1
|
Laguna A, Peñuelas N, Gonzalez-Sepulveda M, Nicolau A, Arthaud S, Guillard-Sirieix C, Lorente-Picón M, Compte J, Miquel-Rio L, Xicoy H, Liu J, Parent A, Cuadros T, Romero-Giménez J, Pujol G, Giménez-Llort L, Fort P, Bortolozzi A, Carballo-Carbajal I, Vila M. Modelling human neuronal catecholaminergic pigmentation in rodents recapitulates age-related neurodegenerative deficits. Nat Commun 2024; 15:8819. [PMID: 39394193 PMCID: PMC11470033 DOI: 10.1038/s41467-024-53168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
One key limitation in developing effective treatments for neurodegenerative diseases is the lack of models accurately mimicking the complex physiopathology of the human disease. Humans accumulate with age the pigment neuromelanin inside neurons that synthesize catecholamines. Neurons reaching the highest neuromelanin levels preferentially degenerate in Parkinson's, Alzheimer's and apparently healthy aging individuals. However, this brain pigment is not taken into consideration in current animal models because common laboratory species, such as rodents, do not produce neuromelanin. Here we generate a tissue-specific transgenic mouse, termed tgNM, that mimics the human age-dependent brain-wide distribution of neuromelanin within catecholaminergic regions, based on the constitutive catecholamine-specific expression of human melanin-producing enzyme tyrosinase. We show that, in parallel to progressive human-like neuromelanin pigmentation, these animals display age-related neuronal dysfunction and degeneration affecting numerous brain circuits and body tissues, linked to motor and non-motor deficits, reminiscent of early neurodegenerative stages. This model could help explore new research avenues in brain aging and neurodegeneration.
Collapse
Affiliation(s)
- Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
| | - Núria Peñuelas
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Marta Gonzalez-Sepulveda
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alba Nicolau
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Sébastien Arthaud
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Camille Guillard-Sirieix
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Marina Lorente-Picón
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Joan Compte
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lluís Miquel-Rio
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC); Center for Networked Biomedical Research on Mental Health (CIBERSAM), 08036, Barcelona, Spain
- Systems Neuropharmacology Research Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036, Barcelona, Spain
| | - Helena Xicoy
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Jiong Liu
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Jordi Romero-Giménez
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Gemma Pujol
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
- Department of Psychiatry and Forensic Medicine-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
| | - Patrice Fort
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Analia Bortolozzi
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC); Center for Networked Biomedical Research on Mental Health (CIBERSAM), 08036, Barcelona, Spain
- Systems Neuropharmacology Research Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036, Barcelona, Spain
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain.
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
2
|
Orzari LO, Silva LRGE, de Freitas RC, Brazaca LC, Janegitz BC. Lab-made disposable screen-printed electrochemical sensors and immunosensors modified with Pd nanoparticles for Parkinson's disease diagnostics. Mikrochim Acta 2024; 191:76. [PMID: 38172448 DOI: 10.1007/s00604-023-06158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
A new conductive ink based on the addition of carbon black to a poly(vinyl alcohol) matrix is developed and investigated for electrochemical sensing and biosensing applications. The produced devices were characterized using morphological and electrochemical techniques and modified with Pd nanoparticles to enhance electrical conductivity and reaction kinetics. With the aid of chemometrics, the parameters for metal deposition were investigated and the sensor was applied to the determination of Parkinson's disease biomarkers, specifically epinephrine and α-synuclein. A linear behavior was obtained in the range 0.75 to 100 μmol L-1 of the neurotransmitter, and the device displayed a limit of detection (LOD) of 0.051 μmol L-1. The three-electrode system was then tested using samples of synthetic cerebrospinal fluid. Afterward, the device was modified with specific antibodies to quantify α-synuclein using electrochemical impedance spectroscopy. In phosphate buffer, a linear range was obtained for α-synuclein concentrations from 1.5 to 15 μg mL-1, with a calculated LOD of 0.13 μg mL-1. The proposed immunosensor was also applied to blood serum samples, and, in this case, the linear range was observed from 6.0 to 100.5 μg mL-1 of α-synuclein, with a LOD = 1.3 µg mL-1. Both linear curves attend the range for the real diagnosis, demonstrating its potential application to complex matrices.
Collapse
Affiliation(s)
- Luiz Otávio Orzari
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, 18052-780, Brazil
| | - Luiz Ricardo Guterres E Silva
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, 18052-780, Brazil
| | - Rafaela Cristina de Freitas
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, 18052-780, Brazil
| | - Laís Canniatti Brazaca
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Bruno Campos Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil.
| |
Collapse
|
3
|
Soriano JE, Hudelle R, Squair JW, Mahe L, Amir S, Gautier M, Puchalt VP, Barraud Q, Phillips AA, Courtine G. Longitudinal interrogation of sympathetic neural circuits and hemodynamics in preclinical models. Nat Protoc 2023; 18:340-373. [PMID: 36418397 DOI: 10.1038/s41596-022-00764-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
Neurological disorders, including spinal cord injury, result in hemodynamic instability due to the disruption of supraspinal projections to the sympathetic circuits located in the spinal cord. We recently developed a preclinical model that allows the identification of the topology and dynamics through which sympathetic circuits modulate hemodynamics, supporting the development of a neuroprosthetic baroreflex that precisely controls blood pressure in rats, monkeys and humans with spinal cord injuries. Here, we describe the continuous monitoring of arterial blood pressure and sympathetic nerve activity over several months in preclinical models of chronic neurological disorders using commercially available telemetry technologies, as well as optogenetic and neuronal tract-tracing procedures specifically adapted to the sympathetic circuitry. Using a blueprint to construct a negative-pressure chamber, the approach enables the reproduction, in rats, of well-controlled and reproducible episodes of hypotension-mimicking orthostatic challenges already used in humans. Blood pressure variations can thus be directly induced and linked to the molecular, functional and anatomical properties of specific neurons in the brainstem, spinal cord and ganglia. Each procedure can be completed in under 2 h, while the construction of the negative-pressure chamber requires up to 1 week. With training, individuals with a basic understanding of cardiovascular physiology, engineering or neuroscience can collect longitudinal recordings of hemodynamics and sympathetic nerve activity over several months.
Collapse
Affiliation(s)
- Jan Elaine Soriano
- Neuro-X Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.,Department of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, Hotchkiss Brain Institute, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Rémi Hudelle
- Neuro-X Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Jordan W Squair
- Neuro-X Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.,Department of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, Hotchkiss Brain Institute, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Lois Mahe
- Neuro-X Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Suje Amir
- Neuro-X Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Matthieu Gautier
- Neuro-X Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Victor Perez Puchalt
- Neuro-X Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Quentin Barraud
- Neuro-X Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Aaron A Phillips
- Department of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, Hotchkiss Brain Institute, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Gregoire Courtine
- Neuro-X Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. .,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland. .,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.
| |
Collapse
|
4
|
Saxena S, Murthy TPK, Chandramohan V, Achyuth S, Maansi M, Das P, Sineagha V, Prakash S. In-silico analysis of deleterious single nucleotide polymorphisms of PNMT gene. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2094922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sidharth Saxena
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | | | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| | - Sai Achyuth
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - M. Maansi
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - Papiya Das
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - V. Sineagha
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - Sriraksha Prakash
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| |
Collapse
|
5
|
Sabino-Carvalho JL, Fisher JP, Vianna LC. Autonomic Function in Patients With Parkinson's Disease: From Rest to Exercise. Front Physiol 2021; 12:626640. [PMID: 33815139 PMCID: PMC8017184 DOI: 10.3389/fphys.2021.626640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder classically characterized by symptoms of motor impairment (e.g., tremor and rigidity), but also presenting with important non-motor impairments. There is evidence for the reduced activity of both the parasympathetic and sympathetic limbs of the autonomic nervous system at rest in PD. Moreover, inappropriate autonomic adjustments accompany exercise, which can lead to inadequate hemodynamic responses, the failure to match the metabolic demands of working skeletal muscle and exercise intolerance. The underlying mechanisms remain unclear, but relevant alterations in several discrete central regions (e.g., dorsal motor nucleus of the vagus nerve, intermediolateral cell column) have been identified. Herein, we critically evaluate the clinically significant and complex associations between the autonomic dysfunction, fatigue and exercise capacity in PD.
Collapse
Affiliation(s)
- Jeann L Sabino-Carvalho
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - James P Fisher
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil.,Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
6
|
Sabino-Carvalho JL, Falquetto B, Takakura AC, Vianna LC. Baroreflex dysfunction in Parkinson's disease: integration of central and peripheral mechanisms. J Neurophysiol 2021; 125:1425-1439. [PMID: 33625931 DOI: 10.1152/jn.00548.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The incidence of Parkinson's disease (PD) is increasing worldwide. Although the PD hallmark is the motor impairments, nonmotor dysfunctions are now becoming more recognized. Recently, studies have suggested that baroreflex dysfunction is one of the underlying mechanisms of cardiovascular dysregulation observed in patients with PD. However, the large body of literature on baroreflex function in PD is unclear. The baroreflex system plays a major role in the autonomic, and ultimately blood pressure and heart rate, adjustments that accompany acute cardiovascular stressors on a daily basis. Therefore, impaired baroreflex function (i.e., decreased sensitivity or gain) can lead to altered neural cardiovascular responses. Since PD affects parasympathetic and sympathetic branches of the autonomic nervous system and both are orchestrated by the baroreflex system, understanding of this crucial mechanism in PD is necessary. In the present review, we summarize the potential altered central and peripheral mechanisms affecting the feedback-controlled loops that comprise the reflex arc in patients with PD. Major factors including arterial stiffness, reduced number of C1 and activation of non-C1 neurons, presence of central α-synuclein aggregation, cardiac sympathetic denervation, attenuated muscle sympathetic nerve activity, and lower norepinephrine release could compromise baroreflex function in PD. Results from patients with PD and from animal models of PD provide the reader with a clearer picture of baroreflex function in this clinical condition. By doing so, our intent is to stimulate future studies to evaluate several unanswered questions in this research area.
