1
|
Zhou B, Govyadinov A, Kornilovitch P, Remcho VT. Development of Spiropyran Immobilization and Characterization Protocols for Reversible Photopatterning of SiO 2 Surfaces. ACS OMEGA 2024; 9:29401-29409. [PMID: 39005810 PMCID: PMC11238298 DOI: 10.1021/acsomega.4c01607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
Spiropyran is a dynamic organic compound that is distinguished by its reversible conversion between two forms: the colorless closed spiropyran (SP) form and the purple open merocyanine (MC) form. Typically triggered by UV light and reversed by visible light, spiropyran-functionalized surfaces offer reversible conversion in properties including color, polarity, reactivity, and fluorescence, making them applicable to diverse applications in chemical sensors, biosensors, drug delivery, and heavy metal extraction. While spiropyran has been successfully incorporated into various material platforms with SiO2 surfaces, its application on flat surfaces has been limited due to surface area constraints and a lack of standardized evaluation methods, which largely depend on the integration approach and substrate type used. In this study, we systematically review the existing literature and categorize integration methods and substrate types first and then report on our experimental work, in which we developed a streamlined three-step immobilization protocol, which includes surface activation, amination with (3-aminopropyl) triethoxysilane (APTES), and subsequent functionalization with carboxylic spiropyran (SP-COOH). Using SiO2 surfaces as a demonstration, we have also established a robust characterization protocol, consisting of contact angle measurements, X-ray photoelectron spectroscopy (XPS), ellipsometry, and fluorometric analysis. Our results evaluate the newly developed immobilization protocol, demonstrating effective activation and optimal amination using a 2% APTES solution, achieved in 5 min at room temperature. Fluorescence imaging provided clear contrast between the SP and the MC forms. Furthermore, we discuss limitations in the surface density of functional groups and steric hindrance and propose future improvements. Our work not only underscores the versatility of spiropyran in surface patterning but also provides optimized protocols for its immobilization and characterization on SiO2 surfaces, which may be adapted for use on other substrates. These advancements lay the groundwork for on-chip sensing technologies and other applications.
Collapse
Affiliation(s)
- Bokun Zhou
- Department
of Chemistry, College of Science, Oregon
State University, Corvallis, Oregon 97331, United States
- Materials
Science Program, College of Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | | | | | - Vincent T. Remcho
- Department
of Chemistry, College of Science, Oregon
State University, Corvallis, Oregon 97331, United States
- Materials
Science Program, College of Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
2
|
Chen X, Li J, Roy S, Ullah Z, Gu J, Huang H, Yu C, Wang X, Wang H, Zhang Y, Guo B. Development of Polymethine Dyes for NIR-II Fluorescence Imaging and Therapy. Adv Healthc Mater 2024; 13:e2304506. [PMID: 38441392 DOI: 10.1002/adhm.202304506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Indexed: 03/16/2024]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) is burgeoning because of its higher imaging fidelity in monitoring physiological and pathological processes than clinical visible/the second near-infrared window fluorescence imaging. Notably, the imaging fidelity is heavily dependent on fluorescence agents. So far, indocyanine green, one of the polymethine dyes, with good biocompatibility and renal clearance is the only dye approved by the Food and Drug Administration, but it shows relatively low NIR-II brightness. Importantly, tremendous efforts are devoted to synthesizing polymethine dyes for imaging preclinically and clinically. They have shown feasibility in the customization of structure and properties to fulfill various needs in imaging and therapy. Herein, a timely update on NIR-II polymethine dyes, with a special focus on molecular design strategies for fluorescent, photoacoustic, and multimodal imaging, is offered. Furthermore, the progress of polymethine dyes in sensing pathological biomarkers and even reporting drug release is illustrated. Moreover, the NIR-II fluorescence imaging-guided therapies with polymethine dyes are summarized regarding chemo-, photothermal, photodynamic, and multimodal approaches. In addition, artificial intelligence is pointed out for its potential to expedite dye development. This comprehensive review will inspire interest among a wide audience and offer a handbook for people with an interest in NIR-II polymethine dyes.
Collapse
Affiliation(s)
- Xin Chen
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jieyan Li
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chen Yu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xuejin Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Han Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Liao Q, Li Q, Li Z. The Key Role of Molecular Packing in Luminescence Property: From Adjacent Molecules to Molecular Aggregates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306617. [PMID: 37739004 DOI: 10.1002/adma.202306617] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Indexed: 09/24/2023]
Abstract
The luminescence materials act as the key components in many functional devices, as well as the detection and imaging systems, which can be permeated in each aspect of modern life, and attract more and more attention for the creative technology and applications. In addition to the diverse properties of organic luminogens, the multiple molecular packing at aggregated states frequently offers new and/or exciting performance. However, there still lacks comprehensive analysis of molecular packing in these organic materials, resulting in an increased gap between molecular design and practical applications. In this review, from the basic knowledge of organic compounds as single molecules, to the discernable property of excimer, charge transfer (CT) complex or self-assembly systems by adjacent molecules, and finally to the opto-electronic performance of molecular aggregates, the relevant factors to molecular packing and practical applications are discussed.
