1
|
Qi C, Lövestam S, Murzin AG, Peak-Chew S, Franco C, Bogdani M, Latimer C, Murrell JR, Cullinane PW, Jaunmuktane Z, Bird TD, Ghetti B, Scheres SH, Goedert M. Tau filaments with the Alzheimer fold in cases with MAPT mutations V337M and R406W. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591661. [PMID: 38746388 PMCID: PMC11092478 DOI: 10.1101/2024.04.29.591661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Frontotemporal dementia (FTD) and Alzheimer's disease are the most common forms of early-onset dementia. Dominantly inherited mutations in MAPT, the microtubule-associated protein tau gene, cause FTD and parkinsonism linked to chromosome 17 (FTDP-17). Individuals with FTDP-17 develop abundant filamentous tau inclusions in brain cells. Here we used electron cryo-microscopy to determine the structures of tau filaments from the brains of individuals with MAPT mutations V337M and R406W. Both mutations gave rise to tau filaments with the Alzheimer fold, which consisted of paired helical filaments in all V337M and R406W cases and of straight filaments in two V337M cases. We also identified a new assembly of the Alzheimer fold into triple tau filaments in a V337M case. Filaments assembled from recombinant tau(297-391) with mutation V337M had the Alzheimer fold and showed an increased rate of assembly.
Collapse
Affiliation(s)
- Chao Qi
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | - Marika Bogdani
- Departments of Neurology and Pathology, University of Washington, Seattle, USA
- Veterans Administration Puget Sound Health Care System, Seattle, USA
| | - Caitlin Latimer
- Departments of Neurology and Pathology, University of Washington, Seattle, USA
- Veterans Administration Puget Sound Health Care System, Seattle, USA
| | - Jill R. Murrell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Patrick W. Cullinane
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College, London UK
- Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College, London UK
- Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College, London, UK
| | - Thomas D. Bird
- Departments of Neurology and Pathology, University of Washington, Seattle, USA
- Veterans Administration Puget Sound Health Care System, Seattle, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Sjors H.W. Scheres
- MRC Laboratory of Molecular Biology, Cambridge, UK
- These authors jointly supervised this work: Sjors H.W. Scheres, Michel Goedert
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge, UK
- These authors jointly supervised this work: Sjors H.W. Scheres, Michel Goedert
| |
Collapse
|
2
|
Bhattacharjee S, Kobylecki C. Frontotemporal Dementia-Parkinsonism Due to MAPT Gene Variant Presenting with Rest and Action Tremor. Tremor Other Hyperkinet Mov (N Y) 2023; 13:35. [PMID: 37746582 PMCID: PMC10516137 DOI: 10.5334/tohm.804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023] Open
Abstract
A 50-year-old male presented with a four-year history of gradually progressive rest tremor in the distal right lower limb and then spreading to the left lower limb in last 10-12 months. He developed right arm rest and action tremor two years later. Magnetic resonance imaging scans showed progressive frontotemporal and asymmetrical mesial temporal atrophy. Genetic testing revealed a heterozygous c.915+16C>T pathogenic variant in intron 9 of the MAPT gene. Presentation with rest tremor should not exclude frontotemporal dementia-parkinsonism due to a MAPT variant as a differential diagnosis though rest tremor is a rare presentation.
Collapse
Affiliation(s)
- Shakya Bhattacharjee
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Stott Lane, Salford, M6 8HD, UK
| | - Christopher Kobylecki
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Tetlow AM, Jackman BM, Alhadidy MM, Muskus P, Morgan DG, Gordon MN. Neural atrophy produced by AAV tau injections into hippocampus and anterior cortex of middle-aged mice. Neurobiol Aging 2023; 124:39-50. [PMID: 36739619 PMCID: PMC9957956 DOI: 10.1016/j.neurobiolaging.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022]
Abstract
Animal models of tauopathy help in understanding the role of mutations in tau pathobiology. Here, we used adeno-associated viral (AAV) vectors to administer three tau genetic variants (tauwild-type, tauP301L, and tauR406W) intracranially into 12-month-old C57BL/6Nia mice and collected tissue at 16 months. Vectors designed to express green fluorescent protein controlled for surgical procedures and exogenous protein expression by AAV. The tau genetic variants produced considerably different phenotypes. Tauwild-type and tauP301L caused memory impairments. The tauP301L caused increased amounts of aggregated tau, measured both neurochemically and histologically. Tauwild-type produced elevated levels of soluble tau and phosphorylated tau by ELISA and increased staining for phosphorylated forms of tau histologically. However, only the tauwild-type caused localized atrophy of brain tissue at the sites near the injection. The tauR406W had low protein expression and produced no atrophy or memory impairments. This supports the potential use of AAV expressing tauwild-type in aged mice to examine events leading to neurodegeneration in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Amber M Tetlow
- Dept of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Brianna M Jackman
- Dept of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Mohammed M Alhadidy
- Dept of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Patricia Muskus
- Dept of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - David G Morgan
- Dept of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA.
| | - Marcia N Gordon
- Dept of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
4
|
Wright CA, Taylor JW, Cochran M, Lawlor JMJ, Moyers BA, Amaral MD, Bonnstetter ZT, Carter P, Solomon V, Myers RM, Love MN, Geldmacher DS, Cooper SJ, Roberson ED, Cochran JN. Contributions of rare and common variation to early-onset and atypical dementia risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.06.23285383. [PMID: 36798301 PMCID: PMC9934786 DOI: 10.1101/2023.02.06.23285383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
We collected and analyzed genomic sequencing data from individuals with clinician- diagnosed early-onset or atypical dementia. Thirty-two patients were previously described, with sixty-eight newly described in this report. Of those sixty-eight, sixty-two patients reported Caucasian, non-Hispanic ethnicity and six reported as African American, non-Hispanic. Fifty-three percent of patients had a returnable variant. Five patients harbored a pathogenic variant as defined by the American College of Medical Genetics criteria for pathogenicity. A polygenic risk score was calculated for Alzheimer's patients in the total cohort and compared to the scores of a late-onset Alzheimer's cohort and a control set. Patients with early-onset Alzheimer's had higher non- APOE polygenic risk scores than patients with late onset Alzheimer's, supporting the conclusion that both rare and common genetic variation associate with early-onset neurodegenerative disease risk.
Collapse
Affiliation(s)
- Carter A Wright
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Jared W Taylor
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Meagan Cochran
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - James M J Lawlor
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Belle A Moyers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Michelle D Amaral
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - Princess Carter
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Veronika Solomon
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Marissa Natelson Love
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - David S Geldmacher
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - J Nicholas Cochran
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
5
|
Zecca C, Tortelli R, Carrera P, Dell'Abate MT, Logroscino G, Ferrari M. Genotype-phenotype correlation in the spectrum of frontotemporal dementia-parkinsonian syndromes and advanced diagnostic approaches. Crit Rev Clin Lab Sci 2022; 60:171-188. [PMID: 36510705 DOI: 10.1080/10408363.2022.2150833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders characterized mainly by atrophy of the frontal and anterior temporal lobes. Based on clinical presentation, three main clinical syndromes have traditionally been described: behavioral variant frontotemporal dementia (bvFTD), non-fluent/agrammatic primary progressive aphasia (nfPPA), and semantic variant PPA (svPPA). However, over the last 20 years, it has been recognized that cognitive phenotypes often overlap with motor phenotypes, either motor neuron diseases or parkinsonian signs and/or syndromes like progressive supranuclear palsy (PSP) and cortico-basal syndrome (CBS). Furthermore, FTD-related genes are characterized by genetic pleiotropy and can cause, even in the same family, pure motor phenotypes, findings that underlie the clinical continuum of the spectrum, which has pure cognitive and pure motor phenotypes as the extremes. The genotype-phenotype correlation of the spectrum, FTD-motor neuron disease, has been well defined and extensively investigated, while the continuum, FTD-parkinsonism, lacks a comprehensive review. In this narrative review, we describe the current knowledge about the genotype-phenotype correlation of the spectrum, FTD-parkinsonism, focusing on the phenotypes that are less frequent than bvFTD, namely nfPPA, svPPA, PSP, CBS, and cognitive-motor overlapping phenotypes (i.e. PPA + PSP). From a pathological point of view, they are characterized mainly by the presence of phosphorylated-tau inclusions, either 4 R or 3 R. The genetic correlate of the spectrum can be heterogeneous, although some variants seem to lead preferentially to specific clinical syndromes. Furthermore, we critically review the contribution of genome-wide association studies (GWAS) and next-generation sequencing (NGS) in disentangling the complex heritability of the FTD-parkinsonism spectrum and in defining the genotype-phenotype correlation of the entire clinical scenario, owing to the ability of these techniques to test multiple genes, and so to allow detailed investigations of the overlapping phenotypes. Finally, we conclude with the importance of a detailed genetic characterization and we offer to patients and families the chance to be included in future randomized clinical trials focused on autosomal dominant forms of FTLD.
Collapse
Affiliation(s)
- Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Rosanna Tortelli
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis and Clinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy.,Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
6
|
Mahali S, Martinez R, King M, Verbeck A, Harari O, Benitez BA, Horie K, Sato C, Temple S, Karch CM. Defective proteostasis in induced pluripotent stem cell models of frontotemporal lobar degeneration. Transl Psychiatry 2022; 12:508. [PMID: 36494352 PMCID: PMC9734180 DOI: 10.1038/s41398-022-02274-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Impaired proteostasis is associated with normal aging and is accelerated in neurodegeneration. This impairment may lead to the accumulation of protein, which can be toxic to cells and tissue. In a subset of frontotemporal lobar degeneration with tau pathology (FTLD-tau) cases, pathogenic mutations in the microtubule-associated protein tau (MAPT) gene are sufficient to cause tau accumulation and neurodegeneration. However, the pathogenic events triggered by the expression of the mutant tau protein remain poorly understood. Here, we show that molecular networks associated with lysosomal biogenesis and autophagic function are disrupted in brains from FTLD-tau patients carrying a MAPT p.R406W mutation. We then used human induced pluripotent stem cell (iPSC)-derived neurons and 3D cerebral organoids from patients carrying the MAPT p.R406W mutation and CRISPR/Cas9, corrected controls to evaluate proteostasis. MAPT p.R406W was sufficient to induce morphological and functional deficits in the lysosomal pathway in iPSC-neurons. These phenotypes were reversed upon correction of the mutant allele with CRISPR/Cas9. Treatment with mTOR inhibitors led to tau degradation specifically in MAPT p.R406W neurons. Together, our findings suggest that MAPT p.R406W is sufficient to cause impaired lysosomal function, which may contribute to disease pathogenesis and serve as a cellular phenotype for drug screening.
Collapse
Affiliation(s)
- Sidhartha Mahali
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Rita Martinez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Melvin King
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Anthony Verbeck
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Bruno A Benitez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Kanta Horie
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Chihiro Sato
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | | | - Celeste M Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
7
|
Nitta Y, Sugie A. Studies of neurodegenerative diseases using Drosophila and the development of novel approaches for their analysis. Fly (Austin) 2022; 16:275-298. [PMID: 35765969 PMCID: PMC9336468 DOI: 10.1080/19336934.2022.2087484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/09/2023] Open
Abstract
The use of Drosophila in neurodegenerative disease research has contributed to the identification of modifier genes for the pathology. The basis for neurodegenerative disease occurrence in Drosophila is the conservation of genes across species and the ability to perform rapid genetic analysis using a compact brain. Genetic findings previously discovered in Drosophila can reveal molecular pathologies involved in human neurological diseases in later years. Disease models using Drosophila began to be generated during the development of genetic engineering. In recent years, results of reverse translational research using Drosophila have been reported. In this review, we discuss research on neurodegenerative diseases; moreover, we introduce various methods for quantifying neurodegeneration in Drosophila.