Collapse
Affiliation(s)
- Jeann L Sabino-Carvalho
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Institute of Biomedical Sciences, University de Sao Paulo, Sao Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University de Sao Paulo, Sao Paulo, Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil.,Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
7
|
Buleandră M, Popa DE, David IG, Ciucu AA. A simple and efficient cyclic square wave voltammetric method for simultaneous determination of epinephrine and norepinephrine using an activated pencil graphite electrode. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Pechstein AE, Gollie JM, Guccione AA. Fatigability and Cardiorespiratory Impairments in Parkinson's Disease: Potential Non-Motor Barriers to Activity Performance. J Funct Morphol Kinesiol 2020; 5:E78. [PMID: 33467293 PMCID: PMC7739335 DOI: 10.3390/jfmk5040078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative condition after Alzheimer's disease, affecting an estimated 160 per 100,000 people 65 years of age or older. Fatigue is a debilitating non-motor symptom frequently reported in PD, often manifesting prior to disease diagnosis, persisting over time, and negatively affecting quality of life. Fatigability, on the other hand, is distinct from fatigue and describes the magnitude or rate of change over time in the performance of activity (i.e., performance fatigability) and sensations regulating the integrity of the performer (i.e., perceived fatigability). While fatigability has been relatively understudied in PD as compared to fatigue, it has been hypothesized that the presence of elevated levels of fatigability in PD results from the interactions of homeostatic, psychological, and central factors. Evidence from exercise studies supports the premise that greater disturbances in metabolic homeostasis may underly elevated levels of fatigability in people with PD when engaging in physical activity. Cardiorespiratory impairments constraining oxygen delivery and utilization may contribute to the metabolic alterations and excessive fatigability experienced in individuals with PD. Cardiorespiratory fitness is often reduced in people with PD, likely due to the combined effects of biological aging and impairments specific to the disease. Decreases in oxygen delivery (e.g., reduced cardiac output and impaired blood pressure responses) and oxygen utilization (e.g., reduced skeletal muscle oxidative capacity) compromise skeletal muscle respiration, forcing increased reliance on anaerobic metabolism. Thus, the assessment of fatigability in people with PD may provide valuable information regarding the functional status of people with PD not obtained with measures of fatigue. Moreover, interventions that target cardiorespiratory fitness may improve fatigability, movement performance, and health outcomes in this patient population.
Collapse
Affiliation(s)
- Andrew E. Pechstein
- Department of Rehabilitation Science, George Mason University, Fairfax, VA 22030, USA; (A.E.P.); (A.A.G.)
| | - Jared M. Gollie
- Department of Rehabilitation Science, George Mason University, Fairfax, VA 22030, USA; (A.E.P.); (A.A.G.)
- Research Services, Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Health, Human Function, and Rehabilitation Sciences, The George Washington University, Washington, DC 20006, USA
| | - Andrew A. Guccione
- Department of Rehabilitation Science, George Mason University, Fairfax, VA 22030, USA; (A.E.P.); (A.A.G.)
| |
Collapse
|
9
|
Sabino-Carvalho JL, Cartafina RA, Guimarães GM, Brandão PRP, Lang JA, Vianna LC. Baroreflex function in Parkinson's disease: insights from the modified-Oxford technique. J Neurophysiol 2020; 124:1144-1151. [PMID: 32877297 DOI: 10.1152/jn.00443.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonmotor symptoms are common in Parkinson's disease (PD) and they include dysregulation of cardiovascular system, which adversely affects quality of life. Recent studies provide indirect evidence that baroreflex dysfunction may be one of the mechanisms of cardiovascular dysregulation in PD. Herein, we tested the hypothesis that the baroreflex gain, assessed across an extensive range of the reflex arc by eliciting rapid changes in blood pressure (BP) induced by sequential boluses of vasoactive drugs (modified-Oxford technique) would be attenuated in middle-aged patients with PD. Beat-to-beat heart rate (electrocardiography) and BP (finger photoplethysmography) were obtained during 10 min of supine rest preceding the modified-Oxford (bolus of nitroprusside followed by phenylephrine 1 min afterward) in 11 patients with PD (51 ± 6 yr) and 7 age-matched controls (47 ± 6 yr). The resulting systolic BP and R-R interval responses were plotted and fitted with segmental linear regression and symmetric sigmoid model. Spontaneous indices obtained via sequence technique were also used to estimate baroreflex gain. Compared with controls, the estimated gains measured by segmental linear regression (patients: 3.83 ± 2.6 ms/mmHg versus controls: 7.78 ± 1.7 ms/mmHg; P = 0.003) and symmetric sigmoid model (patients: 12.36 ± 6.9 ms/mmHg versus controls: 32.02 ± 19.0 ms/mmHg; P = 0.009) were lower in patients with PD. The operating range of BP was larger in patients with PD compared with controls (13 ± 7 mmHg versus controls: 7 ± 3 mmHg; P = 0.032). Of note, the gain obtained from spontaneous indices was similar between groups. These data indicate that baroreflex gain was reduced by >50% in PD, thereby providing clear and direct evidence that cardiovagal baroreflex dysfunction occurs in PD.NEW & NOTEWORTHY Attenuated baroreflex gain may contribute to adverse cardiovascular outcomes, including orthostatic intolerance symptoms typically observed in patients with Parkinson's disease. We found that the baroreflex gain (assessed by the modified-Oxford technique) is attenuated and accompanied by an increased operating range in patients with Parkinson's disease. These findings highlight that cardiovascular perturbations are required to detect baroreflex impairments and that spontaneous indices do not reveal cardiovagal-baroreflex dysfunction in a middle-aged group of patients with Parkinson's disease.
Collapse
Affiliation(s)
| | - Roberta A Cartafina
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, University of Brasília, Brazil
| | - Gabriel M Guimarães
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, University of Brasília, Brazil
| | - Pedro R P Brandão
- Neuroscience & Behavior Laboratory, University of Brasilia, Brasília, Brazil
| | - James A Lang
- Department of Kinesiology, Iowa State University, Ames, Iowa
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, University of Brasília, Brazil.,Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brazil
| |
Collapse
|
10
|
Cabral LM, Moreira TS, Takakura AC, Falquetto B. Attenuated baroreflex in a Parkinson's disease animal model coincides with impaired activation of non-C1 neurons. Auton Neurosci 2020; 225:102655. [PMID: 32092676 DOI: 10.1016/j.autneu.2020.102655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/12/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Orthostatic hypotension is one of the most common symptoms observed in Parkinson's disease (PD), a neurodegenerative disease caused by death of dopaminergic neurons in the substantia nigra pars compacta (SNc), and it is associated with denervation of the heart and impairment of the baroreflex. Here, we aimed to investigate if the impaired baroreflex was associated with lower activation of cardiovascular brainstem areas in a 6-hydroxydopamine (6-OHDA) animal model of PD. The PD model was generated with male Wistar rats by injection of 6-OHDA or vehicle into the striatum. After 20 or 60 days, the femoral vein and artery were cannulated to assess cardiovascular parameters during injection of sodium nitroprusside (SNP) or phenylephrine (Phe). Brainstem slices were submitted to immunohistochemistry and immunofluorescence. After 6-OHDA injection, 75% of the dopaminergic neurons in the SNc were absent, confirming establishment of the PD model. Intravenous (iv) injection of SNP generated reduced hypotension and tachycardia response, and the noncatecholaminergic (nonC1) neurons of the rostral ventrolateral medulla (RVLM) were less activated. Additionally, iv injection of Phe increased blood pressure and bradycardia to the same extent and activated equivalent numbers of neurons in the nucleus of the solitary tract and the caudal ventrolateral medulla as well as cholinergic neurons of the dorsal motor nucleus of the vagus and the nucleus ambiguus between control and PD animals. In summary, these data showed that in the PD model, impairment of cardiovascular autonomic control was observed only during deactivation of the baroreflex, which could be related to reduced activation of non-C1 neurons within the RVLM.
Collapse
Affiliation(s)
- Laís M Cabral
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Bárbara Falquetto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil.
| |
Collapse
|
11
|
Autonomic dysfunction in Parkinson disease and animal models. Clin Auton Res 2019; 29:397-414. [PMID: 30604165 DOI: 10.1007/s10286-018-00584-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022]
Abstract
Parkinson disease has traditionally been classified as a movement disorder, despite patients' accounts of diverse symptoms stemming from impairments in numerous body systems. Today, Parkinson disease is increasingly recognized by clinicians and scientists as a complex neurodegenerative disorder featuring both motor and nonmotor manifestations concomitant with pathology throughout all major branches of the nervous system. Dysfunction of the autonomic nervous system, or dysautonomia, is a common feature of Parkinson disease. It produces signs and symptoms that severely affect patients' quality of life, such as blood pressure dysregulation, hyperhidrosis, and constipation. Treatment options for dysautonomia are limited to symptom alleviation because the cause of these symptoms and Parkinson disease overall are still unknown. Animal models provide a platform to interrogate mechanisms of Parkinson disease-related autonomic nervous system dysfunction and test novel treatment strategies. Several animal models of Parkinson disease are available, each with different effects on the autonomic nervous system. This review critically analyses key dysautonomia signs and symptoms and associated pathology in Parkinson disease patients and relevant findings in animal models. We focus on the cardiovascular system, adrenal medulla, skin/thermoregulation, bladder, pupils, and gastrointestinal tract, to assess the contribution of animal models to the understanding of Parkinson disease autonomic dysfunction.