Collapse
Affiliation(s)
- Qiuyan Liao
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Dar N, Weissman H, Ankri R. Adjustable Fluorescence Emission of J-Aggregated Tricarbocyanine in the Near-Infrared-II Region. J Phys Chem B 2023; 127:7988-7995. [PMID: 37682586 PMCID: PMC10518818 DOI: 10.1021/acs.jpcb.3c04554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Near-infrared (NIR) J-aggregates attract increasing attention in many areas, especially in biomedical applications, as they combine the advantages of NIR spectroscopy with the unique J-aggregation properties of organic dyes. They enhance light absorption and have been used as effective biological imaging and therapeutic agents to achieve high-resolution imaging or effective phototherapy in vivo. In this work, we present novel J-aggregates composed of the well-known cyanine molecules. Cyanines are one of the few types of molecules whose absorption and emission can be shifted over a broad spectral range, from the ultraviolet (UV) to the NIR regime. They can easily transform into J-aggregates with narrow absorption and emission peaks, which is accompanied by a red shift in their spectra. In this work, we show, for the first time, that the tricarbocyanine dye (IR 820) has two sharp fluorescence emission bands in the NIR-II region with high photostability. These emission bands can be tuned to a desired wavelength in the range of 1150-1560 and 1675 nm, with a linear dependence on the excitation wavelength. Cryogenic transmission electron microscopy (cryo-TEM) images are presented, and combined with molecular modeling analysis, they confirm IR 820 π-stacked self-assembled fibrous structures.
Collapse
Affiliation(s)
- Nitzan Dar
- Department
of Physics, Faculty of Natural Science, Ariel University, Ariel 40700, Israel
| | - Haim Weissman
- Department
of Molecular Chemistry and Material Science, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rinat Ankri
- Department
of Physics, Faculty of Natural Science, Ariel University, Ariel 40700, Israel
| |
Collapse
|
5
|
Samaniego Lopez C, Verónica Rivas M, García Cambón TA, Wolosiuk A, Spagnuolo CC. Amphiphilic Near‐Infrared Fluorescent Molecular Probes: Optical Properties in Solution and in Surfactant Micelle Microenvironment. CHEMPHOTOCHEM 2023. [DOI: 10.1002/cptc.202200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Cecilia Samaniego Lopez
- CIHIDECAR-UBA-CONICET Int. Guiraldes 2160, Ciudad Universitaria Buenos Aires C1428EGA Argentina
| | - M. Verónica Rivas
- CIHIDECAR-UBA-CONICET Int. Guiraldes 2160, Ciudad Universitaria Buenos Aires C1428EGA Argentina
- INN – CONICET Gerencia Química Centro Atómico Constituyentes Comisión Nacional de Energía Atómica Av. Gral. Paz 1499 San Martín Buenos Aires B1650KNA Argentina
| | - Tomás A. García Cambón
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Int. Guiraldes 2160, Ciudad Universitaria Buenos Aires C1428EGA Argentina
| | - Alejandro Wolosiuk
- INN – CONICET Gerencia Química Centro Atómico Constituyentes Comisión Nacional de Energía Atómica Av. Gral. Paz 1499 San Martín Buenos Aires B1650KNA Argentina
| | - Carla C. Spagnuolo
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Int. Guiraldes 2160, Ciudad Universitaria Buenos Aires C1428EGA Argentina
- CIHIDECAR-UBA-CONICET Int. Guiraldes 2160, Ciudad Universitaria Buenos Aires C1428EGA Argentina
| |
Collapse
|
6
|
Aristova D, Selin R, Heil HS, Kosach V, Slominsky Y, Yarmoluk S, Pekhnyo V, Kovalska V, Henriques R, Mokhir A, Chernii S. Trimethine Cyanine Dyes as NA-Sensitive Probes for Visualization of Cell Compartments in Fluorescence Microscopy. ACS OMEGA 2022; 7:47734-47746. [PMID: 36591208 PMCID: PMC9798395 DOI: 10.1021/acsomega.2c05231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
