1
|
Momeni T, Zadsirjan V, Hadi Meshkatalsadat M, Pourmohammadi‐Mahunaki M. Applications of Cobalt‐Catalyzed Reactions in the Total Synthesis of Natural Products. ChemistrySelect 2022. [DOI: 10.1002/slct.202202816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tayebeh Momeni
- Department of Chemistry Qom University of Technology Qom Iran 3718146645
- Department of Chemistry School of Science Alzahra University Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry Malek Ashtar University of Technology Tehran Iran
| | | | | |
Collapse
|
2
|
Chen B, Wu Q, Xu D, Zhang X, Ding Y, Bao S, Zhang X, Wang L, Chen Y. A Two-Phase Approach to Fusicoccane Synthesis To Uncover a Compound That Reduces Tumourigenesis in Pancreatic Cancer Cells. Angew Chem Int Ed Engl 2022; 61:e202117476. [PMID: 35166433 DOI: 10.1002/anie.202117476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Alterbrassicicene D (1) and 3(11)-epoxyhypoestenone (2) were synthesised via a two-phase approach featuring concise construction of the 5-8-5 tricyclic intermediate and a tandem base-mediated epoxide opening-transannular oxa-Michael addition cascade to forge the complex skeleton of 2. The route is scalable and we generated 15 g of the tricyclic intermediate in 8 steps from (R)-limonene and 720 mg of the penultimate bioactive intermediate in a protecting-group-free manner. Our synthesis enabled the structural determination of 2 and provided materials for preliminary anticancer evaluation. The penultimate intermediate showed therapeutic potential in terms of its ability to dramatically reduce the tumourigenic potential of PANC-1 pancreatic cancer cells according to a limiting dilution tumour-initiating assay. Our synthetic approach will facilitate unified access to naturally occurring fusicoccanes and their derivatives for anticancer evaluation.
Collapse
Affiliation(s)
- Bolin Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Qianwei Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Dongdong Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Xijing Zhang
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Yahui Ding
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Shiqi Bao
- Accendatech Company, Ltd, 7 Fengze Road, Tianjin, 300384, P. R. China
| | - Xuemei Zhang
- Accendatech Company, Ltd, 7 Fengze Road, Tianjin, 300384, P. R. China
| | - Liang Wang
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Yue Chen
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Chen B, Wu Q, Xu D, Zhang X, Ding Y, Bao S, Zhang X, Wang L, Chen Y. A Two‐Phase Approach to Fusicoccane Synthesis To Uncover a Compound That Reduces Tumourigenesis in Pancreatic Cancer Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bolin Chen
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Qianwei Wu
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Dongdong Xu
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Xijing Zhang
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Yahui Ding
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Shiqi Bao
- Accendatech Company, Ltd 7 Fengze Road Tianjin 300384 P. R. China
| | - Xuemei Zhang
- Accendatech Company, Ltd 7 Fengze Road Tianjin 300384 P. R. China
| | - Liang Wang
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Yue Chen
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| |
Collapse
|
4
|
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry Indian Institute of Technology-Bombay Powai Mumbai 400 076 India
| | - Ambareen Fatma
- Department of Chemistry Indian Institute of Technology-Bombay Powai Mumbai 400 076 India
| |
Collapse
|
5
|
Förster T, Shang E, Shimizu K, Sanada E, Schölermann B, Huebecker M, Hahne G, López-Alberca MP, Janning P, Watanabe N, Sievers S, Giordanetto F, Shimizu T, Ziegler S, Osada H, Waldmann H. 2-Sulfonylpyrimidines Target the Kinesin HSET via Cysteine Alkylation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tim Förster
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; Technical University of Dortmund; Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Erchang Shang
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Kenshiro Shimizu
- Chemical Biology Research Group; RIKEN Center for Sustainable Resource
- Science; 2-1 Hirosawa 351-0198 Wako, Saitama Japan
| | - Emiko Sanada
- Chemical Biology Research Group; RIKEN Center for Sustainable Resource
- Science; 2-1 Hirosawa 351-0198 Wako, Saitama Japan
