1
|
Li D, Zhu Y, Li S, Shu C, Liu P. Post‐Functionalization of Supramolecular Polymers on Surface and the Chiral Assembly‐Induced Enantioselective Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Deng‐Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry State Key Laboratory of Chemical Engineering School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Ya‐Cheng Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry State Key Laboratory of Chemical Engineering School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Shi‐Wen Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry State Key Laboratory of Chemical Engineering School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Chen‐Hui Shu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry State Key Laboratory of Chemical Engineering School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Pei‐Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry State Key Laboratory of Chemical Engineering School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
2
|
Li DY, Zhu YC, Li SW, Shu CH, Liu PN. Post-Functionalization of Supramolecular Polymers on Surface and the Chiral Assembly-Induced Enantioselective Reaction. Angew Chem Int Ed Engl 2021; 60:11370-11377. [PMID: 33630356 DOI: 10.1002/anie.202016395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/22/2021] [Indexed: 11/07/2022]
Abstract
Although post-functionalization is extensively used to introduce diverse functional groups into supramolecular polymers (SPs) in solution, post-functionalization of SPs on surfaces still remains unexplored. Here we achieved the on-surface post-functionalization of two SPs derived from 5,10,15-tri-(4-pyridyl)-20-bromophenyl porphyrin (Br-TPyP) via cross-coupling reactions on Au(111). The ladder-shaped, Cu-coordinated SPs preformed from Br-TPyP were functionalized through Heck reaction with 4-vinyl-1,1'-biphenyl. In the absence of Cu, Br-TPyP formed chiral SPs as two enantiomers via self-assembly, which were functionalized via divergent cross-coupling reaction with 4-isocyano-1,1'-biphenyl (ICBP). Surprisingly, this reaction was discovered as an enantioselective on-surface reaction induced by the chirality of SPs. Mechanistic analysis and DFT calculations indicated that after debromination of Br-TPyP and the first addition of ICBP, only one attack direction of ICBP to the chiral SP intermediate is permissive in the second addition step due to the steric hindrance, which guaranteed the high enantioselectivity of the reaction.
Collapse
Affiliation(s)
- Deng-Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ya-Cheng Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shi-Wen Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chen-Hui Shu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Pei-Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
3
|
Guo Y, Nuermaimaiti A, Kjeldsen ND, Gothelf KV, Linderoth TR. Two-Dimensional Coordination Networks from Cyclic Dipeptides. J Am Chem Soc 2020; 142:19814-19818. [PMID: 33179492 DOI: 10.1021/jacs.0c08700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide-based biomimetic nanostructures and metal-organic coordination networks on surfaces are two promising classes of hybrid materials which have been explored recently. However, despite the great versatility and structural variability of natural and synthetic peptides, the two directions have so far not been merged in fabrication of metal-organic coordination networks using peptides as building blocks. Here we demonstrate that cyclic peptides can be used as ligands to form highly ordered, two-dimensional, peptide-based metal-organic coordination networks. The networks are formed on a Au(111) surface through coadsorption of cyclic dialanine with Cu-adatoms under Ultra-High Vacuum (UHV) conditions. Scanning Tunneling Microscopy (STM) in combination with X-ray Photoelectron spectroscopy (XPS) has been utilized to characterize the network structures at submolecular resolution and expound the chemical changes involved in network coordination. The networks involve a motif of three cyclic dialanine molecules coordinating to a central Cu-adatom. Interestingly the networks expose pores functionalized by the side chain of the cyclic peptide, suggesting a general method to form functionalized porous metal-organic networks on surfaces.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Ajiguli Nuermaimaiti
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Niels Due Kjeldsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.,Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Trolle R Linderoth
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.,Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Ding Y, Wang X, Xie L, Yao X, Xu W. Two-dimensional self-assembled nanostructures of nucleobases and their related derivatives on Au(111). Chem Commun (Camb) 2018; 54:9259-9269. [PMID: 30027963 DOI: 10.1039/c8cc03585g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The construction of two-dimensional (2D) self-assembled nanostructures has been one of the considerably interesting areas of on-surface chemistry in the past few decades, and has benefited from the rapid development and improvement of scanning probe microscopy techniques. In this research field, many attempts have been made in the controllable fabrication of well-ordered and multifunctional surface nanostructures, which attracted interest because of the prospect for artificial design of functional molecular nanodevices. DNA and RNA are considered to be programmable self-assembly systems and it is possible to use their base sequences to encode instructions for assembly in a predetermined fashion at the nanometer scale. As important constituents of nucleic acids, nucleobases, with intrinsic functional groups for hydrogen bonding, coordination bonding, and electrostatic interactions, can be employed as a potential system for the versatile construction of various biomolecular nanostructures, which may be used to structure the self-assembly of DNA-based artificial molecular constructions and play an important role in novel biosensors based on surface functionalization. In this article, we will review the recent progress of on-surface self-assembly of nucleobases and their derivatives together with different reactants (e.g., metals, halogens, salts and water), and as a result, various 2D surface nanostructures are summarized.
