1
|
Soldatova NS, Radzhabov AD, Ivanov DM, Burguera S, Frontera A, Abramov PA, Postnikov PS, Kukushkin VY. Key-to-lock halogen bond-based tetragonal pyramidal association of iodonium cations with the lacune rims of beta-octamolybdate. Chem Sci 2024; 15:12459-12472. [PMID: 39118643 PMCID: PMC11304769 DOI: 10.1039/d4sc01695e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/16/2024] [Indexed: 08/10/2024] Open
Abstract
The structure-directing "key-to-lock" interaction of double σ-(IIII)-hole donating iodonium cations with the O-flanked pseudo-lacune rims of [β-Mo8O26]4- gives halogen-bonded iodonium-beta-octamolybate supramolecular associates. In the occurrence of their tetragonal pyramidal motifs, deep and broad σ-(IIII)-holes of a cation recognize the molybdate backbone, which provides an electronic pool localized around the two lacunae. The halogen-bonded I⋯O linkages in the structures were thoroughly studied computationally and classified as two-center, three-center bifurcated, and unconventional "orthogonal" I⋯O halogen bonds. In the latter, the O-atom approaches orthogonally the C-IIII-C plane of an iodonium cation and this geometry diverge from the IUPAC criteria for the identification of the halogen bond.
Collapse
Affiliation(s)
- Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
| | - Amirbek D Radzhabov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
| | - Daniil M Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
- Institute of Chemistry, Saint Petersburg State University Universitetskaya Nab. 7/9 Saint Petersburg 199034 Russian Federation
| | - Sergi Burguera
- Department of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 Palma de Mallorca (Baleares) 07122 Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 Palma de Mallorca (Baleares) 07122 Spain
| | - Pavel A Abramov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 Acad. Lavrentiev Av. Novosibirsk 630090 Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
- Department of Solid State Engineering, University of Chemical Technology Prague 16628 Czech Republic
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University Universitetskaya Nab. 7/9 Saint Petersburg 199034 Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University Barnaul 656049 Russian Federation
| |
Collapse
|
2
|
Taghiyar H, Yadollahi B, Kajani AA. Controlled drug delivery and cell adhesion for bone tissue regeneration by Keplerate polyoxometalate (Mo 132)/metronidazole/PMMA scaffolds. Sci Rep 2022; 12:14443. [PMID: 36002474 PMCID: PMC9402948 DOI: 10.1038/s41598-022-18622-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study is to fabricate a new scaffold appropriate for tissue regeneration with antimicrobial activity and ability of controlled drug delivery. In this regard, scaffold nanofibers were produced using poly (methyl methacrylate) (PMMA), Mo132 as a Keplerate polyoxometalate and metronidazole. The final scaffolds, obtained by electrospinning, represent the intrinsic features including exceptional doubling tensile strength, high hydrophilicity (126 ± 5.2° to 83.9 ± 3.2° for contact angle and 14.18 ± 0.62% to 35.62 ± 0.24% for water uptake), proper bioactivity and cell adhesion. Moreover, the addition of Mo132 and metronidazole enhances the biodegradation rate of resulted scaffolds compared to the pure PMMA membrane. The controlled release of metronidazole over 14 days efficiently inhibits the colonization of anaerobic microorganisms. Overall, the results demonstrate high potential of Mo132 and metronidazole-loaded PMMA scaffold for guided bone regeneration/guided tissue regeneration.