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology; Center for Sustainable Resource Science; 2-1 Hirosawa 351-0198 Wako, Saitama Japan
| | - Beate Schölermann
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Mylene Huebecker
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Gernot Hahne
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Maria Pascual López-Alberca
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology; Center for Sustainable Resource Science; 2-1 Hirosawa 351-0198 Wako, Saitama Japan
| | - Petra Janning
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Nobumoto Watanabe
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology; Center for Sustainable Resource Science; 2-1 Hirosawa 351-0198 Wako, Saitama Japan
| | - Sonja Sievers
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
| | | | - Takeshi Shimizu
- Chemical Biology Research Group; RIKEN Center for Sustainable Resource
- Science; 2-1 Hirosawa 351-0198 Wako, Saitama Japan
| | - Slava Ziegler
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Hiroyuki Osada
- Chemical Biology Research Group; RIKEN Center for Sustainable Resource
- Science; 2-1 Hirosawa 351-0198 Wako, Saitama Japan
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology; Center for Sustainable Resource Science; 2-1 Hirosawa 351-0198 Wako, Saitama Japan
| | - Herbert Waldmann
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; Technical University of Dortmund; Otto-Hahn-Str. 6 44227 Dortmund Germany
| |
Collapse
|
6
|
Ghosh AK, Samanta I, Mondal A, Liu WR. Covalent Inhibition in Drug Discovery. ChemMedChem 2019; 14:889-906. [PMID: 30816012 DOI: 10.1002/cmdc.201900107] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Although covalent inhibitors have been used as therapeutics for more than a century, there has been general resistance in the pharmaceutical industry against their further development due to safety concerns. This inclination has recently been reverted after the development of a wide variety of covalent inhibitors to address human health conditions along with the US Food and Drug Administration (FDA) approval of several covalent therapeutics for use in humans. Along with this exciting resurrection of an old drug discovery concept, this review surveys enzymes that can be targeted by covalent inhibitors for the treatment of human diseases. We focus on protein kinases, RAS proteins, and a few other enzymes that have been studied extensively as targets for covalent inhibition, with the aim to address challenges in designing effective covalent drugs and to provide suggestions in the area that have yet to be explored.
Collapse
Affiliation(s)
- Avick Kumar Ghosh
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Indranil Samanta
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Anushree Mondal
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Wenshe Ray Liu
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| |
Collapse
|
7
|
Hansen BK, Loveridge CJ, Thyssen S, Wørmer GJ, Nielsen AD, Palmfeldt J, Johannsen M, Poulsen TB. STEFs: Activated Vinylogous Protein-Reactive Electrophiles. Angew Chem Int Ed Engl 2019; 58:3533-3537. [DOI: 10.1002/anie.201814073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Bente K. Hansen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | | | - Stine Thyssen
- Department of Forensic Medicine; Aarhus University; Palle Juul-Jensens Boulevard 99 8200 Aarhus N Denmark
| | - Gustav J. Wørmer
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Andreas D. Nielsen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine-Research Unit for Molecular Medicine; Aarhus University hospital; Palle Juul-Jensens Boulevard 82 8200 Aarhus N Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine; Aarhus University; Palle Juul-Jensens Boulevard 99 8200 Aarhus N Denmark
| | - Thomas B. Poulsen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
8
|
Hansen BK, Loveridge CJ, Thyssen S, Wørmer GJ, Nielsen AD, Palmfeldt J, Johannsen M, Poulsen TB. STEFs: Activated Vinylogous Protein-Reactive Electrophiles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bente K. Hansen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | | | - Stine Thyssen
- Department of Forensic Medicine; Aarhus University; Palle Juul-Jensens Boulevard 99 8200 Aarhus N Denmark
| | - Gustav J. Wørmer