Collapse
Affiliation(s)
- Yohei Nitta
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
8
|
Kametani F, Hasegawa M. Structures of tau and α-synuclein filaments from brains of patients with neurodegenerative diseases. Neurochem Int 2022; 158:105362. [PMID: 35659527 DOI: 10.1016/j.neuint.2022.105362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
Intracellular accumulations and aggregates of abnormal protein, consisting of amyloid-like fibrils, are common neuropathological features of many neurodegenerative diseases. The distributions and spreading of these pathological proteins are closely correlated with clinical symptoms and progression. Recent evidence supports the idea that template-mediated amplification of amyloid-like fibrils and intracellular propagation of fibril seeds are the main mechanisms by which pathological features spread along the neural circuits in the brain. Here, we review recent developments in the structural analysis of amyloid-like fibrils from brains of patients with various types of tauopathy and alpha-synucleinopathy, focusing on cryo-electron microscopy and mass analysis, and we discuss their relevance to the mechanisms of template-mediated amplification and intracellular propagation.
Collapse
Affiliation(s)
- Fuyuki Kametani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Japan.
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Japan
| |
Collapse
|
9
|
Kühn R, Mahajan A, Canoll P, Hargus G. Human Induced Pluripotent Stem Cell Models of Frontotemporal Dementia With Tau Pathology. Front Cell Dev Biol 2021; 9:766773. [PMID: 34858989 PMCID: PMC8631302 DOI: 10.3389/fcell.2021.766773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/04/2022] Open
Abstract
Neurodegenerative dementias are the most common group of neurodegenerative diseases affecting more than 40 million people worldwide. One of these diseases is frontotemporal dementia (FTD), an early onset dementia and one of the leading causes of dementia in people under the age of 60. FTD is a heterogeneous group of neurodegenerative disorders with pathological accumulation of particular proteins in neurons and glial cells including the microtubule-associated protein tau, which is deposited in its hyperphosphorylated form in about half of all patients with FTD. As for other patients with dementia, there is currently no cure for patients with FTD and thus several lines of research focus on the characterization of underlying pathogenic mechanisms with the goal to identify therapeutic targets. In this review, we provide an overview of reported disease phenotypes in induced pluripotent stem cell (iPSC)-derived neurons and glial cells from patients with tau-associated FTD with the aim to highlight recent progress in this fast-moving field of iPSC disease modeling. We put a particular focus on genetic forms of the disease that are linked to mutations in the gene encoding tau and summarize mutation-associated changes in FTD patient cells related to tau splicing and tau phosphorylation, microtubule function and cell metabolism as well as calcium homeostasis and cellular stress. In addition, we discuss challenges and limitations but also opportunities using differentiated patient-derived iPSCs for disease modeling and biomedical research on neurodegenerative diseases including FTD.
Collapse
Affiliation(s)
- Rebekka Kühn
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Aayushi Mahajan
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| |
Collapse
|
10
|
Sato C, Mallipeddi N, Ghoshal N, Wright BA, Day GS, Davis AA, Kim AH, Zipfel GJ, Bateman RJ, Gabelle A, Barthélemy NR. MAPT R406W increases tau T217 phosphorylation in absence of amyloid pathology. Ann Clin Transl Neurol 2021; 8:1817-1830. [PMID: 34342183 PMCID: PMC8419397 DOI: 10.1002/acn3.51435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Objective Tau hyperphosphorylation at threonine 217 (pT217) in cerebrospinal fluid (CSF) has recently been linked to early amyloidosis and could serve as a highly sensitive biomarker for Alzheimer’s disease (AD). However, it remains unclear whether other tauopathies induce pT217 modifications. To determine if pT217 modification is specific to AD, CSF pT217 was measured in AD and other tauopathies. Methods Using immunoprecipitation and mass spectrometry methods, we compared CSF T217 phosphorylation occupancy (pT217/T217) and amyloid‐beta (Aβ) 42/40 ratio in cognitively normal individuals and those with symptomatic AD, progressive supranuclear palsy, corticobasal syndrome, and sporadic and familial frontotemporal dementia. Results Individuals with AD had high CSF pT217/T217 and low Aβ42/40. In contrast, cognitively normal individuals and the majority of those with 4R tauopathies had low CSF pT217/T217 and normal Aβ 42/40. We identified a subgroup of individuals with increased CSF pT217/T217 and normal Aβ 42/40 ratio, most of whom were MAPT R406W mutation carriers. Diagnostic accuracies of CSF Aβ 42/40 and CSF pT217/T217, alone and in combination were compared. We show that CSF pT217/T217 × CSF Aβ 42/40 is a sensitive composite biomarker that can separate MAPT R406W carriers from cognitively normal individuals and those with other tauopathies. Interpretation MAPT R406W is a tau mutation that leads to 3R+4R tauopathy similar to AD, but without amyloid neuropathology. These findings suggest that change in CSF pT217/T217 ratio is not specific to AD and might reflect common downstream tau pathophysiology common to 3R+4R tauopathies.
Collapse
Affiliation(s)
- Chihiro Sato
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Nipun Mallipeddi
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Nupur Ghoshal
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Brenton A Wright
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, California
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida
| | - Albert A Davis
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - Albert H Kim
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri.,Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory J Zipfel
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri.,Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri.,Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri
| | - Audrey Gabelle
- Department of Neurology, Memory Research and Resources Center, University Hospital of Montpellier, Neurosciences Institute of Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
11
|
Leuzy A, Smith R, Ossenkoppele R, Santillo A, Borroni E, Klein G, Ohlsson T, Jögi J, Palmqvist S, Mattsson-Carlgren N, Strandberg O, Stomrud E, Hansson O. Diagnostic Performance of RO948 F 18 Tau Positron Emission Tomography in the Differentiation of Alzheimer Disease From Other Neurodegenerative Disorders. JAMA Neurol 2021; 77:955-965. [PMID: 32391858 PMCID: PMC7215644 DOI: 10.1001/jamaneurol.2020.0989] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Question How does RO948 F 18 positron emission tomographic scanning discriminate between Alzheimer disease and other neurodegenerative disorders in comparison with magnetic resonance imaging and cerebrospinal fluid measures? Findings In this diagnostic study including 613 patients from the Swedish BioFINDER-2 clinical trial, standard uptake value ratios of RO948 F 18 were higher in patients with Alzheimer disease dementia compared with cognitively unimpaired controls and patients with other neurodegenerative disorders; furthermore, RO948 F 18 outperformed magnetic resonance imaging and cerebrospinal fluid measures. Generally, tau positron emission tomographic positivity was confined to amyloid β–positive cases or MAPT R406W mutation carriers in this cohort; in patients with semantic variant primary progressive aphasia, RO948 F 18 retention was lower than that for flortaucipir F 18. Meaning These findings suggest that RO948 F 18 has a high specificity for Alzheimer disease–type tau and highlight its potential as a diagnostic marker in the workup of patients treated in memory clinics. Importance The diagnostic performance of second-generation tau positron emission tomographic (PET) tracers is not yet known. Objective To examine the novel tau PET tracer RO948 F 18 ([18F]RO948) performance in discriminating Alzheimer disease (AD) from non-AD neurodegenerative disorders. Design, Setting, and Participants In this diagnostic study, 613 participants in the Swedish BioFINDER-2 study were consecutively enrolled in a prospective cross-sectional study from September 4, 2017, to August 28, 2019. Participants included 257 cognitively unimpaired controls, 154 patients with mild cognitive impairment, 100 patients with AD dementia, and 102 with non-AD neurodegenerative disorders. Evaluation included a comparison of tau PET tracer [18F]RO948 with magnetic resonance imaging (MRI) and cerebrospinal fluid and a head-to-head comparison between [18F]RO948 and flortaucipir F 18 ([18F]flortaucipir) in patients with semantic variant primary progressive aphasia (svPPA). Exposures [18F]RO948 (all patients) and [18F]flortaucipir (3 patients with svPPA) tau PET; MRI (hippocampal volume, composite temporal lobe cortical thickness, whole-brain cortical thickness) and cerebrospinal fluid measures (p-tau181 and amyloid Aβ42 and Aβ40 ratio[Aβ42/Aβ40], and Aβ42/p-tau181 ratio). Main Outcomes and Measures Standard uptake value ratios (SUVRs) in 4 predefined regions of interest (ROIs) reflecting Braak staging scheme for tau pathology and encompass I-II (entorhinal cortex), III-IV (inferior/middle temporal, fusiform gyrus, parahippocampal cortex, and amygdala), I-IV, and V-VI (widespread neocortical areas), area under the receiver operating characteristic curve (AUC) values, and subtraction images between [18F]RO948 and [18F]flortaucipir. Results Diagnostic groups among the 613 participants included cognitively unimpaired (mean [SD] age, 65.8 [12.1] years; 117 men [46%]), mild cognitive impairment (age, 70.8 [8.3] years; 82 men [53%]), AD dementia (age, 73.5 [6.7] years; 57 men [57%]), and non-AD disorders (age, 70.5 [8.6] years; 41 men [40%]). Retention of [18F]RO948 was higher in AD dementia compared with all other diagnostic groups. [18F]RO948 could distinguish patients with AD dementia from individuals without cognitive impairment and those with non-AD disorders, and the highest AUC was obtained using the I-IV ROI (AUC = 0.98; 95% CI, 0.96-0.99 for AD vs no cognitive impairment and AUC = 0.97; 95% CI, 0.95-0.99 for AD vs non-AD disorders), which outperformed MRI (highest AUC = 0.91 for AD vs no cognitive impairment using whole-brain thickness, and AUC = 0.80 for AD vs non-AD disorders using temporal lobe thickness) and cerebrospinal fluid measures (highest AUC = 0.94 for AD vs no cognitive impairment using Aβ42/p-tau181, and AUC = 0.93 for AD vs non-AD disorders using Aβ42/Aβ40). Generally, tau PET positivity using [18F]RO948 was observed only in Aβ-positive cases or in MAPT R406W mutation carriers. Retention of [18F]RO948 was not pronounced in patients with svPPA, and head-to-head comparison revealed lower temporal lobe uptake than with [18F]flortaucipir. Conclusions and Relevance In this study, elevated [18F]RO948 SUVRs were most often seen among Aβ-positive cases, which suggests that [18F]RO948 has high specificity for AD-type tau and highlights its potential as a diagnostic marker in the differential diagnosis of AD.