Collapse
Affiliation(s)
- Hamid Taghiyar
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Bahram Yadollahi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Abolghasem Abbasi Kajani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| |
Collapse
|
3
|
Gao N, Liu Z, Zhang H, Liu C, Yu D, Ren J, Qu X. Site-Directed Chemical Modification of Amyloid by Polyoxometalates for Inhibition of Protein Misfolding and Aggregation. Angew Chem Int Ed Engl 2022; 61:e202115336. [PMID: 35137505 DOI: 10.1002/anie.202115336] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/09/2022]
Abstract
Post-translational modification (PTM) of protein can significantly change protein conformation and function. Inspired by the natural PTM, we present a new approach to inhibit amyloid aggregation by chemical PTM modification. Polyoxometalates (POMs) were used as examples of inhibitors of β-amyloid peptide (Aβ) aggregation to illustrate the chemical PTM method. After the POMs were modified with thiazolidinethione (TZ), the resulting POMD-TZ acted as a chemical PTM agent and could covalently modify Aβ site-selectively at Lys16. Multiple biophysical techniques and biochemical assays have been employed to show the superiority of the chemical PTM method compared to traditional Aβ inhibitors. Since Aβ oligomers are more cytotoxic, we further functionalized POMD-TZ with an Aβ-targeted peptide and a fluorescent probe to obtain an "Aβ oligomer sensitive" probe. The use of PTM agents for the site-directed chemical modification of proteins provides a new way to regulate amyloid aggregation.
Collapse
Affiliation(s)
- Nan Gao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haochen Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Dongqin Yu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
4
|
Gao N, Liu Z, Zhang H, Liu C, Yu D, Ren J, Qu X. Site‐Directed Chemical Modification of Amyloid by Polyoxometalates for Inhibition of Protein Misfolding and Aggregation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nan Gao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Haochen Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Dongqin Yu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
5
|
Gong L, Ding W, Chen Y, Yu K, Guo C, Zhou B. Inhibition of Mitochondrial ATP Synthesis and Regulation of Oxidative Stress Based on {SbW
8
O
30
} Determined by Single‐Cell Proteomics Analysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lige Gong
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 P. R. China
| | - Wenqiao Ding
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
| | - Ying Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
| | - Kai Yu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 P. R. China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
| | - Baibin Zhou
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 P. R. China
| |
Collapse
|
6
|
Gong L, Ding W, Chen Y, Yu K, Guo C, Zhou B. Inhibition of Mitochondrial ATP Synthesis and Regulation of Oxidative Stress Based on {SbW 8 O 30 } Determined by Single-Cell Proteomics Analysis. Angew Chem Int Ed Engl 2021; 60:8344-8351. [PMID: 33491871 DOI: 10.1002/anie.202100297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/21/2022]
Abstract
The 10-nuclear heteroatom cluster modified {SbW8 O30 } was successfully synthesized and exhibited inhibitory activity (IC50 =0.29 μM). Based on proteomics analysis, Na4 Ni2 Sb2 W2 -SbW8 inhibited ATP production by affecting the expression of 16 related proteins, hindering metabolic functions in vivo and cell proliferation due to reactive oxygen species (ROS) stress. In particular, the low expression of FAD/FMN-binding redox enzymes (relative expression ratio of the experimental group to the control=0.43843) could be attributed to the redox mechanism of Na4 Ni2 Sb2 W2 -SbW8 , which was consistent with the effect of polyoxometalates (POMs) and FMN-binding proteins on ATP formation. An electrochemical study showed that Na4 Ni2 Sb2 W2 -SbW8 combined with FMN to form Na4 Ni2 Sb2 W2 -SbW8 -2FMN complex through a one-electron process of the W atoms. Na4 Ni2 Sb2 W2 -SbW8 acted as catalase and glutathione peroxidase to protect the cell from ROS stress, and the inhibition rates were 63.3 % at 1.77 μM of NADPH and 86.06 % at 10.62 μM of 2-hydroxyterephthalic acid. Overall, our results showed that POMs can be specific oxidative/antioxidant regulatory agents.
