public communities to cohesively address this issue. Comprised of various modules and working groups focused on aspects including fundamental science, prospective clinical studies, ethics, care of the coma patient, and engagement and community, initial efforts of the CCC have ranged from developing strategies for biomarker development to creating World Coma Day as an opportunity for widespread interaction. To achieve the goal of relevance across different geographic and resourced environments, the CCC implemented specific considerations to ensure equity and generalizability. These include international representation of patients in research studies, attention to assessments and interventions that can be implemented in resource-limited settings, and recognition of the impact of culture on the care of DoC patients.
Collapse
Affiliation(s)
- Stefanie Blain-Moraes
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Aarti Sarwal
- Deparrtment of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - J Claude Hemphill
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
6
|
Wang J, Lai Q, Han J, Qin P, Wu H. Neuroimaging biomarkers for the diagnosis and prognosis of patients with disorders of consciousness. Brain Res 2024; 1843:149133. [PMID: 39084451 DOI: 10.1016/j.brainres.2024.149133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The progress in neuroimaging and electrophysiological techniques has shown substantial promise in improving the clinical assessment of disorders of consciousness (DOC). Through the examination of both stimulus-induced and spontaneous brain activity, numerous comprehensive investigations have explored variations in brain activity patterns among patients with DOC, yielding valuable insights for clinical diagnosis and prognostic purposes. Nonetheless, reaching a consensus on precise neuroimaging biomarkers for patients with DOC remains a challenge. Therefore, in this review, we begin by summarizing the empirical evidence related to neuroimaging biomarkers for DOC using various paradigms, including active, passive, and resting-state approaches, by employing task-based fMRI, resting-state fMRI (rs-fMRI), electroencephalography (EEG), and positron emission tomography (PET) techniques. Subsequently, we conducted a review of studies examining the neural correlates of consciousness in patients with DOC, with the findings holding potential value for the clinical application of DOC. Notably, previous research indicates that neuroimaging techniques have the potential to unveil covert awareness that conventional behavioral assessments might overlook. Furthermore, when integrated with various task paradigms or analytical approaches, this combination has the potential to significantly enhance the accuracy of both diagnosis and prognosis in DOC patients. Nonetheless, the stability of these neural biomarkers still needs additional validation, and future directions may entail integrating diagnostic and prognostic methods with big data and deep learning approaches.
Collapse
Affiliation(s)
- Jiaying Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Qiantu Lai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Pazhou Lab, Guangzhou 510330, China.
| | - Hang Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
7
|
Toppi J, Quattrociocchi I, Riccio A, D'Ippolito M, Aloisi M, Colamarino E, Pichiorri F, Cincotti F, Formisano R, Mattia D. EEG-Derived Markers to Improve Prognostic Evaluation of Disorders of Consciousness. IEEE J Biomed Health Inform 2024; 28:6674-6684. [PMID: 39150811 DOI: 10.1109/jbhi.2024.3445118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Disorders of consciousness (DoC) are characterized by alteration in arousal and/or awareness commonly caused by severe brain injury. There exists a consensus on adopting advanced neuroimaging and electrophysiological procedures to improve diagnosis/prognosis of DoC patients. Currently, these procedures are prevalently applied in a research-oriented context and their translation into clinical practice is yet to come. The aim of the study consisted in the identification of measures derived from routinary electroencephalography (EEG) able to support clinicians in the prediction of DoC patients' outcome. In the present study, a routine EEG was recorded during rest from a sample of 58 DoC patients clinically diagnosed as Unresponsive Wakefulness State (UWS) and Minimally Conscious State (MCS) and followed-up for 3 months. EEG-based features characterizing brain activity in terms of spectral content and resting state networks organization were used in a predictive machine learning model to i) identify which were the most promising features in predicting patients' exit from the DoC, regardless of the clinical diagnosis and ii) verify whether such features would have been the same best discriminating UWS from MCS or specific of the outcome prediction. A predictive machine learning model was built on EEG features related to spectral content and resting state networks which returned up to 85% of performance accuracy in outcome prediction and 76% in DoC state recognition (UWS vs MCS). We provided preliminary evidence for the exploitation of a routine EEG to improve the clinical management of non-communicative patients to be confirmed in a larger DoC population.
Collapse
|
8
|
Lo CCH, Woo PYM, Cheung VCK. Task-based EEG and fMRI paradigms in a multimodal clinical diagnostic framework for disorders of consciousness. Rev Neurosci 2024; 35:775-787. [PMID: 38804042 DOI: 10.1515/revneuro-2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Disorders of consciousness (DoC) are generally diagnosed by clinical assessment, which is a predominantly motor-driven process and accounts for up to 40 % of non-communication being misdiagnosed as unresponsive wakefulness syndrome (UWS) (previously known as prolonged/persistent vegetative state). Given the consequences of misdiagnosis, a more reliable and objective multimodal protocol to diagnosing DoC is needed, but has not been produced due to concerns regarding their interpretation and reliability. Of the techniques commonly used to detect consciousness in DoC, task-based paradigms (active paradigms) produce the most unequivocal result when findings are positive. It is well-established that command following (CF) reliably reflects preserved consciousness. Task-based electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can detect motor-independent CF and reveal preserved covert consciousness in up to 14 % of UWS patients. Accordingly, to improve the diagnostic accuracy of DoC, we propose a practical multimodal clinical decision framework centered on task-based EEG and fMRI, and complemented by measures like transcranial magnetic stimulation (TMS-EEG).
Collapse
Affiliation(s)
- Chris Chun Hei Lo
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Peter Yat Ming Woo
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Vincent C K Cheung
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
9
|
Sangare A, Munoz-Musat E, Ben Salah A, Valente M, Marois C, Demeret S, Sitt JD, Rohaut B, Naccache L. Pain anticipation is a new behavioural sign of minimally conscious state. Brain Commun 2024; 6:fcae311. [PMID: 39346020 PMCID: PMC11430917 DOI: 10.1093/braincomms/fcae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Probing cognition and consciousness in the absence of functional communication remains an extremely challenging task. In this perspective, we imagined a basic clinical procedure to explore pain anticipation at bedside. In a series of 61 patients with a disorder of consciousness, we tested the existence of a nociceptive anticipation response by pairing a somaesthetic stimulation with a noxious stimulation. We then explored how nociceptive anticipation response correlated with (i) clinical status inferred from Coma Recovery Scale-Revised scoring, (ii) with an EEG signature of stimulus anticipation-the contingent negative variation-and (iii) how nociceptive anticipation response could predict consciousness outcome at 6 months. Proportion of nociceptive anticipation response differed significantly according to the state of consciousness: nociceptive anticipation response was present in 5 of 5 emerging from minimally conscious state patients (100%), in 10 of 11 minimally conscious state plus patients (91%), but only in 8 of 17 minimally conscious state minus patients (47%), and only in 1 of 24 vegetative state/unresponsive wakefulness syndrome patients (4%) (χ 2 P < 0.0001). Nociceptive anticipation response correlated with the presence of a contingent negative variation, suggesting that patients with nociceptive anticipation response were more prone to actively expect and anticipate auditory stimuli (Fisher's exact test P = 0.05). However, nociceptive anticipation response presence did not predict consciousness recovery. Nociceptive anticipation response appears as a new additional behavioural sign that can be used to differentiate minimally conscious state from vegetative state/unresponsive wakefulness syndrome patients. As most behavioural signs of minimally conscious state, the nociceptive anticipation response seems to reveal the existence of a cortically mediated state that does not necessarily reflect residual conscious processing.
Collapse
Affiliation(s)
- Aude Sangare
- Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, PICNIC Lab, Sorbonne Universite, Paris 75013, France
- Département de Neurophysiologie, Sorbonne Université, Assistance Publique—Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris 75013, France
| | - Esteban Munoz-Musat
- Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, PICNIC Lab, Sorbonne Universite, Paris 75013, France
| | - Amina Ben Salah
- Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, PICNIC Lab, Sorbonne Universite, Paris 75013, France
| | - Melanie Valente
- Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, PICNIC Lab, Sorbonne Universite, Paris 75013, France
- Département de Neurophysiologie, Sorbonne Université, Assistance Publique—Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris 75013, France
| | - Clemence Marois
- Département de Neurologie, Sorbonne Université, Assistance Publique—Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, médecine intensive et réanimation Paris, Paris 75013, France
| | - Sophie Demeret
- Département de Neurologie, Sorbonne Université, Assistance Publique—Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, médecine intensive et réanimation Paris, Paris 75013, France
| | - Jacobo Diego Sitt
- Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, PICNIC Lab, Sorbonne Universite, Paris 75013, France
| | - Benjamin Rohaut
- Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, PICNIC Lab, Sorbonne Universite, Paris 75013, France
- Département de Neurologie, Sorbonne Université, Assistance Publique—Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, médecine intensive et réanimation Paris, Paris 75013, France
| | - Lionel Naccache
- Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, PICNIC Lab, Sorbonne Universite, Paris 75013, France
- Département de Neurophysiologie, Sorbonne Université, Assistance Publique—Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris 75013, France
| |
Collapse
|
10
|
Zheng H, Tian L, Cai J. Meta-analysis of the diagnostic value of functional magnetic resonance imaging for distinguishing unresponsive wakefulness syndrome/vegetative state and minimally conscious state. Front Neurosci 2024; 18:1395639. [PMID: 39315080 PMCID: PMC11417101 DOI: 10.3389/fnins.2024.1395639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Unresponsive wakefulness syndrome/vegetative state (UWS/VS) and minimally conscious state (MCS) are considered different clinical entities, but their differential diagnosis remains challenging. As a potential clinical tool, functional magnetic resonance imaging (fMRI) could detect residual awareness without the need for the patients' actual motor responses. This study aimed to investigate the diagnostic value of fMRI for distinguishing between UWS/VS and MCS through a meta-analysis of the existing studies. Methods We conducted a comprehensive search (from the database creation date to November. 2023) for relevant English articles on fMRI for the differential diagnosis of UWS/VS and MCS. The pooled sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), summary receiver operating characteristic (SROC) curve, and area under the curve (AUC) were calculated to assess the diagnostic value of fMRI in distinguishing between UWS/VS and MCS. The statistical I 2 test was used to assess heterogeneity, and the source of heterogeneity was investigated by performing a meta-regression analysis. Publication bias was assessed using the Deeks funnel plot asymmetry test. Results Ten studies were included in the meta-analysis. The pooled sensitivity and specificity were 0.71 (95% CI 0.62-0.79) and 0.71 (95% CI 0.54-0.84), respectively. The fMRI for the differential diagnosis of UWS/VS and MCS has a moderate positive likelihood ratio (2.5) and a relatively low negative likelihood ratio (0.40). Additionally, SROC curves showed that the AUC was 0.76 (95% CI 0.72-0.80). Conclusion Functional magnetic resonance imaging has a good performance in the differential diagnosis of UWS/VS and MCS, and may provide a potential tool for evaluating the prognosis and guiding the rehabilitation therapy in patients with disorders of consciousness.