Collapse
Affiliation(s)
- Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | | | | | | - Tomas Ohlsson
- Department of Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Jonas Jögi
- Skåne University Hospital, Department of Clinical Physiology and Nuclear Medicine, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
12
|
Li S, Yi Y, Cui K, Zhang Y, Chen Y, Han D, Sun L, Zhang X, Chen F, Zhang Y, Yang Y. A Single-Chain Variable Fragment Antibody Inhibits Aggregation of Phosphorylated Tau and Ameliorates Tau Toxicity in vitro and in vivo. J Alzheimers Dis 2021; 79:1613-1629. [PMID: 33459708 DOI: 10.3233/jad-191266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common cause of dementia among elderly people. Hyperphosphorylation and aggregation of tau correlates with the clinical progression of AD; therefore, therapies targeting the aggregation of tau may have potential applications for anti-AD drug development. Several inhibitors of tau aggregation, including small molecules and antibodies, have been found to decrease the aggregation of tau and the corresponding pathology. OBJECTIVE To screen one kind of single-chain variable fragment (scFv) antibody which could inhibit the aggregation of tau and ameliorate its cytotoxicity. METHODS/RESULTS Using phosphorylated tau (pTau) as an antigen, we obtained a scFv antibody via the screening of a high-capacity phage antibody library. Biochemical analysis revealed that this scFv antibody (scFv T1) had a strong ability to inhibit pTau aggregation both in dilute solutions and under conditions of macromolecular crowding. ScFv T1 could also depolymerize preformed pTau aggregates in vitro. Furthermore, scFv T1 was found to be able to inhibit the cytotoxicity of extracellular pTau aggregates and ameliorate tau-mediated toxicity when coexpressed with a hTauR406W mutant in the eye of transgenic Drosophila flies. CONCLUSION This scFv T1 antibody may be a potential new therapeutic agent against AD. Our methods can be used to develop novel strategies against protein aggregation for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sen Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Yushan Yi
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| | - Ke Cui
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Yanqiu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Yange Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Dou Han
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Ling Sun
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| | - Xiaohui Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| | - Fei Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| |
Collapse
|
13
|
Chu SA, Flagan TM, Staffaroni AM, Jiskoot LC, Deng J, Spina S, Zhang L, Sturm VE, Yokoyama JS, Seeley WW, Papma JM, Geschwind DH, Rosen HJ, Boeve BF, Boxer AL, Heuer HW, Forsberg LK, Brushaber DE, Grossman M, Coppola G, Dickerson BC, Bordelon YM, Faber K, Feldman HH, Fields JA, Fong JC, Foroud T, Gavrilova RH, Ghoshal N, Graff‐Radford NR, Hsiung GR, Huey ED, Irwin DJ, Kantarci K, Kaufer DI, Karydas AM, Knopman DS, Kornak J, Kramer JH, Kukull WA, Lapid MI, Litvan I, Mackenzie IR, Mendez MF, Miller BL, Onyike CU, Pantelyat AY, Rademakers R, Marisa Ramos E, Roberson ED, Carmela Tartaglia M, Tatton NA, Toga AW, Vetor A, Weintraub S, Wong B, Wszolek ZK, Van Swieten JC, Lee SE. Brain volumetric deficits in MAPT mutation carriers: a multisite study. Ann Clin Transl Neurol 2021; 8:95-110. [PMID: 33247623 PMCID: PMC7818091 DOI: 10.1002/acn3.51249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/18/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE MAPT mutations typically cause behavioral variant frontotemporal dementia with or without parkinsonism. Previous studies have shown that symptomatic MAPT mutation carriers have frontotemporal atrophy, yet studies have shown mixed results as to whether presymptomatic carriers have low gray matter volumes. To elucidate whether presymptomatic carriers have lower structural brain volumes within regions atrophied during the symptomatic phase, we studied a large cohort of MAPT mutation carriers using a voxelwise approach. METHODS We studied 22 symptomatic carriers (age 54.7 ± 9.1, 13 female) and 43 presymptomatic carriers (age 39.2 ± 10.4, 21 female). Symptomatic carriers' clinical syndromes included: behavioral variant frontotemporal dementia (18), an amnestic dementia syndrome (2), Parkinson's disease (1), and mild cognitive impairment (1). We performed voxel-based morphometry on T1 images and assessed brain volumetrics by clinical subgroup, age, and mutation subtype. RESULTS Symptomatic carriers showed gray matter atrophy in bilateral frontotemporal cortex, insula, and striatum, and white matter atrophy in bilateral corpus callosum and uncinate fasciculus. Approximately 20% of presymptomatic carriers had low gray matter volumes in bilateral hippocampus, amygdala, and lateral temporal cortex. Within these regions, low gray matter volumes emerged in a subset of presymptomatic carriers as early as their thirties. Low white matter volumes arose infrequently among presymptomatic carriers. INTERPRETATION A subset of presymptomatic MAPT mutation carriers showed low volumes in mesial temporal lobe, the region ubiquitously atrophied in all symptomatic carriers. With each decade of age, an increasing percentage of presymptomatic carriers showed low mesial temporal volume, suggestive of early neurodegeneration.
Collapse
Affiliation(s)
- Stephanie A. Chu
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Taru M. Flagan
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Adam M. Staffaroni
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Lize C. Jiskoot
- Erasmus Medical CenterRotterdamNetherlands
- Dementia Research CenterUniversity College LondonLondonUK
| | - Jersey Deng
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Salvatore Spina
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Liwen Zhang
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Virginia E. Sturm
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Jennifer S. Yokoyama
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - William W. Seeley
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | | | - Howard J. Rosen
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Adam L. Boxer
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Hilary W. Heuer
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | | | - Murray Grossman
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | | | | | - Kelley Faber
- School of MedicineIndiana UniversityIndianapolisIndianaUSA
| | | | | | - Jamie C. Fong
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Tatiana Foroud
- School of MedicineIndiana UniversityIndianapolisIndianaUSA
| | | | - Nupur Ghoshal
- Washington University School of MedicineSt. LouisMissouriUSA
| | | | | | - Edward D. Huey
- Departments of Psychiatry and NeurologyColumbia UniversityNew YorkNew YorkUSA
| | - David J. Irwin
- University of California, Los AngelesLos AngelesCaliforniaUSA
| | - Kejal Kantarci
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Anna M. Karydas
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - John Kornak
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Walter A. Kukull
- National Alzheimer's Coordinating CenterUniversity of WashingtonSeattleWashingtonUSA
| | | | - Irene Litvan
- University of California, San DiegoLa JollaCaliforniaUSA
| | | | - Mario F. Mendez
- University of California, Los AngelesLos AngelesCaliforniaUSA
| | - Bruce L. Miller
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | | | | | | | | | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoOntarioCanada
| | - Nadine A. Tatton
- The Association for Frontotemporal DegenerationRadnorPennsylvaniaUSA
| | - Arthur W. Toga
- USC Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ashley Vetor
- School of MedicineIndiana UniversityIndianapolisIndianaUSA
| | | | - Bonnie Wong
- Massachusetts General HospitalBostonMassachusettsUSA
| | | | | | | | - Suzee E. Lee
- Memory and Aging CenterDepartment of Neurology, Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
14
|
Goedert M, Spillantini MG, Falcon B, Zhang W, Newell KL, Hasegawa M, Scheres SHW, Ghetti B. Tau Protein and Frontotemporal Dementias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:177-199. [PMID: 33433876 DOI: 10.1007/978-3-030-51140-1_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Filamentous inclusions of tau protein are found in cases of inherited and sporadic frontotemporal dementias (FTDs). Mutations in MAPT, the tau gene, cause approximately 5% of cases of FTD. They proved that dysfunction of tau protein is sufficient to cause neurodegeneration and dementia. Clinically and pathologically, cases with MAPT mutations can resemble sporadic diseases, such as Pick's disease, globular glial tauopathy, progressive supranuclear palsy and corticobasal degeneration. The structures of tau filaments from Pick's disease and corticobasal degeneration, determined by electron cryo-microscopy, revealed the presence of specific tau folds in each disease, with no inter-individual variation. The same was true of chronic traumatic encephalopathy.
Collapse
Affiliation(s)
| | | | | | | | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
15
|
Kametani F, Yoshida M, Matsubara T, Murayama S, Saito Y, Kawakami I, Onaya M, Tanaka H, Kakita A, Robinson AC, Mann DMA, Hasegawa M. Comparison of Common and Disease-Specific Post-translational Modifications of Pathological Tau Associated With a Wide Range of Tauopathies. Front Neurosci 2020; 14:581936. [PMID: 33250706 PMCID: PMC7672045 DOI: 10.3389/fnins.2020.581936] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023] Open
Abstract
Tauopathies are the most common type of neurodegenerative proteinopathy, being characterized by cytoplasmic aggregates of hyperphosphorylated tau protein. The formation and morphologies of these tau inclusions, the distribution of the lesions and related metabolic changes in cytoplasm differ among different tauopathies. The aim of this study was to examine whether there are differences in the post-translational modifications (PTMs) in the pathological tau proteins. We analyzed sarkosyl-insoluble pathological tau proteins prepared from brains of patients with Alzheimer's disease, Pick's disease, progressive supranuclear palsy, corticobasal degeneration, globular glial tauopathy, and frontotemporal dementia and parkinsonisms linked to chromosome 17 with tau inclusions using liquid chromatography mass spectrometry. In pathological tau proteins associated with a wide range of tauopathies, 170 PTMs in total were identified including new PTMs. Among them, common PTMs were localized in the N- and C-terminal flanking regions of the microtubule binding repeats and PTMs, which were considered to be disease-specific, were found in microtubule binding repeats forming filament core. These suggested that the differences in PTMs reflected the differences in tau filament core structures in each disease.
Collapse
Affiliation(s)
- Fuyuki Kametani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Tomoyasu Matsubara
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Yuko Saito
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ito Kawakami
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsumoto Onaya
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Hidetomo Tanaka
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Andrew C. Robinson
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford, United Kingdom
| | - David M. A. Mann
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford, United Kingdom
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
16
|
Goedert M. Tau proteinopathies and the prion concept. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:239-259. [PMID: 32958235 DOI: 10.1016/bs.pmbts.2020.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ordered assembly of a small number of proteins into amyloid filaments is central to age-related neurodegenerative diseases. Tau is the most commonly affected of these proteins. In sporadic diseases, assemblies of tau form in a stochastic manner in certain brain regions, from where they appear to spread in a deterministic way, giving rise to disease symptoms. Over the past decade, multiple lines of evidence have shown that assembled tau behaves like a prion. More recently, electron cryo-microscopy of tau filaments has shown that distinct conformers are present in different diseases, with no inter-individual variation for a given disease.
Collapse
Affiliation(s)
- Michel Goedert
- MRC Laboratory Molecular Biology, Cambridge, United Kingdom.
| |
Collapse
|
17
|
Roggenbuck J, Fong JC. Genetic Testing for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia: Impact on Clinical Management. Clin Lab Med 2020; 40:271-287. [PMID: 32718499 DOI: 10.1016/j.cll.2020.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative disorders that share clinical, pathologic, and genetic features. Persons and families affected by these conditions frequently question why they developed the disease, the expected disease course, treatment options, and the likelihood that family members will be affected. Genetic testing has the potential to answers these important questions. Despite the progress in gene discovery, the offer of genetic testing is not yet "standard of care" in ALS and FTD clinics. The authors review the current genetic landscape and present recommendations for the laboratory genetic evaluation of persons with these conditions.
Collapse
Affiliation(s)
- Jennifer Roggenbuck
- Division of Human Genetics, Department of Neurology, The Ohio State University, 2012 Kenny Road, Columbus, OH 43221, USA.
| | - Jamie C Fong
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS: BCM115, Houston, TX 77030, USA
| |
Collapse
|
18
|
Cochran JN, Geier EG, Bonham LW, Newberry JS, Amaral MD, Thompson ML, Lasseigne BN, Karydas AM, Roberson ED, Cooper GM, Rabinovici GD, Miller BL, Myers RM, Yokoyama JS. Non-coding and Loss-of-Function Coding Variants in TET2 are Associated with Multiple Neurodegenerative Diseases. Am J Hum Genet 2020; 106:632-645. [PMID: 32330418 PMCID: PMC7212268 DOI: 10.1016/j.ajhg.2020.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
We conducted genome sequencing to search for rare variation contributing to early-onset Alzheimer's disease (EOAD) and frontotemporal dementia (FTD). Discovery analysis was conducted on 435 cases and 671 controls of European ancestry. Burden testing for rare variation associated with disease was conducted using filters based on variant rarity (less than one in 10,000 or private), computational prediction of deleteriousness (CADD) (10 or 15 thresholds), and molecular function (protein loss-of-function [LoF] only, coding alteration only, or coding plus non-coding variants in experimentally predicted regulatory regions). Replication analysis was conducted on 16,434 independent cases and 15,587 independent controls. Rare variants in TET2 were enriched in the discovery combined EOAD and FTD cohort (p = 4.6 × 10-8, genome-wide corrected p = 0.0026). Most of these variants were canonical LoF or non-coding in predicted regulatory regions. This enrichment replicated across several cohorts of Alzheimer's disease (AD) and FTD (replication only p = 0.0029). The combined analysis odds ratio was 2.3 (95% confidence interval [CI] 1.6-3.4) for AD and FTD. The odds ratio for qualifying non-coding variants considered independently from coding variants was 3.7 (95% CI 1.7-9.4). For LoF variants, the combined odds ratio (for AD, FTD, and amyotrophic lateral sclerosis, which shares clinicopathological overlap with FTD) was 3.1 (95% CI 1.9-5.2). TET2 catalyzes DNA demethylation. Given well-defined changes in DNA methylation that occur during aging, rare variation in TET2 may confer risk for neurodegeneration by altering the homeostasis of key aging-related processes. Additionally, our study emphasizes the relevance of non-coding variation in genetic studies of complex disease.