Collapse
Affiliation(s)
- Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | | | | | | | | |
Collapse
|
5
|
Zhang C, Wang L, Xie L, Ding Y, Xu W. On-Surface Dual-Response Structural Transformations of Guanine Molecules and Fe Atoms. Chemistry 2017; 23:2356-2362. [DOI: 10.1002/chem.201604775] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Chi Zhang
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Likun Wang
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Lei Xie
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Yuanqi Ding
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Wei Xu
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| |
Collapse
|
6
|
Della Pia A, Riello M, Lawrence J, Stassen D, Jones TS, Bonifazi D, De Vita A, Costantini G. Two-Dimensional Ketone-Driven Metal-Organic Coordination on Cu(111). Chemistry 2016; 22:8105-12. [PMID: 27071489 PMCID: PMC5074249 DOI: 10.1002/chem.201600368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 12/02/2022]
Abstract
Two-dimensional metal-organic nanostructures based on the binding of ketone groups and metal atoms were fabricated by depositing pyrene-4,5,9,10-tetraone (PTO) molecules on a Cu(111) surface. The strongly electronegative ketone moieties bind to either copper adatoms from the substrate or codeposited iron atoms. In the former case, scanning tunnelling microscopy images reveal the development of an extended metal-organic supramolecular structure. Each copper adatom coordinates to two ketone ligands of two neighbouring PTO molecules, forming chains that are linked together into large islands through secondary van der Waals interactions. Deposition of iron atoms leads to a transformation of this assembly resulting from the substitution of the metal centres. Density functional theory calculations reveal that the driving force for the metal substitution is primarily determined by the strength of the ketone-metal bond, which is higher for Fe than for Cu. This second class of nanostructures displays a structural dependence on the rate of iron deposition.
Collapse
Affiliation(s)
- Ada Della Pia
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Massimo Riello
- Department of Physics, King's College London, Strand, London, WC2R 2LS, UK
| | - James Lawrence
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Daphne Stassen
- Namur Research College (NARC) and Department of Chemistry, University of Namur (UNamur), 5000, Belgium
| | - Tim S Jones
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Davide Bonifazi
- Namur Research College (NARC) and Department of Chemistry, University of Namur (UNamur), 5000, Belgium.
- School of Chemistry, Cardiff University, Park Place, CF10 3AT, Cardiff, UK.
| | - Alessandro De Vita
- Department of Physics, King's College London, Strand, London, WC2R 2LS, UK.