Collapse
Affiliation(s)
| | - Lu Tian
- *Correspondence: Lu Tian, ; Jinhua Cai,
| | | |
Collapse
|
11
|
Edlow BL, Menon DK. Covert Consciousness in the ICU. Crit Care Med 2024; 52:1414-1426. [PMID: 39145701 DOI: 10.1097/ccm.0000000000006372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
OBJECTIVES For critically ill patients with acute severe brain injuries, consciousness may reemerge before behavioral responsiveness. The phenomenon of covert consciousness (i.e., cognitive motor dissociation) may be detected by advanced neurotechnologies such as task-based functional MRI (fMRI) and electroencephalography (EEG) in patients who appear unresponsive on the bedside behavioral examination. In this narrative review, we summarize the state-of-the-science in ICU detection of covert consciousness. Further, we consider the prognostic and therapeutic implications of diagnosing covert consciousness in the ICU, as well as its potential to inform discussions about continuation of life-sustaining therapy for patients with severe brain injuries. DATA SOURCES We reviewed salient medical literature regarding covert consciousness. STUDY SELECTION We included clinical studies investigating the diagnostic performance characteristics and prognostic utility of advanced neurotechnologies such as task-based fMRI and EEG. We focus on clinical guidelines, professional society scientific statements, and neuroethical analyses pertaining to the implementation of advanced neurotechnologies in the ICU to detect covert consciousness. DATA EXTRACTION AND DATA SYNTHESIS We extracted study results, guideline recommendations, and society scientific statement recommendations regarding the diagnostic, prognostic, and therapeutic relevance of covert consciousness to the clinical care of ICU patients with severe brain injuries. CONCLUSIONS Emerging evidence indicates that covert consciousness is present in approximately 15-20% of ICU patients who appear unresponsive on behavioral examination. Covert consciousness may be detected in patients with traumatic and nontraumatic brain injuries, including patients whose behavioral examination suggests a comatose state. The presence of covert consciousness in the ICU may predict the pace and extent of long-term functional recovery. Professional society guidelines now recommend assessment of covert consciousness using task-based fMRI and EEG. However, the clinical criteria for patient selection for such investigations are uncertain and global access to advanced neurotechnologies is limited.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - David K Menon
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
黄 永, 吴 佳, 许 敏, 何 江, 明 东. [Current progress on characteristics of intracranial electrophysiology related to prolonged disorders of consciousness]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:826-832. [PMID: 39218610 PMCID: PMC11366456 DOI: 10.7507/1001-5515.202403023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Prolonged disorders of consciousness (pDOC) are pathological conditions of alterations in consciousness caused by various severe brain injuries, profoundly affecting patients' life ability and leading to a huge burden for both the family and society. Exploring the mechanisms underlying pDOC and accurately assessing the level of consciousness in the patients with pDOC provide the basis of developing therapeutic strategies. Research of non-invasive functional neuroimaging technologies, such as functional magnetic resonance (fMRI) and scalp electroencephalography (EEG), have demonstrated that the generation, maintenance and disorders of consciousness involve functions of multiple cortical and subcortical brain regions, and their networks. Invasive intracranial neuroelectrophysiological technique can directly record the electrical activity of subcortical or cortical neurons with high signal-to-noise ratio and spatial resolution, which has unique advantages and important significance for further revealing the brain function and disease mechanism of pDOC. Here we reviewed the current progress of pDOC research based on two intracranial electrophysiological signals, spikes reflecting single-unit activity and field potential reflecting multi-unit activities, and then discussed the current challenges and gave an outlook on future development, hoping to promote the study of pathophysiological mechanisms related to pDOC and provide guides for the future clinical diagnosis and therapy of pDOC.
Collapse
Affiliation(s)
- 永志 黄
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
| | - 佳柔 吴
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
| | - 敏鹏 许
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
- 天津大学 精密仪器与光电子工程学院(天津 300072)School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - 江弘 何
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
| | - 东 明
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
- 天津大学 精密仪器与光电子工程学院(天津 300072)School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
13
|
Ihalainen R, Annen J, Gosseries O, Cardone P, Panda R, Martial C, Thibaut A, Laureys S, Chennu S. Lateral frontoparietal effective connectivity differentiates and predicts state of consciousness in a cohort of patients with traumatic disorders of consciousness. PLoS One 2024; 19:e0298110. [PMID: 38968195 PMCID: PMC11226086 DOI: 10.1371/journal.pone.0298110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/13/2024] [Indexed: 07/07/2024] Open
Abstract
Neuroimaging studies have suggested an important role for the default mode network (DMN) in disorders of consciousness (DoC). However, the extent to which DMN connectivity can discriminate DoC states-unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS)-is less evident. Particularly, it is unclear whether effective DMN connectivity, as measured indirectly with dynamic causal modelling (DCM) of resting EEG can disentangle UWS from healthy controls and from patients considered conscious (MCS+). Crucially, this extends to UWS patients with potentially "covert" awareness (minimally conscious star, MCS*) indexed by voluntary brain activity in conjunction with partially preserved frontoparietal metabolism as measured with positron emission tomography (PET+ diagnosis; in contrast to PET- diagnosis with complete frontoparietal hypometabolism). Here, we address this gap by using DCM of EEG data acquired from patients with traumatic brain injury in 11 UWS (6 PET- and 5 PET+) and in 12 MCS+ (11 PET+ and 1 PET-), alongside with 11 healthy controls. We provide evidence for a key difference in left frontoparietal connectivity when contrasting UWS PET- with MCS+ patients and healthy controls. Next, in a leave-one-subject-out cross-validation, we tested the classification performance of the DCM models demonstrating that connectivity between medial prefrontal and left parietal sources reliably discriminates UWS PET- from MCS+ patients and controls. Finally, we illustrate that these models generalize to an unseen dataset: models trained to discriminate UWS PET- from MCS+ and controls, classify MCS* patients as conscious subjects with high posterior probability (pp > .92). These results identify specific alterations in the DMN after severe brain injury and highlight the clinical utility of EEG-based effective connectivity for identifying patients with potential covert awareness.
Collapse
Affiliation(s)
- Riku Ihalainen
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- School of Computing, University of Kent, Canterbury, United Kingdom
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Department of Data Analysis, University of Ghent, Ghent, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Rajanikant Panda
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- CERVO Brain Research Centre, de la Canardière, Québec, Canada
- Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Srivas Chennu
- School of Computing, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
14
|
Cardone P, Alnagger N, Annen J, Bicego A, Gosseries O, Martial C. Psychedelics and disorders of consciousness: the current landscape and the path forward. Neurosci Conscious 2024; 2024:niae025. [PMID: 38881630 PMCID: PMC11179162 DOI: 10.1093/nc/niae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Modern medicine has been shaken by the surge of psychedelic science that proposes a new approach to mitigate mental disorders, such as depression and post-traumatic stress disorder. Clinical trials to investigate whether psychedelic substances can treat psychiatric conditions are now underway, yet less discussion gravitates around their use in neurological disorders due to brain injury. One suggested implementation of brain-complexity enhancing psychedelics is to treat people with post-comatose disorders of consciousness (DoC). In this article, we discuss the rationale of this endeavour, examining possible outcomes of such experiments by postulating the existence of an optimal level of complexity. We consider the possible counterintuitive effects of both psychedelics and DoC on the functional connectivity of the default mode network and its possible impact on selfhood. We also elaborate on the role of computational modelling in providing complementary information to experimental studies, both contributing to our understanding of the treatment mechanisms and providing a path towards personalized medicine. Finally, we update the discourse surrounding the ethical considerations, encompassing clinical and scientific values.
Collapse
Affiliation(s)
- Paolo Cardone
- Coma Science Group, GIGA-Consciousness, University of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
- Centre du Cerveau2, University Hospital of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
| | - Naji Alnagger
- Coma Science Group, GIGA-Consciousness, University of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
- Centre du Cerveau2, University Hospital of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
- Centre du Cerveau2, University Hospital of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
- Department of Data Analysis, University of Ghent, Henri Dunantlaan 1, Ghent 9000, Belgium
| | - Aminata Bicego
- Sensation and Perception Research Group, GIGA-Consciousness, University of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
- Centre du Cerveau2, University Hospital of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
- Sensation and Perception Research Group, GIGA-Consciousness, University of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, University of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
- Centre du Cerveau2, University Hospital of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
| |
Collapse
|
15
|
Lejeune N, Fritz P, Cardone P, Szymkowicz E, Vitello MM, Martial C, Thibaut A, Gosseries O. Exploring the Significance of Cognitive Motor Dissociation on Patient Outcome in Acute Disorders of Consciousness. Semin Neurol 2024; 44:271-280. [PMID: 38604229 DOI: 10.1055/s-0044-1785507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Cognitive motor dissociation (CMD) is characterized by a dissociation between volitional brain responses and motor control, detectable only through techniques such as electroencephalography (EEG) and functional magnetic resonance imaging. Hence, it has recently emerged as a major challenge in the assessment of patients with disorders of consciousness. Specifically, this review focuses on the prognostic implications of CMD detection during the acute stage of brain injury. CMD patients were identified in each diagnostic category (coma, unresponsive wakefulness syndrome/vegetative state, minimally conscious state minus) with a relatively similar prevalence of around 20%. Current knowledge tends to indicate that the diagnosis of CMD in the acute phase often predicts a more favorable clinical outcome compared with other unresponsive non-CMD patients. Nevertheless, the review underscores the limited research in this domain, probably at least partially explained by its nascent nature and the lack of uniformity in the nomenclature for CMD-related disorders, hindering the impact of the literature in the field.
Collapse
Affiliation(s)
- Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- DoC Care Unit, Centre Hospitalier Neurologique William Lennox, Ottignies-Louvain-la-Neuve, Belgium
- Institute of NeuroScience, UCLouvain, Brussels, Belgium
| | - Pauline Fritz
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Emilie Szymkowicz
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Marie M Vitello
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
16
|
Young MJ, Fecchio M, Bodien YG, Edlow BL. Covert cortical processing: a diagnosis in search of a definition. Neurosci Conscious 2024; 2024:niad026. [PMID: 38327828 PMCID: PMC10849751 DOI: 10.1093/nc/niad026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/22/2023] [Accepted: 12/10/2023] [Indexed: 02/09/2024] Open
Abstract
Historically, clinical evaluation of unresponsive patients following brain injury has relied principally on serial behavioral examination to search for emerging signs of consciousness and track recovery. Advances in neuroimaging and electrophysiologic techniques now enable clinicians to peer into residual brain functions even in the absence of overt behavioral signs. These advances have expanded clinicians' ability to sub-stratify behaviorally unresponsive and seemingly unaware patients following brain injury by querying and classifying covert brain activity made evident through active or passive neuroimaging or electrophysiologic techniques, including functional MRI, electroencephalography (EEG), transcranial magnetic stimulation-EEG, and positron emission tomography. Clinical research has thus reciprocally influenced clinical practice, giving rise to new diagnostic categories including cognitive-motor dissociation (i.e. 'covert consciousness') and covert cortical processing (CCP). While covert consciousness has received extensive attention and study, CCP is relatively less understood. We describe that CCP is an emerging and clinically relevant state of consciousness marked by the presence of intact association cortex responses to environmental stimuli in the absence of behavioral evidence of stimulus processing. CCP is not a monotonic state but rather encapsulates a spectrum of possible association cortex responses from rudimentary to complex and to a range of possible stimuli. In constructing a roadmap for this evolving field, we emphasize that efforts to inform clinicians, philosophers, and researchers of this condition are crucial. Along with strategies to sensitize diagnostic criteria and disorders of consciousness nosology to these vital discoveries, democratizing access to the resources necessary for clinical identification of CCP is an emerging clinical and ethical imperative.