Collapse
Affiliation(s)
- J Nicholas Cochran
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Ethan G Geier
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, United States
| | - J Scott Newberry
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Michelle D Amaral
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Michelle L Thompson
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Brittany N Lasseigne
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Anna M Karydas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, United States; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, United States; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, United States.
| |
Collapse
|
19
|
Karch CM, Kao AW, Karydas A, Onanuga K, Martinez R, Argouarch A, Wang C, Huang C, Sohn PD, Bowles KR, Spina S, Silva MC, Marsh JA, Hsu S, Pugh DA, Ghoshal N, Norton J, Huang Y, Lee SE, Seeley WW, Theofilas P, Grinberg LT, Moreno F, McIlroy K, Boeve BF, Cairns NJ, Crary JF, Haggarty SJ, Ichida JK, Kosik KS, Miller BL, Gan L, Goate AM, Temple S. A Comprehensive Resource for Induced Pluripotent Stem Cells from Patients with Primary Tauopathies. Stem Cell Reports 2019; 13:939-955. [PMID: 31631020 PMCID: PMC6895712 DOI: 10.1016/j.stemcr.2019.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Primary tauopathies are characterized neuropathologically by inclusions containing abnormal forms of the microtubule-associated protein tau (MAPT) and clinically by diverse neuropsychiatric, cognitive, and motor impairments. Autosomal dominant mutations in the MAPT gene cause heterogeneous forms of frontotemporal lobar degeneration with tauopathy (FTLD-Tau). Common and rare variants in the MAPT gene increase the risk for sporadic FTLD-Tau, including progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). We generated a collection of fibroblasts from 140 MAPT mutation/risk variant carriers, PSP, CBD, and cognitively normal controls; 31 induced pluripotent stem cell (iPSC) lines from MAPT mutation carriers, non-carrier family members, and autopsy-confirmed PSP patients; 33 genome engineered iPSCs that were corrected or mutagenized; and forebrain neural progenitor cells (NPCs). Here, we present a resource of fibroblasts, iPSCs, and NPCs with comprehensive clinical histories that can be accessed by the scientific community for disease modeling and development of novel therapeutics for tauopathies. A collection of fibroblasts from 140 MAPT mutation carriers, PSP, CBD, and controls 31 iPSC lines reprogrammed from MAPT mutation carriers, PSP patients, and controls 33 iPSC lines engineered with CRISPR/Cas9 or TALENs Comprehensive resource for tauopathy modeling and discovery of novel therapeutics
Collapse
Affiliation(s)
- Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA.
| | - Aimee W Kao
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Karydas
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Khadijah Onanuga
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Rita Martinez
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Andrea Argouarch
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chao Wang
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Cindy Huang
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Peter Dongmin Sohn
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Kathryn R Bowles
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA
| | - Salvatore Spina
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jacob A Marsh
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Simon Hsu
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Derian A Pugh
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA
| | - Nupur Ghoshal
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Yadong Huang
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Suzee E Lee
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William W Seeley
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Panagiotis Theofilas
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lea T Grinberg
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fermin Moreno
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kathryn McIlroy
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Nigel J Cairns
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - John F Crary
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA; Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kenneth S Kosik
- Department of Molecular Cellular and Developmental Biology, Neuroscience Research Institute, Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Bruce L Miller
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Li Gan
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA
| | - Sally Temple
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA.
| | | |
Collapse
|
20
|
Trevizan-Baú P, Dhingra RR, Burrows EL, Dutschmann M, Stanić D. Tauopathy in the periaqueductal gray, kölliker-fuse nucleus and nucleus retroambiguus is not predicted by ultrasonic vocalization in tau-P301L mice. Behav Brain Res 2019; 369:111916. [PMID: 31004684 DOI: 10.1016/j.bbr.2019.111916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
Abstract
Upper airway and vocalization control areas such as the periaqueductal gray (PAG), kölliker-fuse nucleus (KF) and nucleus retroambiguus (NRA) are prone to developing tauopathy in mice expressing the mutant human tau P301L protein. Consequently, impaired ultrasonic vocalization (USV) previously identified in tau-P301L mice at the terminal disease stage of 8-9 months of age, was attributed to the presence of tauopathy in these regions. Our aim was to establish whether the onset of USV disorders manifest prior to the terminal stage, and if USV disorders are predictive of the presence of tauopathy in the PAG, KF and NRA. USVs produced by tau-P301L and wildtype mice aged 3-4, 5-6 or 8-9 months were recorded during male-female interaction. Immunohistochemistry was then performed to assess the presence or degree of tauopathy in the PAG, KF and NRA of mice displaying normal or abnormal USV patterns. Comparing various USV measurements, including the number, duration and frequency of calls, revealed no differences between tau-P301L and wildtype mice across all age groups, and linear discriminant analysis also failed to identify separate USV populations. Finally, the presence of tauopathy in the PAG, KF and NRA in individual tau-P301L mice did not reliably associate with USV disorders. Our findings that tauopathy in designated mammalian vocalization centres, such as the PAG, KF and NRA, did not associate with USV disturbances in tau-P301L mice questions whether USV phenotypes in this transgenic mouse are valid for studying tauopathy-related human voice and speech disorders.
Collapse
Affiliation(s)
- Pedro Trevizan-Baú
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia
| | - Rishi R Dhingra
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia
| | - Emma L Burrows
- Mental Health Theme, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mathias Dutschmann
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia.
| | - Davor Stanić
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia.
| |
Collapse
|
21
|
Borrego-Écija S, Antonell A, Puig-Butillé JA, Pericot I, Prat-Bravo C, Abellan-Vidal MT, Mallada J, Olives J, Falgàs N, Oliva R, Lladó A, Sánchez-Valle R. Novel P397S MAPT variant associated with late onset and slow progressive frontotemporal dementia. Ann Clin Transl Neurol 2019; 6:1559-1565. [PMID: 31402617 PMCID: PMC6689677 DOI: 10.1002/acn3.50844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022] Open
Abstract
Mutations in the MAPT gene cause frontotemporal dementia with tau deposits. We report the novel p.P397S MAPT variant in eight subjects from five apparently nonrelated families suffering from frontotemporal dementia with autosomal dominant pattern of inheritance. In silico analysis reported conflicting evidence of pathogenicity. The segregation analysis support that this variant is likely pathogenic. The mean age at onset (61.4 years) and mean disease duration (13.9 years) of these subjects and their affected relatives were significantly higher compared with our series of p.P301L MAPT mutation carriers. These findings suggest that p.P397S variant could be a new MAPT mutation associated with a less aggressive phenotype than other MAPT mutations.
Collapse
Affiliation(s)
- Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Joan Anton Puig-Butillé
- Biochemistry and Molecular Genetics Department, Hospital Clinic, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | | | | | - Maria Teresa Abellan-Vidal
- Unit of Cognitive Disorders and Psychogeriatrics, Institut de Neuropsiquiatria i Addiccions, Centre Emili Mira, Parc de Salut Mar, Barcelona, Spain
| | - Javier Mallada
- Neurology Department, Hospital General Universitario de Elda, Alicante, Spain
| | - Jaume Olives
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Rafael Oliva
- Biochemistry and Molecular Genetics Service, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDBAPS), University of Barcelona, Barcelona, Spain.,Genetics Unit, Department of Biosciences, University of Barcelona, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Evans HT, Benetatos J, van Roijen M, Bodea L, Götz J. Decreased synthesis of ribosomal proteins in tauopathy revealed by non-canonical amino acid labelling. EMBO J 2019; 38:e101174. [PMID: 31268600 PMCID: PMC6600635 DOI: 10.15252/embj.2018101174] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 01/06/2023] Open
Abstract
Tau is a scaffolding protein that serves multiple cellular functions that are perturbed in neurodegenerative diseases, including Alzheimer's disease (AD) and frontotemporal dementia (FTD). We have recently shown that amyloid-β, the second hallmark of AD, induces de novo protein synthesis of tau. Importantly, this activation was found to be tau-dependent, raising the question of whether FTD-tau by itself affects protein synthesis. We therefore applied non-canonical amino acid labelling to visualise and identify newly synthesised proteins in the K369I tau transgenic K3 mouse model of FTD. This revealed massively decreased protein synthesis in neurons containing pathologically phosphorylated tau, a finding confirmed in P301L mutant tau transgenic rTg4510 mice. Using quantitative SWATH-MS proteomics, we identified changes in 247 proteins of the de novo proteome of K3 mice. These included decreased synthesis of the ribosomal proteins RPL23, RPLP0, RPL19 and RPS16, a finding that was validated in both K3 and rTg4510 mice. Together, our findings present a potential pathomechanism by which pathological tau interferes with cellular functions through the dysregulation of ribosomal protein synthesis.
Collapse
Affiliation(s)
- Harrison Tudor Evans
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQldAustralia
| | - Joseph Benetatos
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQldAustralia
| | | | - Liviu‐Gabriel Bodea
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQldAustralia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQldAustralia
| |
Collapse
|
23
|
Aguero C, Dhaynaut M, Normandin MD, Amaral AC, Guehl NJ, Neelamegam R, Marquie M, Johnson KA, El Fakhri G, Frosch MP, Gomez-Isla T. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun 2019; 7:37. [PMID: 30857558 PMCID: PMC6410510 DOI: 10.1186/s40478-019-0686-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022] Open
Abstract
[F-18]-MK-6240, a novel tau positron emission tomography (PET) tracer recently discovered for the in vivo detection of neurofibrillary tangles, has the potential to improve diagnostic accuracy in the detection of Alzheimer disease. We have examined regional and substrate-specific binding patterns as well as possible off-target binding of this tracer on human brain tissue to advance towards its validation. We applied [F-18]-MK-6240 phosphor screen and high resolution autoradiography to postmortem samples from patients with a definite pathological diagnosis of Alzheimer disease, frontotemporal lobar degeneration-tau (Pick's disease, progressive supranuclear palsy and corticobasal degeneration), chronic traumatic encephalopathy, frontotemporal lobar degeneration-Tar DNA-binding protein 43 (TDP-43), dementia with Lewy bodies, cerebral amyloid angiopathy and elderly controls free of pathologic changes of neurodegenerative disease. We also directly compared the binding properties of [F-18]-MK-6240 and [F-18]-AV-1451 in human tissue, and examined potential nonspecific binding of both tau tracers to monoamine oxidases (MAO) by using autoradiography in the presence of selective monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B) inhibitors. Our data indicate that MK-6240 strongly binds to neurofibrillary tangles in Alzheimer disease but does not seem to bind to a significant extent to tau aggregates in non-Alzheimer tauopathies, suggesting that it may have a limited utility for the in vivo detection of these pathologies. There is no evidence of binding to lesions containing β-amyloid, α-synuclein or TDP-43. In addition, we identified MK-6240 strong off-target binding to neuromelanin and melanin-containing cells, and some weaker binding to areas of hemorrhage. These binding patterns are nearly identical to those previously reported by our group and others for [F-18]-AV-1451. Of note, [F-18]-MK-6240 and [F-18]-AV-1451 autoradiographic binding signals were only weakly displaced by competing concentrations of selective MAO-B inhibitor deprenyl but not by MAO-A inhibitor clorgyline, suggesting that MAO enzymes do not appear to be a significant binding target of any of these two tracers. Together these novel findings provide relevant insights for the correct interpretation of in vivo [F-18]-MK-6240 PET imaging.
Collapse
Affiliation(s)
- Cinthya Aguero
- Department of Neurology, Massachusetts General Hospital, WACC, Suite 715, 15th Parkman St., Boston, MA, 02114, USA
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Maeva Dhaynaut
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- AP-HP, Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, Sorbonne University, UPMC Paris 06, CNRS UMR 7371, INSERM U1146, 75013, Paris, France
| | - Marc D Normandin
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Amaral
- Department of Neurology, Massachusetts General Hospital, WACC, Suite 715, 15th Parkman St., Boston, MA, 02114, USA
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Nicolas J Guehl
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramesh Neelamegam
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Marquie
- Department of Neurology, Massachusetts General Hospital, WACC, Suite 715, 15th Parkman St., Boston, MA, 02114, USA
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Georges El Fakhri
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew P Frosch
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, USA
| | - Teresa Gomez-Isla
- Department of Neurology, Massachusetts General Hospital, WACC, Suite 715, 15th Parkman St., Boston, MA, 02114, USA.