Collapse
Affiliation(s)
- Lige Gong
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, P. R. China
| | - Wenqiao Ding
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ying Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Kai Yu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, P. R. China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Baibin Zhou
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, P. R. China
| |
Collapse
|
7
|
Quemé‐Peña M, Juhász T, Mihály J, Cs. Szigyártó I, Horváti K, Bősze S, Henczkó J, Pályi B, Németh C, Varga Z, Zsila F, Beke‐Somfai T. Manipulating Active Structure and Function of Cationic Antimicrobial Peptide CM15 with the Polysulfonated Drug Suramin: A Step Closer to in Vivo Complexity. Chembiochem 2019; 20:1578-1590. [PMID: 30720915 PMCID: PMC6618317 DOI: 10.1002/cbic.201800801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/11/2022]
Abstract
Antimicrobial peptides (AMPs) kill bacteria by targeting their membranes through various mechanisms involving peptide assembly, often coupled with disorder-to-order structural transition. However, for several AMPs, similar conformational changes in cases in which small organic compounds of both endogenous and exogenous origin have induced folded peptide conformations have recently been reported. Thus, the function of AMPs and of natural host defence peptides can be significantly affected by the local complex molecular environment in vivo; nonetheless, this area is hardly explored. To address the relevance of such interactions with regard to structure and function, we have tested the effects of the therapeutic drug suramin on the membrane activity and antibacterial efficiency of CM15, a potent hybrid AMP. The results provided insight into a dynamic system in which peptide interaction with lipid bilayers is interfered with by the competitive binding of CM15 to suramin, resulting in an equilibrium dependent on peptide-to-drug ratio and vesicle surface charge. In vitro bacterial tests showed that when CM15⋅suramin complex formation dominates over membrane binding, antimicrobial activity is abolished. On the basis of this case study, it is proposed that small-molecule secondary structure regulators can modify AMP function and that this should be considered and could potentially be exploited in future development of AMP-based antimicrobial agents.
Collapse
Affiliation(s)
- Mayra Quemé‐Peña
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Tünde Juhász
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Judith Mihály
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Imola Cs. Szigyártó
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Kata Horváti
- MTA-ELTE Research Group of Peptide ChemistryHungarian Academy of SciencesEötvös Loránd UniversityPázmány Péter sétány 1/A1117BudapestHungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide ChemistryHungarian Academy of SciencesEötvös Loránd UniversityPázmány Péter sétány 1/A1117BudapestHungary
| | - Judit Henczkó
- National Biosafety LaboratoryNational Public Health CenterAlbert Flórián út 21097BudapestHungary
| | - Bernadett Pályi
- National Biosafety LaboratoryNational Public Health CenterAlbert Flórián út 21097BudapestHungary
| | - Csaba Németh
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Zoltán Varga
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Ferenc Zsila
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Tamás Beke‐Somfai
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| |
Collapse
|
8
|
Bijelic A, Aureliano M, Rompel A. Polyoxometalates as Potential Next-Generation Metallodrugs in the Combat Against Cancer. Angew Chem Int Ed Engl 2019; 58:2980-2999. [PMID: 29893459 PMCID: PMC6391951 DOI: 10.1002/anie.201803868] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 02/05/2023]
Abstract
Polyoxometalates (POMs) are an emerging class of inorganic metal oxides, which over the last decades demonstrated promising biological activities by the virtue of their great diversity in structures and properties. They possess high potential for the inhibition of various tumor types; however, their unspecific interactions with biomolecules and toxicity impede their clinical usage. The current focus of the field of biologically active POMs lies on organically functionalized and POM-based nanocomposite structures as these hybrids show enhanced anticancer activity and significantly reduced toxicity towards normal cells in comparison to unmodified POMs. Although the antitumor activity of POMs is well documented, their mechanisms of action are still not well understood. In this Review, an overview is given of the cytotoxic effects of POMs with a special focus on POM-based hybrid and nanocomposite structures. Furthermore, we aim to provide proposed mode of actions and to identify molecular targets. POMs are expected to develop into the next generation of anticancer drugs that selectively target cancer cells while sparing healthy cells.