| | - Giovanni Costantini
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
7
|
Xiang F, Lu Y, Li C, Song X, Liu X, Wang Z, Liu J, Dong M, Wang L. Cyclotrimerization-Induced Chiral Supramolecular Structures of 4-Ethynyltriphenylamine on Au(111) Surface. Chemistry 2015. [DOI: 10.1002/chem.201501434] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Shimizu TK, Jung J, Imada H, Kim Y. Supramolecular Assembly through Interactions between Molecular Dipoles and Alkali Metal Ions. Angew Chem Int Ed Engl 2014; 53:13729-33. [DOI: 10.1002/anie.201407555] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/07/2014] [Indexed: 11/05/2022]
|
9
|
Shimizu TK, Jung J, Imada H, Kim Y. Supramolecular Assembly through Interactions between Molecular Dipoles and Alkali Metal Ions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Shchyrba A, Wäckerlin C, Nowakowski J, Nowakowska S, Björk J, Fatayer S, Girovsky J, Nijs T, Martens SC, Kleibert A, Stöhr M, Ballav N, Jung TA, Gade LH. Controlling the Dimensionality of On-Surface Coordination Polymers via Endo- or Exoligation. J Am Chem Soc 2014; 136:9355-63. [DOI: 10.1021/ja5020103] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aneliia Shchyrba
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Christian Wäckerlin
- Laboratory
for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jan Nowakowski
- Laboratory
for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Sylwia Nowakowska
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Jonas Björk
- Department of Physics,
Chemistry and Biology, IFM, Linköping University, Linköping 581 83, Sweden
| | - Shadi Fatayer
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Jan Girovsky
- Laboratory
for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Thomas Nijs
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Susanne C. Martens
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
- Anorganisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Armin Kleibert
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Meike Stöhr
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nirmalya Ballav
- Department
of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Thomas A. Jung
- Laboratory
for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Lutz H. Gade
- Anorganisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
MacLeod JM, Ben Chaouch Z, Perepichka DF, Rosei F. Two-dimensional self-assembly of a symmetry-reduced tricarboxylic acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7318-7324. [PMID: 23327627 DOI: 10.1021/la3047593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Investigations of the self-assembly of simple molecules at the solution/solid interface can provide useful insight into the general principles governing supramolecular chemistry in two dimensions. Here, we report on the assembly of 3,4',5-biphenyl tricarboxylic acid (H3BHTC), a small hydrogen bonding unit related to the much-studied 1,3,5-benzenetricarboxylic acid (trimesic acid, TMA), which we investigate using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM images show that H3BHTC assembles by itself into an offset zigzag chain structure that maximizes the surface molecular density in favor of maximizing the number density of strong cyclic hydrogen bonds between the carboxylic groups. The offset geometry creates "sticky" pores that promote solvent coadsorption. Adding coronene to the molecular solution produces a transformation to a high-symmetry host-guest lattice stabilized by a dimeric/trimeric hydrogen bonding motif similar to the TMA flower structure. Finally, we show that the H3BHTC lattice firmly immobilizes the guest coronene molecules, allowing for high-resolution imaging of the coronene structure.
Collapse
Affiliation(s)
- Jennifer M MacLeod
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux, Télécommunications, Varennes, QC, Canada
| | | | | | | |
Collapse
|
12
|
Kervyn S, Kalashnyk N, Riello M, Moreton B, Tasseroul J, Wouters J, Jones TS, De Vita A, Costantini G, Bonifazi D. “Magic” Surface Clustering of Borazines Driven by Repulsive Intermolecular Forces. Angew Chem Int Ed Engl 2013; 52:7410-4. [DOI: 10.1002/anie.201300948] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/05/2013] [Indexed: 11/11/2022]
|
13
|
Kervyn S, Kalashnyk N, Riello M, Moreton B, Tasseroul J, Wouters J, Jones TS, De Vita A, Costantini G, Bonifazi D. “Magic” Surface Clustering of Borazines Driven by Repulsive Intermolecular Forces. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300948] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Hu F, Zhang H, Mao H, Liao Q, He P. The initial growth behavior of perylene on Cu(100). J Chem Phys 2011; 134:194702. [PMID: 21599077 DOI: 10.1063/1.3591968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using scanning tunneling microscopy (STM) together with density functional theory (DFT) the growth behavior of perylene on the Cu(100) substrate has been investigated. As revealed by STM images, perylene molecules prefer to adopt lying configuration with their molecular plane parallel to the substrate, and two symmetrically equivalent ordered domains were observed. DFT calculations show that perylene molecule prefers to adsorb on the top site of substrate Cu atoms with its long molecular axis aligning along the [011] or [01-1] azimuth of the substrate which is the most stable adsorption geometry according to its highest binding energy. Consequently, two adsorption structures of c(8×4) and c(8×6), each containing two perylene molecules per unit cell, are proposed based on our STM images. The growth mechanism for ordered perylene domains on Cu(100) can be attributed to the balance between weak adsorbate-adsorbate interaction and comparable adsorbate-substrate interaction.