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA.
| |
Collapse
|
24
|
Jiang S, Wen N, Li Z, Dube U, Del Aguila J, Budde J, Martinez R, Hsu S, Fernandez MV, Cairns NJ, Harari O, Cruchaga C, Karch CM. Integrative system biology analyses of CRISPR-edited iPSC-derived neurons and human brains reveal deficiencies of presynaptic signaling in FTLD and PSP. Transl Psychiatry 2018; 8:265. [PMID: 30546007 PMCID: PMC6293323 DOI: 10.1038/s41398-018-0319-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/13/2018] [Indexed: 01/12/2023] Open
Abstract
Mutations in the microtubule-associated protein tau (MAPT) gene cause autosomal dominant frontotemporal lobar degeneration with tau inclusions (FTLD-tau). MAPT p.R406W carriers present clinically with progressive memory loss and neuropathologically with neuronal and glial tauopathy. However, the pathogenic events triggered by the expression of the mutant tau protein remain poorly understood. To identify the genes and pathways that are dysregulated in FTLD-tau, we performed transcriptomic analyses in induced pluripotent stem cell (iPSC)-derived neurons carrying MAPT p.R406W and CRISPR/Cas9-corrected isogenic controls. We found that the expression of the MAPT p.R406W mutation was sufficient to create a significantly different transcriptomic profile compared with that of the isogeneic controls and to cause the differential expression of 328 genes. Sixty-one of these genes were also differentially expressed in the same direction between MAPT p.R406W carriers and pathology-free human control brains. We found that genes differentially expressed in the stem cell models and human brains were enriched for pathways involving gamma-aminobutyric acid (GABA) receptors and pre-synaptic function. The expression of GABA receptor genes, including GABRB2 and GABRG2, were consistently reduced in iPSC-derived neurons and brains from MAPT p.R406W carriers. Interestingly, we found that GABA receptor genes, including GABRB2 and GABRG2, are significantly lower in symptomatic mouse models of tauopathy, as well as in brains with progressive supranuclear palsy. Genome wide association analyses reveal that common variants within GABRB2 are associated with increased risk for frontotemporal dementia (P < 1 × 10-3). Thus, our systems biology approach, which leverages molecular data from stem cells, animal models, and human brain tissue can reveal novel disease mechanisms. Here, we demonstrate that MAPT p.R406W is sufficient to induce changes in GABA-mediated signaling and synaptic function, which may contribute to the pathogenesis of FTLD-tau and other primary tauopathies.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Natalie Wen
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Zeran Li
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Umber Dube
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Jorge Del Aguila
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Rita Martinez
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Simon Hsu
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Maria V Fernandez
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Nigel J Cairns
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, 660S. Euclid Ave, Campus Box 8118, Saint Louis, MO, 63110, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA.
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA.
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
25
|
Blue EE, Bis JC, Dorschner MO, Tsuang D, Barral SM, Beecham G, Below JE, Bush WS, Butkiewicz M, Cruchaga C, DeStefano A, Farrer LA, Goate A, Haines J, Jaworski J, Jun G, Kunkle B, Kuzma A, Lee JJ, Lunetta K, Ma Y, Martin E, Naj A, Nato AQ, Navas P, Nguyen H, Reitz C, Reyes D, Salerno W, Schellenberg GD, Seshadri S, Sohi H, Thornton TA, Valladares O, van Duijn C, Vardarajan BN, Wang LS, Boerwinkle E, Dupuis J, Pericak-Vance MA, Mayeux R, Wijsman EM. Genetic Variation in Genes Underlying Diverse Dementias May Explain a Small Proportion of Cases in the Alzheimer's Disease Sequencing Project. Dement Geriatr Cogn Disord 2018; 45:1-17. [PMID: 29486463 PMCID: PMC5971141 DOI: 10.1159/000485503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND/AIMS The Alzheimer's Disease Sequencing Project (ADSP) aims to identify novel genes influencing Alzheimer's disease (AD). Variants within genes known to cause dementias other than AD have previously been associated with AD risk. We describe evidence of co-segregation and associations between variants in dementia genes and clinically diagnosed AD within the ADSP. METHODS We summarize the properties of known pathogenic variants within dementia genes, describe the co-segregation of variants annotated as "pathogenic" in ClinVar and new candidates observed in ADSP families, and test for associations between rare variants in dementia genes in the ADSP case-control study. The participants were clinically evaluated for AD, and they represent European, Caribbean Hispanic, and isolate Dutch populations. RESULTS/CONCLUSIONS Pathogenic variants in dementia genes were predominantly rare and conserved coding changes. Pathogenic variants within ARSA, CSF1R, and GRN were observed, and candidate variants in GRN and CHMP2B were nominated in ADSP families. An independent case-control study provided evidence of an association between variants in TREM2, APOE, ARSA, CSF1R, PSEN1, and MAPT and risk of AD. Variants in genes which cause dementing disorders may influence the clinical diagnosis of AD in a small proportion of cases within the ADSP.
Collapse
Affiliation(s)
| | | | | | - Debby Tsuang
- University of Washington
- Veterans Administration Puget Sound Health Care
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eric Boerwinkle
- Baylor College of Medicine
- University of Texas Health Sciences Center at Houston
| | | | | | | | | |
Collapse
|
26
|
Ygland E, van Westen D, Englund E, Rademakers R, Wszolek ZK, Nilsson K, Nilsson C, Landqvist Waldö M, Alafuzoff I, Hansson O, Gustafson L, Puschmann A. Slowly progressive dementia caused by MAPT R406W mutations: longitudinal report on a new kindred and systematic review. ALZHEIMERS RESEARCH & THERAPY 2018; 10:2. [PMID: 29370822 PMCID: PMC6389050 DOI: 10.1186/s13195-017-0330-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
Abstract
Background The MAPT c.1216C > T (p.Arg406Trp; R406W) mutation is a known cause of frontotemporal dementia with Parkinsonism linked to chromosome 17 tau with Alzheimer’s disease-like clinical features. Methods We compiled clinical data from a new Swedish kindred with R406W mutation. Seven family members were followed longitudinally for up to 22 years. Radiological examinations were performed in six family members and neuropathological examinations in three. We systematically reviewed the literature and compiled clinical, radiological, and neuropathological data on 63 previously described R406W heterozygotes and 3 homozygotes. Results For all cases combined, the median age of onset was 56 years and the median disease duration was 13 years. Memory impairment was the most frequent symptom, behavioral disturbance and language impairment were less common, and Parkinsonism was rare. Disease progression was most often slow. The most frequent clinical diagnosis was Alzheimer’s disease. R406W homozygotes had an earlier age at onset and a higher frequency of behavioral symptoms and Parkinsonism than heterozygotes. In the new Swedish kindred, a consistent imaging finding was ventromedial temporal lobe atrophy, which was evident also in early disease stages as a widening of the collateral sulcus with ensuing atrophy of the parahippocampal gyrus. Unlike previously published R406W carriers, all three autopsied patients from the novel family showed neuropathological similarities with progressive supranuclear palsy, with predominant four-repeat (exon 10+) tau isoform (4R) tauopathy and neurofibrillary tangles accentuated in the basal-medial temporal lobe. Amyloid-β pathology was absent. Conclusions Dominance of 4R over three-repeat (exon 10−) tau isoforms contrasts with earlier reports of R406W patients and was not sufficiently explained by the presence of H1/H2 haplotypes in two of the autopsied patients. R406W patients often show a long course of disease with marked memory deficits. Both our neuropathological results and our imaging findings revealed that the ventromedial temporal lobes were extensively affected in the disease. We suggest that this area may represent the point of origin of tau deposition in this disease with relatively isolated tauopathy. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0330-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emil Ygland
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Getingevägen 4, 221 85, Lund, Sweden
| | - Danielle van Westen
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Diagnostic Radiology, Getingevägen 4, 221 85, Lund, Sweden
| | - Elisabet Englund
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Oncology and Pathology, Sölvegatan 23, 221 85, Lund, Sweden
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Karin Nilsson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Getingevägen 4, 221 85, Lund, Sweden
| | - Christer Nilsson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Getingevägen 4, 221 85, Lund, Sweden
| | - Maria Landqvist Waldö
- Lund University, Skåne University Hospital/Ängelholm Hospital, Department of Clinical Sciences Lund, Memory Clinic, Västersjögatan 10, 262 82, Ängelholm, Sweden
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Clinical and Experimental Pathology, Uppsala University, Rudbecklaboratoriet, 75185, Uppsala, Sweden
| | - Oskar Hansson
- Lund University, Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund, Sweden.,Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden
| | - Lars Gustafson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Getingevägen 4, 221 85, Lund, Sweden
| | - Andreas Puschmann
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Getingevägen 4, 221 85, Lund, Sweden.
| |
Collapse
|
27
|
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disorder characterized by progressive changes in behavior, personality, and language with involvement of the frontal and temporal regions of the brain. About 40% of FTD cases have a positive family history, and about 10% of these cases are inherited in an autosomal-dominant pattern. These gene defects present with distinct clinical phenotypes. As the diagnosis of FTD becomes more recognizable, it will become increasingly important to keep these gene mutations in mind. In this chapter, we review the genes with known associations to FTD. We discuss protein functions, mutation frequencies, clinical phenotypes, imaging characteristics, and pathology associated with these genes.
Collapse
Affiliation(s)
- Jessica Deleon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States.
| |
Collapse
|
28
|
Pir GJ, Choudhary B, Mandelkow E. Caenorhabditis elegans models of tauopathy. FASEB J 2017; 31:5137-5148. [PMID: 29191965 DOI: 10.1096/fj.201701007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022]
Abstract
One of the hallmarks of the tauopathies, which include the neurodegenerative disorders, such as Alzheimer disease (AD), corticobasal degeneration, frontotemporal dementia, and progressive supranuclear palsy (PSP), is the abnormal accumulation of post-translationally modified, insoluble tau. The result is a loss of neurons, decreased mental function, and complete dependence of patients on others. Aggregation of tau, which under physiologic conditions is a highly soluble protein, is thought to be central to the pathogenesis of these diseases. Indeed one of the strongest lines of evidence is the MAPT gene polymorphisms that lead to the familial forms of tauopathy. Extensive research in animal models over the years has contributed some of the most important findings regarding the pathogenesis of these diseases. Despite this, the precise molecular mechanisms that lead to abnormal tau folding, accumulation, and spreading remain unknown. Owing to the fact that most of the biochemical pathways are conserved, Caenorhabditis elegans provides an alternative approach to identify cellular mechanisms and druggable genes that operate in such disorders. Many human genes implicated in neurodegenerative diseases have counterparts in C. elegans, making it an excellent model in which to study their pathogenesis. In this article, we review some of the important findings gained from C. elegans tauopathy models.-Pir, G. J., Choudhary, B., Mandelkow, E. Caenorhabditiselegans models of tauopathy.
Collapse
Affiliation(s)
- Ghulam Jeelani Pir
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; .,Max-Planck-Institute for Metabolism Research-Cologne, Hamburg, Germany
| | - Bikash Choudhary
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Max-Planck-Institute for Metabolism Research-Cologne, Hamburg, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Max-Planck-Institute for Metabolism Research-Cologne, Hamburg, Germany.,Caesar Research Center, Bonn, Germany
| |
Collapse
|
29
|
A Conserved Cytoskeletal Signaling Cascade Mediates Neurotoxicity of FTDP-17 Tau Mutations In Vivo. J Neurosci 2017; 38:108-119. [PMID: 29138281 DOI: 10.1523/jneurosci.1550-17.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 11/21/2022] Open
Abstract
The microtubule binding protein tau is strongly implicated in multiple neurodegenerative disorders, including frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), which is caused by mutations in tau. In vitro, FTDP-17 mutant versions of tau can reduce microtubule binding and increase the aggregation of tau, but the mechanism by which these mutations promote disease in vivo is not clear. Here we take a combined biochemical and in vivo modeling approach to define functional properties of tau driving neurotoxicity in vivo We express wild-type human tau and five FTDP-17 mutant forms of tau in Drosophila using a site-directed insertion strategy to ensure equivalent levels of expression. We then analyze multiple markers of neurodegeneration and neurotoxicity in transgenic animals, including analysis of both males and females. We find that FTDP-17 mutations act to enhance phosphorylation of tau and thus promote neurotoxicity in an in vivo setting. Further, we demonstrate that phosphorylation-dependent excess stabilization of the actin cytoskeleton is a key phosphorylation-dependent mediator of the toxicity of wild-type tau and of all the FTDP-17 mutants tested. Finally, we show that important downstream pathways, including autophagy and the unfolded protein response, are coregulated with neurotoxicity and actin cytoskeletal stabilization in brains of flies expressing wild-type human and various FTDP-17 tau mutants, supporting a conserved mechanism of neurotoxicity of wild-type tau and FTDP-17 mutant tau in disease pathogenesis.SIGNIFICANCE STATEMENT The microtubule protein tau aggregates and forms insoluble inclusion bodies known as neurofibrillary tangles in the brain tissue of patients with a variety of neurodegenerative disorders, including Alzheimer's disease. The tau protein is thus widely felt to play a key role in promoting neurodegeneration. However, precisely how tau becomes toxic is unclear. Here we capitalize on an "experiment of nature" in which rare missense mutations in tau cause familial neurodegeneration and neurofibrillary tangle formation. By comparing the biochemical activities of different tau mutations with their in vivo toxicity in a well controlled Drosophila model system, we find that all mutations tested increase phosphorylation of tau and trigger a cascade of neurotoxicity critically impinging on the integrity of the actin cytoskeleton.