We propose symmetrical cationic trimethine cyanine dyes with β-substituents in the polymethine chain based on modified benzothiazole and benzoxazole heterocycles as probes for the detection and visualization of live and fixed cells by fluorescence microscopy. The spectral-luminescent properties of trimethine cyanines have been characterized for free dyes and in the presence of nucleic acids (NA) and globular proteins. The studied cyanines are low to moderate fluorescent when free, but in the presence of NA, they show an increase in emission intensity up to 111 times; the most pronounced emission increase was observed for the dyes T-2 in the presence of dsDNA and T-1 with RNA. Spectral methods showed the binding of all dyes to nucleic acids, and different interaction mechanisms have been proposed. The ability to visualize cell components of the studied dyes has been evaluated using different human cell lines (MCF-7, A2780, HeLa, and Hs27). We have shown that all dyes are cell-permeant staining nucleus components, probably RNA-rich nucleoli with background fluorescence in the cytoplasm, except for the dye T-5. The dye T-5 selectively stains some structures in the cytoplasm of MCF-7 and A2780 cells associated with mitochondria or lysosomes. This effect has also been confirmed for the normal type of cell line-human foreskin fibroblasts (Hs27). The costaining of dye T-5 with MitoTracker CMXRos Red demonstrates specificity to mitochondria at a concentration of 0.1 μM. Colocalization analysis has shown signals overlapping of dye T-5 and MitoTracker CMXRos Red (Pearson's Coefficient value = 0.92 ± 0.04). The photostability study shows benzoxazole dyes to be up to ∼7 times more photostable than benzothiazole ones. Moreover, studied benzoxazoles are less cytotoxic at working concentrations than benzothiazoles (67% of cell viability for T-4, T-5 compared to 12% for T-1, and ∼30% for T-2, T-3 after 24 h). Therefore, the benzoxazole T-4 dye is proposed for nucleic acid detection in vitro and intracellular fluorescence imaging of live and fixed cells. In contrast, the benzoxazole dye T-5 is proposed as a good alternative to commercial dyes for mitochondria staining in the green-yellow region of the spectrum.
Collapse
Affiliation(s)
- Daria Aristova
- Institute
of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
- Instituto
Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Roman Selin
- V.I.
Vernadsky Institute of General and Inorganic Chemistry NASU, 32/34 Palladin Ave, 03142 Kyiv, Ukraine
- Organic
Chemistry II, Friedrich-Alexander-University
of Erlangen-Nuremberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Hannah Sophie Heil
- Instituto
Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Viktoriia Kosach
- Institute
of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Yuriy Slominsky
- Institute
of Organic Chemistry NASU, 5 Murmans’ka St., 02094 Kyiv, Ukraine
| | - Sergiy Yarmoluk
- Institute
of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Vasyl Pekhnyo
- V.I.
Vernadsky Institute of General and Inorganic Chemistry NASU, 32/34 Palladin Ave, 03142 Kyiv, Ukraine
| | - Vladyslava Kovalska
- Institute
of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Ricardo Henriques
- Instituto
Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Andriy Mokhir
- Organic
Chemistry II, Friedrich-Alexander-University
of Erlangen-Nuremberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Svitlana Chernii
- Institute
of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
- V.I.
Vernadsky Institute of General and Inorganic Chemistry NASU, 32/34 Palladin Ave, 03142 Kyiv, Ukraine
| |
Collapse
|
7
|
Dar N, Ankari R. Theoretical Models, Preparation, Characterization and Applications of Cyanine J-Aggregates: A Minireview. ChemistryOpen 2022; 11:e202200103. [PMID: 36423932 PMCID: PMC9691386 DOI: 10.1002/open.202200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/08/2022] [Indexed: 11/27/2022] Open
Abstract
Cyanines are one of the few kinds of molecules whose absorbance and emission can be shifted in a broad spectral range from the ultraviolet to the near infrared. They can easily transform into J-aggregates with narrow absorption and emission peaks, along with a redshift in their spectra. This mini-review presents cyanine dyes and their J-aggregates and discusses their structure and spectral properties that illustrate their specificities. We summarize the theoretical and experimental state of the art on cyanine J-aggregates and their applications, also laying the groundwork for cyanine J-aggregates synthesis and characterization methods.