Collapse
Affiliation(s)
- Fang Hu
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | |
Collapse
|
15
|
Kim S, Pike R, D'Acchioli J, Walder B, Carpenter G, Sweigart D. Patterned Monolayers of Neutral and Charged Functionalized Manganese Arene Complexes on a Highly Ordered Pyrolytic Graphite Surface. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Kim S, Pike R, D'Acchioli J, Walder B, Carpenter G, Sweigart D. Patterned Monolayers of Neutral and Charged Functionalized Manganese Arene Complexes on a Highly Ordered Pyrolytic Graphite Surface. Angew Chem Int Ed Engl 2009; 48:1762-5. [DOI: 10.1002/anie.200805760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Tait SL, Langner A, Lin N, Chandrasekar R, Fuhr O, Ruben M, Kern K. Assembling Isostructural Metal-Organic Coordination Architectures on Cu(100), Ag(100) and Ag(111) Substrates. Chemphyschem 2008; 9:2495-9. [DOI: 10.1002/cphc.200800575] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Matena M, Riehm T, Stöhr M, Jung TA, Gade LH. Transforming surface coordination polymers into covalent surface polymers: linked polycondensed aromatics through oligomerization of N-heterocyclic carbene intermediates. Angew Chem Int Ed Engl 2008; 47:2414-7. [PMID: 18266243 DOI: 10.1002/anie.200704072] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Manfred Matena
- NCCR Nanoscale Science and Institute of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Matena M, Riehm T, Stöhr M, Jung T, Gade L. Transforming Surface Coordination Polymers into Covalent Surface Polymers: Linked Polycondensed Aromatics through Oligomerization of N-Heterocyclic Carbene Intermediates. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704072] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Stepanow S, Lin N, Payer D, Schlickum U, Klappenberger F, Zoppellaro G, Ruben M, Brune H, Barth JV, Kern K. Surface-Assisted Assembly of 2D Metal–Organic Networks That Exhibit Unusual Threefold Coordination Symmetry. Angew Chem Int Ed Engl 2007; 46:710-3. [PMID: 17154209 DOI: 10.1002/anie.200603644] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sebastain Stepanow
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stepanow S, Lin N, Payer D, Schlickum U, Klappenberger F, Zoppellaro G, Ruben M, Brune H, Barth J, Kern K. Surface-Assisted Assembly of 2D Metal–Organic Networks That Exhibit Unusual Threefold Coordination Symmetry. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200603644] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Cicoira F, Miwa JA, Melucci M, Barbarella G, Rosei F. Ordered assembly of alpha-quinquethiophene on a copper oxide nanotemplate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2006; 2:1366-71. [PMID: 17192988 DOI: 10.1002/smll.200600057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The organic semiconductor alpha-quinquethiophene (T5) is used as the active layer in organic field-effect transistors. We have investigated the adsorption of T5 on the (110) surface of copper and on the CuO nanotemplate formed by the high-temperature exposure of Cu(110) to molecular oxygen. The results were obtained with high-resolution scanning tunneling microscopy (STM) under ultra-high-vacuum (UHV) conditions. The adsorption of T5 on copper is an important model system because it mimics the active-layer-electrode interface in organic devices. The molecules were observed to adsorb onto both the pristine Cu(110) surface and the CuO nanotemplate, showing a greater affinity for the pristine copper surface. Surprisingly, however, the T5 molecules assembled with a much higher degree of long-range order on the oxygen-passivated portion of the surface.
Collapse
Affiliation(s)
- Fabio Cicoira
- INRS Energie, Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel Boulet, Varennes, QC, Canada
| | | | | | | | | |
Collapse
|