Collapse
|
30
|
Mamelak M. Energy and the Alzheimer brain. Neurosci Biobehav Rev 2017; 75:297-313. [PMID: 28193453 DOI: 10.1016/j.neubiorev.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/01/2023]
Abstract
The high energy demands of the poorly myelinated long axon hippocampal and cortical neurons render these neurons selectively vulnerable to degeneration in Alzheimer's disease. However, pathology engages all of the major elements of the neurovascular unit of the mature Alzheimer brain, the neurons, glia and blood vessels. Neurons present with retrograde degeneration of the axodendritic tree, capillaries with string vessels and markedly reduced densities and glia with signs of inflammatory activation. The neurons, capillaries and astrocytes of the mature Alzheimer brain harbor structurally defective mitochondria. Clinically, reduced glucose utilization, decades before cognitive deterioration, betrays ongoing energy insufficiency. β-hydroxybutyrate and γ-hydroxybutyrate can both provide energy to the brain when glucose utilization is blocked. Early work in mouse models of Alzheimer's disease demonstrate their ability to reverse the pathological changes in the Alzheimer brain and initial clinical trials reveal their ability to improve cognition and every day function. Supplying the brain with energy holds great promise for delaying the onset of Alzheimer's disease and slowing its progress.
Collapse
|
31
|
Marquié M, Normandin MD, Meltzer AC, Chong MST, Andrea NV, Antón-Fernández A, Klunk WE, Mathis CA, Ikonomovic MD, Debnath M, Bien EA, Vanderburg CR, Costantino I, Makaretz S, DeVos SL, Oakley DH, Gomperts SN, Growdon JH, Domoto-Reilly K, Lucente D, Dickerson BC, Frosch MP, Hyman BT, Johnson KA, Gómez-Isla T. Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies. Ann Neurol 2017; 81:117-128. [PMID: 27997036 PMCID: PMC5319193 DOI: 10.1002/ana.24844] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Recent studies have shown that positron emission tomography (PET) tracer AV-1451 exhibits high binding affinity for paired helical filament (PHF)-tau pathology in Alzheimer's brains. However, the ability of this ligand to bind to tau lesions in other tauopathies remains controversial. Our goal was to examine the correlation of in vivo and postmortem AV-1451 binding patterns in three autopsy-confirmed non-Alzheimer tauopathy cases. METHODS We quantified in vivo retention of [F-18]-AV-1451 and performed autoradiography, [H-3]-AV-1451 binding assays, and quantitative tau measurements in postmortem brain samples from two progressive supranuclear palsy (PSP) cases and a MAPT P301L mutation carrier. They all underwent [F-18]-AV-1451 PET imaging before death. RESULTS The three subjects exhibited [F-18]-AV-1451 in vivo retention predominantly in basal ganglia and midbrain. Neuropathological examination confirmed the PSP diagnosis in the first two subjects; the MAPT P301L mutation carrier had an atypical tauopathy characterized by grain-like tau-containing neurites in gray and white matter with heaviest burden in basal ganglia. In all three cases, autoradiography failed to show detectable [F-18]-AV-1451 binding in multiple brain regions examined, with the exception of entorhinal cortex (reflecting incidental age-related neurofibrillary tangles) and neuromelanin-containing neurons in the substantia nigra (off-target binding). The lack of a consistent significant correlation between in vivo [F-18]-AV-1541 retention and postmortem in vitro binding and tau measures in these cases suggests that this ligand has low affinity for tau lesions primarily made of straight tau filaments. INTERPRETATION AV-1451 may have limited utility for in vivo selective and reliable detection of tau aggregates in these non-Alzheimer tauopathies. ANN NEUROL 2017;81:117-128.
Collapse
Affiliation(s)
- Marta Marquié
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | | | - Avery C. Meltzer
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Michael Siao Tick Chong
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | | | | | - William E. Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Chester A. Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Milos D. Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Clinical System, Pittsburgh, PA
| | - Manik Debnath
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Elizabeth A. Bien
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard Neurodiscovery Center, Massachusetts General Hospital, Boston, MA
| | - Charles R. Vanderburg
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard Neurodiscovery Center, Massachusetts General Hospital, Boston, MA
| | - Isabel Costantino
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA
| | - Sara Makaretz
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Sarah L. DeVos
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Derek H. Oakley
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA
- C.S. Kubik Neuropathology Center, Massachusetts General Hospital, Boston, MA
| | - Stephen N. Gomperts
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - John H. Growdon
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | | | - Diane Lucente
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | | | - Matthew P. Frosch
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA
- C.S. Kubik Neuropathology Center, Massachusetts General Hospital, Boston, MA
| | - Bradley T. Hyman
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Keith A. Johnson
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Teresa Gómez-Isla
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
32
|
Tacik P, DeTure MA, Carlomagno Y, Lin WL, Murray ME, Baker MC, Josephs KA, Boeve BF, Wszolek ZK, Graff-Radford NR, Parisi JE, Petrucelli L, Rademakers R, Isaacson RS, Heilman KM, Petersen RC, Dickson DW, Kouri N. FTDP-17 with Pick body-like inclusions associated with a novel tau mutation, p.E372G. Brain Pathol 2016; 27:612-626. [PMID: 27529406 DOI: 10.1111/bpa.12428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/05/2016] [Indexed: 12/23/2022] Open
Abstract
Mutations in microtubule-associated protein tau gene (MAPT) cause frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Here, we describe a patient with FTDP-17 and a novel missense mutation in exon 13 of MAPT, p.E372G. We compare clinicopathologic features of this patient to two previously unreported patients with another exon 13 mutation, p.G389R. The patient with the p.E372G mutation was a 40-year-old man with behavioral variant frontotemporal dementia (bvFTD), who subsequently developed agrammatic speech and parkinsonism. One of the FTDP-17 patients with p.G389R mutation presented at age 24 with agrammatic variant of primary progressive aphasia, and subsequently behavioral dysfunction. The other presented at age 53 with bvFTD, followed by agrammatic speech and corticobasal syndrome. Neuropathologic features of FTDP-17 due to p.E372G were similar to those of p.G389R, including tau-immunoreactive Pick body-like neuronal inclusions and swollen, tapering thread-like processes in white matter immunoreactive for 3-repeat and 4-repeat tau. Biochemical analysis of insoluble tau showed similar isoform compositions in p.E372G and p.G389R. Functional studies of the p.E372G mutation showed marked increase in tau filament formation and its reduced ability to promote microtubule assembly. Together these findings indicate that p.E372G is a pathogenic MAPT mutation that causes FTDP-17 similar to p.G389R.
Collapse
Affiliation(s)
- Pawel Tacik
- Department of Neurology, Mayo Clinic, Jacksonville, FL
| | | | | | - Wen-Lang Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | | | | | | | | | | | | | - Joseph E Parisi
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | - Kenneth M Heilman
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL
| | | | | | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
33
|
Kimura T, Hosokawa T, Taoka M, Tsutsumi K, Ando K, Ishiguro K, Hosokawa M, Hasegawa M, Hisanaga SI. Quantitative and combinatory determination of in situ phosphorylation of tau and its FTDP-17 mutants. Sci Rep 2016; 6:33479. [PMID: 27641626 PMCID: PMC5027580 DOI: 10.1038/srep33479] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/24/2016] [Indexed: 11/09/2022] Open
Abstract
Tau is hyperphosphorylated in the brains of patients with tauopathies, such as Alzheimer's disease and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). However, neither the mechanism of hyperphosphorylation nor its contribution to pathogenesis is known. We applied Phos-tag SDS-PAGE, a phosphoaffinity electrophoresis, to the analysis of tau phosphorylation in vitro by Cdk5, in cultured cells and in mouse brain. Here, we found that Cdk5-p25 phosphorylated tau in vitro at Ser404, Ser235, Thr205 and Ser202 in this order. In contrast in cultured cells, Ser404 was preferentially phosphorylated by Cdk5-p35, whereas Thr205 was not phosphorylated. Ser202 and Ser235 were phosphorylated by endogenous kinases. Tau exhibited ~12 phosphorylation isotypes in COS-7 cells with different combinations of phosphorylation at Thr181, Ser202, Thr231, Ser235 and Ser404. These phosphorylation sites were similar to tau phosphorylated in mouse brains. FTDP-17 tau with a mutation in the C-terminal region had different banding patterns, indicating a different phosphorylation pattern. In particular, it was clear that the R406W mutation causes loss of Ser404 phosphorylation. These results demonstrate the usefulness of the Phos-tag technique in the quantitative analysis of site-specific in vivo phosphorylation of tau and provide detailed information on in situ combinatory phosphorylation of tau.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Tomohisa Hosokawa
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Koji Tsutsumi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Kanae Ando
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | | | - Masato Hosokawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Shin-ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
34
|
Rottscholl R, Haegele M, Jainsch B, Xu H, Respondek G, Höllerhage M, Rösler TW, Bony E, Le Ven J, Guérineau V, Schmitz-Afonso I, Champy P, Oertel WH, Yamada ES, Höglinger GU. Chronic consumption ofAnnona muricatajuice triggers and aggravates cerebral tau phosphorylation in wild-type andMAPTtransgenic mice. J Neurochem 2016; 139:624-639. [DOI: 10.1111/jnc.13835] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 12/22/2022]
Affiliation(s)
| | - Marlen Haegele
- Experimental Neurology; University of Marburg; Marburg Germany
| | - Britta Jainsch
- Experimental Neurology; University of Marburg; Marburg Germany
| | - Hong Xu
- Experimental Neurology; University of Marburg; Marburg Germany
- German Center for Neurodegenerative Diseases (DZNE); Munich Germany
| | - Gesine Respondek
- Experimental Neurology; University of Marburg; Marburg Germany
- German Center for Neurodegenerative Diseases (DZNE); Munich Germany
- Department of Neurology; Technical University Munich; Munich Germany
| | - Matthias Höllerhage
- Experimental Neurology; University of Marburg; Marburg Germany
- German Center for Neurodegenerative Diseases (DZNE); Munich Germany
- Department of Neurology; Technical University Munich; Munich Germany
| | - Thomas W. Rösler
- Experimental Neurology; University of Marburg; Marburg Germany
- German Center for Neurodegenerative Diseases (DZNE); Munich Germany
| | - Emilie Bony
- Laboratoire de Pharmacognosie; BioCIS; Univ. Paris-Sud; CNRS; Université Paris-Saclay; UFR Pharmacie; Châtenay-Malabry France
| | - Jessica Le Ven
- Laboratoire de Pharmacognosie; BioCIS; Univ. Paris-Sud; CNRS; Université Paris-Saclay; UFR Pharmacie; Châtenay-Malabry France
| | - Vincent Guérineau
- Centre de recherche de Gif; Institut de Chimie des Substances Naturelles; CNRS; Gif-sur-Yvette France
| | - Isabelle Schmitz-Afonso
- Centre de recherche de Gif; Institut de Chimie des Substances Naturelles; CNRS; Gif-sur-Yvette France
- Normandie Université; COBRA; UMR 6014 et FR3038; Université de Rouen; INSA de Rouen; CNRS; IRCOF; Mont-Saint-Aignan Cedex France
| | - Pierre Champy
- Laboratoire de Pharmacognosie; BioCIS; Univ. Paris-Sud; CNRS; Université Paris-Saclay; UFR Pharmacie; Châtenay-Malabry France
| | | | - Elizabeth S. Yamada
- Experimental Neurology; University of Marburg; Marburg Germany
- Laboratory of Experimental Neuropathology-ICB; João de Barros Barreto University Hospital; Federal University of Pará; Belém Brazil
| | - Günter U. Höglinger
- Experimental Neurology; University of Marburg; Marburg Germany
- German Center for Neurodegenerative Diseases (DZNE); Munich Germany
- Department of Neurology; Technical University Munich; Munich Germany
| |
Collapse
|
35
|
Haddadi M, Jahromi SR, Nongthomba U, Shivanandappa T, Ramesh SR. 4-Hydroxyisophthalic acid from Decalepis hamiltonii rescues the neurobehavioral deficit in transgenic Drosophila model of taupathies. Neurochem Int 2016; 100:78-90. [PMID: 27615061 DOI: 10.1016/j.neuint.2016.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 11/17/2022]
Abstract
Oxidative stress is one of the major etiological factors implicated in pathogenesis of neurodegenerative diseases. Since neurons are more sensitive to oxidative damage there is an increasing interest in developing novel antioxidant therapies, especially herbal preparations due to their safety profile and high efficiency. In this regard, the neuroprotective potential of a novel antioxidant compound, 4-hydroxyisophthalic acid (4-HIPA) isolated from aqueous extract of Decalepis hamiltonii roots was examined using transgenic Drosophila model of taupathy expressing wild-type and mutant forms of 2N4R isoform of human microtubule associated protein tau (MAPT). Taupathy model flies showed cognitive deficits in olfactory memory and deteriorated circadian rhythm of locomotory activities. Administration of 0.1 mg/ml 4-HIPA, markedly enhanced their olfactory memory performance and restored circadian rhythmicity of the transgenic flies locomotory behavior to the normal range. The mechanism of action that underlies 4-HIPA neuroprotection involves enhancement in efficiency of cellular antioxidant defense system by means of elevation in antioxidant enzyme activities and attenuation of oxidative stress. The molecule could positively affect the activity of neurotransmitter enzymes, which in turn enhances neuronal function and ameliorates the Tau-induced neurobehavioral deficits. Our findings showed that 4-HIPA can be considered as a suitable therapeutic candidate for drug development towards treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | | | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - T Shivanandappa
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - S R Ramesh
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India.