Collapse
Affiliation(s)
- Nitzan Dar
- Department of PhysicsFaculty of Natural ScienceAriel UniversityAriel40700Israel
| | - Rinat Ankari
- Department of PhysicsFaculty of Natural ScienceAriel UniversityAriel40700Israel
| |
Collapse
|
8
|
De R, Sharma S, Sengupta S, Kumar Pal S. Discs to a 'Bright' Future: Exploring Discotic Liquid Crystals in Organic Light Emitting Diodes in the Era of New-Age Smart Materials. CHEM REC 2022; 22:e202200056. [PMID: 35594033 DOI: 10.1002/tcr.202200056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Indexed: 11/09/2022]
Abstract
With the advent of a new decade and the paradigm shift of every sphere of urban life to virtual platforms, it has become imperative for the global researcher community to channelize efforts into upgradation of the existing display-technology. In this context, discotic liquid crystals (DLCs) are a class of self-assembling organic materials that are recently being explored in fabricating the emissive layers of organic light emitting diodes (OLEDs). With their unique inherent structural and functional properties, they have the potential to challenge the currently prevailing OLED-emitters. Yet the applications of this promising class of materials in OLEDs have not been comprehensively reviewed in literature till now. In this account, we present an overview of the developments in the field of luminescent DLC-based emitters, supported by their associated photophysical phenomena and their performance parameters as emitters in fabricated OLED devices.
Collapse
Affiliation(s)
- Ritobrata De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), 140306, Mohali, Punjab, India
| | - Sushil Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), 140306, Mohali, Punjab, India
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), 140306, Mohali, Punjab, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), 140306, Mohali, Punjab, India
| |
Collapse
|
9
|
Liu B, Vonhausen Y, Schulz A, Höbartner C, Würthner F. Peptide Backbone Directed Self-Assembly of Merocyanine Oligomers into Duplex Structures. Angew Chem Int Ed Engl 2022; 61:e202200120. [PMID: 35194914 PMCID: PMC9401582 DOI: 10.1002/anie.202200120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/10/2022]
Abstract
The pseudopeptide backbone provided by N-(2-aminoethyl)-glycine oligomers with attached nucleobases has been widely utilized in peptide nucleic acids (PNAs) as DNA mimics. Here we demonstrate the suitability of this backbone for the formation of structurally defined dye stacks. Toward this goal a series of peptide merocyanine (PMC) dye oligomers connected to a N-(2-aminoethyl)-glycine backbone were prepared through peptide synthesis. Our concentration-, temperature- and solvent-dependent UV/Vis absorption studies show that under the control of dipole-dipole interactions, smaller-sized oligomers consisting of one, two or three dyes self-assemble into defined duplex structures containing two up to six chromophores. In contrast, upon further extension of the oligomer, the chosen peptide backbone cannot direct the formation of a defined duplex architecture anymore due to intramolecular aggregation between the dyes. For all aggregate species a moderate aggregation-induced emission enhancement is observed.
Collapse
Affiliation(s)
- Bin Liu
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Yvonne Vonhausen
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Alexander Schulz
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Claudia Höbartner
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Frank Würthner
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
10
|
Rajak A, Das A. Crystallization-Driven Controlled Two-Dimensional (2D) Assemblies from Chromophore-Appended Poly(L-lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew Chem Int Ed Engl 2022; 61:e202116572. [PMID: 35137517 DOI: 10.1002/anie.202116572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 12/12/2022]
Abstract
A rational approach towards precision two-dimensional (2D) assemblies by crystallization-driven self-assembly (CDSA) of poly(L-lactides) (PLLAs), end-capped with dipolar dyes like merocyanine (MC) or naphthalene monoimide (NMI) and hydrophobic pyrene (PY) or benzene (Bn) is described. PLLA chains crystallize into diamond-shaped platelets in isopropanol, which forces the terminal dyes to assemble into a 2D array on the platelet surface by either dipolar interactions or π-stacking and exhibit tunable emission. Dipolar dyes play a critical role in imparting colloidal stability and structural uniformity to the 2D crystals, which is partly compromised for hydrophobic ones. Co-crystallization between NMI- and PY-labeled PLLAs yields similar diamond-shaped co-platelets with highly efficient (≈80 %) Förster Resonance Energy Transfer on the 2D surface. Further, the "living" CDSA method confers enlarged, segmented block co-platelets using one of the homopolymers as "seed" and the other as "unimer".
