1
|
Sebastian A, Shanmuganathan MAA, Tripathy C, Chakravarty S, Ghosh S. Understanding Neurogenesis and Neuritogenesis via Molecular Insights, Gender Influence, and Therapeutic Implications: Intervention of Nanomaterials. ACS APPLIED BIO MATERIALS 2025; 8:12-41. [PMID: 39718903 DOI: 10.1021/acsabm.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Neurological disorders impact global health by affecting both central and peripheral nervous systems. Understanding the neurogenic processes, i.e., neurogenesis and neuritogenesis, is of paramount importance in the context of nervous system development and regeneration as they hold promising therapeutic implications. Neurogenesis forms functional neurons from precursor cells, while neuritogenesis involves extending neurites for neuron connections. This review discusses how these processes are influenced by genetics, epigenetics, neurotrophic factors, environment, neuroinflammation, and neurotransmitters. It also covers gender-specific aspects of neurogenesis and neuritogenesis, their impact on brain plasticity, and susceptibility to neurological disorders. Alterations in these processes, under the influence of cytokines, growth factors, neurotransmitters, and aging, are linked to neurological disorders and potential therapeutic targets. Gender-specific effects of pharmacological interventions, like SSRIs, TCAs, atypical antipsychotics, and lithium, are explored in this review. Hormone-mediated effects of BDNF and PPAR-γ agonists, as well as variations in efficacy and tolerability of MAOIs, AEDs, NMDA receptor modulators, and ampakines, are detailed for accurate therapeutic design. The review also discusses nanotechnology's significant contribution to neural tissue regeneration for mending neurodegenerative disorders, enhancing neuronal connectivity, and stem cell differentiation. Gold nanoparticles support hippocampal neurogenesis, while other nanoparticles aid neuron growth and neurite outgrowth. Quantum dots and nanolayered double hydroxides assist neuroregeneration, which improves brain drug delivery. Gender-specific responses to nanomedicines designed to enhance neuroregeneration have not been extensively investigated. However, we have specified certain gender-related variables that should be taken into account during the development of nanomedicines in an aim to improve therapeutic efficacy. Further research on gender-specific responses to nanomedicines in neural processes could enhance personalized treatments for neurological disorders, paving the way for novel therapeutic approaches in neuroscience.
Collapse
Affiliation(s)
- Aishwarya Sebastian
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Mohanraj Alias Ayyappan Shanmuganathan
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chinmayee Tripathy
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sutapa Ghosh
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Sari MHM, Cervi VF, Custódio VN, Prado VC, da Motta KP, Luchese C, Wilhelm EA, Ferreira LM, Cruz L. Blended ƙ-carrageenan and xanthan gum hydrogel containing ketoprofen-loaded nanoemulsions: Design, characterization, and evaluation in an animal model of rheumatoid arthritis. Drug Deliv Transl Res 2025:10.1007/s13346-024-01786-5. [PMID: 39821868 DOI: 10.1007/s13346-024-01786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/19/2025]
Abstract
This study reports the preparation of hydrogels (HG) made with xanthan gum (XG) and ƙ-carrageenan (KC) polysaccharides containing ketoprofen (KET)-loaded nanoemulsions (NK) and their evaluation in a rheumatoid arthritis (RA) model. The nano-based HGs exhibited nanometric-sized droplets (~ 100 nm), an acidic pH (5.10-6.83), drug content above 85%, a suitable spreadability factor, and pseudoplastic flow behavior. The most promising blend (HGCX 2:1) demonstrated sustained KET release, reaching 81.44 ± 6.11% after 5 h, and superior drug concentration in the skin layers (237.91 ± 41.0 µg/g). The formulation was selected due to its enhanced bioadhesiveness, with the HG-NK formulation showing the highest bioadhesion force and occlusion factor. RA was induced by complete Freund's adjuvant (CFA) intraplantar injection into the left hind paw of male and female Swiss mice. Treatments with HGs were applied to the animals' dorsal region for 7 days. Notably, HG-NK demonstrated remarkable efficacy, reversing mechanical sensitivity in male mice and significantly reducing thermal sensitivity in both genders. Moreover, HG-NK provided a significant reduction in paw edema (52-fold in males, 27-fold in females) and inflammatory markers, such as myeloperoxidase activity (32-fold in males, 14-fold in females) and lipid peroxidation (2.5-fold in males, twofold in females). The formulation also promoted greater permeation of KET across the skin. These findings underscore the significant reduction in inflammatory markers by the HG-NK formulation, highlighting its potent anti-inflammatory effects and potential as a promising therapeutic strategy for managing RA.