Collapse
Affiliation(s)
- Aleksandar Bijelic
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Manuel Aureliano
- Universidade do AlgarveFaculdade de Ciências e Tecnologia (FCT), CCMar8005-139FaroPortugal
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| |
Collapse
|
9
|
Modugno G, Fabbretti E, Dalle Vedove A, Da Ros T, Maccato C, Hosseini HS, Bonchio M, Carraro M. Tracking Fluorescent Polyoxometalates within Cells. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gloria Modugno
- ITM-CNR and Department of Chemical Sciences; University of Padova; Via F. Marzolo 1 Padova Italy
| | - Elsa Fabbretti
- Laboratory for Environmental and Life Sciences; University of Nova Gorica; Vipavska 13 Rožna Dolina, Nova Gorica Slovenia
| | - Andrea Dalle Vedove
- ITM-CNR and Department of Chemical Sciences; University of Padova; Via F. Marzolo 1 Padova Italy
| | - Tatiana Da Ros
- INSTM - Trieste Unit and Department of Chemical and Pharmaceutical Sciences; University of Trieste; Via L. Giorgieri 1 Trieste Italy
| | - Chiara Maccato
- ITM-CNR and Department of Chemical Sciences; University of Padova; Via F. Marzolo 1 Padova Italy
| | - Hadigheh Sadat Hosseini
- ITM-CNR and Department of Chemical Sciences; University of Padova; Via F. Marzolo 1 Padova Italy
| | - Marcella Bonchio
- ITM-CNR and Department of Chemical Sciences; University of Padova; Via F. Marzolo 1 Padova Italy
| | - Mauro Carraro
- ITM-CNR and Department of Chemical Sciences; University of Padova; Via F. Marzolo 1 Padova Italy
| |
Collapse
|
10
|
Bijelic A, Aureliano M, Rompel A. Im Kampf gegen Krebs: Polyoxometallate als nächste Generation metallhaltiger Medikamente. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803868] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aleksandar Bijelic
- Universität WienFakultät für ChemieInstitut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Manuel Aureliano
- Universidade do AlgarveFaculdade de Ciências e Tecnologia (FCT), CCMar 8005-139 Faro Portugal
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| |
Collapse
|
11
|
Polyoxometalate-metal organic framework-lipase: An efficient green catalyst for synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid. Int J Biol Macromol 2018; 113:8-19. [PMID: 29454949 DOI: 10.1016/j.ijbiomac.2018.02.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/05/2017] [Accepted: 02/04/2018] [Indexed: 10/18/2022]
Abstract
Iron-carboxylate (MIL-100(Fe)) and HKUST-1 (Cu3(BTC)2, BTC=1,3,5-benzenetricarboxylic acid) as nanoporous metal organic framework supports were compared for immobilization of porcine pancreatic lipase (PPL). These immobilizations improved thermal, pH and operational stability of PPL compared to the soluble enzyme. Stability of MIL-100(Fe) was better than HKUST-1 as support. MIL-100(Fe) encapsulated Keggin phosphotungstic acid H3PW12O40 (PW) (PW@MIL-100(Fe)) was synthesized to develop novel enzyme immobilized system and characterized by Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) and Barrett Joyner Halenda (BJH) analysis. Relative activity for immobilized lipase on PW@MIL-100(Fe) was more than MIL-100(Fe) in pH range of 3-9. At the elevated temperature of 70°C, the PW@MIL-100(Fe) was the most stable one. PW@MIL-100(Fe)/PPL substrate exhibited the higher stability at 4°C and 25°C, along with other supports. Moreover, PW@MIL-100(Fe) was chosen as the best support for immobilization of PPL and was also applied for the synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid. The immobilized enzyme retained 90.4% of its initial activity during synthesis of benzyl cinnamate after 5 successive catalytic rounds and reached 80.0% yield after 8 reuses.