Collapse
|
12
|
Karsan N, Goadsby PJ. Biological insights from the premonitory symptoms of migraine. Nat Rev Neurol 2018; 14:699-710. [DOI: 10.1038/s41582-018-0098-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
High norepinephrinergic orthostatic hypotension in early Parkinson's disease. Parkinsonism Relat Disord 2018; 55:97-102. [PMID: 29880316 DOI: 10.1016/j.parkreldis.2018.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/18/2018] [Accepted: 05/27/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Plasma norepinephrine concentration reflects lesions causing OH. We investigate whether patients with high norepinephrinergic orthostatic hypotension (OH) whose supine plasma norepinephrine concentration (NEsupine) is above the mean value in all patients with Parkinson's disease (PD) have central sympathetic denervation. METHODS We analyzed data from 110 non-demented patients with early de novo PD who underwent cardiovascular examinations. We divided the patients into three groups according to the presence or absence of orthostatic hypotension and NEsupine: patients without OH, patients with OH+high NEsupine, and patients with OH+low NEsupine. RESULTS The mean NEsupine in all patients was 251.6 pg/ml. Twelve patients (10.9%) had OH+high NEsupine (≥251.6 pg/ml), and 45 patients (40.9%) had OH+low NEsupine (<251.6 pg/ml). OH was more pronounced in patients with OH+high NEsupine than in those with OH+low NEsupine (p = 0.024). Vasopressin release and percent increase of NE after orthostatic stress were well preserved in patients with OH+low NEsupine, but not in patients with OH+high NEsupine. Cognition was lower in patients with OH+high NEsupine than in patients with OH+low NEsupine (p = 0.019) and was associated with vasopressin release during orthostatic stress on multiple regression analysis. The degree of cardiac sympathetic denervation did not differ between two groups with OH. CONCLUSIONS Patient with PD and high norepinephrinergic OH are a subset of patients who have early cognitive decline and impaired vasopressin release. Vasopressin release after orthostatic stress was closely related to global cognition in PD.
Collapse
|
14
|
Coon EA, Cutsforth-Gregory JK, Benarroch EE. Neuropathology of autonomic dysfunction in synucleinopathies. Mov Disord 2018; 33:349-358. [DOI: 10.1002/mds.27186] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/30/2017] [Accepted: 09/10/2017] [Indexed: 12/16/2022] Open
|
15
|
Li K, Haase R, Rüdiger H, Reimann M, Reichmann H, Wolz M, Ziemssen T. Subthalamic nucleus stimulation and levodopa modulate cardiovascular autonomic function in Parkinson's disease. Sci Rep 2017; 7:7012. [PMID: 28765629 PMCID: PMC5539113 DOI: 10.1038/s41598-017-07429-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/28/2017] [Indexed: 11/14/2022] Open
Abstract
We aimed to explore the effects of bilateral subthalamic nucleus stimulation and levodopa on cardiovascular autonomic function in Parkinson’s disease. Twenty-six Parkinson’s disease patients with bilateral subthalamic nucleus stimulation in a stable state were tested under stimulation off and dopaminergic medication off (OFF-OFF), stimulation on and dopaminergic medication off (ON-OFF), and stimulation on and medication (levodopa) on (ON-ON) conditions by recording continuously blood pressure, ECG, and respiration at rest, during metronomic deep breathing, and head-up tilt test. Thirteen patients were diagnosed as orthostatic hypotension by head-up tilt test. Baroreflex sensitivity and spectral analyses were performed by trigonometric regressive spectral analysis. Subthalamic nucleus stimulation and levodopa had multiple influences. (1) Systolic blood pressure during tilt-up was reduced by subthalamic nucleus stimulation, and then further by levodopa. (2) Subthalamic nucleus stimulation and levodopa had different effects on sympathetic and parasympathetic regulations in Parkinson’s disease. (3) Levodopa decreased baroreflex sensitivity and RR interval only in the orthostatic hypotension group, and had opposite effects on the non-orthostatic hypotension group. These findings indicate that subthalamic nucleus stimulation and levodopa have different effects on cardiovascular autonomic function in Parkinson’s disease, which are modulated by the presence of orthostatic hypotension as well.
Collapse
Affiliation(s)
- Kai Li
- Autonomic and neuroendocrinological lab, Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany.,Department of Neurology, Beijing Hospital, National Center of Gerontology, China. No. 1 DaHua Road, Dongdan, Beijing, 100730, China
| | - Rocco Haase
- Autonomic and neuroendocrinological lab, Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Heinz Rüdiger
- Autonomic and neuroendocrinological lab, Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Manja Reimann
- Autonomic and neuroendocrinological lab, Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Heinz Reichmann
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Martin Wolz
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Tjalf Ziemssen
- Autonomic and neuroendocrinological lab, Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany. .,Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
16
|
Falquetto B, Tuppy M, Potje SR, Moreira TS, Antoniali C, Takakura AC. Cardiovascular dysfunction associated with neurodegeneration in an experimental model of Parkinson's disease. Brain Res 2016; 1657:156-166. [PMID: 27956121 DOI: 10.1016/j.brainres.2016.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023]
Abstract
Patients with Parkinson's disease (PD) exhibit both motor and non-motor symptoms. Among the non-motor symptoms, cardiovascular autonomic dysfunction is frequently observed. Here, we evaluated baroreflex function, vascular reactivity and neuroanatomical changes in brainstem regions involved in the neural control of circulation in the 6-hydroxydopamine (6-OHDA) model of PD. Male Wistar rats received a bilateral injection of 6-OHDA or vehicle into the striatum. After 61days, baroreflex function and vascular reactivity were assessed. The 6-OHDA and vehicle groups showed similar increases in mean arterial pressure (MAP) in response to phenylephrine (PE). However, the bradycardia observed in the vehicle group was blunted in the 6-OHDA-treated rats. Injection of sodium nitroprusside (SNP) decreased hypotension, tachycardia and vascular relaxation in 6-OHDA-treated rats. Bilateral intrastriatal 6-OHDA led to massive degeneration of tyrosine hydroxylase (TH)-immunoreactive neurons in the substantia nigra and to reductions in the numbers of A1/C1 and A5 catecholaminergic neurons while sparing A2 neurons within the nucleus of the solitary tract (NTS). 6-OHDA-treated rats also showed decreases in Phox2b-expressing neurons in the NTS and in choline acetyltransferase (ChAT) immunoreactivity in the nucleus ambiguus. Altogether, our data suggest that this model of PD includes neuroanatomical and functional changes that lead to cardiovascular impairment.
Collapse
Affiliation(s)
- Barbara Falquetto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Marina Tuppy
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Simone R Potje
- Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP-Univ. Estadual Paulista, 16015-050 Araçatuba, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Cristina Antoniali
- Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP-Univ. Estadual Paulista, 16015-050 Araçatuba, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Hunt NJ, Phillips L, Waters KA, Machaalani R. Proteomic MALDI-TOF/TOF-IMS examination of peptide expression in the formalin fixed brainstem and changes in sudden infant death syndrome infants. J Proteomics 2016; 138:48-60. [PMID: 26926438 DOI: 10.1016/j.jprot.2016.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/30/2016] [Accepted: 02/23/2016] [Indexed: 01/23/2023]
Abstract
UNLABELLED Matrix assisted laser desorption/ionisation imaging mass spectrometry (MALDI-IMS) has not previously been utilised to examine sudden infant death syndrome (SIDS). This study aimed to optimise MALDI IMS for use on archived formalin-fixed-paraffin-embedded human infant medulla tissue (n=6, controls; n=6, SIDS) to evaluate differences between multiple nuclei of the medulla by using high resolution IMS. Profiles were compared between SIDS and age/sex matched controls. LC-MALDI identified 55 proteins based on 321 peptides across all samples; 286 peaks were found using IMS, corresponding to these 55 proteins that were directly compared between controls and SIDS. Control samples were used to identify common peptides for neuronal/non-neuronal structures allowing identification of medullary regions. In SIDS, abnormal expression patterns of 41 peptides (p≤0.05) corresponding to 9 proteins were observed; these changes were confirmed with immunohistochemistry. The protein abnormalities varied amongst nuclei, with the majority of variations in the raphe nuclei, hypoglossal and pyramids. The abnormal proteins are not related to a previously identified neurological disease pathway but consist of developmental neuronal/glial/axonal growth, cell metabolism, cyto-architecture and apoptosis components. This suggests that SIDS infants have abnormal neurological development in the raphe nuclei, hypoglossal and pyramids of the brainstem, which may contribute to the pathogenesis of SIDS. BIOLOGICAL SIGNIFICANCE This study is the first to perform an imaging mass spectrometry investigation in the human brainstem and also within sudden infant death syndrome (SIDS). LC MALDI and MALDI IMS identified 55 proteins based on 285 peptides in both control and SIDS tissue; with abnormal expression patterns present for 41/285 and 9/55 proteins in SIDS using IMS. The abnormal proteins are critical for neurological development; with the impairment supporting the hypothesis that SIDS may be due to delayed neurological maturation. The brainstem regions mostly affected included the raphe nuclei, hypoglossal and pyramids. This study highlights that basic cyto-architectural proteins are affected in SIDS and that abnormal expression of these proteins in other CNS disorders should be examined. KEY SENTENCES LC MALDI and MALDI IMS identified 55 proteins based on 285 peptides in both control and SIDS tissue. Abnormal expression patterns were present for 41/285 and 9/55 proteins in SIDS using IMS. Brainstem regions mostly affected included the raphe nuclei, hypoglossal and pyramids.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Department of Medicine, Central Clinical School, University of Sydney, NSW, Australia; BOSCH Institute of Biomedical Research, University of Sydney, NSW, Australia
| | - Leo Phillips
- Hormones and Cancer Division, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, NSW, Australia
| | - Karen A Waters
- Department of Medicine, Central Clinical School, University of Sydney, NSW, Australia; BOSCH Institute of Biomedical Research, University of Sydney, NSW, Australia; The Children's Hospital, Westmead, NSW 2145, Australia
| | - Rita Machaalani
- Department of Medicine, Central Clinical School, University of Sydney, NSW, Australia; BOSCH Institute of Biomedical Research, University of Sydney, NSW, Australia; The Children's Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
18
|
Kanegusuku H, Silva-Batista C, Peçanha T, Silva-Junior N, Queiroz A, Costa L, Mello M, Piemonte M, Ugrinowitsch C, Forjaz C. Patients with Parkinson disease present high ambulatory blood pressure variability. Clin Physiol Funct Imaging 2016; 37:530-535. [PMID: 28776928 DOI: 10.1111/cpf.12338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/13/2015] [Indexed: 11/30/2022]
Abstract
Patients with Parkinson disease (PD) present blunted nocturnal blood pressure fall and similar ambulatory blood pressure variability (ABPV) measured by standard deviation (SD) and coefficient of variation (CV) compared with healthy subjects. However, these classical indices of ABPV have limited validity in individuals with circadian blood pressure alterations. New indices, such as the average of daytime and night-time standard deviation weighted by the duration of the daytime and night-time intervals (SDdn ) and the average real variability (ARV), remove the influence of the daytime and the night-time periods on ABPV. This study assessed ABPV by SDdn and ARV in PD. Twenty-one patients with PD (11 men, 66 ± 2 years, stages 2-3 of modified Hoehn & Yahr) and 21 matched controls without Parkinson disease (9 men, 64 ± 1 years old) underwent blood pressure monitoring for 24 h. ABPV was analysed by 24 h, daytime and night-time SD and CV, and by the SDdn and ARV. Systolic/diastolic 24-h and night-time SD and CV were similar between the patients with PD and the controls. The patients with PD presented higher daytime systolic/diastolic CV and SD than the controls (10·4 ± 0·9/12·3 ± 0·8 versus 7·0 ± 0·3/9·9 ± 0·5%, P<0·05; 12·6 ± 1·0/9·1 ± 0·5 versus 8·6 ± 0·4/7·5 ± 0·3 mmHg, P<0·05, respectively) as well as higher systolic/diastolic SDdn (10·9 ± 0·8/8·2 ± 0·5 versus 8·2 ± 0·3/7·1 ± 0·2 mmHg, P<0·05, respectively) and ARV (8·8 ± 0·6/6·9 ± 0·3 versus 7·2 ± 0·2/6·0 ± 0·2 mmHg, P<0·05, respectively). In conclusion, patients with PD have higher ABPV than control subjects as assessed by SDd , CVd , SDdn and AVR.