Collapse
Affiliation(s)
- Marcel Henrique Marcondes Sari
- Departamento de Farmácia Industrial, Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação Em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
- Departamento de Análises Clínicas, Universidade Federal Do Paraná, Curitiba, 80210-170, Brazil.
| | - Verônica Ferrari Cervi
- Departamento de Farmácia Industrial, Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação Em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Vanessa Neuenschwander Custódio
- Departamento de Farmácia Industrial, Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação Em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Vinicius Costa Prado
- Departamento de Farmácia Industrial, Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação Em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Ketlyn Pereira da Motta
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Cristiane Luchese
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Ethel Antunes Wilhelm
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Luana Mota Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Letícia Cruz
- Departamento de Farmácia Industrial, Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação Em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
3
|
Cisneros EP, Morse BA, Savk A, Malik K, Peppas NA, Lanier OL. The role of patient-specific variables in protein corona formation and therapeutic efficacy in nanomedicine. J Nanobiotechnology 2024; 22:714. [PMID: 39548452 PMCID: PMC11566257 DOI: 10.1186/s12951-024-02954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
Despite their potential, the adoption of nanotechnology in therapeutics remains limited, with only around eighty nanomedicines approved in the past 30 years. This disparity is partly due to the "one-size-fits-all" approach in medical design, which often overlooks patient-specific variables such as biological sex, genetic ancestry, disease state, environment, and age that influence nanoparticle behavior. Nanoparticles (NPs) must be transported through systemic, microenvironmental, and cellular barriers that vary across heterogeneous patient populations. Key patient-dependent properties impacting NP delivery include blood flow rates, body fat distribution, reproductive organ vascularization, hormone and protein levels, immune responses, and chromosomal differences. Understanding these variables is crucial for developing effective, patient-specific nanotechnologies. The formation of a protein corona around NPs upon exposure to biological fluids significantly alters NP properties, affecting biodistribution, pharmacokinetics, cytotoxicity, and organ targeting. The dynamics of the protein corona, such as time-dependent composition and formation of soft and hard coronas, depend on NP characteristics and patient-specific serum components. This review highlights the importance of understanding protein corona formation across different patient backgrounds and its implications for NP design, including sex, ancestry, age, environment, and disease state. By exploring these variables, we aim to advance the development of personalized nanomedicine, improving therapeutic efficacy and patient outcomes.
Collapse
Affiliation(s)
- Ethan P Cisneros
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Brinkley A Morse
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas, Austin, USA
| | - Ani Savk
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Khyati Malik
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Olivia L Lanier
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA.
- Department of Biomedical Engineering, University of New Mexico, Albuquerque, NM, USA.
- Cancer Therapeutics Program, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| |
Collapse
|
4
|
Lin Z, Jiwani Z, Serpooshan V, Aghaverdi H, Yang PC, Aguirre A, Wu JC, Mahmoudi M. Sex Influences the Safety and Therapeutic Efficacy of Cardiac Nanomedicine Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305940. [PMID: 37803920 PMCID: PMC10997742 DOI: 10.1002/smll.202305940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Nanomedicine technologies are being developed for the prevention, diagnosis, and treatment of cardiovascular disease (CVD), which is the leading cause of death worldwide. Before delving into the nuances of cardiac nanomedicine, it is essential to comprehend the fundamental sex-specific differences in cardiovascular health. Traditionally, CVDs have been more prevalent in males, but it is increasingly evident that females also face significant risks, albeit with distinct characteristics. Females tend to develop CVDs at a later age, exhibit different clinical symptoms, and often experience worse outcomes compared to males. These differences indicate the need for sex-specific approaches in cardiac nanomedicine. This Perspective discusses the importance of considering sex in the safety and therapeutic efficacy of nanomedicine approaches for the prevention, diagnosis, and treatment of CVD.