Collapse
|
12
|
An Unusual Bi-arsenic Capped Well-Dawson Arsenomolybdate Hybrid Supramolecular Material with Photocatalytic Property and Anticancer Activity. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0760-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Li J, Li X, Xu J, Wang Y, Wu L, Wang Y, Wang L, Lee M, Li W. Engineering the Ionic Self-Assembly of Polyoxometalates and Facial-Like Peptides. Chemistry 2016; 22:15751-15759. [DOI: 10.1002/chem.201602449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Jingfang Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry; Jilin University; Qianjin Avenue 2699 Changchun 130012 P.R. China
| | - Xiaodong Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry; Jilin University; Qianjin Avenue 2699 Changchun 130012 P.R. China
| | - Jing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry; Jilin University; Qianjin Avenue 2699 Changchun 130012 P.R. China
| | - Yang Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry; Jilin University; Qianjin Avenue 2699 Changchun 130012 P.R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry; Jilin University; Qianjin Avenue 2699 Changchun 130012 P.R. China
| | - Yanqiu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry; Jilin University; Qianjin Avenue 2699 Changchun 130012 P.R. China
| | - Liyan Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry; Jilin University; Qianjin Avenue 2699 Changchun 130012 P.R. China
| | - Myongsoo Lee
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry; Jilin University; Qianjin Avenue 2699 Changchun 130012 P.R. China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry; Jilin University; Qianjin Avenue 2699 Changchun 130012 P.R. China
| |
Collapse
|
14
|
Solé-Daura A, Goovaerts V, Stroobants K, Absillis G, Jiménez-Lozano P, Poblet JM, Hirst JD, Parac-Vogt TN, Carbó JJ. Probing Polyoxometalate-Protein Interactions Using Molecular Dynamics Simulations. Chemistry 2016; 22:15280-15289. [DOI: 10.1002/chem.201602263] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Albert Solé-Daura
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Vincent Goovaerts
- Laboratory of Bioinorganic Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Karen Stroobants
- Laboratory of Bioinorganic Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Gregory Absillis
- Laboratory of Bioinorganic Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Pablo Jiménez-Lozano
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Josep M. Poblet
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Jonathan D. Hirst
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
| | - Tatjana N. Parac-Vogt
- Laboratory of Bioinorganic Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Jorge J. Carbó
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| |
Collapse
|
15
|
Gao N, Sun H, Dong K, Ren J, Qu X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer's disease. Chemistry 2014; 21:829-35. [PMID: 25376633 DOI: 10.1002/chem.201404562] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 01/25/2023]
Abstract
Targeting amyloid-β (Aβ)-induced complex neurotoxicity has received considerable attention in the therapeutic and preventive treatment of Alzheimer's disease (AD). The complex pathogenesis of AD suggests that it requires comprehensive treatment, and drugs with multiple functions against AD are more desirable. Herein, AuNPs@POMD-pep (AuNPs: gold nanoparticles, POMD: polyoxometalate with Wells-Dawson structure, pep: peptide) were designed as a novel multifunctional Aβ inhibitor. AuNPs@POMD-pep shows synergistic effects in inhibiting Aβ aggregation, dissociating Aβ fibrils and decreasing Aβ-mediated peroxidase activity and Aβ-induced cytotoxicity. By taking advantage of AuNPs as vehicles that can cross the blood-brain barrier (BBB), AuNPs@POMD-pep can cross the BBB and thus overcome the drawbacks of small-molecule anti-AD drugs. Thus, this work provides new insights into the design and synthesis of inorganic nanoparticles as multifunctional therapeutic agents for treatment of AD.