| |
Collapse
|
36
|
Smith R, Puschmann A, Schöll M, Ohlsson T, van Swieten J, Honer M, Englund E, Hansson O. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers. Brain 2016; 139:2372-9. [PMID: 27357347 PMCID: PMC4995360 DOI: 10.1093/brain/aww163] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/27/2016] [Indexed: 12/18/2022] Open
Abstract
Tau positron emission tomography ligands provide the novel possibility to image tau pathology in vivo. However, little is known about how in vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with 18F-AV-1451 in three patients harbouring a p.R406W mutation in the MAPT gene, encoding tau. This mutation results in 3- and 4-repeat tau aggregates similar to those in Alzheimer’s disease, and many of the mutation carriers initially suffer from memory impairment and temporal lobe atrophy. Two patients with short disease duration and isolated memory impairment exhibited 18F-AV-1451 uptake mainly in the hippocampus and adjacent temporal lobe regions, correlating with glucose hypometabolism in corresponding regions. One patient died after 26 years of disease duration with dementia and behavioural deficits. Pre-mortem, there was 18F-AV-1451 uptake in the temporal and frontal lobes, as well as in the basal ganglia, which strongly correlated with the regional extent and amount of tau pathology in post-mortem brain sections. Amyloid-β (18F-flutemetamol) positron emission tomography scans were negative in all cases, as were stainings of brain sections for amyloid. This provides strong evidence that 18F-AV-1451 positron emission tomography can be used to accurately quantify in vivo the regional distribution of hyperphosphorylated tau protein.
Collapse
Affiliation(s)
- Ruben Smith
- 1 Department of Clinical Sciences Lund, Department of Neurology, Lund University, Sweden 2 Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| | - Andreas Puschmann
- 1 Department of Clinical Sciences Lund, Department of Neurology, Lund University, Sweden 2 Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| | - Michael Schöll
- 3 Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sweden 4 MedTech West and the Division of Clinical Neuroscience, Gothenburg University, Gothenburg, Sweden
| | - Tomas Ohlsson
- 5 Department of Radiation physics, Skåne University Hospital, Lund, Sweden
| | - John van Swieten
- 6 Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Michael Honer
- 7 Roche Pharmaceutical Research and Early Development, Neuroscience Discovery and Biomarkers, Roche Innovation Center, Basel, Switzerland
| | - Elisabet Englund
- 8 Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Sweden
| | - Oskar Hansson
- 3 Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sweden 9 Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
37
|
Huang Y, Wu Z, Zhou B. Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity. Cell Mol Life Sci 2016; 73:1-21. [PMID: 26403791 PMCID: PMC11108533 DOI: 10.1007/s00018-015-2042-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/22/2015] [Accepted: 09/08/2015] [Indexed: 12/24/2022]
Abstract
tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
38
|
Musiek ES, Holtzman DM. Three dimensions of the amyloid hypothesis: time, space and 'wingmen'. Nat Neurosci 2015; 18:800-6. [PMID: 26007213 PMCID: PMC4445458 DOI: 10.1038/nn.4018] [Citation(s) in RCA: 501] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/23/2015] [Indexed: 02/07/2023]
Abstract
The amyloid hypothesis, which has been the predominant framework for research in Alzheimer's disease (AD), has been the source of considerable controversy. The amyloid hypothesis postulates that amyloid-β peptide (Aβ) is the causative agent in AD. It is strongly supported by data from rare autosomal dominant forms of AD. However, the evidence that Aβ causes or contributes to age-associated sporadic AD is more complex and less clear, prompting criticism of the hypothesis. We provide an overview of the major arguments for and against the amyloid hypothesis. We conclude that Aβ likely is the key initiator of a complex pathogenic cascade that causes AD. However, we argue that Aβ acts primarily as a trigger of other downstream processes, particularly tau aggregation, which mediate neurodegeneration. Aβ appears to be necessary, but not sufficient, to cause AD. Its major pathogenic effects may occur very early in the disease process.
Collapse
Affiliation(s)
- Erik S Musiek
- Department of Neurology, Knight Alzheimer's Disease Research Center, and Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David M Holtzman
- Department of Neurology, Knight Alzheimer's Disease Research Center, and Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
39
|
Wood R, Moodley K, Hodges JR, Allinson K, Spillantini MG, Chan D. Slowly progressive behavioural presentation in two UK cases with the R406W MAPT mutation. Neuropathol Appl Neurobiol 2015; 42:291-5. [DOI: 10.1111/nan.12247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/18/2015] [Indexed: 11/30/2022]
Affiliation(s)
- R. Wood
- Department of Medicine; Brighton and Sussex Medical School; Brighton UK
| | - K. Moodley
- Department of Medicine; Brighton and Sussex Medical School; Brighton UK
| | - J. R. Hodges
- Department of Neuroscience; Neuroscience Research Australia; Sydney Australia
| | - K. Allinson
- Department of Pathology; University of Cambridge; Cambridge UK
| | - M. G. Spillantini
- Department of Clinical Neurosciences; University of Cambridge; Cambridge UK
| | - D. Chan
- Department of Clinical Neurosciences; University of Cambridge; Cambridge UK
| |
Collapse
|
40
|
Ghetti B, Oblak AL, Boeve BF, Johnson KA, Dickerson BC, Goedert M. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol 2015; 41:24-46. [PMID: 25556536 PMCID: PMC4329416 DOI: 10.1111/nan.12213] [Citation(s) in RCA: 318] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
Abstract
Hereditary frontotemporal dementia associated with mutations in the microtubule-associated protein tau gene (MAPT) is a protean disorder. Three neuropathologic subtypes can be recognized, based on the presence of inclusions made of tau isoforms with three and four repeats, predominantly three repeats and mostly four repeats. This is relevant for establishing a correlation between structural magnetic resonance imaging and positron emission tomography using tracers specific for aggregated tau. Longitudinal studies will be essential to determine the evolution of anatomical alterations from the asymptomatic stage to the various phases of disease following the onset of symptoms.
Collapse
Affiliation(s)
- B Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of MedicineIndianapolis, USA
| | - A L Oblak
- Department of Pathology and Laboratory Medicine, Indiana University School of MedicineIndianapolis, USA
| | - B F Boeve
- Department of Neurology, Mayo ClinicRochester, USA
| | - K A Johnson
- Department of Radiology, Massachusetts General Hospital and Harvard Medical SchoolBoston, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical SchoolBoston, USA
| | - B C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical SchoolBoston, USA
| | - M Goedert
- Medical Research Council, Laboratory of Molecular BiologyCambridge, UK
| |
Collapse
|
41
|
Ishida C, Kobayashi K, Kitamura T, Ujike H, Iwasa K, Yamada M. Frontotemporal dementia with parkinsonism linked to chromosome 17 with the MAPT R406W mutation presenting with a broad distribution of abundant senile plaques. Neuropathology 2014; 35:75-82. [PMID: 25377499 DOI: 10.1111/neup.12154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 08/10/2014] [Indexed: 11/29/2022]
Abstract
We report the autopsy results of a patient with familial dementia who was diagnosed as having frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) with an R406W mutation in the microtubule-associated protein tau (MAPT) gene. This patient showed Alzheimer's disease (AD)-like clinical manifestations from the age of 59, with reduced β-amyloid1-42 (Aβ42 ) and elevated total and phosphorylated tau levels in the cerebrospinal fluid. He did not present with any apparent parkinsonism throughout the disease course. His autopsy at age 73 showed atrophy and neurodegeneration in many brain regions, particularly in the antero-medial temporal cortex and hippocampus, followed by the frontal lobes, with abundant neurofibrillary tangles. In addition, a diffuse distribution of Aβ-positive senile plaques, including many neuritic plaques, was observed and classified as stage C according to the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) criteria. These results suggest that analyzing of the MAPT gene is essential for diagnosing familial dementia, even if amyloid markers such as Aβ42 in the cerebrospinal fluid and amyloid imaging are positive, or if neuropathological findings indicate a diagnosis of AD.
Collapse
Affiliation(s)
- Chiho Ishida
- Department of Neurology, National Hospital Organization Iou Hospital, Komatsu, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Alzheimer's disease (AD) is a clinically heterogeneous neurodegenerative disease with a strong genetic component. Several genes have been associated with AD risk for nearly 20 years. However, it was not until the recent technological advances that allow for the analysis of millions of polymorphisms in thousands of subjects that we have been able to advance our understanding of the genetic complexity of AD susceptibility. Genome-wide association studies and whole-exome and whole-genome sequencing have revealed more than 20 loci associated with AD risk. These studies have provided insights into the molecular pathways that are altered in AD pathogenesis, which have, in turn, provided insight into novel therapeutic targets.