Collapse
Affiliation(s)
- Michael J Young
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, 300 1st Ave, Charlestown, Boston, MA 02129, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Charlestown, Charlestown, MA 02129, USA
| |
Collapse
|
17
|
Farg H, Elnakib A, Gebreil A, Alksas A, van Bogaert E, Mahmoud A, Khalil A, Ghazal M, Abou El-Ghar M, El-Baz A, Contractor S. Diagnostic value of PET imaging in clinically unresponsive patients. Br J Radiol 2024; 97:283-291. [PMID: 38308033 DOI: 10.1093/bjr/tqad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/27/2023] [Accepted: 11/21/2023] [Indexed: 02/04/2024] Open
Abstract
Rapid advancements in the critical care management of acute brain injuries have facilitated the survival of numerous patients who may have otherwise succumbed to their injuries. The probability of conscious recovery hinges on the extent of structural brain damage and the level of metabolic and functional cerebral impairment, which remain challenging to assess via laboratory, clinical, or functional tests. Current research settings and guidelines highlight the potential value of fluorodeoxyglucose-PET (FDG-PET) for diagnostic and prognostic purposes, emphasizing its capacity to consistently illustrate a metabolic reduction in cerebral glucose uptake across various disorders of consciousness. Crucially, FDG-PET might be a pivotal tool for differentiating between patients in the minimally conscious state and those in the unresponsive wakefulness syndrome, a persistent clinical challenge. In patients with disorders of consciousness, PET offers utility in evaluating the degree and spread of functional disruption, as well as identifying irreversible neural damage. Further, studies that capture responses to external stimuli can shed light on residual or revived brain functioning. Nevertheless, the validity of these findings in predicting clinical outcomes calls for additional long-term studies with larger patient cohorts suffering from consciousness impairment. Misdiagnosis of conscious illnesses during bedside clinical assessments remains a significant concern. Based on the clinical research settings, current clinical guidelines recommend PET for diagnostic and/or prognostic purposes. This review article discusses the clinical categories of conscious disorders and the diagnostic and prognostic value of PET imaging in clinically unresponsive patients, considering the known limitations of PET imaging in such contexts.
Collapse
Affiliation(s)
- Hashim Farg
- Radiology Department, Urology and Nephrology Center, Mansoura University, 35516 Mansoura, Egypt
| | - Ahmed Elnakib
- BioImaging Lab, Bioengineering Department, University of Louisville, Louisville, KY 40292, United States
| | - Ahmad Gebreil
- BioImaging Lab, Bioengineering Department, University of Louisville, Louisville, KY 40292, United States
| | - Ahmed Alksas
- BioImaging Lab, Bioengineering Department, University of Louisville, Louisville, KY 40292, United States
| | - Eric van Bogaert
- Department of Radiology, University of Louisville, Louisville, KY 40202, United States
| | - Ali Mahmoud
- BioImaging Lab, Bioengineering Department, University of Louisville, Louisville, KY 40292, United States
| | - Ashraf Khalil
- College of Technological Innovation, Zayed University, Abu Dhabi 4783, United Arab Emirates
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Mohamed Abou El-Ghar
- Radiology Department, Urology and Nephrology Center, Mansoura University, 35516 Mansoura, Egypt
| | - Ayman El-Baz
- BioImaging Lab, Bioengineering Department, University of Louisville, Louisville, KY 40292, United States
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
18
|
Claassen J, Kondziella D, Alkhachroum A, Diringer M, Edlow BL, Fins JJ, Gosseries O, Hannawi Y, Rohaut B, Schnakers C, Stevens RD, Thibaut A, Monti M. Cognitive Motor Dissociation: Gap Analysis and Future Directions. Neurocrit Care 2024; 40:81-98. [PMID: 37349602 DOI: 10.1007/s12028-023-01769-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Patients with disorders of consciousness who are behaviorally unresponsive may demonstrate volitional brain responses to motor imagery or motor commands detectable on functional magnetic resonance imaging or electroencephalography. This state of cognitive motor dissociation (CMD) may have prognostic significance. METHODS The Neurocritical Care Society's Curing Coma Campaign identified an international group of experts who convened in a series of monthly online meetings between September 2021 and April 2023 to examine the science of CMD and identify key knowledge gaps and unmet needs. RESULTS The group identified major knowledge gaps in CMD research: (1) lack of information about patient experiences and caregiver accounts of CMD, (2) limited epidemiological data on CMD, (3) uncertainty about underlying mechanisms of CMD, (4) methodological variability that limits testing of CMD as a biomarker for prognostication and treatment trials, (5) educational gaps for health care personnel about the incidence and potential prognostic relevance of CMD, and (6) challenges related to identification of patients with CMD who may be able to communicate using brain-computer interfaces. CONCLUSIONS To improve the management of patients with disorders of consciousness, research efforts should address these mechanistic, epidemiological, bioengineering, and educational gaps to enable large-scale implementation of CMD assessment in clinical practice.
Collapse
Affiliation(s)
- Jan Claassen
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, NewYork Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA.
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael Diringer
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Brian L Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Joseph J Fins
- Division of Medical Ethics, Department of Medicine, Weill Cornell Medical College, NewYork Presbyterian Hospital, New York, NY, 10032, USA
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liege, Liege, Belgium
- Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Benjamin Rohaut
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP) - Pitié Salpêtrière, Paris, France
| | | | - Robert D Stevens
- Department of Anesthesiology and Critical Care Medicine, Neurology, and Radiology, School of Medicine, Secondary Appointment in Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness, University of Liege, Liege, Belgium
- Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Martin Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
19
|
Xu LB, Hampton S, Fischer D. Neuroimaging in Disorders of Consciousness and Recovery. Phys Med Rehabil Clin N Am 2024; 35:51-64. [PMID: 37993193 DOI: 10.1016/j.pmr.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
There is a clinical need for more accurate diagnosis and prognostication in patients with disorders of consciousness (DoC). There are several neuroimaging modalities that enable detailed, quantitative assessment of structural and functional brain injury, with demonstrated diagnostic and prognostic value. Additionally, longitudinal neuroimaging studies have hinted at quantifiable structural and functional neuroimaging biomarkers of recovery, with potential implications for the management of DoC.
Collapse
Affiliation(s)
- Linda B Xu
- Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Stephen Hampton
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, 1800 Lombard Street, Philadelphia, PA 19146, USA
| | - David Fischer
- Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Abstract
Covert consciousness is a state of residual awareness following severe brain injury or neurological disorder that evades routine bedside behavioral detection. Patients with covert consciousness have preserved awareness but are incapable of self-expression through ordinary means of behavior or communication. Growing recognition of the limitations of bedside neurobehavioral examination in reliably detecting consciousness, along with advances in neurotechnologies capable of detecting brain states or subtle signs indicative of consciousness not discernible by routine examination, carry promise to transform approaches to classifying, diagnosing, prognosticating and treating disorders of consciousness. Here we describe and critically evaluate the evolving clinical category of covert consciousness, including approaches to its diagnosis through neuroimaging, electrophysiology, and novel behavioral tools, its prognostic relevance, and open questions pertaining to optimal clinical management of patients with covert consciousness recovering from severe brain injury.
Collapse
Affiliation(s)
- Michael J. Young
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian L. Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yelena G. Bodien
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Farisco M, Formisano R, Gosseries O, Kato Y, Koboyashi S, Laureys S, Lejeune N, Martial C, Matar A, Morrisey AM, Schnakers C, Yakufujiang M, Yamaki T, Veeramuthu V, Zandalasini M, Zasler N, Magliacano A, Estraneo A. International survey on the implementation of the European and American guidelines on disorders of consciousness. J Neurol 2024; 271:395-407. [PMID: 37740739 PMCID: PMC10770208 DOI: 10.1007/s00415-023-11956-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/25/2023]
Abstract
Diagnostic, prognostic, and therapeutic procedures for patients with prolonged disorders of consciousness (pDoCs) vary significantly across countries and clinical settings, likely due to organizational factors (e.g., research vs. non-academic hospitals), expertise and availability of resources (e.g., financial and human). Two international guidelines, one from the European Academy of Neurology (EAN) and one from the American Academy of Neurology (AAN) in collaboration with the American Congress of Rehabilitation Medicine (ACRM) and the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR), were developed to facilitate consistent practice among professionals working with this challenging patient population. While the recommendations of both guidelines agree in principle, it remains an open issue how to implement them into clinical practice in the care pathway for patients with pDoCs. We conducted an online survey to explore health professional clinical practices related to the management of patients with pDoCs, and compare said practices with selected recommendations from both the guidelines. The survey revealed that while some recommendations are being followed, others are not and/or may require more honing/specificity to enhance their clinical utility. Particular attention should be given to the implementation of a multimodal assessment of residual consciousness, to the detection and treatment of pain, and to the impact of restrictions imposed by COVID-19 pandemics on the involvement of patients' families/representatives.
Collapse
Affiliation(s)
- Michele Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden.
- Biogem, Biology and Molecular Genetics Research Institute, Ariano Irpino, AV, Italy.
| | | | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Yoko Kato
- Department of Neurosurgery, Fujita Health University Bantane Hospital, Nagoya, Aichi, Japan
| | - Shigeki Koboyashi
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihamaku, Chibashi, Chiba, 261-0012, Japan
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- CERVO Brain Research Center, University of Laval, Québec, QC, Canada
| | - Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- CHN William Lennox, Ottignies-Louvain-La Neuve, Belgium
- Institute of NeuroScienceUCLouvain, Ottignies-Louvain-La Neuve, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Amal Matar
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| | - Ann-Marie Morrisey
- School of Allied Health, Faculty of Education and Health Sciences, Ageing Research Centre, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Caroline Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Maidinamu Yakufujiang
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihamaku, Chibashi, Chiba, 261-0012, Japan
| | - Tomohiro Yamaki
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihamaku, Chibashi, Chiba, 261-0012, Japan
| | | | - Matteo Zandalasini
- Unità Spinale, Neuroriabilitazione E Medicina Riabilitativa Intensiva, Dipartimento Di Medicina Riabilitativa, Azienda USL Di Piacenza, Piacenza, Italy
| | - Nathan Zasler
- Concussion Care Centre of Virginia, LTD, Henrico, VA, 23233, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Alfonso Magliacano
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence and Sant'Angelo dei Lombardi, AV, Italy
| | - Anna Estraneo
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence and Sant'Angelo dei Lombardi, AV, Italy
| |
Collapse
|
22
|
Thibaut A, Aloisi M, Dreessen J, Alnagger N, Lejeune N, Formisano R. Neuro-orthopaedic assessment and management in patients with prolonged disorders of consciousness: A review. NeuroRehabilitation 2024; 54:75-90. [PMID: 38251069 DOI: 10.3233/nre-230137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Following a severe acquired brain injury, neuro-orthopaedic disorders are commonplace. While these disorders can impact patients' functional recovery and quality of life, little is known regarding the assessment, management and treatment of neuro-orthopaedic disorders in patients with disorders of consciousness (DoC). OBJECTIVE To describe neuro-orthopaedic disorders in the context of DoC and provide insights on their management and treatment. METHODS A review of the literature was conducted focusing on neuro-orthopaedic disorders in patients with prolonged DoC. RESULTS Few studies have investigated the prevalence of spastic paresis in patients with prolonged DoC, which is extremely high, as well as its correlation with pain. Pilot studies exploring the effects of pharmacological treatments and physical therapy show encouraging results yet have limited efficacy. Other neuro-orthopaedic disorders, such as heterotopic ossification, are still poorly investigated. CONCLUSION The literature of neuro-orthopaedic disorders in patients with prolonged DoC remains scarce, mainly focusing on spastic paresis. We recommend treating neuro-orthopaedic disorders in their early phases to prevent complications such as pain and improve patients' recovery. Additionally, this approach could enhance patients' ability to behaviourally demonstrate signs of consciousness, especially in the context of covert awareness.