Collapse
Affiliation(s)
- Nan Gao
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022 (P. R. China)
| | | | | | | | | |
Collapse
|
16
|
Li HW, Wang Y, Zhang T, Wu Y, Wu L. Selective Binding of Amino Acids on Europium-Substituted Polyoxometalates and the Interaction-Induced Luminescent Enhancement Effect. Chempluschem 2014. [DOI: 10.1002/cplu.201402091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Shen JQ, Wu Q, Zhang Y, Zhang ZM, Li YG, Lu Y, Wang EB. Unprecedented high-nuclear transition-metal-cluster-substituted heteropolyoxoniobates: synthesis by {V8 } ring insertion into the POM matrix and antitumor activities. Chemistry 2014; 20:2840-8. [PMID: 24590496 DOI: 10.1002/chem.201303995] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/30/2013] [Indexed: 11/06/2022]
Abstract
Reactions of hexaniobate with vanadate in the presence of Ni(2+) , Zn(2+) , or Cu(2+) have furnished three high-nuclear vanadium cluster-substituted heteropolyoxoniobates (HPNs): {Ni(en)3 }5 H{V(V) Nb8 V(IV) 8 O44 }⋅9 H2 O (1), (H2 en)Na2 [{Zn(en)2 (Hen)}{Zn(en)2 (H2 O)}2 {PNb8 V(IV) 8 O44 }]⋅11 H2 O (2), and Na{Cu(en)2 }3 {[Cu(en)2 ]2 [PNb8 V(IV) 8 O44 ]}⋅11 H2 O (3) (en=1,2-diaminoethane). Their structures have been determined and characterized by single-crystal X-ray diffraction analysis, thermogravimetric analysis (TGA), and elemental analysis. Structural analysis has revealed that compounds 1-3 contain similar {V8 }-substituted [X(V) Nb8 V(IV) 8 O44 ](11-) (X=P, V) clusters, obtained by inserting a {V8 } ring into tetravacant HPN [XNb8 O36 ](27-) . To the best of our knowledge, compounds 1-3 represent the first high-nuclear vanadium cluster-substituted HPNs, and compound 1 is the largest vanadoniobate cluster yet obtained in HPN chemistry. Nickel and zinc cations have been introduced into HPNs for the first time, which might promise a more diverse set of structures in this family. Antitumor studies have indicated that compounds 1 and 2 exhibit high activity against human gastric cancer SGC-7901 cells, SC-1680 cells, and MG-63 cells.
Collapse
Affiliation(s)
- Jian-Qiang Shen
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Renmin Street No. 5268, Changchun, Jilin, 130024 (P.R. China)
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang L, Zhou BB, Yu K, Su ZH, Gao S, Chu LL, Liu JR, Yang GY. Novel antitumor agent, trilacunary Keggin-type tungstobismuthate, inhibits proliferation and induces apoptosis in human gastric cancer SGC-7901 cells. Inorg Chem 2013; 52:5119-27. [PMID: 23573961 DOI: 10.1021/ic400019r] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A new one-dimensional chain-like compound of tungstobismuthate, [(W(OH)2)2 (Mn(H2O)3)2(Na3(H2O)14)(BiW9O33)2](Himi)2·16H2O (1) (imi = iminazole), has been synthesized in aqueous solution. The structure of 1 was identified by elemental analysis, IR, thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), (183)W-NMR, and single crystal X-ray diffraction. To investigate the inhibitory effect of 1 on human gastric adenocarcinoma SGC-7901 cells, cell proliferation and apoptosis initiation were examined by MTT assay (MTT = 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide), flow cytometry, nuclear staining, transmission electron microscopy, single cell gel electrophoresis, DNA fragmentation, and Western blotting. The results showed that 1 inhibited cell proliferation and induced apoptosis in SGC-7901 cells in dose-dependent manner. In addition, 1 also decreased the expression of bcl-2 protein and nuclear factor-κB p65 protein in SGC-7901 cells. And expression of bcl-2 protein exhibits a decreasing trend with increase of concentration of 1. Thus, 1 possessed a potential antitumor activity in SGC-7901 cells. This suggests that polyoxotungstates will provide a promising and novel antitumor agent in prevention and treatment of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis Colleges of Heilongjiang Province, Department of Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nabika H, Inomata Y, Itoh E, Unoura K. Activity of Keggin and Dawson polyoxometalates toward model cell membrane. RSC Adv 2013. [DOI: 10.1039/c3ra41522h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Geng J, Li M, Ren J, Wang E, Qu X. Polyoxometalates as Inhibitors of the Aggregation of Amyloid β Peptides Associated with Alzheimer’s Disease. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007067] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Geng J, Li M, Ren J, Wang E, Qu X. Polyoxometalates as Inhibitors of the Aggregation of Amyloid β Peptides Associated with Alzheimer’s Disease. Angew Chem Int Ed Engl 2011; 50:4184-8. [DOI: 10.1002/anie.201007067] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/16/2011] [Indexed: 01/23/2023]
|
22
|
Thorimbert S, Hasenknopf B, Lacôte E. Cross-Linking Organic and Polyoxometalate Chemistries. Isr J Chem 2011. [DOI: 10.1002/ijch.201000080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|