Collapse
Affiliation(s)
- Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
| | - Zahra Jiwani
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Haniyeh Aghaverdi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
| | - Phillip C Yang
- Department of Medicine, Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA 94309
| | - Aitor Aguirre
- Regenerative Biology and cell Reprogramming Laboratory, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48823, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48823, USA
| | - Joseph C. Wu
- Department of Medicine, Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA 94309
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA 94305, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
- Connors Center for Women’s Health & Gender Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
5
|
Reinig S, Kuo C, Wu CC, Huang SY, Yu JS, Shih SR. Specific long-term changes in anti-SARS-CoV-2 IgG modifications and antibody functions in mRNA, adenovector, and protein subunit vaccines. J Med Virol 2024; 96:e29793. [PMID: 39023111 DOI: 10.1002/jmv.29793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Various vaccine platforms were developed and deployed against the COVID-19 disease. The Fc-mediated functions of IgG antibodies are essential in the adaptive immune response elicited by vaccines. However, the long-term changes of protein subunit vaccines and their combinations with messenger RNA (mRNA) vaccines are unknown. A total of 272 serum and plasma samples were collected from individuals who received first to third doses of the protein subunit Medigen, the mRNA (BNT, Moderna), or the adenovector AstraZeneca vaccines. The IgG subclass level was measured using enzyme-linked immunosorbent assay, and Fc-N glycosylation was measured using liquid chromatography coupled to tandem mass spectrometry. Antibody-dependent-cellular-phagocytosis (ADCP) and complement deposition (ADCD) of anti-spike (S) IgG antibodies were measured by flow cytometry. IgG1 and 3 reached the highest anti-S IgG subclass level. IgG1, 2, and 4 subclass levels significantly increased in mRNA- and Medigen-vaccinated individuals. Fc-glycosylation was stable, except in female BNT vaccinees, who showed increased bisection and decreased galactosylation. Female BNT vaccinees had a higher anti-S IgG titer than that of males. ADCP declined in all groups. ADCD was significantly lower in AstraZeneca-vaccinated individuals. Each vaccine produced specific long-term changes in Fc structure and function. This finding is critical when selecting a vaccine platform or combination to achieve the desired immune response.
Collapse
Affiliation(s)
- Sebastian Reinig
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Chin Kuo
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chun Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Yu Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Clinical Virology Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
6
|
Reinig S, Kuo C, Wu CC, Huang SY, Yu JS, Shih SR. Specific long-term changes in anti-SARS-CoV-2 IgG modifications and antibody functions in mRNA, adenovector, and protein subunit vaccines. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.06.16.23291455. [PMID: 38559243 PMCID: PMC10980124 DOI: 10.1101/2023.06.16.23291455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Various vaccine platforms were developed and deployed against the COVID-19 disease. The Fc-mediated functions of IgG antibodies are essential in the adaptive immune response elicited by vaccines. However, the long-term changes of protein subunit vaccines and their combinations with mRNA vaccines are unknown. A total of 272 serum and plasma samples were collected from individuals who received first to third doses of the protein subunit Medigen, the mRNA (BNT), or the adenovector AstraZeneca vaccines. The IgG subclass level was measured using enzyme-linked immunosorbent assay, and Fc-N glycosylation was measured using LC-MS/MS. Antibody-dependent phagocytosis (ADCP) and complement deposition (ADCD) of anti-spike (S) IgG antibodies were measured. IgG1 and 3 reached the highest anti-S IgG subclass level. IgG1, 2, and 4 subclass levels significantly increased in mRNA- and Medigen-vaccinated individuals. Fc-glycosylation was stable, except in female BNT vaccinees, who showed increased bisection and decreased galactosylation. Female BNT vaccinees had a higher anti-S IgG titer than that of males. ADCP declined in all groups. ADCD increased in Medigen-vaccinated individuals after the third dose. Each vaccine produced specific long-term changes in Fc structure and function. This finding is critical when selecting a vaccine platform or combination to achieve the desired immune response.