Collapse
Affiliation(s)
- Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium
- Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Marta Aloisi
- Post-Coma Unit and Neurorehabilitation, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Joëlle Dreessen
- Centre Hospitalier Neurologique William Lennox, Ottignies-Louvain-la-Neuve, Belgium
| | - Naji Alnagger
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium
- Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium
- Centre du Cerveau, University Hospital of Liege, Liege, Belgium
- Centre Hospitalier Neurologique William Lennox, Ottignies-Louvain-la-Neuve, Belgium
| | - Rita Formisano
- Post-Coma Unit and Neurorehabilitation, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
23
|
Regnier A, Mélotte E, Aubinet C, Alnagger N, Fischer D, Lagier A, Thibaut A, Laureys S, Kaux JF, Gosseries O. Swallowing dysfunctions in patients with disorders of consciousness: Evidence from neuroimaging data, assessment, and management. NeuroRehabilitation 2024; 54:91-107. [PMID: 38217621 DOI: 10.3233/nre-230135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Following severe brain injuries, a subset of patients may remain in an altered state of consciousness; most of these patients require artificial feeding. Currently, a functional oral phase and the presence of exclusive oral feeding may constitute signs of consciousness. Additionally, the presence of pharyngo-laryngeal secretions, saliva aspiration, cough reflex and tracheostomy are related to the level of consciousness. However, the link between swallowing and consciousness is yet to be fully understood. The primary aim of this review is to establish a comprehensive overview of the relationship between an individual's conscious behaviour and swallowing (reflexive and voluntary). Previous studies of brain activation during volitional and non-volitional swallowing tasks in healthy subjects are also reviewed. We demonstrate that the areas activated by voluntary swallowing tasks (primary sensorimotor, cingulate, insula, premotor, supplementary motor, cerebellum, and operculum) are not specific to deglutitive function but are shared with other motor tasks and brain networks involved in consciousness. This review also outlines suitable assessment and treatment methods for dysphagic patients with disorders of consciousness. Finally, we propose that markers of swallowing could contribute to the development of novel diagnostic guidelines for patients with disorders of consciousness.
Collapse
Affiliation(s)
- Amandine Regnier
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Department of Physical and Rehabilitation Medicine, University Hospital of Liège, Liège, Belgium
| | - Evelyne Mélotte
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
| | - Charlène Aubinet
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Naji Alnagger
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - David Fischer
- Department of Neurology, Division of Neurocritical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aude Lagier
- Department of Otorhinolaryngology, University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, CIUSS, Laval University, Québec, QC, Canada
| | - Jean-François Kaux
- Department of Physical and Rehabilitation Medicine, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
24
|
Edlow BL, Boerwinkle VL, Annen J, Boly M, Gosseries O, Laureys S, Mukherjee P, Puybasset L, Stevens RD, Threlkeld ZD, Newcombe VFJ, Fernandez-Espejo D. Common Data Elements for Disorders of Consciousness: Recommendations from the Working Group on Neuroimaging. Neurocrit Care 2023; 39:611-617. [PMID: 37552410 DOI: 10.1007/s12028-023-01794-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Over the past 5 decades, advances in neuroimaging have yielded insights into the pathophysiologic mechanisms that cause disorders of consciousness (DoC) in patients with severe brain injuries. Structural, functional, metabolic, and perfusion imaging studies have revealed specific neuroanatomic regions, such as the brainstem tegmentum, thalamus, posterior cingulate cortex, medial prefrontal cortex, and occipital cortex, where lesions correlate with the current or future state of consciousness. Advanced imaging modalities, such as diffusion tensor imaging, resting-state functional magnetic resonance imaging (fMRI), and task-based fMRI, have been used to improve the accuracy of diagnosis and long-term prognosis, culminating in the endorsement of fMRI for the clinical evaluation of patients with DoC in the 2018 US (task-based fMRI) and 2020 European (task-based and resting-state fMRI) guidelines. As diverse neuroimaging techniques are increasingly used for patients with DoC in research and clinical settings, the need for a standardized approach to reporting results is clear. The success of future multicenter collaborations and international trials fundamentally depends on the implementation of a shared nomenclature and infrastructure. METHODS To address this need, the Neurocritical Care Society's Curing Coma Campaign convened an international panel of DoC neuroimaging experts to propose common data elements (CDEs) for data collection and reporting in this field. RESULTS We report the recommendations of this CDE development panel and disseminate CDEs to be used in neuroimaging studies of patients with DoC. CONCLUSIONS These CDEs will support progress in the field of DoC neuroimaging and facilitate international collaboration.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Varina L Boerwinkle
- Clinical Resting-State Functional Magnetic Resonance Imaging Laboratory and Service, Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre de Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI, USA
- Department of Psychiatry, Wisconsin Institute for Sleep and Consciousness, University of Wisconsin, Madison, WI, USA
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre de Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre de Cerveau2, University Hospital of Liège, Liège, Belgium
- CERVO Research Institute, Laval University, Quebec, Canada
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Louis Puybasset
- Department of Anesthesiology and Intensive Care, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology, Radiology, and Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachary D Threlkeld
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Davinia Fernandez-Espejo
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Szymkowicz E, Neumann O, Sanz LRD, Gosseries O, Thibaut A, Cavaliere C, Laureys S, Liepert J. Recovery of Acute Leukoencephalopathy Documented by Neuroimaging: A Case Report. Neurol Clin Pract 2023; 13:e200203. [PMID: 37795500 PMCID: PMC10547467 DOI: 10.1212/cpj.0000000000200203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023]
Abstract
Objectives We describe an atypical delayed neurologic recovery from coma and unresponsive wakefulness syndrome (i.e., persistent vegetative state) in a patient with severe drug-induced toxic leukoencephalopathy (presumably due to synthetic cannabinoid intake). Methods The patient underwent standardized behavioral and multimodal neuroimaging assessments to monitor clinical evolution and brain function over a 5-month period after presumed intoxication. Results A progressive clinical recovery was observed, from an initial state of coma to emergence from a minimally conscious state after 2 months. Despite the stability of extensive white matter lesions documented by CT and structural MRI, fluorodeoxyglucose PET showed partial recovery of cortical metabolism after 5 months. Discussion This case report illustrates that the temporal dynamics of recovery from toxic acute leukoencephalopathy may be atypical and delayed. Multimodal monitoring with repeated behavioral and functional neuroimaging assessments tends to improve the prognosis reliability, while early prognosis based on structural damage may result in misleading statements.
Collapse
Affiliation(s)
- Emilie Szymkowicz
- Coma Science Group (ES, LRS, OG, AT, SL), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (ES, LRDS, OG, AT, SL), University Hospital of Liège, Belgium; Kliniken Schmieder (ON, JL), Allensbach, Germany; and IRCCS SYNLAB SDN (CC), Naples, Italy
| | - Olga Neumann
- Coma Science Group (ES, LRS, OG, AT, SL), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (ES, LRDS, OG, AT, SL), University Hospital of Liège, Belgium; Kliniken Schmieder (ON, JL), Allensbach, Germany; and IRCCS SYNLAB SDN (CC), Naples, Italy
| | - Leandro R D Sanz
- Coma Science Group (ES, LRS, OG, AT, SL), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (ES, LRDS, OG, AT, SL), University Hospital of Liège, Belgium; Kliniken Schmieder (ON, JL), Allensbach, Germany; and IRCCS SYNLAB SDN (CC), Naples, Italy
| | - Olivia Gosseries
- Coma Science Group (ES, LRS, OG, AT, SL), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (ES, LRDS, OG, AT, SL), University Hospital of Liège, Belgium; Kliniken Schmieder (ON, JL), Allensbach, Germany; and IRCCS SYNLAB SDN (CC), Naples, Italy
| | - Aurore Thibaut
- Coma Science Group (ES, LRS, OG, AT, SL), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (ES, LRDS, OG, AT, SL), University Hospital of Liège, Belgium; Kliniken Schmieder (ON, JL), Allensbach, Germany; and IRCCS SYNLAB SDN (CC), Naples, Italy
| | - Carlo Cavaliere
- Coma Science Group (ES, LRS, OG, AT, SL), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (ES, LRDS, OG, AT, SL), University Hospital of Liège, Belgium; Kliniken Schmieder (ON, JL), Allensbach, Germany; and IRCCS SYNLAB SDN (CC), Naples, Italy
| | - Steven Laureys
- Coma Science Group (ES, LRS, OG, AT, SL), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (ES, LRDS, OG, AT, SL), University Hospital of Liège, Belgium; Kliniken Schmieder (ON, JL), Allensbach, Germany; and IRCCS SYNLAB SDN (CC), Naples, Italy
| | - Joachim Liepert
- Coma Science Group (ES, LRS, OG, AT, SL), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (ES, LRDS, OG, AT, SL), University Hospital of Liège, Belgium; Kliniken Schmieder (ON, JL), Allensbach, Germany; and IRCCS SYNLAB SDN (CC), Naples, Italy
| |
Collapse
|
26
|
Montupil J, Cardone P, Staquet C, Bonhomme A, Defresne A, Martial C, Alnagger NL, Gosseries O, Bonhomme V. The nature of consciousness in anaesthesia. BJA OPEN 2023; 8:100224. [PMID: 37780201 PMCID: PMC10539891 DOI: 10.1016/j.bjao.2023.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Neuroscientists agree on the value of locating the source of consciousness within the brain. Anaesthesiologists are no exception, and have their own operational definition of consciousness based on phenomenological observations during anaesthesia. The full functional correlates of consciousness are yet to be precisely identified, however rapidly evolving progress in this scientific domain has yielded several theories that attempt to model the generation of consciousness. They have received variable support from experimental observations, including those involving anaesthesia and its ability to reversibly modulate different aspects of consciousness. Aside from the interest in a better understanding of the mechanisms of consciousness, exploring the functional tenets of the phenomenological consciousness states of general anaesthesia has the potential to ultimately improve patient management. It could facilitate the design of specific monitoring devices and approaches, aiming at reliably detecting each of the possible states of consciousness during an anaesthetic procedure, including total absence of mental content (unconsciousness), and internal awareness (sensation of self and internal thoughts) with or without conscious perception of the environment (connected or disconnected consciousness, respectively). Indeed, it must be noted that unresponsiveness is not sufficient to infer absence of connectedness or even absence of consciousness. This narrative review presents the current knowledge in this field from a system-level, underlining the contribution of anaesthesia studies in supporting theories of consciousness, and proposing directions for future research.