Collapse
Affiliation(s)
- Celeste M Karch
- Department of Psychiatry and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison M Goate
- Department of Psychiatry and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
Huang Y, Wu Z, Cao Y, Lang M, Lu B, Zhou B. Zinc binding directly regulates tau toxicity independent of tau hyperphosphorylation. Cell Rep 2014; 8:831-42. [PMID: 25066125 PMCID: PMC4306234 DOI: 10.1016/j.celrep.2014.06.047] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 05/20/2014] [Accepted: 06/24/2014] [Indexed: 01/13/2023] Open
Abstract
Tau hyperphosphorylation is thought to underlie tauopathy. Working in a Drosophila tauopathy model expressing a human Tau mutant (hTauR406W, or Tau*), we show that zinc contributes to the development of Tau toxicity through two independent actions: by increasing Tau phosphorylation and, more significantly, by directly binding to Tau. Elimination of zinc binding through amino acid substitution of Cys residues has a minimal effect on phosphorylation levels yet essentially eliminates Tau toxicity. The toxicity of the zinc-binding-deficient mutant Tau* (Tau*C2A) and overexpression of native Drosophila Tau, also lacking the corresponding zinc-binding Cys residues, are largely impervious to zinc concentration. Importantly, restoration of zinc-binding ability to Tau* by introduction of a zinc-binding residue (His) into the original Cys positions restores zinc-responsive toxicities in proportion to zinc-binding affinities. These results indicate zinc binding is a substantial contributor to tauopathy and have implications for therapy development.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhihao Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yu Cao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Minglin Lang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bing Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
44
|
Rockenstein E, Ubhi K, Trejo M, Mante M, Patrick C, Adame A, Novak P, Jech M, Doppler E, Moessler H, Masliah E. Cerebrolysin™ efficacy in a transgenic model of tauopathy: role in regulation of mitochondrial structure. BMC Neurosci 2014; 15:90. [PMID: 25047000 PMCID: PMC4122761 DOI: 10.1186/1471-2202-15-90] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/10/2014] [Indexed: 11/30/2022] Open
Abstract
Background Alzheimer’s Disease (AD) and Fronto temporal lobar dementia (FTLD) are common causes of dementia in the aging population for which limited therapeutical options are available. These disorders are associated with Tau accumulation. We have previously shown that CerebrolysinTM (CBL), a neuropeptide mixture with neurotrophic effects, ameliorates the behavioral deficits and neuropathological alterations in amyloid precursor protein (APP) transgenic (tg) mouse model of AD by reducing hyper-phosphorylated Tau. CBL has been tested in clinical trials for AD, however it’s potential beneficial effects in FTLD are unknown. For this purpose we sought to investigate the effects of CBL in a tg model of tauopathy. Accordingly, double tg mice expressing mutant Tau under the mThy-1 promoter and GSK3β (to enhance Tau phosphorylation) were treated with CBL and evaluated neuropathologically. Results Compared to single Tau tg mice the Tau/GSK3β double tg model displayed elevated levels of Tau phosphorylation and neurodegeneration in the hippocampus. CBL treatment reduced the levels of Tau phosphorylation in the dentate gyrus and the degeneration of pyramidal neurons in the temporal cortex and hippocampus of the Tau/GSK3β double tg mice. Interestingly, the Tau/GSK3β double tg mice also displayed elevated levels of Dynamin-related protein-1 (Drp-1), a protein that hydrolyzes GTP and is required for mitochondrial division. Ultrastructural analysis of the mitochondria in the Tau/GSK3β double tg mice demonstrated increased numbers and fragmentation of mitochondria in comparison to non-tg mice. CBL treatment normalized levels of Drp-1 and restored mitochondrial structure. Conclusions These results suggest that the ability of CBL to ameliorate neurodegenerative pathology in the tauopathy model may involve reducing accumulation of hyper-phosphorylated Tau and reducing alterations in mitochondrial biogenesis associated with Tau.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
45
|
Carney RM, Kohli MA, Kunkle BW, Naj AC, Gilbert JR, Züchner S, Pericak-Vance MA. Parkinsonism and distinct dementia patterns in a family with the MAPT R406W mutation. Alzheimers Dement 2014; 10:360-5. [PMID: 23727082 PMCID: PMC3762928 DOI: 10.1016/j.jalz.2013.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/21/2013] [Accepted: 02/28/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND The Arg406Trp (R406W) missense mutation in the microtubule-associated protein-tau gene (MAPT) is a known cause of early-onset dementia. Various dementia phenotypes have been described, including frontotemporal dementia (FTD), FTD with parkinsonism, and early-onset Alzheimer disease (EOAD)-like presentations. METHODS Using whole-exome capture with subsequent sequencing, we identified the R406W mutation in a family with multiple individuals with clinically diagnosed EOAD, in a pattern suggesting autosomal dominant inheritance. We reevaluated all available family members clinically. RESULTS Each of the affected individuals had a course meeting clinical criteria for EOAD. Two distinct disease trajectories were apparent: one rapidly progressive, and the other long and gradual. Four of five affected individuals also manifested parkinsonian symptoms. FTD features were not prominent and, when present, appeared only late in the course of dementia. CONCLUSIONS The MAPT R406W mutation is associated with EOAD-like symptoms and parkinsonism without FTD, as well as distinct cognitive courses.
Collapse
Affiliation(s)
- Regina M Carney
- University of Miami, Miller School of Medicine, John P. Hussman Institute for Human Genomics, Miami, FL, USA
| | - Martin A Kohli
- University of Miami, Miller School of Medicine, John P. Hussman Institute for Human Genomics, Miami, FL, USA
| | - Brian W Kunkle
- University of Miami, Miller School of Medicine, John P. Hussman Institute for Human Genomics, Miami, FL, USA
| | - Adam C Naj
- University of Miami, Miller School of Medicine, John P. Hussman Institute for Human Genomics, Miami, FL, USA
| | - John R Gilbert
- University of Miami, Miller School of Medicine, John P. Hussman Institute for Human Genomics, Miami, FL, USA; University of Miami, Miller School of Medicine, Dr. John T. Macdonald Foundation Department of Human Genetics, Miami, FL, USA
| | - Stephan Züchner
- University of Miami, Miller School of Medicine, John P. Hussman Institute for Human Genomics, Miami, FL, USA; University of Miami, Miller School of Medicine, Dr. John T. Macdonald Foundation Department of Human Genetics, Miami, FL, USA
| | - Margaret A Pericak-Vance
- University of Miami, Miller School of Medicine, John P. Hussman Institute for Human Genomics, Miami, FL, USA; University of Miami, Miller School of Medicine, Dr. John T. Macdonald Foundation Department of Human Genetics, Miami, FL, USA.
| |
Collapse
|
46
|
Yamada ES, Respondek G, Müssner S, de Andrade A, Höllerhage M, Depienne C, Rastetter A, Tarze A, Friguet B, Salama M, Champy P, Oertel WH, Höglinger GU. Annonacin, a natural lipophilic mitochondrial complex I inhibitor, increases phosphorylation of tau in the brain of FTDP-17 transgenic mice. Exp Neurol 2014; 253:113-25. [DOI: 10.1016/j.expneurol.2013.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/12/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
|
47
|
Harms M, Benitez BA, Cairns N, Cooper B, Cooper P, Mayo K, Carrell D, Faber K, Williamson J, Bird T, Diaz-Arrastia R, Foroud TM, Boeve BF, Graff-Radford NR, Mayeux R, Chakraverty S, Goate AM, Cruchaga C. C9orf72 hexanucleotide repeat expansions in clinical Alzheimer disease. JAMA Neurol 2013; 70:736-41. [PMID: 23588422 DOI: 10.1001/2013.jamaneurol.537] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Hexanucleotide repeat expansions in the chromosome 9 open reading frame 72 (C9orf72) gene underlie a significant fraction of frontotemporal dementia and amyotrophic lateral sclerosis. OBJECTIVE To investigate the frequency of C9orf72 repeat expansions in clinically diagnosed late-onset Alzheimer disease (AD). DESIGN, SETTING, AND PATIENTS This case-control study genotyped the C9orf72 repeat expansion in 872 unrelated familial AD cases and 888 control subjects recruited as part of the National Institute on Aging Late-Onset Alzheimer Disease Family Study cohort, a multisite collaboration studying 1000 families with 2 or more individuals clinically diagnosed as having late-onset AD. MAIN OUTCOMES AND MEASURES We determined the presence or absence of the C9orf72 repeat expansion by repeat-primed polymerase chain reaction, the length of the longest nonexpanded allele, segregation of the genotype with disease, and clinical features of repeat expansion carriers. RESULTS Three families showed large C9orf72 hexanucleotide repeat expansions. Two additional families carried more than 30 repeats. Segregation with disease could be demonstrated in 3 families. One affected expansion carrier had neuropathology compatible with AD. In the National Institute on Aging Late-Onset Alzheimer Disease Family Study series, the C9orf72 repeat expansions constituted the second most common pathogenic mutation, just behind the PSEN1 A79V mutation, highlighting the heterogeneity of clinical presentations associated with repeat expansions. CONCLUSIONS AND RELEVANCE C9orf72 repeat expansions explain a small proportion of patients with a clinical presentation indistinguishable from AD, and they highlight the necessity of screening frontotemporal dementia genes in clinical AD cases with strong family history.
Collapse
Affiliation(s)
- Matthew Harms
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Goedert M, Ghetti B, Spillantini MG. Frontotemporal dementia: implications for understanding Alzheimer disease. Cold Spring Harb Perspect Med 2013; 2:a006254. [PMID: 22355793 DOI: 10.1101/cshperspect.a006254] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) comprises a group of behavioral, language, and movement disorders. On the basis of the nature of the characteristic protein inclusions, frontotemporal lobar degeneration (FTLD) can be subdivided into the common FTLD-tau and FTLD-TDP as well as the less common FTLD-FUS and FTLD-UPS. Approximately 10% of cases of FTD are inherited in an autosomal-dominant manner. Mutations in seven genes cause FTD, with those in tau (MAPT), chromosome 9 open reading frame 72 (C9ORF72), and progranulin (GRN) being the most common. Mutations in MAPT give rise to FTLD-tau and mutations in C9ORF72 and GRN to FTLD-TDP. The other four genes are transactive response-DNA binding protein-43 (TARDBP), fused in sarcoma (FUS), valosin-containing protein (VCP), and charged multivesicular body protein 2B (CHMP2B). Mutations in TARDBP and VCP give rise to FTLD-TDP, mutations in FUS to FTLD-FUS, and mutations in CHMP2B to FTLD-UPS. The discovery that mutations in MAPT cause neurodegeneration and dementia has important implications for understanding Alzheimer disease.
Collapse
Affiliation(s)
- Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
| | | | | |
Collapse
|
49
|
Reichelt AC, Killcross S, Wilkinson LS, Humby T, Good MA. Transgenic expression of the FTDP-17 tauV337M mutation in brain dissociates components of executive function in mice. Neurobiol Learn Mem 2013; 104:73-81. [PMID: 23721814 DOI: 10.1016/j.nlm.2013.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/14/2013] [Accepted: 05/16/2013] [Indexed: 11/25/2022]
Abstract
Frontotemporal lobe dementia (FTD) is a heterogeneous range of disorders, a subset of which arise from fully penetrant, autosomal dominant point mutations in the gene coding for the microtubule associated protein tau. These genetic tauopathies are associated with complex behavioural/cognitive disturbances, including compromised executive function. In the present study, we modelled the effects of the FTD with Parkinsonism linked to chromosome 17 (FTDP-17) tauV337M mutation (known as the Seattle Family A mutation) expressed in mice on executive processes using a novel murine analogue of the Stroop task. Employing biconditional discrimination procedures, Experiment 1 showed that normal mice, but not mice with excitotoxic lesions of the medial prefrontal cortex, were able to use context cues to resolve response conflict generated by incongruent stimulus compounds. In contrast to predictions, response conflict resolution was not disrupted by the tauV337M mutation (Experiment 2). However, while context appropriate actions were goal-directed in wild-type mice, performance of tauV337M mice was not goal-directed (Experiment 3). The results indicate that the tauV337M mutation in mice disrupts, selectively, a subset of processes related to executive function.
Collapse
Affiliation(s)
- A C Reichelt
- School of Psychology, The University of New South Wales, Sydney, Australia.
| | | | | | | | | |
Collapse
|
50
|
Goldman JS. New approaches to genetic counseling and testing for Alzheimer's disease and frontotemporal degeneration. Curr Neurol Neurosci Rep 2013; 12:502-10. [PMID: 22773362 DOI: 10.1007/s11910-012-0296-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of new autosomal dominant and susceptibility genes for Alzheimer's disease (AD) and frontotemporal degeneration (FTD) is revealing important new information about the neurodegenerative process and the risk for acquiring these diseases. It is becoming increasingly clear that both the mechanisms that drive these diseases and their phenotypes overlap. New technologies will assist access to genetic testing but may increase difficulty with genetic test interpretation. Thus, the process of genetic counseling and testing for these diseases is becoming more complex. This article will review current knowledge on the genetics of AD and FTD and suggest clinical guidelines for helping families to navigate through these complexities. The implications of future discoveries will be offered.
Collapse
Affiliation(s)
- Jill S Goldman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 W. 168th St., P & S Box 16, New York, NY 10032, USA.
| |
Collapse
|