Collapse
Affiliation(s)
- Sebastian Reinig
- Research center for Emerging viral infections, Chang Gung University, Taoyuan, Taiwan
| | - Chin Kuo
- Research center for Emerging viral infections, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chun Wu
- Molecular research center, Chang Gung University, Taoyuan
| | - Sheng-Yu Huang
- Research center for Emerging viral infections, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Molecular research center, Chang Gung University, Taoyuan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
| | - Shin-Ru Shih
- Research center for Emerging viral infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Clinical Virology Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
7
|
Binici B, Rattray Z, Schroeder A, Perrie Y. The Role of Biological Sex in Pre-Clinical (Mouse) mRNA Vaccine Studies. Vaccines (Basel) 2024; 12:282. [PMID: 38543916 PMCID: PMC10975141 DOI: 10.3390/vaccines12030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
In this study, we consider the influence of biological sex-specific immune responses on the assessment of mRNA vaccines in pre-clinical murine studies. Recognising the established disparities in immune function attributed to genetic and hormonal differences between individuals of different biological sexes, we compared the mRNA expression and immune responses in mice of both biological sexes after intramuscular injection with mRNA incorporated within lipid nanoparticles. Regarding mRNA expression, no significant difference in protein (luciferase) expression at the injection site was observed between female and male mice following intramuscular administration; however, we found that female BALB/c mice exhibit significantly greater total IgG responses across the concentration range of mRNA lipid nanoparticles (LNPs) in comparison to their male counterparts. This study not only contributes to the scientific understanding of mRNA vaccine evaluation but also emphasizes the importance of considering biological sex in vaccine study designs during pre-clinical evaluation in murine studies.
Collapse
Affiliation(s)
- Burcu Binici
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (B.B.); (Z.R.)
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (B.B.); (Z.R.)
| | - Avi Schroeder
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel;
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (B.B.); (Z.R.)
| |
Collapse
|
8
|
Poley M. Sex-specific considerations in nanomedicine: highlighting the impact of the menstrual cycle on drug development. Nanomedicine (Lond) 2024; 19:557-560. [PMID: 38127525 DOI: 10.2217/nnm-2023-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Tweetable abstract The female menstrual cycle is one of the most overlooked sex-specific factors in drug distribution and response. Unlocking the potential of nanomedicine demands a fundamental understanding of the impact biological sex has on drug distribution, efficacy and adverse effects.
Collapse
Affiliation(s)
- Maria Poley
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Medicine, Division of Engineering in Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| |
Collapse
|
9
|
Simmons A, Mihalek O, Bimonte Nelson HA, Sirianni RW, Stabenfeldt SE. Acute brain injury and nanomedicine: sex as a biological variable. FRONTIERS IN BIOMATERIALS SCIENCE 2024; 3:1348165. [PMID: 39450372 PMCID: PMC11500709 DOI: 10.3389/fbiom.2024.1348165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Sex as a biological variable has been recognized for decades to be a critical aspect of the drug development process, as differences in drug pharmacology and toxicity in female versus male subjects can drive the success or failure of new therapeutics. These concepts in development of traditional drug systems have only recently begun to be applied for advancing nanomedicine systems that are designed for drug delivery or imaging in the central nervous system (CNS). This review provides a comprehensive overview of the current state of two fields of research - nanomedicine and acute brain injury-centering on sex as a biological variable. We highlight areas of each field that provide foundational understanding of sex as a biological variable in nanomedicine, brain development, immune response, and pathophysiology of traumatic brain injury and stroke. We describe current knowledge on female versus male physiology as well as a growing number of empirical reports that directly address sex as a biological variable in these contexts. In sum, the data make clear two key observations. First, the manner in which sex affects nanomedicine distribution, toxicity, or efficacy is important, complex, and depends on the specific nanoparticle system under considerations; second, although field knowledge is accumulating to enable us to understand sex as a biological variable in the fields of nanomedicine and acute brain injury, there are critical gaps in knowledge that will need to be addressed. We anticipate that understanding sex as a biological variable in the development of nanomedicine systems to treat acute CNS injury will be an important determinant of their success.