Collapse
Affiliation(s)
- Javier Montupil
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
- University Department of Anesthesia and Intensive Care Medicine, Citadelle Regional Hospital, Liege, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Cécile Staquet
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
| | - Arthur Bonhomme
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
| | - Aline Defresne
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
- University Department of Anesthesia and Intensive Care Medicine, Citadelle Regional Hospital, Liege, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Naji L.N. Alnagger
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Vincent Bonhomme
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
| |
Collapse
|
27
|
Sangare A, Quirins M, Marois C, Valente M, Weiss N, Perez P, Ben Salah A, Munoz-Musat E, Demeret S, Rohaut B, Sitt JD, Eymond C, Naccache L. Pupil dilation response elicited by violations of auditory regularities is a promising but challenging approach to probe consciousness at the bedside. Sci Rep 2023; 13:20331. [PMID: 37989756 PMCID: PMC10663629 DOI: 10.1038/s41598-023-47806-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
Pupil dilation response (PDR) has been proposed as a physiological marker of conscious access to a stimulus or its attributes, such as novelty. In a previous study on healthy volunteers, we adapted the auditory "local global" paradigm and showed that violations of global regularity elicited a PDR. Notably without instructions, this global effect was present only in participants who could consciously report violations of global regularities. In the present study, we used a similar approach in 24 non-communicating patients affected with a Disorder of Consciousness (DoC) and compared PDR to ERPs regarding diagnostic and prognostic performance. At the group level, global effect could not be detected in DoC patients. At the individual level, the only patient with a PDR global effect was in a MCS and recovered consciousness at 6 months. Contrasting the most regular trials to the most irregular ones improved PDR's diagnostic and prognostic power in DoC patients. Pupillometry is a promising tool but requires several methodological improvements to enhance the signal-to-noise ratio and make it more robust for probing consciousness and cognition in DoC patients.
Collapse
Affiliation(s)
- Aude Sangare
- Assistance Publique - Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Charles Foix, Département de Neurophysiologie, Sorbonne Université, Paris, France.
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France.
| | - Marion Quirins
- Département de Neurologie, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Clémence Marois
- AP-HP.Sorbonne Université, Hôpital Pitié-Salpêtrière, Département de Neurologie, Unité de Médecine Intensive et Réanimation à Orientation Neurologique & Groupe de Recherche Clinique en REanimation et Soins Intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Sorbonne Université, Paris, France
| | - Mélanie Valente
- Assistance Publique - Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Charles Foix, Département de Neurophysiologie, Sorbonne Université, Paris, France
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France
| | - Nicolas Weiss
- AP-HP.Sorbonne Université, Hôpital Pitié-Salpêtrière, Département de Neurologie, Unité de Médecine Intensive et Réanimation à Orientation Neurologique & Groupe de Recherche Clinique en REanimation et Soins Intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Sorbonne Université, Paris, France
- Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Maladies Métaboliques, Biliaires et Fibro-Inflammatoire du Foie & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Pauline Perez
- Anesthesia and Intensive Care Unit, Lyon Medical Intensive Care Unit, Edouard, Herriot Hospital, Hospices Civils de Lyon, 69437, Lyon, France
| | - Amina Ben Salah
- Assistance Publique - Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Charles Foix, Département de Neurophysiologie, Sorbonne Université, Paris, France
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France
| | - Esteban Munoz-Musat
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France
| | - Sophie Demeret
- AP-HP.Sorbonne Université, Hôpital Pitié-Salpêtrière, Département de Neurologie, Unité de Médecine Intensive et Réanimation à Orientation Neurologique & Groupe de Recherche Clinique en REanimation et Soins Intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Sorbonne Université, Paris, France
| | - Benjamin Rohaut
- Assistance Publique - Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Charles Foix, Département de Neurophysiologie, Sorbonne Université, Paris, France
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France
| | - Jacobo D Sitt
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France
| | - Cecile Eymond
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France
| | - Lionel Naccache
- Assistance Publique - Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Charles Foix, Département de Neurophysiologie, Sorbonne Université, Paris, France.
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France.
| |
Collapse
|
28
|
Liuzzi P, Mannini A, Hakiki B, Campagnini S, Romoli AM, Draghi F, Burali R, Scarpino M, Cecchi F, Grippo A. Brain microstate spatio-temporal dynamics as a candidate endotype of consciousness. Neuroimage Clin 2023; 41:103540. [PMID: 38101096 PMCID: PMC10727951 DOI: 10.1016/j.nicl.2023.103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/02/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Consciousness can be defined as a phenomenological experience continuously evolving. Current research showed how conscious mental activity can be subdivided into a series of atomic brain states converging to a discrete spatiotemporal pattern of global neuronal firing. Using the high temporal resolution of EEG recordings in patients with a severe Acquired Brain Injury (sABI) admitted to an Intensive Rehabilitation Unit (IRU), we detected a novel endotype of consciousness from the spatiotemporal brain dynamics identified via microstate analysis. Also, we investigated whether microstate features were associated with common neurophysiological alterations. Finally, the prognostic information comprised in such descriptors was analysed in a sub-cohort of patients with prolonged Disorder of Consciousness (pDoC). Occurrence of frontally-oriented microstates (C microstate), likelihood of maintaining such brain state or transitioning to the C topography and complexity were found to be indicators of consciousness presence and levels. Features of left-right asymmetric microstates and transitions toward them were found to be negatively correlated with antero-posterior brain reorganization and EEG symmetry. Substantial differences in microstates' sequence complexity and presence of C topography were found between groups of patients with alpha dominant background, cortical reactivity and antero-posterior gradient. Also, transitioning from left-right to antero-posterior microstates was found to be an independent predictor of consciousness recovery, stronger than consciousness levels at IRU's admission. In conclusions, global brain dynamics measured with scale-free estimators can be considered an indicator of consciousness presence and a candidate marker of short-term recovery in patients with a pDoC.
Collapse
Affiliation(s)
- Piergiuseppe Liuzzi
- IRCCS Don Carlo Gnocchi ONLUS, Firenze, Italy; Istituto di BioRobotica, Scuola Superiore Sant'Anna, Pontedera, Italy
| | | | | | | | | | | | | | | | - Francesca Cecchi
- IRCCS Don Carlo Gnocchi ONLUS, Firenze, Italy; Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Firenze, Italy
| | | |
Collapse
|
29
|
Franzova E, Shen Q, Doyle K, Chen JM, Egbebike J, Vrosgou A, Carmona JC, Grobois L, Heinonen GA, Velazquez A, Gonzales IJ, Egawa S, Agarwal S, Roh D, Park S, Connolly ES, Claassen J. Injury patterns associated with cognitive motor dissociation. Brain 2023; 146:4645-4658. [PMID: 37574216 PMCID: PMC10629765 DOI: 10.1093/brain/awad197] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/14/2023] [Accepted: 05/28/2023] [Indexed: 08/15/2023] Open
Abstract
In unconscious appearing patients with acute brain injury, wilful brain activation to motor commands without behavioural signs of command following, known as cognitive motor dissociation (CMD), is associated with functional recovery. CMD can be detected by applying machine learning to EEG recorded during motor command presentation in behaviourally unresponsive patients. Identifying patients with CMD carries clinical implications for patient interactions, communication with families, and guidance of therapeutic decisions but underlying mechanisms of CMD remain unknown. By analysing structural lesion patterns and network level dysfunction we tested the hypothesis that, in cases with preserved arousal and command comprehension, a failure to integrate comprehended motor commands with motor outputs underlies CMD. Manual segmentation of T2-fluid attenuated inversion recovery and diffusion weighted imaging sequences quantifying structural injury was performed in consecutive unresponsive patients with acute brain injury (n = 107) who underwent EEG-based CMD assessments and MRI. Lesion pattern analysis was applied to identify lesion patterns common among patients with (n = 21) and without CMD (n = 86). Thalamocortical and cortico-cortical network connectivity were assessed applying ABCD classification of power spectral density plots and weighted pairwise phase consistency (WPPC) to resting EEG, respectively. Two distinct structural lesion patterns were identified on MRI for CMD and three for non-CMD patients. In non-CMD patients, injury to brainstem arousal pathways including the midbrain were seen, while no CMD patients had midbrain lesions. A group of non-CMD patients was identified with injury to the left thalamus, implicating possible language comprehension difficulties. Shared lesion patterns of globus pallidus and putamen were seen for a group of CMD patients, which have been implicated as part of the anterior forebrain mesocircuit in patients with reversible disorders of consciousness. Thalamocortical network dysfunction was less common in CMD patients [ABCD-index 2.3 (interquartile range, IQR 2.1-3.0) versus 1.4 (IQR 1.0-2.0), P < 0.0001; presence of D 36% versus 3%, P = 0.0006], but WPPC was not different. Bilateral cortical lesions were seen in patients with and without CMD. Thalamocortical disruption did not differ for those with CMD, but long-range WPPC was decreased in 1-4 Hz [odds ratio (OR) 0.8; 95% confidence interval (CI) 0.7-0.9] and increased in 14-30 Hz frequency ranges (OR 1.2; 95% CI 1.0-1.5). These structural and functional data implicate a failure of motor command integration at the anterior forebrain mesocircuit level with preserved thalamocortical network function for CMD patients with subcortical lesions. Amongst patients with bilateral cortical lesions preserved cortico-cortical network function is associated with CMD detection. These data may allow screening for CMD based on widely available structural MRI and resting EEG.
Collapse
Affiliation(s)
- Eva Franzova
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Qi Shen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Kevin Doyle
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Justine M Chen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jennifer Egbebike
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Athina Vrosgou
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jerina C Carmona
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Lauren Grobois
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Gregory A Heinonen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Angela Velazquez
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | | | - Satoshi Egawa
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Sachin Agarwal
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - David Roh
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Soojin Park
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - E Sander Connolly
- Department of Neurological Surgery, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
30
|
Candia-Rivera D, Raimondo F, Pérez P, Naccache L, Tallon-Baudry C, Sitt JD. Conscious processing of global and local auditory irregularities causes differentiated heartbeat-evoked responses. eLife 2023; 12:e75352. [PMID: 37888955 PMCID: PMC10651171 DOI: 10.7554/elife.75352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 10/24/2023] [Indexed: 10/28/2023] Open
Abstract
Recent research suggests that brain-heart interactions are associated with perceptual and self-consciousness. In this line, the neural responses to visceral inputs have been hypothesized to play a leading role in shaping our subjective experience. This study aims to investigate whether the contextual processing of auditory irregularities modulates both direct neuronal responses to the auditory stimuli (ERPs) and the neural responses to heartbeats, as measured with heartbeat-evoked responses (HERs). HERs were computed in patients with disorders of consciousness, diagnosed with a minimally conscious state or unresponsive wakefulness syndrome. We tested whether HERs reflect conscious auditory perception, which can potentially provide additional information for the consciousness diagnosis. EEG recordings were taken during the local-global paradigm, which evaluates the capacity of a patient to detect the appearance of auditory irregularities at local (short-term) and global (long-term) levels. The results show that local and global effects produce distinct ERPs and HERs, which can help distinguish between the minimally conscious state and unresponsive wakefulness syndrome patients. Furthermore, we found that ERP and HER responses were not correlated suggesting that independent neuronal mechanisms are behind them. These findings suggest that HER modulations in response to auditory irregularities, especially local irregularities, may be used as a novel neural marker of consciousness and may aid in the bedside diagnosis of disorders of consciousness with a more cost-effective option than neuroimaging methods.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Etudes Cognitives, École Normale Supérieure, INSERM, Université PSLParisFrance
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Federico Raimondo
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Forschungszentrum JülichJülichGermany
- Institute of Systems Neuroscience, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Pauline Pérez
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- AP-HP, Hôpital de la Pitié Salpêtrière, Neuro ICU, DMU NeurosciencesParisFrance
| | - Lionel Naccache
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- Pitié-Salpêtrière Faculty of Medicine, Pierre and Marie Curie University, Sorbonne UniversitiesParisFrance
- INSERM, National Institute of Health and Medical ResearchParisFrance
- Department of Neurology, Pitié-Salpêtrière Hospital Group, Public Hospital Network of ParisParisFrance
- Department of Neurophysiology, Pitié-Salpêtrière Hospital Group, Public Hospital Network of ParisParisFrance
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Etudes Cognitives, École Normale Supérieure, INSERM, Université PSLParisFrance
| | - Jacobo D Sitt
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- INSERM, National Institute of Health and Medical ResearchParisFrance
| |
Collapse
|
31
|
Wang L, Gao F, Wang Z, Liang F, Dai Y, Wang M, Wu J, Chen Y, Yan Q, Wang L. Transcutaneous auricular vagus nerve stimulation in the treatment of disorders of consciousness: mechanisms and applications. Front Neurosci 2023; 17:1286267. [PMID: 37920298 PMCID: PMC10618368 DOI: 10.3389/fnins.2023.1286267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
This review provides an in-depth exploration of the mechanisms and applications of transcutaneous auricular vagus nerve stimulation (taVNS) in treating disorders of consciousness (DOC). Beginning with an exploration of the vagus nerve's role in modulating brain function and consciousness, we then delve into the neuroprotective potential of taVNS demonstrated in animal models. The subsequent sections assess the therapeutic impact of taVNS on human DOC, discussing the safety, tolerability, and various factors influencing the treatment response. Finally, the review identifies the current challenges in taVNS research and outlines future directions, emphasizing the need for large-scale trials, optimization of treatment parameters, and comprehensive investigation of taVNS's long-term effects and underlying mechanisms. This comprehensive overview positions taVNS as a promising and safe modality for DOC treatment, with a focus on understanding its intricate neurophysiological influence and optimizing its application in clinical settings.