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Andreas D. Nielsen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine-Research Unit for Molecular Medicine; Aarhus University hospital; Palle Juul-Jensens Boulevard 82 8200 Aarhus N Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine; Aarhus University; Palle Juul-Jensens Boulevard 99 8200 Aarhus N Denmark
| | - Thomas B. Poulsen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
9
|
Huang Z, Huang J, Qu Y, Zhang W, Gong J, Yang Z. Total Syntheses of Crinipellins Enabled by Cobalt‐Mediated and Palladium‐Catalyzed Intramolecular Pauson–Khand Reactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zhihui Huang
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jun Huang
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yongzheng Qu
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Weibin Zhang
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jianxian Gong
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Beijing National Laboratory for Molecular Science College of Chemistry and Molecular Engineering Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| |
Collapse
|
10
|
Huang Z, Huang J, Qu Y, Zhang W, Gong J, Yang Z. Total Syntheses of Crinipellins Enabled by Cobalt‐Mediated and Palladium‐Catalyzed Intramolecular Pauson–Khand Reactions. Angew Chem Int Ed Engl 2018; 57:8744-8748. [DOI: 10.1002/anie.201805143] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Zhihui Huang
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jun Huang
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yongzheng Qu
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Weibin Zhang
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jianxian Gong
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Beijing National Laboratory for Molecular Science College of Chemistry and Molecular Engineering Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| |
Collapse
|
11
|
Schwarzwalder GM, Vanderwal CD. Strategies for the Synthesis of the Halenaquinol and Xestoquinol Families of Natural Products. European J Org Chem 2017. [PMID: 29527124 DOI: 10.1002/ejoc.201601418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The halenaquinol family of naphthoquinol natural products includes a few closely related polycyclic compounds that feature an activated, electrophilic furan ring. This motif is likely responsible for the rich biological activity attributed to these secondary metabolites. Their interesting structures-related via their electrophilic furan to the biologically important furanosteroids-and their activities prompted significant efforts by organic chemists that resulted in many strategically compelling laboratory syntheses of these targets. These different strategies are compared and contrasted in this Microreview, and the authors' recent work on the structurally different but biogenetically related natural product exiguaquinol is put into the context of the previous studies on halenaquinol-type targets.
Collapse
Affiliation(s)
- Gregg M Schwarzwalder
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, CA 92697-2025, USA
| | - Christopher D Vanderwal
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, CA 92697-2025, USA
| |
Collapse
|
12
|
Baillie TA. Targeted Covalent Inhibitors for Drug Design. Angew Chem Int Ed Engl 2016; 55:13408-13421. [DOI: 10.1002/anie.201601091] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Thomas A. Baillie
- Department of Medicinal Chemistry, School of Pharmacy; University of Washington; Box 357610 Seattle WA 98195-7610 USA
| |
Collapse
|
13
|
Affiliation(s)
- Thomas A. Baillie
- Department of Medicinal Chemistry, School of Pharmacy; University of Washington; Box 357610 Seattle WA 98195-7610 USA
| |
Collapse
|
14
|
Javed S, Bodugam M, Torres J, Ganguly A, Hanson PR. Modular Synthesis of Novel Macrocycles Bearing α,β-Unsaturated Chemotypes through a Series of One-Pot, Sequential Protocols. Chemistry 2016; 22:6755-6758. [PMID: 27059428 PMCID: PMC5094705 DOI: 10.1002/chem.201601004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 11/08/2022]
Abstract
A series of one-pot, sequential protocols was developed for the synthesis of novel macrocycles bearing α,β-unsaturated chemotypes. The method highlights a phosphate tether-mediated approach to establish asymmetry, and consecutive one-pot, sequential processes to access the macrocycles with minimal purification procedures. This library amenable strategy provided diverse macrocycles containing α,β-unsaturated carbon-, sulfur-, or phosphorus-based warheads.