Collapse
Affiliation(s)
- Hélcio Kanegusuku
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Carla Silva-Batista
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Tiago Peçanha
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Natan Silva-Junior
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Andreia Queiroz
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Luiz Costa
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Marco Mello
- School of Physical Education, Federal University of Minas Gerais, Sao Paulo, Brazil
| | - Maria Piemonte
- Faculty of Medical Science, University of São Paulo, Sao Paulo, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Cláudia Forjaz
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Loavenbruck A, Sandroni P. Neurogenic orthostatic hypotension: roles of norepinephrine deficiency in its causes, its treatment, and future research directions. Curr Med Res Opin 2015; 31:2095-104. [PMID: 26373628 DOI: 10.1185/03007995.2015.1087988] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although a diversity of neurotransmitters and hormones participate in controlling blood pressure, norepinephrine released from postganglionic sympathetic nerve terminals is an important mediator of the rapid regulation of cardiovascular function required for homeostasis of cerebral perfusion. Hence, neurogenic orthostatic hypotension (NOH) often represents a deficiency of noradrenergic responsiveness to postural change. RESEARCH DESIGN AND METHODS PubMed searches with 'orthostatic hypotension' and 'norepinephrine' as conjoint search terms and no restriction on language or date, so as to survey the pathophysiologic and clinical relevance of norepinephrine deficiency for current NOH interventions and for future directions in treatment and research. RESULTS Norepinephrine deficiency in NOH can arise peripherally, due to cardiovascular sympathetic denervation (as in pure autonomic failure, Parkinson's disease, and a variety of neuropathies), or centrally, due to a failure of viscerosensory signals to generate adequate sympathetic traffic to intact sympathetic nerve endings (as in multiple system atrophy). Nonpharmacologic countermeasures such as pre-emptive water intake may yield blood-pressure increases exceeding those achieved pharmacologically. For patients with symptomatic NOH unresponsive to such strategies, a variety of pharmacologic interventions have been administered off-label on the basis of drug mechanisms expected to increase blood pressure via blood-volume expansion or vasoconstriction. Two pressor agents have received FDA approval: the sympathomimetic midodrine and more recently the norepinephrine prodrug droxidopa. CONCLUSIONS Pressor agents are important for treating symptomatic NOH in patients unresponsive to lifestyle changes alone. However, the dysautonomia underlying NOH often permits blood-pressure excursions toward both hypotension and hypertension. Future research should aim to shed light on the resulting management issues, and should also explore the possibility of pharmacotherapy selectively targeting orthostatic blood-pressure decreases.
Collapse
Affiliation(s)
- Adam Loavenbruck
- a a Department of Neurology , University of Minnesota , Minneapolis , MN , USA
| | - Paola Sandroni
- b b Department of Neurology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
20
|
Zhang Z, Du X, Xu H, Xie J, Jiang H. Lesion of medullary catecholaminergic neurons is associated with cardiovascular dysfunction in rotenone-induced Parkinson's disease rats. Eur J Neurosci 2015; 42:2346-55. [PMID: 26153521 DOI: 10.1111/ejn.13012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/12/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
Abstract
In recent years, non-motor symptoms have been recognised as of vital importance in Parkinson's disease (PD); among these, cardiovascular dysfunctions are commonly seen in PD patients before their motor signs. The role of cardiovascular dysfunction in the progression of PD pathology, and its underlying mechanisms, are largely unknown. In the present study, in rotenone-induced PD rats, there was a gradual reduction in the number of nigral tyrosine hydroxylase-immunoreactive (TH-ir) neurons after 7, 14 and 21 days treatment. With the 56% reduction in striatal dopamine content and 52% loss of TH-ir neurons on the 14th day, the rats showed motor dysfunctions. However, from ECG power spectra, reductions in normalised low-frequency power and in the low-frequency power : high-frequency power ratio, as well as in mean blood pressure, were observed as early as the 3rd day. Plasma norepinephrine (NE) and epinephrine (E) levels were decreased by 39% and 26% respectively at the same time. Pearson's correlation analysis showed that both plasma NE and plasma E levels were positively correlated with MBP. Our results also showed that the loss of catecholaminergic neurons in the rostral ventrolateral medulla (RVLM), but not in the caudal ventrolateral medulla or the nucleus tractus solitarii, emerged earlier than the loss of nigral dopaminergic neurons. This suggests that dysfunction of catecholaminergic neurons in the RVLM might account for the reduced sympathetic activity, MBP and plasma catecholamine levels in the early stages of PD.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- State Key Disciplines: Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266001, China.,Department of Physiology, Basic Medical College of Taishan Medical University, Taian, China
| | - Xixun Du
- State Key Disciplines: Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266001, China
| | - Huamin Xu
- State Key Disciplines: Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266001, China
| | - Junxia Xie
- State Key Disciplines: Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266001, China
| | - Hong Jiang
- State Key Disciplines: Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266001, China
| |
Collapse
|
21
|
Abstract
Dysautonomias are conditions in which altered function of one or more components of the autonomic nervous system (ANS) adversely affects health. This review updates knowledge about dysautonomia in Parkinson disease (PD). Most PD patients have symptoms or signs of dysautonomia; occasionally, the abnormalities dominate the clinical picture. Components of the ANS include the sympathetic noradrenergic system (SNS), the parasympathetic nervous system (PNS), the sympathetic cholinergic system (SCS), the sympathetic adrenomedullary system (SAS), and the enteric nervous system (ENS). Dysfunction of each component system produces characteristic manifestations. In PD, it is cardiovascular dysautonomia that is best understood scientifically, mainly because of the variety of clinical laboratory tools available to assess functions of catecholamine systems. Most of this review focuses on this aspect of autonomic involvement in PD. PD features cardiac sympathetic denervation, which can precede the movement disorder. Loss of cardiac SNS innervation occurs independently of the loss of striatal dopaminergic innervation underlying the motor signs of PD and is associated with other nonmotor manifestations, including anosmia, REM behavior disorder, orthostatic hypotension (OH), and dementia. Autonomic dysfunction in PD is important not only in clinical management and in providing potential biomarkers but also for understanding disease mechanisms (e.g., autotoxicity exerted by catecholamine metabolites). Since Lewy bodies and Lewy neurites containing alpha-synuclein constitute neuropathologic hallmarks of the disease, and catecholamine depletion in the striatum and heart are characteristic neurochemical features, a key goal of future research is to understand better the link between alpha-synucleinopathy and loss of catecholamine neurons in PD.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
22
|
Greene JG. Causes and consequences of degeneration of the dorsal motor nucleus of the vagus nerve in Parkinson's disease. Antioxid Redox Signal 2014; 21:649-67. [PMID: 24597973 DOI: 10.1089/ars.2014.5859] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Parkinson's disease (PD) is no longer considered merely a movement disorder caused by degeneration of dopamine neurons in the midbrain. It is now recognized as a widespread neuropathological syndrome accompanied by a variety of motor and nonmotor clinical symptoms. As such, any hypothesis concerning PD pathogenesis and pathophysiology must account for the entire spectrum of disease and not solely focus on the dopamine system. RECENT ADVANCES Based on its anatomy and the intrinsic properties of its neurons, the dorsal motor nucleus of the vagus nerve (DMV) is uniquely vulnerable to damage from PD. Fibers in the vagus nerve course throughout the gastrointestinal (GI) tract to and from the brainstem forming a close link between the peripheral and central nervous systems and a point of proximal contact between the environment and areas where PD pathology is believed to start. In addition, DMV neurons are under high levels of oxidative stress due to their high level of α-synuclein expression, fragile axons, and specific neuronal physiology. Moreover, several consequences of DMV damage, namely, GI dysfunction and unrestrained inflammation, may propagate a vicious cycle of injury affecting vulnerable brain regions. CRITICAL ISSUES Current evidence to suggest the vagal system plays a pivotal role in PD pathogenesis is circumstantial, but given the current state of the field, the time is ripe to obtain direct experimental evidence to better delineate it. FUTURE DIRECTIONS Better understanding of the DMV and vagus nerve may provide insight into PD pathogenesis and a neural highway with direct brain access that could be harnessed for novel therapeutic interventions.