Collapse
Affiliation(s)
- Amberlyn Simmons
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Olivia Mihalek
- Department of Neurological Surgery, UMass Chan Medical School, Worcester, MA, United States
| | | | - Rachael W. Sirianni
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
- Department of Neurological Surgery, UMass Chan Medical School, Worcester, MA, United States
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
10
|
Chen Y, Zhang Z, Qian Z, Ma R, Luan M, Sun Y. Sequentially Released Liposomes Enhance Anti-Liver Cancer Efficacy of Tetrandrine and Celastrol-Loaded Coix Seed Oil. Int J Nanomedicine 2024; 19:727-742. [PMID: 38288265 PMCID: PMC10822770 DOI: 10.2147/ijn.s446895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Background A sequential release co-delivery system is an effective strategy to improve anti-cancer efficacy. Herein, multicomponent-based liposomes (TET-CTM/L) loaded with tetrandrine (TET) and celastrol (CEL)-loaded coix seed oil microemulsion (CTM) were fabricated, which showed synergistic anti-liver cancer activities. By virtue of Enhanced Permeability and Retention (EPR) effect, TET-CTM/L can achieve efficient accumulation at the tumor site. TET was released initially to repair abnormal vessels and decrease the fibroblasts, and CTM was released subsequently for eradication of tumor tissue. Methods TEM (transmission electron microscopy) and DLS (dynamic light scattering) were adopted to characterize the TET-CTM/L. Flow cytometry was adopted to examine the cellular uptake and cytotoxicity of HepG2 cells. The HepG2 xenograft nude mice were adopted to evaluate the anti-tumor efficacy and systemic safety of TET-CTM/L. Results TEM images of TET-CTM/L showed the structure of small particle size of CTM within large-size liposomes, indicating that CTM can be encapsulated in liposomes by film dispersion method. In in vitro studies, TET-CTM/L induced massive apoptosis toward HepG2 cells, indicating synergistic cytotoxicity against HepG2 cells. In in vivo studies, TET-CTM/L displayed diminished systemic toxicity compared to celastrol or TET used alone. TET-CTM/L showed the excellent potential for tumor-targeting ability in a biodistribution study. Conclusion Our study provides a new strategy for combining anti-cancer therapy that has good potential not only in the treatment of liver cancer but also can be applied to the treatment of other solid tumors.
Collapse
Affiliation(s)
- Yunyan Chen
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, People’s Republic of China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, 241002, People’s Republic of China
| | - Ziwei Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, People’s Republic of China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, 241002, People’s Republic of China
| | - Zhilei Qian
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Rui Ma
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, People’s Republic of China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, 241002, People’s Republic of China
| | - Minna Luan
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, People’s Republic of China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, 241002, People’s Republic of China
| | - Yu Sun
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, People’s Republic of China
| |
Collapse
|
11
|
Jackman MJ, Li W, Smith A, Workman D, Treacher KE, Corrigan A, Abdulrazzaq F, Sonzini S, Nazir Z, Lawrence MJ, Mahmoudi N, Cant D, Counsell J, Cairns J, Ferguson D, Lenz E, Baquain S, Madla CM, van Pelt S, Moss J, Peter A, Puri S, Ashford M, Mazza M. Impact of the physical-chemical properties of poly(lactic acid)-poly(ethylene glycol) polymeric nanoparticles on biodistribution. J Control Release 2024; 365:491-506. [PMID: 38030083 DOI: 10.1016/j.jconrel.2023.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Nanoparticle (NP) formulations are inherently polydisperse making their structural characterization and justification of specifications complex. It is essential, however, to gain an understanding of the physico-chemical properties that drive performance in vivo. To elucidate these properties, drug-containing poly(lactic acid) (PLA)-poly(ethylene glycol) (PEG) block polymeric NP formulations (or PNPs) were sub-divided into discrete size fractions and analyzed using a combination of advanced techniques, namely cryogenic transmission electron microscopy, small-angle neutron and X-ray scattering, nuclear magnetic resonance, and hard-energy X-ray photoelectron spectroscopy. Together, these techniques revealed a uniquely detailed picture of PNP size, surface structure, internal molecular architecture and the preferred site(s) of incorporation of the hydrophobic drug, AZD5991, properties which cannot be accessed via conventional characterization methodologies. Within the PNP size distribution, it was shown that the smallest PNPs contained significantly less drug than their larger sized counterparts, reducing overall drug loading, while PNP molecular architecture was critical in understanding the nature of in vitro drug release. The effect of PNP size and structure on drug biodistribution was determined by administrating selected PNP size fractions to mice, with the smaller sized NP fractions increasing the total drug-plasma concentration area under the curve and reducing drug concentrations in liver and spleen, due to greater avoidance of the reticuloendothelial system. In contrast, administration of unfractionated PNPs, containing a large population of NPs with extremely low drug load, did not significantly impact the drug's pharmacokinetic behavior - a significant result for nanomedicine development where a uniform formulation is usually an important driver. We also demonstrate how, in this study, it is not practicable to validate the bioanalytical methodology for drug released in vivo due to the NP formulation properties, a process which is applicable for most small molecule-releasing nanomedicines. In conclusion, this work details a strategy for determining the effect of formulation variability on in vivo performance, thereby informing the translation of PNPs, and other NPs, from the laboratory to the clinic.