Collapse
Affiliation(s)
- Salim Javed
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Mahipal Bodugam
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Jessica Torres
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Arghya Ganguly
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Paul R. Hanson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| |
Collapse
|
15
|
Wiedemann EN, Mandl FA, Blank ID, Ochsenfeld C, Ofial AR, Sieber SA. Kinetic and Theoretical Studies of Beta-Lactone Reactivity-A Quantitative Scale for Biological Application. Chempluschem 2015; 80:1673-1679. [PMID: 31973367 DOI: 10.1002/cplu.201500246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 11/08/2022]
Abstract
Natural products comprise a rich source for bioactive molecules with medicinal relevance. Many of these contain electrophilic scaffolds that bind conserved enzyme active sites covalently. Prominent examples include beta-lactams and beta-lactones, which specifically acylate serine residues in diverse peptidases. Although these scaffolds appear similar, their bioactivities and corresponding protein targets vary. To quantify and dissect these differences in bioactivities, the kinetics of the reactions of beta-butyrolactone with a set of reference amines in buffered aqueous solution at 37 °C have been analyzed. Different product ratios of C1 versus C3 attack on the beta-butyrolactone have been observed, depending on the aliphatic or aromatic nature of the standard amine used. Quantum mechanics/molecular mechanics (QM/MM) calculations reveal that a H3 O+ molecule has a crucial role in stabilizing C3 attack by aniline, through coordination of the lactone ring oxygen. In agreement with their weak proteome reactivity, monocyclic beta-lactams did not react with the set of standard nucleophiles studied herein. Bicyclic beta-lactams, however, exhibited a lower activation barrier, and thus, reacted with standard nucleophiles. This study represents a starting point for semiquantitative reactivity scales for natural products, which, in analogy to chemical reactivity scales, will provide predictions for electrophilic modifications in biological systems.
Collapse
Affiliation(s)
- Elija N Wiedemann
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Franziska A Mandl
- Center for Integrated Protein Science CIPSM, Institute of Advanced Studies IAS, Department Chemie, Lehrstuhl für Organische Chemie II, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Iris D Blank
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Christian Ochsenfeld
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Armin R Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Stephan A Sieber
- Center for Integrated Protein Science CIPSM, Institute of Advanced Studies IAS, Department Chemie, Lehrstuhl für Organische Chemie II, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
16
|
Rudolf GC, Koch MF, Mandl FAM, Sieber SA. Subclass-Specific Labeling of Protein-Reactive Natural Products with Customized Nucleophilic Probes. Chemistry 2015; 21:3701-7. [DOI: 10.1002/chem.201405009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Indexed: 12/31/2022]
|
17
|
Vitale R, Ottonello G, Petracca R, Bertozzi SM, Ponzano S, Armirotti A, Berteotti A, Dionisi M, Cavalli A, Piomelli D, Bandiera T, Bertozzi F. Synthesis, Structure-Activity, and Structure-Stability Relationships of 2-Substituted-N-(4-oxo-3-oxetanyl)N-Acylethanolamine Acid Amidase (NAAA) Inhibitors. ChemMedChem 2014; 9:323-36. [DOI: 10.1002/cmdc.201300416] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Indexed: 12/23/2022]
|
18
|
Kaschani F, Clerc J, Krahn D, Bier D, Hong TN, Ottmann C, Niessen S, Colby T, van der Hoorn RAL, Kaiser M. Identification of a selective, activity-based probe for glyceraldehyde 3-phosphate dehydrogenases. Angew Chem Int Ed Engl 2012; 51:5230-3. [PMID: 22489074 DOI: 10.1002/anie.201107276] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Farnusch Kaschani
- Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstrasse 2, 45117 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kaschani F, Clerc J, Krahn D, Bier D, Hong TN, Ottmann C, Niessen S, Colby T, van der Hoorn RAL, Kaiser M. Identifizierung einer selektiven aktivitätsbasierten Sonde für Glycerinaldehyd-3-phosphat-Dehydrogenasen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Zeiler E, Braun N, Böttcher T, Kastenmüller A, Weinkauf S, Sieber SA. Vibralactone as a Tool to Study the Activity and Structure of the ClpP1P2 Complex from Listeria monocytogenes. Angew Chem Int Ed Engl 2011; 50:11001-4. [DOI: 10.1002/anie.201104391] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Indexed: 11/08/2022]
|
21
|
Zeiler E, Braun N, Böttcher T, Kastenmüller A, Weinkauf S, Sieber SA. Vibralacton als Sonde zur Aufklärung der Aktivität und Struktur des ClpP1P2-Komplexes aus Listeria monocytogenes. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Barluenga S, Jogireddy R, Koripelly GK, Winssinger N. In Vivo Efficacy of Natural Product-Inspired Irreversible Kinase Inhibitors. Chembiochem 2010; 11:1692-9. [DOI: 10.1002/cbic.201000205] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Böttcher T, Pitscheider M, Sieber SA. Natural products and their biological targets: proteomic and metabolomic labeling strategies. Angew Chem Int Ed Engl 2010; 49:2680-98. [PMID: 20333627 DOI: 10.1002/anie.200905352] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activity-based protein profiling (ABPP) has matured into a standard method for the fast, sensitive, and selective identification of enzyme activity and inhibitors in proteomes. By using natural product based probes, the targets of many uncharacterized molecules can be easily identified in complex proteomes, and their exact function and mechanism of action understood. Natural products and their derivatives can also serve as pharmaceutical lead structures that impede essential components in the cell and their effects can be studied in biological assays. Since the complex regulatory processes in a cell go beyond mere transcription, translation, and activation, it is imperative to also identify the products of the active proteome--the metabolites and binding partners of individual enzymes and proteins. Therefore, methods by which the chemically complex metabolome can be characterized are necessary. A series of interesting approaches have become available in recent years that enable the global investigation of enzyme-metabolite pairs.
Collapse
Affiliation(s)
- Thomas Böttcher
- Center for Integrated Protein Science Munich CiPSM, Department of Chemistry and Biochemistry, Technische Universität Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
24
|
Böttcher T, Pitscheider M, Sieber S. Naturstoffe und ihre biologischen Angriffsziele: proteomische und metabolomische Markierungsstrategien. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905352] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Jogireddy R, Dakas PY, Valot G, Barluenga S, Winssinger N. Synthesis of a resorcylic acid lactone (RAL) library using fluorous-mixture synthesis and profile of its selectivity against a panel of kinases. Chemistry 2010; 15:11498-506. [PMID: 19821461 DOI: 10.1002/chem.200901375] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A library of resorcylic acid lactones (RAL) containing a cis-enone moiety targeting kinases bearing a cysteine residue within the ATP-binding pocket was prepared using a fluorous-mixture synthesis and evaluated against a panel of 19 kinases thus providing important structure-activity trends. Two new analogues were then profiled for their selectivity against a panel of 402 kinases providing the broadest evaluation of this pharmacophores' selectivity.