Collapse
Affiliation(s)
- Likai Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fei Gao
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhan Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Feng Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yongli Dai
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengchun Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jingyi Wu
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yaning Chen
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qinjie Yan
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Litong Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Thibaut A, Fregni F, Estraneo A, Fiorenza S, Noe E, Llorens R, Ferri J, Formisano R, Morone G, Bender A, Rosenfelder M, Lamberti G, Kodratyeva E, Kondratyev S, Legostaeva L, Suponeva N, Krewer C, Müller F, Dardenne N, Jedidi H, Laureys S, Gosseries O, Lejeune N, Martens G. Sham-controlled randomized multicentre trial of transcranial direct current stimulation for prolonged disorders of consciousness. Eur J Neurol 2023; 30:3016-3031. [PMID: 37515394 DOI: 10.1111/ene.15974] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND AND PURPOSE Transcranial direct current stimulation (tDCS) has been shown to improve signs of consciousness in a subset of patients with disorders of consciousness (DoC). However, no multicentre study confirmed its efficacy when applied during rehabilitation. In this randomized controlled double-blind study, the effects of tDCS whilst patients were in rehabilitation were tested at the group level and according to their diagnosis and aetiology to better target DoC patients who might repond to tDCS. METHODS Patients received 2 mA tDCS or sham applied over the left prefrontal cortex for 4 weeks. Behavioural assessments were performed weekly and up to 3 months' follow-up. Analyses were conducted at the group and subgroup levels based on the diagnosis (minimally conscious state [MCS] and unresponsive wakefulness syndrome) and the aetiology (traumatic or non-traumatic). Interim analyses were planned to continue or stop the trial. RESULTS The trial was stopped for futility when 62 patients from 10 centres were enrolled (44 ± 14 years, 37 ± 24.5 weeks post-injury, 18 women, 32 MCS, 39 non-traumatic). Whilst, at the group level, no treatment effect was found, the subgroup analyses at 3 months' follow-up revealed a significant improvement for patients in MCS and with traumatic aetiology. CONCLUSIONS Transcranial direct current stimulation during rehabilitation does not seem to enhance patients' recovery. However, diagnosis and aetiology appear to be important factors leading to a response to the treatment. These findings bring novel insights into possible cortical plasticity changes in DoC patients given these differential results according to the subgroups of patients.
Collapse
Affiliation(s)
- Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
| | - Felipe Fregni
- Neuromodulation Lab, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Estraneo
- Neurorehabilitation Department, Scientific Institute for Research and Health Care, Don Carlo Gnocchi Foundation, Sant'Angelo dei Lombardi, Florence, Italy
| | - Salvatore Fiorenza
- Neurorehabilitation Department, Scientific Institute for Research and Health Care, Don Carlo Gnocchi Foundation, Sant'Angelo dei Lombardi, Florence, Italy
| | - Enrique Noe
- IRENEA Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, Valéncia, Spain
| | - Roberto Llorens
- IRENEA Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, Valéncia, Spain
- Neurorehabilitation and Brain Research Group, Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Valencia, Spain
| | - Joan Ferri
- IRENEA Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, Valéncia, Spain
| | - Rita Formisano
- Santa Lucia Foundation, Neurorehabilitation and Scientific Institute for Research, Rome, Italy
| | - Giovanni Morone
- Santa Lucia Foundation, Neurorehabilitation and Scientific Institute for Research, Rome, Italy
| | - Andreas Bender
- Therapiezentrum Burgau, Burgau, Germany
- Department of Neurology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Martin Rosenfelder
- Therapiezentrum Burgau, Burgau, Germany
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Gianfranco Lamberti
- Neurorehabilitation Department AUSL Piacenza - University of Parma, Piacenza, Italy
| | | | | | | | | | - Carmen Krewer
- Department for Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany
- Chair of Human Movement Science, Department of Sports and Health Sciences, Technical University of Munich, Munich, Germany
| | - Friedemann Müller
- Department for Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany
| | - Nadia Dardenne
- University and Hospital Biostatistics Center (B-STAT), Faculty of Medicine, University of Liège, Liège, Belgium
| | | | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, CIUSS, University Laval, Quebec, Canada
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
| | - Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
- Centre Hospitalier Neurologique William Lennox, Ottignies-Louvain-la-Neuve, Belgium
| | - Géraldine Martens
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
33
|
Wang A, Sun L, Cheng L, Hu N, Chen Y, Sanz LRD, Thibaut A, Gosseries O, Laureys S, Martial C, Di H. Validation of the simplified evaluation of consciousness disorders (SECONDs) scale in Mandarin. Ann Phys Rehabil Med 2023; 66:101764. [PMID: 37276835 DOI: 10.1016/j.rehab.2023.101764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 06/07/2023]
Affiliation(s)
- Anqi Wang
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Lingxiu Sun
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Lijuan Cheng
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Nantu Hu
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.
| | - Yan Chen
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Leandro R D Sanz
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China; Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium; CERVO Research Center, Laval University, Quebec, Canada
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Haibo Di
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.
| |
Collapse
|
34
|
Wang J, Gao X, Xiang Z, Sun F, Yang Y. Evaluation of consciousness rehabilitation via neuroimaging methods. Front Hum Neurosci 2023; 17:1233499. [PMID: 37780959 PMCID: PMC10537959 DOI: 10.3389/fnhum.2023.1233499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Accurate evaluation of patients with disorders of consciousness (DoC) is crucial for personalized treatment. However, misdiagnosis remains a serious issue. Neuroimaging methods could observe the conscious activity in patients who have no evidence of consciousness in behavior, and provide objective and quantitative indexes to assist doctors in their diagnosis. In the review, we discussed the current research based on the evaluation of consciousness rehabilitation after DoC using EEG, fMRI, PET, and fNIRS, as well as the advantages and limitations of each method. Nowadays single-modal neuroimaging can no longer meet the researchers` demand. Considering both spatial and temporal resolution, recent studies have attempted to focus on the multi-modal method which can enhance the capability of neuroimaging methods in the evaluation of DoC. As neuroimaging devices become wireless, integrated, and portable, multi-modal neuroimaging methods will drive new advancements in brain science research.
Collapse
Affiliation(s)
| | | | | | - Fangfang Sun
- College of Automation, Hangzhou Dianzi University, Hangzhou, China
| | | |
Collapse
|
35
|
Annen J, Frasso G, van der Lande GJM, Bonin EAC, Vitello MM, Panda R, Sala A, Cavaliere C, Raimondo F, Bahri MA, Schiff ND, Gosseries O, Thibaut A, Laureys S. Cerebral electrometabolic coupling in disordered and normal states of consciousness. Cell Rep 2023; 42:112854. [PMID: 37498745 DOI: 10.1016/j.celrep.2023.112854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/02/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
We assess cerebral integrity with cortical and subcortical FDG-PET and cortical electroencephalography (EEG) within the mesocircuit model framework in patients with disorders of consciousness (DoCs). The mesocircuit hypothesis proposes that subcortical activation facilitates cortical function. We find that the metabolic balance of subcortical mesocircuit areas is informative for diagnosis and is associated with four EEG-based power spectral density patterns, cortical metabolism, and α power in healthy controls and patients with a DoC. Last, regional electrometabolic coupling at the cortical level can be identified in the θ and α ranges, showing positive and negative relations with glucose uptake, respectively. This relation is inverted in patients with a DoC, potentially related to altered orchestration of neural activity, and may underlie suboptimal excitability states in patients with a DoC. By understanding the neurobiological basis of the pathophysiology underlying DoCs, we foresee translational value for diagnosis and treatment of patients with a DoC.
Collapse
Affiliation(s)
- Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium.
| | | | - Glenn J M van der Lande
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Estelle A C Bonin
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Marie M Vitello
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Rajanikant Panda
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Arianna Sala
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | | | - Federico Raimondo
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | | | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium; Joint International Research Unit on Consciousness, CERVO Brain Research Centre, University Laval, Quebec City, QC, Canada
| |
Collapse
|
36
|
Liuzzi P, Hakiki B, Scarpino M, Burali R, Maiorelli A, Draghi F, Romoli AM, Grippo A, Cecchi F, Mannini A. Neural coding of autonomic functions in different states of consciousness. J Neuroeng Rehabil 2023; 20:96. [PMID: 37491259 PMCID: PMC10369699 DOI: 10.1186/s12984-023-01216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023] Open
Abstract
Detecting signs of residual neural activity in patients with altered states of consciousness is a crucial issue for the customization of neurorehabilitation treatments and clinical decision-making. With this large observational prospective study, we propose an innovative approach to detect residual signs of consciousness via the assessment of the amount of autonomic information coded within the brain. The latter was estimated by computing the mutual information (MI) between preprocessed EEG and ECG signals, to be then compared across consciousness groups, together with the absolute power and an international qualitative labeling. One-hundred seventy-four patients (73 females, 42%) were included in the study (median age of 65 years [IQR = 20], MCS +: 29, MCS -: 23, UWS: 29). Electroencephalography (EEG) information content was found to be mostly related to the coding of electrocardiography (ECG) activity, i.e., with higher MI (p < 0.05), in Unresponsive Wakefulness Syndrome and Minimally Consciousness State minus (MCS -). EEG-ECG MI, besides clearly discriminating patients in an MCS - and +, significantly differed between lesioned areas (sides) in a subgroup of unilateral hemorrhagic patients. Crucially, such an accessible and non-invasive measure of residual consciousness signs was robust across electrodes and patient groups. Consequently, exiting from a strictly neuro-centric consciousness detection approach may be the key to provide complementary insights for the objective assessment of patients' consciousness levels and for the patient-specific planning of rehabilitative interventions.