Collapse
Affiliation(s)
- James G Greene
- Department of Neurology, Emory University , Atlanta, Georgia
| |
Collapse
|
23
|
Cersosimo MG, Benarroch EE. Autonomic involvement in Parkinson's disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers. J Neurol Sci 2011; 313:57-63. [PMID: 22001247 DOI: 10.1016/j.jns.2011.09.030] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022]
Abstract
Autonomic nervous system involvement occurs at early stages in both Parkinson's disease (PD) and incidental Lewy body disease (ILBD), and affects the sympathetic, parasympathetic, and enteric nervous systems (ENS). It has been proposed that alpha-synuclein (α-SYN) pathology in PD has a distal to proximal progression along autonomic pathways. The ENS is affected before the dorsal motor nucleus of the vagus (DMV), and distal axons of cardiac sympathetic nerves degenerate before there is loss of paravertebral sympathetic ganglion neurons. Consistent with neuropathological findings, some autonomic manifestations such as constipation or impaired cardiac uptake of norepinephrine precursors, occur at early stages of the disease even before the onset of motor symptoms. Biopsy of peripheral tissues may constitute a promising approach to detect α-SYN neuropathology in autonomic nerves and a useful early biomarker of PD.
Collapse
Affiliation(s)
- Maria G Cersosimo
- Parkinson's Disease and Movement Disorder Unit, Hospital de Clínicas, University of Buenos Aires, Argentina
| | | |
Collapse
|
24
|
Cumming P, Borghammer P. Molecular imaging and the neuropathologies of Parkinson's disease. Curr Top Behav Neurosci 2011; 11:117-48. [PMID: 22034053 DOI: 10.1007/7854_2011_165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The main motor symptoms of Parkinson's disease (PD) are linked to degeneration of the nigrostriatal dopamine (DA) fibers, especially those innervating the putamen. This degeneration can be assessed in molecular imaging studies with presynaptic tracers such as [(18)F]-fluoro-L-DOPA (FDOPA) and ligands for DA transporter ligands. However, the pathologies of PD are by no means limited to nigrostriatal loss. Results of post mortem and molecular imaging studies reveal parallel degenerations of cortical noradrenaline (NA) and serotonin (5-HT) innervations, which may contribute to affective and cognitive changes of PD. Especially in advanced PD, cognitive impairment can come to resemble that seen in Alzheimer's dementia, as can the degeneration of acetylcholine innervations arising in the basal forebrain. The density of striatal DA D(2) receptors increases in early untreated PD, consistent with denervation upregulation, but there is an accelerated rate of DA receptor loss as the disease advances. Animal studies and post mortem investigations reveal changes in brain opioid peptide systems, but these are poorly documented in imaging studies of PD. Relatively minor changes in the binding sites for GABA are reported in cortex and striatum of PD patients. There remains some controversy about the expression of the 18 kDa translocator protein (TSPO) in activated microglia as an indicator of an active inflammatory component of neurodegeneration in PD. A wide variety of autonomic disturbances contribute to the clinical syndrome of PD; the degeneration of myocardial sympathetic innervation can be revealed in SPECT studies of PD patients with autonomic failure. Considerable emphasis has been placed on investigations of cerebral blood flow and energy metabolism in PD. Due to the high variance of these physiological estimates, researchers have often employed normalization procedures for the sensitive detection of perturbations in relatively small patient groups. However, a widely used normalization to the global mean must be used with caution, as it can result in spurious findings of relative hypermetabolic changes in subcortical structures. A meta-analysis of the quantitative studies to date shows that there is in fact widespread hypometabolism and cerebral blood flow in the cerebral cortex, especially in frontal cortex and parietal association areas. These changes can bias the use of global mean normalization, and probably represent the pathophysiological basis of the cognitive impairment of PD.
Collapse
Affiliation(s)
- Paul Cumming
- Department of Nuclear Medicine, Ludwig-Maximilian's University of Munich, Munich, Germany,
| | | |
Collapse
|
25
|
Miller VM, Kenny RA, Slade JY, Oakley AE, Kalaria RN. Medullary autonomic pathology in carotid sinus hypersensitivity. Neuropathol Appl Neurobiol 2008; 34:403-11. [DOI: 10.1111/j.1365-2990.2007.00903.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Marchitti SA, Deitrich RA, Vasiliou V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 2007; 59:125-50. [PMID: 17379813 DOI: 10.1124/pr.59.2.1] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. 3,4-Dihydroxyphenylacetaldehyde is the aldehyde metabolite of dopamine, and 3,4-dihydroxyphenylglycolaldehyde is the aldehyde metabolite of both norepinephrine and epinephrine. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of these biogenic aldehydes. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjögren-Larsson syndrome, type II hyperprolinemia, gamma-hydroxybutyric aciduria, and pyridoxine-dependent seizures, most of which are characterized by neurological abnormalities. Several pharmaceutical agents and environmental toxins are also known to disrupt or inhibit aldehyde dehydrogenase function. It is, therefore, possible to speculate that reduced detoxification of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. This article presents a comprehensive review of what is currently known of both the neurotoxicity and respective metabolism pathways of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde with an emphasis on the role that aldehyde dehydrogenase enzymes play in the detoxification of these two aldehydes.
Collapse
Affiliation(s)
- Satori A Marchitti
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
27
|
Wakabayashi K, Mori F, Takahashi H. Progression patterns of neuronal loss and Lewy body pathology in the substantia nigra in Parkinson's disease. Parkinsonism Relat Disord 2006. [DOI: 10.1016/j.parkreldis.2006.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Goldstein DS, Eldadah BA, Holmes C, Pechnik S, Moak J, Saleem A, Sharabi Y. Neurocirculatory Abnormalities in Parkinson Disease With Orthostatic Hypotension. Hypertension 2005; 46:1333-9. [PMID: 16216982 DOI: 10.1161/01.hyp.0000188052.69549.e4] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with Parkinson disease often have orthostatic hypotension. Neurocirculatory abnormalities underlying orthostatic hypotension might reflect levodopa treatment. Sixty-six Parkinson disease patients (36 with orthostatic hypotension, 15 off and 21 on levodopa; 30 without orthostatic hypotension) had tests of reflexive cardiovagal gain (decrease in interbeat interval per unit decrease in systolic pressure during the Valsalva maneuver; orthostatic increase in heart rate per unit decrease in pressure); reflexive sympathoneural function (decrease in pressure during the Valsalva maneuver; orthostatic increment in plasma norepinephrine); and cardiac and extracardiac noradrenergic innervation (septal myocardial 6-[
18
F]fluorodopamine-derived radioactivity; supine plasma norepinephrine). Severity of orthostatic hypotension did not differ between the levodopa-untreated and levodopa-treated groups with Parkinson disease and orthostatic hypotension (−52±6 [SEM] versus −49±5 mm Hg systolic). The 2 groups had similarly low reflexive cardiovagal gain (0.84±0.23 versus 1.33±0.35 ms/mm Hg during Valsalva; 0.43±0.09 versus 0.27±0.06 bpm/mm Hg during orthostasis); and had similarly attenuated reflexive sympathoneural responses (97±29 versus 71±23 pg/mL during orthostasis; −82±10 versus −73±8 mm Hg during Valsalva). In patients off levodopa, plasma norepinephrine was lower in those with (193±19 pg/mL) than without (348±46 pg/mL) orthostatic hypotension. Low values for reflexive cardiovagal gain, sympathoneural responses, and noradrenergic innervation were strongly related to orthostatic hypotension. Parkinson disease with orthostatic hypotension features reflexive cardiovagal and sympathoneural failure and cardiac and partial extracardiac sympathetic denervation, independent of levodopa treatment.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1620, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Symptoms of abnormal autonomic-nervous-system function occur commonly in Parkinson's disease (PD). Orthostatic hypotension in patients with parkinsonism has been thought to be a side-effect of treatment with levodopa, a late stage in the disease progression, or, if prominent and early with respect to disordered movement, an indication of a different disease, such as multiple system atrophy. Instead, patients with PD and orthostatic hypotension have clear evidence for baroreflex failure and loss of sympathetic innervation, most noticeably in the heart. By contrast, patients with multiple system atrophy, which is difficult to distinguish clinically from PD, have intact cardiac sympathetic innervation. Post-mortem studies confirm this distinction. Because PD involves postganglionic sympathetic noradrenergic lesions, the disease seems to be not only a movement disorder with dopamine loss in the nigrostriatal system of the brain, but also a dysautonomia, with norepinephrine loss in the sympathetic nervous system of the heart.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1620, USA.
| |
Collapse
|
30
|
Abstract
1. Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder that manifests with parkinsonism, cerebellar ataxia, and autonomic failure in various combinations. 2. Orthostatic hypotension, neurogenic bladder, laryngeal stridor and sleep apnea, and rapid eye movement (REM) sleep behavior disorder are prominent manifestations of MSA. 3. In MSA, there is severe depletion of catecholaminergic neurons of the C1 and A1 areas in the ventrolateral medulla, and this may contribute to orthostatic hypotension and endocrine disturbances in this disorder, respectively. 4. Loss of corticotrophin-releasing factor (CRF) neurons in the pontine micturition area may contribute to neurogenic bladder dysfunction. 5. Respiratory abnormalities may reflect loss of cholinergic neurons in the arcuate nucleus of the ventral medulla. 6. Loss of cholinergic mesopontine neurons, in the setting of loss of locus ceruleus neurons and preservation of rostral raphe neurons, may contribute to REM sleep abnormalities in MSA.