Collapse
Affiliation(s)
- Rajamalleswaramma Jogireddy
- Institut de Science et Ingénierie Supramoléculaires (ISIS-UMR 7006), Université de Strasbourg-CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Dakas PY, Barluenga S, Totzke F, Zirrgiebel U, Winssinger N. Modular synthesis of radicicol A and related resorcylic acid lactones, potent kinase inhibitors. Angew Chem Int Ed Engl 2007; 46:6899-902. [PMID: 17676571 DOI: 10.1002/anie.200702406] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pierre-Yves Dakas
- Institut de Science et Ingénierie Supramoléculaires, Université Louis Pasteur-CNRS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | | | | | | | | |
Collapse
|
28
|
Yang YL, Lu CP, Chen MY, Chen KY, Wu YC, Wu SH. Cytotoxic polyketides containing tetramic acid moieties isolated from the fungus Myceliophthora Thermophila: elucidation of the relationship between cytotoxicity and stereoconfiguration. Chemistry 2007; 13:6985-91. [PMID: 17503417 DOI: 10.1002/chem.200700038] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Five new polyketides that contain tetramic acids, myceliothermophins A-E, were isolated from the thermophilic fungus Myceliophthora thermophila. Two sets of 5-alkyl-5-hydroxyl (or 5-methoxyl)-1H-pyrrol-2(5H)-one diastereomers, myceliothermophins A/B and C/D, were separated as pure compounds by using silica-gel column chromatography and recycling reverse-phase high-performance liquid chromatography (RP-HPLC). The relative configurations of the chiral centers in 5-alkyl-5-hydroxyl (or 5-methoxyl)-1H-pyrrol-2(5H)-one moieties were deduced from NOESY correlations. In the cytotoxic assay, the 5-(2-methylpropyldiene)-1H-pyrrol-2(5H)-one analogue (myceliothermophin E) exhibited inhibition against four cancer cell lines. In addition, the significant inhibitory effect of myceliothermophins A and C and the inactivity of myceliothermophins B and D revealed the importance of the relative configurations of 5-alkyl-5-hydroxyl (or 5-methoxyl)-1H-pyrrol-2(5H)-one moieties on their cytotoxicity potency against cancer cells.
Collapse
Affiliation(s)
- Yu-Liang Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Mayer T, Maier ME. Design and Synthesis of a Tag-Free Chemical Probe for Photoaffinity Labeling. European J Org Chem 2007. [DOI: 10.1002/ejoc.200700188] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Dakas PY, Barluenga S, Totzke F, Zirrgiebel U, Winssinger N. Modular Synthesis of Radicicol A and Related Resorcylic Acid Lactones, Potent Kinase Inhibitors. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200702406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Köck M, Lindel T. Chemistry Unprotected. Angew Chem Int Ed Engl 2007; 46:5268-71. [PMID: 17604380 DOI: 10.1002/anie.200702455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matthias Köck
- Alfred-Wegener-Institut, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | | |
Collapse
|
32
|
Köck M, Lindel T. Chemistry Unprotected. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200702455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Kanoh N, Asami A, Kawatani M, Honda K, Kumashiro S, Takayama H, Simizu S, Amemiya T, Kondoh Y, Hatakeyama S, Tsuganezawa K, Utata R, Tanaka A, Yokoyama S, Tashiro H, Osada H. Photo-cross-linked small-molecule microarrays as chemical genomic tools for dissecting protein-ligand interactions. Chem Asian J 2007; 1:789-97. [PMID: 17441122 DOI: 10.1002/asia.200600208] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have developed a unique photo-cross-linking approach for immobilizing a variety of small molecules in a functional-group-independent manner. Our approach depends on the reactivity of the carbene species generated from trifluoromethylaryldiazirine upon UV irradiation. It was demonstrated in model experiments that the photogenerated carbenes were able to react with every small molecule tested, and they produced multiple conjugates in most cases. It was also found in on-array immobilization experiments that various small molecules were immobilized, and the immobilized small molecules retained their ability to interact with their binding proteins. With this approach, photo-cross-linked microarrays of about 2000 natural products and drugs were constructed. This photo-cross-linked microarray format was found to be useful not merely for ligand screening but also to study the structure-activity relationship, that is, the relationship between the structural motif (or pharmacophore) found in small molecules and its binding affinity toward a protein, by taking advantage of the nonselective nature of the photo-cross-linking process.
Collapse
Affiliation(s)
- Naoki Kanoh
- Antibiotics Laboratory, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Lactacystin and salinosporamide A are fascinating molecules with regard to both their chemical structures and biological activities. These naturally occurring compounds are potent and selective proteasome inhibitors. The molecular structures are characterized by their densely functionalized gamma-lactam cores. The structure and biological properties of these two compounds are attracting the attention of many chemists as challenging synthetic targets. We discuss their synthetic strategies in this review.
Collapse
Affiliation(s)
- Masakatsu Shibasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|