Collapse
Affiliation(s)
- Mark J Jackman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK.
| | - Weimin Li
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Aaron Smith
- DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - David Workman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Kevin E Treacher
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Adam Corrigan
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Fadi Abdulrazzaq
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Silvia Sonzini
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Zahid Nazir
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - M Jayne Lawrence
- Division of Pharmacy & Optometry and the North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Manchester, UK
| | - Najet Mahmoudi
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot, UK
| | - David Cant
- National Physical Laboratory, Teddington, UK
| | | | - Jonathan Cairns
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Doug Ferguson
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Eva Lenz
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Saif Baquain
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Christine M Madla
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sally van Pelt
- Business, Planning & Operations, AstraZeneca, Cambridge, UK
| | - Jennifer Moss
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Alison Peter
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Mariarosa Mazza
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
12
|
Zhu W, Xu J, Yao X, Mai S, Shu D, Yang W. Metal-organic-framework-based pyroptosis nanotuner with long blood circulation for augmented chemotherapy. Biomater Sci 2023; 11:5918-5930. [PMID: 37470092 DOI: 10.1039/d3bm00813d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Pyroptosis is a proinflammatory form of cell death mediated by members of the gasdermin family, and is a powerful tool against cancer. Herein, a pH-responsive doxorubicin (DOX)-encapsulating zeolitic imidazolate framework-8 (ZIF-8) nanoparticle coated with a carboxybetaine-based zwitterionic polymer (DOX@ZIF-8@PCBMA) was prepared. Furthermore, decitabine (DAC) was loaded to obtain a pyroptosis nanotuner (DOX@ZIF-8@PCBMA-DAC). This nanotuner displayed extended blood circulation and enhanced tumor accumulation. In addition, the ZIF-8 structure and disulfide-crosslinked PCBMA coating endowed DOX@ZIF-8@PCBMA-DAC with acidic-pH- and glutathione-responsive degradation. The nanotuner could robustly activate caspase-3 to induce gasdermin E (GSDME)-dependent pyroptosis via the sustained release of DAC and DOX, contributing to excellent tumor suppression with negligible side effects, which may provide novel insights into traditional chemotherapy.
Collapse
Affiliation(s)
- Weichu Zhu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | - Jian Xu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | - Xianxian Yao
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | - Shuting Mai
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | - Dan Shu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| |
Collapse
|
13
|
Ashkarran AA, Gharibi H, Grunberger JW, Saei AA, Khurana N, Mohammadpour R, Ghandehari H, Mahmoudi M. Sex-Specific Silica Nanoparticle Protein Corona Compositions Exposed to Male and Female BALB/c Mice Plasmas. ACS BIO & MED CHEM AU 2023; 3:62-73. [PMID: 36820312 PMCID: PMC9936498 DOI: 10.1021/acsbiomedchemau.2c00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
As various nanoparticles (NPs) are increasingly being used in nanomedicine products for more effective and less toxic therapy and diagnosis of diseases, there is a growing need to understand their biological fate in different sexes. Herein, we report a proof-of-concept result of sex-specific protein corona compositions on the surface of silica NPs as a function of their size and porosity upon incubation with plasma proteins of female and male BALB/c mice. Our results demonstrate substantial differences between male and female protein corona profiles on the surface of silica nanoparticles. By comparing protein abundances between male and female protein coronas of mesoporous silica nanoparticles and Stöber silica nanoparticles of ∼100, 50, and 100 nm in diameter, respectively, we detected 17, 4, and 4 distinct proteins, respectively, that were found at significantly different concentrations for these constructs. These initial findings demonstrate that animal sex can influence protein corona formation on silica NPs as a function of the physicochemical properties. A more thorough consideration of the role of plasma sex would enable nanomedicine community to design and develop safer and more efficient diagnostic and therapeutic nanomedicine products for both sexes.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hassan Gharibi
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institute, SE-17 165 Stockholm, Sweden
| | - Jason W. Grunberger
- Utah
Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Amir Ata Saei
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institute, SE-17 165 Stockholm, Sweden
| | - Nitish Khurana
- Utah
Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Raziye Mohammadpour
- Utah
Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Hamidreza Ghandehari
- Utah
Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
- Department
of Biomedical Engineering, University of
Utah, Salt Lake City, Utah 84112, United
States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
- Mary
Horrigan Connors Center for Women’s Health and Gender Biology,
Brigham and Women’s Hospital, Harvard
Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|