Collapse
Affiliation(s)
- Eduardo E Benarroch
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA.
| |
Collapse
|
31
|
Gearhart DA, Neafsey EJ, Collins MA. Phenylethanolamine N-methyltransferase has beta-carboline 2N-methyltransferase activity: hypothetical relevance to Parkinson's disease. Neurochem Int 2002; 40:611-20. [PMID: 11900856 DOI: 10.1016/s0197-0186(01)00115-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mammalian brain has a beta-carboline 2N-methyltransferase activity that converts beta-carbolines, such as norharman and harman, into 2N-methylated beta-carbolinium cations, which are structural and functional analogs of the Parkinsonian-inducing toxin 1-methyl-4-phenylpyridinium cation (MPP+). The identity and physiological function of this beta-carboline 2N-methylation activity was previously unknown. We report pharmacological and biochemical evidence that phenylethanolamine N-methyltransferase (EC 2.1.1.28) has beta-carboline 2N-methyltransferase activity. Specifically, purified phenylethanolamine N-methyltransferase (PNMT) catalyzes the 2N-methylation (21.1 pmol/h per unit PNMT) of 9-methylnorharman, but not the 9N-methylation of 2-methylnorharmanium cation. LY134046, a selective inhibitor of phenylethanolamine N-methyltransferase, inhibits (IC50 1.9 microM) the 2N-methylation of 9-methylnorharman, a substrate for beta-carboline 2N-methyltransferase. Substrates of phenylethanolamine N-methyltransferase also inhibit beta-carboline 2N-methyltransferase activity in a concentration-dependent manner. beta-Carboline 2N-methyltransferase activity (43.7pmol/h/mg protein) is present in human adrenal medulla, a tissue with high phenylethanolamine N-methyltransferase activity. We are investigating the potential role of N-methylated beta-carbolinium cations in the pathogenesis of idiopathic Parkinson's disease. Presuming that phenylethanolamine N-methyltransferase activity forms toxic 2N-methylated beta-carbolinium cations, we propose a novel hypothesis regarding Parkinson's disease-a hypothesis that includes a role for phenylethanolamine N-methyltransferase-catalyzed formation of MPP+ -like 2N-methylated beta-carbolinium cations.
Collapse
Affiliation(s)
- Debra A Gearhart
- Department of Cellular Biology and Anatomy, Veterans Affairs Medical Center, Medical College of Georgia, Augusta 30912-2000, USA.
| | | | | |
Collapse
|
32
|
Abstract
This paper reviews the current status of the adrenochrome theory of schizophrenia. An account is first given of all the experiments in which adrenochrome was reported to induce psychotomimetic effects in normal volunteers. Then the evidence is presented that adrenochrome may actually occur in the brain as a metabolite of adrenaline in the C2 group of adrenergic neurons in the medulla, together with an account of current ideas of the function of these neurons in higher limbic functions. Lastly the recent evidence is reviewed that the gene for the enzyme glutathione S-transferase is defective in schizophrenia. This enzyme detoxifies adrenochrome.
Collapse
Affiliation(s)
- John Smythies
- Department of Psychology, Center for Brain and Cognition, University of California at San Diego, La Jolla, CA 92093-0109, USA; and Department of Neuropsychiatry, Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
33
|
Smythies J, De Iuliis A, Zanatta L, Galzigna L. The biochemical basis of Parkinson's disease: the role of catecholamine o-quinones: a review-discussion. Neurotox Res 2002; 4:77-81. [PMID: 12826496 DOI: 10.1080/10298420290007655] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This paper reviews the possible role of catecholamine o-quinones (oQs) in the genesis of Parkinson's disease (PD). This disease is characterized by damage caused to the pigmented catecholaminergic cells in various areas of the brain. The pigment involved is neuromelanin that is the end product of catecholamine oxidation by the o-quinone route. Evidence is presented regarding the overproduction in PD of these catecholamine oQs that damage the electron chain in the mitochondria leading to cell death. The roles of glutathione S-transferase and reactive oxygen species in this are also surveyed. A review of all known biochemical properties of these o-quinones is included. The hypothesis is put forward that an important factor in the genesis of PD may be the overload by environmental toxins of enzymes such as glutathione S-transferase that also detoxify catecholamine oQs.
Collapse
Affiliation(s)
- John Smythies
- Center for Brain and Cognition, Department of Psychology, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | |
Collapse
|
34
|
Phillips JK, Goodchild AK, Dubey R, Sesiashvili E, Takeda M, Chalmers J, Pilowsky PM, Lipski J. Differential expression of catecholamine biosynthetic enzymes in the rat ventrolateral medulla. J Comp Neurol 2001; 432:20-34. [PMID: 11241375 DOI: 10.1002/cne.1086] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adrenergic (C1) neurons located in the rostral ventrolateral medulla are considered a key component in the control of arterial blood pressure. Classically, C1 cells have been identified by their immunoreactivity for the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH) and/or phenylethanolamine N-methyltransferase (PNMT). However, no studies have simultaneously demonstrated the expression of aromatic L-amino acid decarboxylase (AADC) and dopamine beta-hydroxylase (DBH) in these neurons. We examined the expression and colocalization of all four enzymes in the rat ventrolateral medulla using immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analysis. Retrograde tracer injected into thoracic spinal segments T2-T4 was used to identify bulbospinal neurons. Using fluorescence and confocal microscopy, most cells of the C1 group were shown to be double or triple labeled with TH, DBH, and PNMT, whereas only 65-78% were immunoreactive for AADC. Cells that lacked detectable immunoreactivity for AADC were located in the rostral C1 region, and approximately 50% were spinally projecting. Some cells in this area lacked DBH immunoreactivity (6.5-8.3%) but were positive for TH and/or PNMT. Small numbers of cells were immunoreactive for only one of the four enzymes. Numerous fibres that were immunoreactive for DBH but not for TH or PNMT were noted in the rostral C1 region. Single-cell RT-PCR analysis conducted on spinally projecting C1 neurons indicated that only 76.5% of cells that contained mRNA for TH, DBH, and PNMT contained detectable message for AADC. These experiments suggest that a proportion of C1 cells may not express all of the enzymes necessary for adrenaline synthesis.
Collapse
Affiliation(s)
- J K Phillips
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Burke WJ, Li SW, Zahm DS, Macarthur H, Kolo LL, Westfall TC, Anwar M, Glickstein SB, Ruggiero DA. Catecholamine monoamine oxidase a metabolite in adrenergic neurons is cytotoxic in vivo. Brain Res 2001; 891:218-27. [PMID: 11164826 DOI: 10.1016/s0006-8993(00)03199-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
3,4-Dihydroxyphenylglycolaldehyde is the monoamine oxidase-A metabolite of two catecholamine neurotransmitters, epinephrine and norepinephrine. This aldehyde metabolite and its synthesizing enzymes increase in cell bodies of catecholamine neurons in Alzheimer's disease. To test the hypothesis that 3,4-dihydroxyphenylglycolaldehyde, but not epinephrine or its major metabolite 4-hydroxy-3-methoxyphenylglycol, is a neurotoxin, we injected 3,4-dihydroxyphenylglycolaldehyde onto adrenergic neurons in the rostral ventrolateral medulla. Injections of epinephrine or 4-hydroxy-3-methoxyphenylglycol were made into the same area of controls. A dose response and time study were performed. Adrenergic neurons were identified by their content of the epinephrine synthesizing enzyme, phenylethanolamine N-methyltransferase, immunohistochemically. Apoptosis was evaluated by in situ terminal deoxynucleotidyl-transferase mediated dUTP nick end label staining. Injection of 3,4-dihydroxyphenylglycolaldehyde in amounts as low as 50 ng results in loss of adrenergic neurons and apoptosis after 18 h. The degree of neurotoxicity is dose and time dependent. Doses of 3,4-dihydroxyphenylglycolaldehyde 10-fold higher produce necrosis. Neither epinephrine nor 4-hydroxy-3-methoxyphenylglycol are toxic. A 2.5 microg injection of 3,4-dihydroxyphenylglycolaldehyde is toxic to cortical neurons but not glia. Active uptake of the catecholamine-derived aldehyde into differentiated PC-12 cells is demonstrated. Implications of these findings for catecholamine neuron death in neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- W J Burke
- Department of Neurology, Veterans Affairs Medical Center and Saint Louis University Medical School, St. Louis, MO 63104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ikemoto K, Amano R, Ishibe A, Nishimura A, Nishi K, Nagatsu I. Quantitative Analysis of Tyrosine Hydroxylase-, Aromatic L-Amino Acid Decarboxylase- or Phenylethanolamine-N-Methyltransferase-Immunoreactive Neurons in the Human Medullary C1 Region. Acta Histochem Cytochem 2000. [DOI: 10.1267/ahc.33.259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Keiko Ikemoto
- Department of Anatomy,Fujita Health University,School of Medicine,Toyoake,Aichi 470-1192
| | - Ryuji Amano
- Department of Anatomy,Fujita Health University,School of Medicine,Toyoake,Aichi 470-1192
| | - Ayumi Ishibe
- Department of Anatomy,Fujita Health University,School of Medicine,Toyoake,Aichi 470-1192
| | - Akiyoshi Nishimura
- Department of Legal Medicine,Shiga University of Medical Science,Setatsukinowacho,Otsu 520-2192
| | - Katsuji Nishi
- Department of Legal Medicine,Shiga University of Medical Science,Setatsukinowacho,Otsu 520-2192
| | - Ikuko Nagatsu
- Department of Anatomy,Fujita Health University,School of Medicine,Toyoake,Aichi 470-1192
| |
Collapse
|
37
|
Abstract
This review covers certain novel aspects of catecholamine signaling in neurons that involve redox systems and synaptic plasticity. The redox hypothesis suggests that one important factor in neurocomputation is the formation of new synapses and the removal of old ones (synaptic plasticity), which is modulated in part by the redox balance at the synapse between reactive oxygen species (ROS) (such as hydrogen peroxide and the nitric oxide radical) and neuroprotective antioxidants (such as ascorbate, glutathione, and catecholamines). Catecholamines, in particular dopamine, which signals positive reinforcement, may play a key role in this activity. Dopamine has powerful antioxidant properties by several separate mechanisms-direct ROS scavenging, activation of the synthesis of antioxidant proteins, and possibly via dismuting complexes with iron inside endosomes or in catecholaminergic synaptic vesicles. This may contribute to synaptic growth and reinforcement-directed learning. On the other hand, catecholamines are easily oxidized to toxic quinones on the neuromelanin pathway. This might contribute under certain circumstances to synaptic deletion. Evidence is presented that abnormalities in this system may contribute to the pathogenesis of Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- J Smythies
- Center for Brain and Cognition, Department of Psychology, University of California-San Diego, La Jolla 92093-0109, USA.
| |
Collapse
|
38
|
Smythies J. The neurotoxicity of glutamate, dopamine, iron and reactive oxygen species: functional interrelationships in health and disease: a review-discussion. Neurotox Res 1999; 1:27-39. [PMID: 12835112 DOI: 10.1007/bf03033337] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fact that glutamate, dopamine, iron and reactive oxygen species are potentially individually highly neurotoxic molecules is well known. The purpose of this review is to examine the less well known complex ways in which their normal biological, as well as their neurotoxic activity, are interconnected in relation to fundamental neuronal functions. These functions include synaptic plasticity (formation and removal of synapses), endocytosis-based recycling of receptors for neurotransmitters and neuromodulators, the role of the redox balance between reactive oxygen species and antioxidants in synaptic function, and the possible role of iron-catecholamine complexes in antioxidant protection and intraneuronal iron transport. These systems are closely involved in several diseases of the nervous system including Parkinson's disease, schizophrenia and Alzheimer's disease. In all these oxidative stress and a failure of antioxidant defenses are involved. In the former two the neurotoxicity of catecholaminergic o-quinones is important. In the later excessive oxidation of neuronal membranes and excessive endocytosis and receptor recycling may be an important factor.