Collapse
Affiliation(s)
- Piergiuseppe Liuzzi
- Sant’Anna School of Advanced Studies, The BioRobotics Institute, Viale Rinaldo Piaggio 69, 56025 Pontedera, PI Italy
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Bahia Hakiki
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Maenia Scarpino
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Rachele Burali
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Antonio Maiorelli
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Francesca Draghi
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Anna Maria Romoli
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Antonello Grippo
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Francesca Cecchi
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50143 Florence, FI Italy
| | - Andrea Mannini
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| |
Collapse
|
37
|
Sanz LR, Laureys S, Gosseries O. Towards modern post-coma care based on neuroscientific evidence. Int J Clin Health Psychol 2023; 23:100370. [PMID: 36817874 PMCID: PMC9932483 DOI: 10.1016/j.ijchp.2023.100370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Background Understanding the mechanisms underlying human consciousness is pivotal to improve the prognostication and treatment of severely brain-injured patients. Consciousness remains an elusive concept and the identification of its neural correlates is an active subject of research, however recent neuroscientific advances have allowed scientists to better characterize disorders of consciousness. These breakthroughs question the historical nomenclature and our current management of post-comatose patients. Method This review examines the contribution of consciousness neurosciences to the current clinical management of severe brain injury. It investigates the major impact of consciousness disorders on healthcare systems, the scientific frameworks employed to identify their neural correlates and how evidence-based data from neuroimaging research have reshaped the landscape of post-coma care in recent years. Results Our increased ability to detect behavioral and neurophysiological signatures of consciousness has led to significant changes in taxonomy and clinical practice. We advocate for a multimodal framework for the management of severely brain-injured patients based on precision medicine and evidence-based decisions, integrating epidemiology, health economics and neuroethics. Conclusions Major progress in brain imaging and clinical assessment have opened the door to a new era of post-coma care based on standardized neuroscientific evidence. We highlight its implications in clinical applications and call for improved collaborations between researchers and clinicians to better translate findings to the bedside.
Collapse
Affiliation(s)
- Leandro R.D. Sanz
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, CIUSS, Laval University, Québec, Canada
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
38
|
Elwell C. Functional Neuroimaging in Patients With Disorders of Consciousness: Caution Advised. J Neurosurg Anesthesiol 2023; 35:257-259. [PMID: 37217437 PMCID: PMC10249596 DOI: 10.1097/ana.0000000000000920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023]
|
39
|
Alnagger N, Cardone P, Martial C, Laureys S, Annen J, Gosseries O. The current and future contribution of neuroimaging to the understanding of disorders of consciousness. Presse Med 2023; 52:104163. [PMID: 36796250 DOI: 10.1016/j.lpm.2022.104163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 02/16/2023] Open
Abstract
Patients with disorders of consciousness (DoC) represent a group of severely brain-injured patients with varying capacities for consciousness in terms of both wakefulness and awareness. The current state-of-the-art for assessing these patients is through standardised behavioural examinations, but inaccuracies are commonplace. Neuroimaging and electrophysiological techniques have revealed vast insights into the relationships between neural alterations, andcognitive and behavioural features of consciousness in patients with DoC. This has led to the establishment of neuroimaging paradigms for the clinical assessment of DoC patients. Here, we review selected neuroimaging findings on the DoC population, outlining key findings of the dysfunction underlying DoC and presenting the current clinical utility of neuroimaging tools. We discuss that whilst individual brain areas play instrumental roles in generating and supporting consciousness, activation of these areas alone is not sufficient for conscious experience. Instead, for consciousness to arise, we need preserved thalamo-cortical circuits, in addition to sufficient connectivity between distinctly differentiated brain networks, underlined by connectivity both within, and between such brain networks. Finally, we present recent advances and future perspectives in computational methodologies applied to DoC, supporting the notion that progress in the science of DoC will be driven by a symbiosis of these data-driven analyses, and theory-driven research. Both perspectives will work in tandem to provide mechanistic insights contextualised within theoretical frameworks which ultimately inform the practice of clinical neurology.
Collapse
Affiliation(s)
- Naji Alnagger
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium; CERVO Research Center, Laval University, Quebec, Canada
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium.
| |
Collapse
|
40
|
Luauté J, Beaudoin-Gobert M. Optimising recovery of consciousness after coma. From bench to bedside and vice versa. Presse Med 2023; 52:104165. [PMID: 36948412 DOI: 10.1016/j.lpm.2023.104165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Several methods have been proposed to foster recovery of consciousness in patients with disorders of consciousness (DoC). OBJECTIVE Critically assess pharmacological and non-pharmacological treatments for patients with chronic DoC. METHODS A narrative mini-review, and critical analysis of the scientific literature on the various proposed therapeutic approaches, with particular attention to level of evidence, risk-benefit ratio, and feasibility. RESULTS AND DISCUSSION Personalised sensory stimulation, median nerve stimulation, transcranial direct current stimulation (tDCS), amantadine and zolpidem all have favourable risk-benefit ratios and are easy to implement in clinical practice. These treatments should be proposed to every patient with chronic DoC. Comprehensive patient management should also include regular lifting, pain assessment and treatment, attempts to restore sleep and circadian rhythms, implementation of rest periods, comfort and nursing care, and a rehabilitation program with a multi-disciplinary team with expertise in this field. More invasive treatments may cause adverse effects and require further investigation to confirm preliminary, encouraging results and to better define responders' intervention parameters. Scientific studies are essential and given the severity of the disability and handicap that results from DoC, research in this area should aim to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Jacques Luauté
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Trajectoires, F-69500 Bron, France; Hôpital Henry Gabrielle, Saint-Genis Laval, Hospices Civils de Lyon, 69230 France.
| | - Maude Beaudoin-Gobert
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Trajectoires, F-69500 Bron, France
| |
Collapse
|
41
|
Kumar A, Ridha M, Claassen J. Prognosis of consciousness disorders in the intensive care unit. Presse Med 2023; 52:104180. [PMID: 37805070 PMCID: PMC10995112 DOI: 10.1016/j.lpm.2023.104180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Assessments of consciousness are a critical part of prognostic algorithms for critically ill patients suffering from severe brain injuries. There have been significant advances in the field of coma science over the past two decades, providing clinicians with more advanced and precise tools for diagnosing and prognosticating disorders of consciousness (DoC). Advanced neuroimaging and electrophysiological techniques have vastly expanded our understanding of the biological mechanisms underlying consciousness, and have helped identify new states of consciousness. One of these, termed cognitive motor dissociation, can predict functional recovery at 1 year post brain injury, and is present in up to 15-20% of patients with DoC. In this chapter, we review several tools that are used to predict DoC, describing their strengths and limitations, from the neurological examination to advanced imaging and electrophysiologic techniques. We also describe multimodal assessment paradigms that can be used to identify covert consciousness and thus help recognize patients with the potential for future recovery and improve our prognostication practices.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Mohamed Ridha
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
42
|
Wu W, Xu C, Liang Q, Zheng X, Xiao Q, Zhong H, Chen N, Lan Y, Huang X, Xie Q. Olfactory response is a potential sign of consciousness: electroencephalogram findings. Front Neurosci 2023; 17:1187471. [PMID: 37274218 PMCID: PMC10233028 DOI: 10.3389/fnins.2023.1187471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Objective This study aimed to explore whether olfactory response can be a sign of consciousness and represent higher cognitive processing in patients with disorders of consciousness (DoC) using clinical and electroencephalogram data. Methods Twenty-eight patients with DoC [13 vegetative states (VS)/unresponsive wakefulness syndrome (UWS) and 15 minimally conscious states (MCS)] were divided into two groups: the presence of olfactory response (ORES) group and the absence of olfactory response (N-ORES) group according to behavioral signs from different odors, i.e., vanillin, decanoic acid, and blank stimuli. We recorded an olfactory task-related electroencephalogram (EEG) and analyzed the relative power and functional connectivity at the whole-brain level in patients with DoC and healthy controls (HCs). After three months, the outcomes of DoC patients were followed up using the coma recovery scale-revised (CRS-R). Results A significant relationship was found between olfactory responses and the level of consciousness (χ2(1) = 6.892, p = 0.020). For olfactory EEG, N-ORES patients showed higher theta functional connectivity than ORES patients after stimulation with vanillin (p = 0.029; p = 0.027). Patients with N-ORES showed lower alpha and beta relative powers than HCs at the group level (p = 0.019; p = 0.033). After three months, 62.5% (10/16) of the ORES patients recovered consciousness compared to 16.7% (2/12) in the N-ORES group. The presence of olfactory response was significantly associated with an improvement in consciousness (χ2(1) = 5.882, p = 0.023). Conclusion Olfactory responses should be considered signs of consciousness. The differences in olfactory processing between DoC patients with and without olfactory responses may be a way to explore the neural correlates of olfactory consciousness in these patients. The olfactory response may help in the assessment of consciousness and may contribute to therapeutic orientation.
Collapse
Affiliation(s)
- Wanchun Wu
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengwei Xu
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qimei Liang
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaochun Zheng
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuyi Xiao
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haili Zhong
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Na Chen
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yue Lan
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiyan Huang
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuyou Xie
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hyperbaric Oxygen, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Yamaki T, Hatakeyama N, Murayama T, Funakura M, Hara T, Onodera S, Ito D, Yakufujiang M, Odaki M, Oka N, Kobayashi S. Prediction of voluntary movements of the upper extremities by resting state-brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study. Hum Brain Mapp 2023; 44:3158-3167. [PMID: 36929226 PMCID: PMC10171500 DOI: 10.1002/hbm.26270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Confirmation of the exact voluntary movements of patients with disorder of consciousness following severe traumatic brain injury (TBI) is difficult because of the associated communication disturbances. In this pilot study, we investigated whether regional brain glucose metabolism assessed by 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) at rest could predict voluntary movement in severe TBI patients, particularly those with sufficient upper limb capacity to use communication devices. We visually and verbally instructed patients to clasp or open their hands. After video capture, three independent rehabilitation therapists determined whether the patients' movements were voluntary or involuntary. The results were compared with the standardized uptake value in the primary motor cortex, referring to the Penfield's homunculus, by resting state by FDG-PET imaged 1 year prior. Results showed that glucose uptake in the left (p = 0.0015) and right (p = 0.0121) proximal limb of the primary motor cortex, based on Penfield's homunculus on cerebral cartography, may reflect contralateral voluntary movement. Receiver operating characteristic curve analysis showed that a mean cutoff standardized uptake value of 5.47 ± 0.08 provided the best sensitivity and specificity for differentiating between voluntary and involuntary movements in each area. FDG-PET may be a useful and robust biomarker for predicting long-term recovery of motor function in severe TBI patients with disorders of consciousness.