Collapse
Affiliation(s)
- J Smythies
- Center for Brain and Cognition, Department of Psychology, UCSD, La Jolla, CA 92093-0109, USA.
| |
Collapse
|
39
|
Jellinger KA. Post mortem studies in Parkinson's disease--is it possible to detect brain areas for specific symptoms? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1999; 56:1-29. [PMID: 10370901 DOI: 10.1007/978-3-7091-6360-3_1] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive neuronal loss associated with Lewy bodies in many subcortical nuclei leading to multiple biochemical and pathophysiological changes of clinical relevance. Loss of nigral neurons causing striatal dopamine deficiency is related to both the duration and clinical stages (severity) of the disease. The clinical subtypes of PD have different morphological lesion patterns: a) The akinetic-rigid type shows more severe cell loss in the ventrolateral part of substantia nigra zona compacta (SNZC) that projects to the dorsal putamen than the medial part projecting to caudate nucleus and anterior putamen, with negative correlation between SNZC cell counts, severity of akinesia-rigidity, and dopamine loss in the posterior putamen. Reduced dopaminergic input causes overactivity of the GABA ergic inhibitory striatal neurons projecting via the "indirect loop" to SN zona reticulata (SNZR) and medial pallidum (GPI) leading to inhibition of the glutamatergic thalamo-cortical motor loop and reduced cortical activation. b) The tremor-dominant type shows more severe neuron loss in medial than in lateral SNZC and damage to the retrorubral field A8 containing only few tyrosine hydroxylase and dopamine transporter immunoreactive (IR) neurons but mainly calretinin-IR cells. A8 that is rather preserved in rigid-akinetic PD (protective role of calcium-binding protein?) projects to the matrix of dorsolateral striatum and ventromedial thalamus. Together with area A10 it influences the strial efflux via SNZR to thalamus and from there to prefrontal cortex. Rest tremor in PD is associated with increased metabolism in the thalamus, subthalamus, pons, and premotor-cortical network suggesting an increased functional activity of thalamo-motor projections. In essential tremor, no significant pathomorphological changes but overactivity of cerebello-thalamic loop have been observed. c) In the akinetic-rigid forms of multisystem atrophy, degeneration is more severe in the lateral SNZC with severe loss of calbindin-IR cells reflecting initial degeneration of the striatal matrix in the caudal putamen with transsynaptic degeneration of striatonigral efferences that remain intact in PD. This fact and loss of striatal D2 receptors--as in advanced stages of PD--are reasons for negative response to L-dopa substitution. These data suggest different pathophysiological mechanisms of the clinical subtypes of PD that have important therapeutic implications. d) Involvement of extranigral structures in PD includes the mesocortical dopaminergic system, the noradrenergic locus coeruleus, dorsal vagal nucleus and medullary nuclei, serotonergic dorsal raphe, nucleus basalis of Meynert and other cholinergic brainstem nuclei, e.g. Westphal-Edinger nucleus (controlling pupillomotor function), posterolateral hypothalamus and the limbic system, e.g. amygdaloid nucleus, part of hippocampal formation, limbic thalamic nuclei with prefrontal projections, etc. Damage to multiple neuronal systems by the progressing degenerative process causing complex biochemical changes may explain the variable clinical picture of PD including vegetative, behavioural and cognitive dysfunctions, depression, pharmacotoxic psychoses, etc. Future comparative clinico-morphological and pathobiochemical studies will further elucidate the pathophysiological basis of specific clinical symptoms of PD and related disorders providing a broader basis for effective treatment strategies. Parkinson's disease (PD) is characterized by progressive degeneration of the nigrostriatal dopaminergic system and other subcortical neuronal systems leading to striatal dopamine deficiency and other biochemical deficits related to the variable clinical signs and symptoms of the disorder. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- K A Jellinger
- Ludwig Boltzmann Institute of Clinical Neurobiology, Vienna, Austria
| |
Collapse
|
40
|
Nagatsu I, Ikemoto K, Takeuchi T, Arai R, Karasawa N, Fujii T, Nagatsu T. Phenylethanolamine-N-methyltransferase - immunoreactive nerve terminals afferent to the mouse substantia nigra. Neurosci Lett 1998; 245:41-4. [PMID: 9596351 DOI: 10.1016/s0304-3940(98)00172-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the substantia nigra pars compacta, many phenylethanolamine-N-methyltransferase immunoreactive (PNMT-ir) terminals as well as serotonin-ir terminals were observed for the first time to be very closely situated to the tyrosine hydroxylase (TH)-ir, aromatic L-amino acid decarboxylase-ir, and GTP cyclohydrolase I (GCH)-ir dopaminergic cells [Nagatsu, I., Arai, R., Sakai, M., Yamawaki, Y., Takeuchi, T., Karasawa, N. and Nagatsu, T., Neurosci. Lett., 224 (1997) 185-188]. Immunohistochemical colocalization of TH with GCH or PNMT in the somata and dendrites of TH-positive neurons in the rostral ventrolateral reticular formation of the medulla oblongata (C1 region, [Hokfelt, T., Fuxe, K., Goldstein, M. and Johansson, O., Brain Res., 66 (1974) 235-251]) was proved by a double-labeling immunofluorescence method with a confocal laser-scanning microscope, indicating that the neurons are adrenergic. These results suggest that dopaminergic neurons in the substantia nigra receive PNMT-ir, adrenergic afferents from the C1 region of the medulla oblongata.
Collapse
Affiliation(s)
- I Nagatsu
- Department of Anatomy, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Burke WJ, Kristal BS, Yu BP, Li SW, Lin TS. Norepinephrine transmitter metabolite generates free radicals and activates mitochondrial permeability transition: a mechanism for DOPEGAL-induced apoptosis. Brain Res 1998; 787:328-32. [PMID: 9518674 DOI: 10.1016/s0006-8993(97)01488-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
3,4-Dihydroxyphenylglycolaldehyde (DOPEGAL) is the monoamine oxidase A metabolite of norepinephrine (NE) and epinephrine. DOPEGAL, but neither NE nor its other metabolites induces apoptosis in differentiated PC-12 cells by an unknown mechanism. To study the mechanism of DOPEGAL-induced apoptosis, we tested DOPEGAL and NE for their capacity to generate free radicals and to induce mitochondrial permeability transition (PT). Results show that DOPEGAL but not NE forms reactive free radical intermediates under oxidative stress and enhances Ca2+-mediated induction of the mitochondrial PT. Linkage of these events to apoptosis is described. Implications for degenerative diseases are discussed.
Collapse
Affiliation(s)
- W J Burke
- Department of Neurology, Veterans Affairs Medical Center and Saint Louis University Medical School, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
42
|
Benarroch EE, Smithson IL, Low PA, Parisi JE. Depletion of catecholaminergic neurons of the rostral ventrolateral medulla in multiple systems atrophy with autonomic failure. Ann Neurol 1998; 43:156-63. [PMID: 9485056 DOI: 10.1002/ana.410430205] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ventrolateral portion of the intermediate reticular formation of the medulla (ventrolateral medulla, VLM), including the C1/A1 groups of catecholaminergic neurons, is thought to be involved in control of sympathetic cardiovascular outflow, cardiorespiratory interactions, and reflex control of vasopressin release. As all these functions are affected in patients with multiple systems atrophy (MSA) with autonomic failure, we sought to test the hypothesis that catecholaminergic (tyrosine hydroxylase [TH]-positive) neurons of the VLM are depleted in these patients. Medullas were obtained at autopsy from 4 patients with MSA with prominent autonomic failure and 5 patients with no neurological disease. Patients with MSA had laboratory evidence of severe adrenergic sudomotor and cardiovagal failure. Tissue was immersion fixed in 2% paraformaldehyde at 4 degrees C for 24 hours and cut into 1-cm blocks in the coronal plane from throughout the medulla. Serial 50-microm sections were collected and one section every 300 microm was stained for TH. There was a pronounced depletion of TH neurons in the rostral VLM in all cases of MSA. There was also significant reduction of TH neurons in the caudal VLM in 3 MSA patients compared with 3 control subjects. In 2 MSA cases and in 2 control subjects, the thoracic spinal cord was available for study. There was also depletion of TH fibers and sympathetic preganglionic neurons (SPNs) in the 2 MSA cases examined. Thus, depletion of catecholaminergic neurons in the VLM may provide a substrate for some of the autonomic and endocrine manifestations of MSA.
Collapse
Affiliation(s)
- E E Benarroch
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
43
|
Churchyard A, Mathias CJ, Boonkongchuen P, Lees AJ. Autonomic effects of selegiline: possible cardiovascular toxicity in Parkinson's disease. J Neurol Neurosurg Psychiatry 1997; 63:228-34. [PMID: 9285463 PMCID: PMC2169684 DOI: 10.1136/jnnp.63.2.228] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The United Kingdom Parkinson's Disease Research Group (UKPDRG) trial found an increased mortality in patients with Parkinson's disease randomised to receive selegiline (10 mg/day) and levodopa compared with those taking levodopa alone. Unwanted effects of selegiline on cardiovascular regulation have been investigated as a potential cause for the unexpected mortality finding of the UKPDRG trial. METHODS The cardiovascular responses to a range of physiological stimuli, including standing and head up tilt, were studied in patients with Parkinson's disease receiving levodopa alone and a matched group on levodopa and selegiline. RESULTS Head up tilt caused selective and often severe orthostatic hypotension in nine of 16 patients taking selegiline and levodopa, but was without effect on nine patients receiving levodopa alone. Two patients taking selegiline lost consciousness with unrecordable blood pressures and a further four had severe symptomatic hypotension. The normal protective rises in heart rate and plasma noradrenaline were impaired. The abnormal response to head up tilt was reversed by discontinuation of selegiline. Drug withdrawal caused a pronounced deterioration in motor function in 13 of the 16 patients taking selegiline. CONCLUSION Therapy with selegiline and levodopa in combination may be associated with severe orthostatic hypotension not attributable to levodopa alone. Selegiline also has pronounced symptomatic motor effects in advanced Parkinson's disease. The possibilities that these cardiovascular and motor findings might be due either to non-selective inhibition of monoamine oxidase or to amphetamine and met-amphetamine are discussed.
Collapse
Affiliation(s)
- A Churchyard
- Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | | | | | | |
Collapse
|
44
|
Burke WJ, Schmitt CA, Miller C, Li SW. Norepinephrine transmitter metabolite induces apoptosis in differentiated rat pheochromocytoma cells. Brain Res 1997; 760:290-3. [PMID: 9237550 DOI: 10.1016/s0006-8993(97)00447-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
3,4-Dihydroxyphenylglycolaldehyde (DOPEGAL) is the monoamine oxidase A metabolite of norepinephrine and epinephrine. DOPEGAL, but not other metabolites, kills differentiated PC-12 cells. However, the type of DOPEGAL induced cell death, whether necrosis or apoptosis, is not known. To determine the type of cell death triggered by DOPEGAL, PC-12 cells cultured in the presence or absence of 30 microM DOPEGAL were examined by electron microscopy and DNA agarose gel electrophoresis for characteristic features of apoptosis. Results indicate that DOPEGAL induces apoptosis in these cells. Implications for degenerative diseases are discussed.
Collapse
Affiliation(s)
- W J Burke
- Department of Neurology, Saint Louis University Medical School and Veterans Affairs Medical Center, MO 63110, USA
| | | | | | | |
Collapse
|
45
|
Molecular cloning and characterization of an L-epinephrine transporter from sympathetic ganglia of the bullfrog, Rana catesbiana. J Neurosci 1997. [PMID: 9092590 DOI: 10.1523/jneurosci.17-08-02691.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chemical signaling by dopamine (DA) and L-norepinephrine (L-NE) at synapses is terminated by uptake via specialized presynaptic transport proteins encoded by the DA transporter (DAT) and L-NE transporter (NET) genes, respectively. In some vertebrate neurons, particularly the sympathetic neurons of amphibians, L-NE is converted to L-epinephrine (L-Epi, adrenaline) and released as the primary neurotransmitter. Although evidence exists for a molecularly distinct L-Epi transporter (ET) in the vertebrate brain and peripheral nervous system, a transporter specialized for extracellular L-Epi clearance has yet to be identified. To pursue this issue, we cloned transporter cDNAs from bullfrog (Rana catesbiana) paravertebral sympathetic ganglia and characterized functional properties via heterologous expression in non-neuronal cells. A cDNA of 2514 bp (fET) was identified for which the cognate 3.1 kb mRNA is highly enriched in frog sympathetic ganglia. Sequence analysis of the fET cDNA reveals an open reading frame coding for a protein of 630 amino acids. Inferred fET protein sequence bears 75, 66, and 48% amino acid identity with human NET, DAT, and the 5-hydroxytryptamine transporter (SERT), respectively. Transfection of fET confers Na+- and Cl--dependent catecholamine uptake in HeLa cells. Uptake of [3H]-L-NE by fET is inhibited by catecholamines in a stereospecific manner. L-Epi and DA inhibit fET-mediated [3H]-L-NE uptake more potently than they inhibit [3H]-L-NE uptake by human NET (hNET), whereas L-NE exhibits equivalent potency between the two carriers. Moreover, fET exhibits a greater maximal velocity (Vmax) for the terminal products of catecholamine biosynthesis (L-Epi > L-NE >> DA), unlike hNET, in which a Vmax rank order of L-NE > DA > L-Epi is observed. fET-mediated transport of catecholamines is sensitive to cocaine and tricyclic antidepressants, with antagonist potencies significantly correlated with hNET inhibitor sensitivity. Amino acid conservation and divergence of fET with mammalian catecholamine transporters help define residues likely to be involved in catecholamine recognition and translocation as well as blockade by selective reuptake inhibitors.
Collapse
|
46
|
Benarroch EE, Smithson IL. Distribution and relationships of neuropeptide Y and NADPH-diaphorase in human ventrolateral medulla oblongata. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1997; 62:143-6. [PMID: 9051621 DOI: 10.1016/s0165-1838(96)00118-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ventrolateral medulla, including the A1 and C1 catecholamine cell groups, corresponds to the recently defined ventrolateral intermediate reticular zone (IRt) in humans. We sought to determine whether the distribution of neuropeptide Y (NPY) corresponds to that of subpopulations of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) reactive neurons in human ventrolateral IRt. Medullae obtained from 2 men (ages 69 and 59, no history of neurologic disease, postmortem delay 22 and 5 h, respectively) were processed for NPY, tyrosine hydroxylase (TH) and NADPH-d either alone or combining NADPH-d and NPY or NADPH-d and TH, respectively. Distribution of cells was plotted using computer-aided reconstruction. NPY-reactive neurons were found throughout the rostrocaudal extent of the ventrolateral IRt, particularly at mid-olivary levels. The distribution of NPY immunoreactivity overlapped TH but not NADPH-d reactivity. This indicates that NPY and NADPH-d reactivity may help identify different subpopulations of neurons in human ventrolateral IRt, which may be differentially susceptible to disease.
Collapse
Affiliation(s)
- E E Benarroch
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
47
|
Andersen EB, Boesen F. Sympathetic vasoconstrictor reflexes in Parkinson's disease with autonomic dysfunction. Clin Auton Res 1997; 7:5-11. [PMID: 9074823 DOI: 10.1007/bf02267620] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Centrally and locally elicited sympathetic vasoconstrictor responses were examined in 12 patients with symptoms and signs of cardiovascular autonomic dysfunction due to Parkinson's disease. The sympathetic reflex mechanisms were measured in skeletal muscle and subcutaneous tissue of the arm and leg using the 133-Xenon washout technique. This method allows differentiation between local and central sympathetic reflexes in different tissues. The results indicate an abolished centrally mediated vasoconstrictor response in skeletal muscle in the arm and a decreased response in skeletal muscle in the leg and in subcutaneous tissue. This is in agreement with an autonomic dysfunction located in the central nervous system. A possible spinal sympathetic reflex controlling blood flow in subcutaneous tissue and leg muscles is considered. The sympathetic vasoconstrictor responses in parkinsonian patients without autonomic failure were of normal magnitude and the responses were not affected by long-term levodopa treatment.
Collapse
Affiliation(s)
- E B Andersen
- Department of Neurology, Hvidovre University Hospital, Denmark
| | | |
Collapse
|
48
|
Benarroch EE, Smithson IL. Neuropeptide Y innervation of nitric oxide-synthesizing sympathetic preganglionic neurons in humans. Clin Auton Res 1997; 7:31-4. [PMID: 9074826 DOI: 10.1007/bf02267623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We sought to determine whether neuropeptide Y (NPY) terminals are concentrated in the intermediolateral (IML) cell column and innervate human NADPH-diaphorase (NADPH-d)-reactive sympathetic preganglionic neurons (SPNs). Spinal cords were obtained at autopsy from one man and two women, cut into segments, and immersion fixed in 2% paraformaldehyde for 24 h. The T1, T3, T6 and T8 spinal cord segments were cut serially at 50 microns in the coronal, sagittal and horizontal planes. Alternating consecutive sections were double stained for NADPH-d and NPY or NPY alone. NPY-immunoreactive fibers were identified at all levels analyzed and varicosities appeared to run and cover the NADPH-d processes for long distances. NPY-immunoreactive varicosities were heavily concentrated around the soma and proximal dendrites of NADPH-d SPNs. NPY may exert many possible actions at the level of the IML cell column. Depletion of NPY-containing bulbospinal neurons may contribute to sympathetic failure in disorders such as multiple system atrophy.
Collapse
Affiliation(s)
- E E Benarroch
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|
49
|
|
50
|
Burke WJ, Schmitt CA, Gillespie KN, Li SW. Norepinephrine transmitter metabolite is a selective cell death messenger in differentiated rat pheochromocytoma cells. Brain Res 1996; 722:232-5. [PMID: 8813375 DOI: 10.1016/0006-8993(96)00129-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
3,4-Dihydroxyphenylglycolaldehyde (DOPEGAL) is the monoamine oxidase A (MAO-A) metabolite of norepinephrine (NE) and epinephrine (Epi). Oxidative metabolites of amines are predicted toxins. In this study we determine the toxicity of DOPEGAL, its tautomer 2',3,4-trihydroxyacetophenone (THAP) as well as NE, Epi and their oxidative and methylated metabolites in cultures of differentiated PC-12 cells. At 59.5 microM DOPEGAL, THAP and Epi, but not NE or other NE or Epi metabolites decreased PC-12 cells by 43.8%, 26.7% and 16.8% respectively. DOPEGAL toxicity was concentration and time dependent. Possible implications for degenerative diseases are discussed.
Collapse
Affiliation(s)
- W J Burke
- Department of Neurology, Saint Louis University Medical School, MO, USA
| | | | | | | |
Collapse
|