Collapse
Affiliation(s)
- Tomohiro Yamaki
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.,Division of Radiology, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Naoya Hatakeyama
- Division of Rehabilitation, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Takemi Murayama
- Division of Rehabilitation, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Mika Funakura
- Division of Rehabilitation, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Takuya Hara
- Division of Rehabilitation, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Shinji Onodera
- Division of Radiology, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Daisuke Ito
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Maidinamu Yakufujiang
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Masaru Odaki
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Nobuo Oka
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.,Division of Radiology, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Shigeki Kobayashi
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| |
Collapse
|
44
|
Marino MH, Koffer J, Nalla S. Update on Disorders of Consciousness. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2023. [DOI: 10.1007/s40141-023-00384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
45
|
Liuzzi P, Grippo A, Draghi F, Hakiki B, Macchi C, Cecchi F, Mannini A. Can Respiration Complexity Help the Diagnosis of Disorders of Consciousness in Rehabilitation? Diagnostics (Basel) 2023; 13:diagnostics13030507. [PMID: 36766612 PMCID: PMC9914359 DOI: 10.3390/diagnostics13030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Autonomic Nervous System (ANS) activity, as cardiac, respiratory and electrodermal activity, has been shown to provide specific information on different consciousness states. Respiration rates (RRs) are considered indicators of ANS activity and breathing patterns are currently already included in the evaluation of patients in critical care. OBJECTIVE The aim of this work was to derive a proxy of autonomic functions via the RR variability and compare its diagnostic capability with known neurophysiological biomarkers of consciousness. METHODS In a cohort of sub-acute patients with brain injury during post-acute rehabilitation, polygraphy (ECG, EEG) recordings were collected. The EEG was labeled via descriptors based on American Clinical Neurophysiology Society terminology and the respiration variability was extracted by computing the Approximate Entropy (ApEN) of the ECG-derived respiration signal. Competing logistic regressions were applied to evaluate the improvement in model performances introduced by the RR ApEN. RESULTS Higher RR complexity was significantly associated with higher consciousness levels and improved diagnostic models' performances in contrast to the ones built with only electroencephalographic descriptors. CONCLUSIONS Adding a quantitative, instrumentally based complexity measure of RR variability to multimodal consciousness assessment protocols may improve diagnostic accuracy based only on electroencephalographic descriptors. Overall, this study promotes the integration of biomarkers derived from the central and the autonomous nervous system for the most comprehensive diagnosis of consciousness in a rehabilitation setting.
Collapse
Affiliation(s)
- Piergiuseppe Liuzzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, 50143 Firenze, Italy
- Istituto di BioRobotica, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Antonello Grippo
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, 50143 Firenze, Italy
| | - Francesca Draghi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, 50143 Firenze, Italy
| | - Bahia Hakiki
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, 50143 Firenze, Italy
- Correspondence: ; Tel.: +39-333-401-8388
| | - Claudio Macchi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, 50143 Firenze, Italy
- Dipartimento di Medicina Sperimentale e Clinica, Universita di Firenze, Largo Brambilla 3, 50134 Firenze, Italy
| | - Francesca Cecchi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, 50143 Firenze, Italy
- Istituto di BioRobotica, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- Dipartimento di Medicina Sperimentale e Clinica, Universita di Firenze, Largo Brambilla 3, 50134 Firenze, Italy
| | - Andrea Mannini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, 50143 Firenze, Italy
| |
Collapse
|
46
|
Bonin EAC, Lejeune N, Szymkowicz E, Bonhomme V, Martial C, Gosseries O, Laureys S, Thibaut A. Assessment and management of pain/nociception in patients with disorders of consciousness or locked-in syndrome: A narrative review. Front Syst Neurosci 2023; 17:1112206. [PMID: 37021037 PMCID: PMC10067681 DOI: 10.3389/fnsys.2023.1112206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
The assessment and management of pain and nociception is very challenging in patients unable to communicate functionally such as patients with disorders of consciousness (DoC) or in locked-in syndrome (LIS). In a clinical setting, the detection of signs of pain and nociception by the medical staff is therefore essential for the wellbeing and management of these patients. However, there is still a lot unknown and a lack of clear guidelines regarding the assessment, management and treatment of pain and nociception in these populations. The purpose of this narrative review is to examine the current knowledge regarding this issue by covering different topics such as: the neurophysiology of pain and nociception (in healthy subjects and patients), the source and impact of nociception and pain in DoC and LIS and, finally, the assessment and treatment of pain and nociception in these populations. In this review we will also give possible research directions that could help to improve the management of this specific population of severely brain damaged patients.
Collapse
Affiliation(s)
- Estelle A. C. Bonin
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre Hospitalier Neurologique (CHN) William Lennox, Saint-Luc Hospital Group, Ottignies-Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Emilie Szymkowicz
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Vincent Bonhomme
- Department of Anesthesia and Intensive Care Medicine, Liège University Hospital, Liège, Belgium
- Anesthesia and Perioperative Neuroscience Laboratory, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et Services Sociaux (CIUSS), University Laval, Québec City, QC, Canada
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
- *Correspondence: Aurore Thibaut,
| |
Collapse
|
47
|
Li H, Zhang X, Sun X, Dong L, Lu H, Yue S, Zhang H. Functional networks in prolonged disorders of consciousness. Front Neurosci 2023; 17:1113695. [PMID: 36875660 PMCID: PMC9981972 DOI: 10.3389/fnins.2023.1113695] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
Prolonged disorders of consciousness (DoC) are characterized by extended disruptions of brain activities that sustain wakefulness and awareness and are caused by various etiologies. During the past decades, neuroimaging has been a practical method of investigation in basic and clinical research to identify how brain properties interact in different levels of consciousness. Resting-state functional connectivity within and between canonical cortical networks correlates with consciousness by a calculation of the associated temporal blood oxygen level-dependent (BOLD) signal process during functional MRI (fMRI) and reveals the brain function of patients with prolonged DoC. There are certain brain networks including the default mode, dorsal attention, executive control, salience, auditory, visual, and sensorimotor networks that have been reported to be altered in low-level states of consciousness under either pathological or physiological states. Analysis of brain network connections based on functional imaging contributes to more accurate judgments of consciousness level and prognosis at the brain level. In this review, neurobehavioral evaluation of prolonged DoC and the functional connectivity within brain networks based on resting-state fMRI were reviewed to provide reference values for clinical diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Hui Li
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Xiaonian Zhang
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Xinting Sun
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Linghui Dong
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Haitao Lu
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Hao Zhang
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| |
Collapse
|
48
|
Ballanti S, Campagnini S, Liuzzi P, Hakiki B, Scarpino M, Macchi C, Oddo CM, Carrozza MC, Grippo A, Mannini A. EEG-based methods for recovery prognosis of patients with disorders of consciousness: A systematic review. Clin Neurophysiol 2022; 144:98-114. [PMID: 36335795 DOI: 10.1016/j.clinph.2022.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Disorders of consciousness (DoC) are acquired conditions of severely altered consciousness. Electroencephalography (EEG)-derived biomarkers have been studied as clinical predictors of consciousness recovery. Therefore, this study aimed to systematically review the methods, features, and models used to derive prognostic EEG markers in patients with DoC in a rehabilitation setting. METHODS We conducted a systematic literature search of EEG-based strategies for consciousness recovery prognosis in five electronic databases. RESULTS The search resulted in 2964 papers. After screening, 15 studies were included in the review. Our analyses revealed that simpler experimental settings and similar filtering cut-off frequencies are preferred. The results of studies were categorised by extracting qualitative and quantitative features. The quantitative features were further classified into evoked/event-related potentials, spectral measures, entropy measures, and graph-theory measures. Despite the variety of methods, features from all categories, including qualitative ones, exhibited significant correlations with DoC prognosis. Moreover, no agreement was found on the optimal set of EEG-based features for the multivariate prognosis of patients with DoC, which limits the computational methods applied for outcome prediction and correlation analysis to classical ones. Nevertheless, alpha power, reactivity, and higher complexity metrics were often found to be predictive of consciousness recovery. CONCLUSIONS This study's findings confirm the essential role of qualitative EEG and suggest an important role for quantitative EEG. Their joint use could compensate for their reciprocal limitations. SIGNIFICANCE This study emphasises the need for further efforts toward guidelines on standardised EEG analysis pipeline, given the already proven role of EEG markers in the recovery prognosis of patients with DoC.
Collapse
Affiliation(s)
- Sara Ballanti
- IRCCS Fondazione Don Carlo Gnocchi, Firenze 50143, Italy; The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera 56025, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa 56127, Italy.
| | - Silvia Campagnini
- IRCCS Fondazione Don Carlo Gnocchi, Firenze 50143, Italy; The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera 56025, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa 56127, Italy.
| | - Piergiuseppe Liuzzi
- IRCCS Fondazione Don Carlo Gnocchi, Firenze 50143, Italy; The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera 56025, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa 56127, Italy.
| | - Bahia Hakiki
- IRCCS Fondazione Don Carlo Gnocchi, Firenze 50143, Italy.
| | | | - Claudio Macchi
- IRCCS Fondazione Don Carlo Gnocchi, Firenze 50143, Italy; Department of Experimental and Clinical Medicine, University of Florence, Firenze 50143, Italy.
| | - Calogero Maria Oddo
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera 56025, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa 56127, Italy.
| | - Maria Chiara Carrozza
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera 56025, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa 56127, Italy.
| | | | - Andrea Mannini
- IRCCS Fondazione Don Carlo Gnocchi, Firenze 50143, Italy.
| |
Collapse
|
49
|
Liu Y, Kang XG, Chen BB, Song CG, Liu Y, Hao JM, Yuan F, Jiang W. Detecting residual brain networks in disorders of consciousness: a resting-state fNIRS study. Brain Res 2022; 1798:148162. [DOI: 10.1016/j.brainres.2022.148162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
|
50
|
Understanding, detecting, and stimulating consciousness recovery in the ICU. Acta Neurochir (Wien) 2022; 165:809-828. [PMID: 36242637 DOI: 10.1007/s00701-022-05378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/07/2022] [Indexed: 11/01/2022]
Abstract
Coma is a medical and socioeconomic emergency. Although underfunded, research on coma and disorders of consciousness has made impressive progress. Lesion-network-mapping studies have delineated the precise brainstem regions that consistently produce coma when damaged. Functional neuroimaging has revealed how mechanisms like "communication through coherence" and "inhibition by gating" work in synergy to enable cortico-cortical processing and how this information transfer is disrupted in brain injury. On the cellular level, break-down of intracellular communication between the layer 5 pyramidal cell soma and the apical dendritic part impairs dendritic information integration, with up-stream effects on microcircuits in local neuronal populations and on large-scale fronto-parietal networks, which correlates with loss of consciousness. A breakthrough in clinical concepts occurred when fMRI, and later EEG, studies revealed that 15% of clinically unresponsive patients in acute and chronic settings are in fact awake and aware, as shown by their command following abilities revealed by brain activation during motor and locomotion imagery tasks. This condition is now termed "cognitive motor dissociation." Furthermore, epidemiological data on coma were literally non-existent until recently because of difficulties related to case ascertainment with traditional methods, but crowdsourcing of family observations enabled the first estimates of how frequent coma is in the general population (pooled annual incidence of 201 coma cases per 100,000 population in the UK and the USA). Diagnostic guidelines on coma and disorders of consciousness by the American Academy of Neurology and the European Academy of Neurology provide ambitious clinical frameworks to accommodate these achievements. As for therapy, a broad range of medical and non-medical treatment options is now being tested in increasingly larger trials; in particular, amantadine and transcranial direct current stimulation appear promising in this regard. Major international initiatives like the Curing Coma Campaign aim to raise awareness for coma and disorders of consciousness in the public, with the ultimate goal to make more brain-injured patients recover consciousness after a coma. To highlight all these accomplishments, this paper provides a comprehensive overview of recent progress and future challenges related to understanding, detecting, and stimulating consciousness recovery in the ICU.
Collapse
|