Collapse
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
11
|
Liu B, Vonhausen Y, Schulz A, Höbartner C, Würthner F. Peptide Backbone Directed Self‐Assembly of Merocyanine Oligomers into Duplex Structures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bin Liu
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Yvonne Vonhausen
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexander Schulz
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Claudia Höbartner
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
12
|
Rajak A, Das A. Crystallization‐Driven Controlled Two‐Dimensional (2D) Assemblies from Chromophore‐Appended Poly(L‐lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS) 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata-700032 India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS) 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata-700032 India
| |
Collapse
|
13
|
Li Q, Hamamoto Y, Kwek G, Xing B, Li Y, Ito S. Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang‐Qiang Li
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Germain Kwek
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
14
|
Schulz A, Würthner F. Folding-induced Fluorescence Enhancement in a Series of Merocyanine Hetero-Folda-Trimers. Angew Chem Int Ed Engl 2022; 61:e202114667. [PMID: 34784435 PMCID: PMC9299730 DOI: 10.1002/anie.202114667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 12/12/2022]
Abstract
Many dyes suffer from fast non-radiative decay pathways, thereby showing only short-lived excited states and weak photoluminescence. Here we show a pronounced fluorescence enhancement for a weakly fluorescent merocyanine (MC) dye by being co-facially stacked to other dyes in hetero-folda-trimer architectures. By means of fluorescence spectroscopy (lifetime, quantum yield) the fluorescence enhancement was explained by the rigidification of the emitting chromophore in the defined foldamer architecture and the presence of a non-forbidden lowest exciton state in H-coupled hetero-aggregates. This folding-induced fluorescence enhancement (FIFE) for specific sequences of π-stacked dyes points at a viable strategy toward improved fluorophores that relates to the approach used by nature in the green fluorescent protein (GFP).
Collapse
Affiliation(s)
- Alexander Schulz
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
15
|
Folding‐induced Fluorescence Enhancement in a Series of Merocyanine Hetero‐Folda‐Trimers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Li QQ, Hamamoto Y, Kwek G, Xing B, Li Y, Ito S. Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angew Chem Int Ed Engl 2021; 61:e202112638. [PMID: 34863045 DOI: 10.1002/anie.202112638] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 11/05/2022]
Abstract
Polycyclic aromatic molecules are promising functional materials for a wide range of applications, especially in organic electronics. However, their largely hydrophobic nature has impeded further applications. As such, imparting high solubility/hydrophilicity to polycyclic aromatic molecules leads to a breakthrough in this research field. Herein, we report the synthesis of diazapentabenzocorannulenium, a cationic nitrogen-embedded buckybowl bearing a central imidazolium core, by a bottom-up strategy from polycyclic aromatic azomethine ylide. X-ray crystallography analyses have revealed a bowl-shaped molecular structure that is capable of forming charge-segregated one-dimensional columns by bowl-in-bowl packing. In addition to its fluorescence capabilities and high dispersibility in water, the molecule was found to selectively localize in the mitochondria of various tumor cells, showing potential as viable mitochondria-selective fluorescent probes.
Collapse
Affiliation(s)
- Qiang-Qiang Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Germain Kwek
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
17
|
Uehara K, Kano H, Matsuo K, Hayashi H, Fujiki M, Yamada H, Aratani N. Mirror‐Image Cofacial Coronene Dimers Characterized by CD and CPL Spectroscopy: A Twisted Bilayer Nanographene. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Keiji Uehara
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Haruka Kano
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Kyohei Matsuo
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Hironobu Hayashi
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Michiya Fujiki
- Division of R&D True2Materials PTE. Ltd. 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Hiroko Yamada
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Naoki Aratani
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| |
Collapse
|
18
|
Islam K, Narjinari H, Kumar A. Polycyclic Aromatic Hydrocarbons Bearing Polyethynyl Bridges: Synthesis, Photophysical Properties, and their Applications. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Khadimul Islam
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Himani Narjinari
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Akshai Kumar
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
- Center for Nanotechnology Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| |
Collapse
|
19
|
Zheng R, Yang J, Mamuti M, Hou D, An H, Zhao Y, Wang H. Controllable Self‐Assembly of Peptide‐Cyanine Conjugates In Vivo as Fine‐Tunable Theranostics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Rui Zheng
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
- School of Nanoscience and Technology University of Chinese Academy of Sciences (UCAS) Beijing 100049 China
| | - Jia Yang
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences (UCAS) Beijing 100049 China
| | - Muhetaerjiang Mamuti
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Da‐Yong Hou
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
| | - Hong‐Wei An
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 P. R. China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 P. R. China
| |
Collapse
|
20
|
Chen B, Huang Q, Qu Z, Li C, Li Q, Shi J, Fan C, Wang L, Zuo X, Shen J, Li J. Probing Transient DNA Conformation Changes with an Intercalative Fluorescent Excimer. Angew Chem Int Ed Engl 2021; 60:6624-6630. [PMID: 33314629 DOI: 10.1002/anie.202014466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Variation of DNA conformation is important in regulating gene expression and mediating drug-DNA interactions. However, directly probing transient DNA conformation changes is challenging owing to the dynamic nature of this process. We show a label-free fluorescence method to monitor transient DNA conformation changes in DNA structures with various lengths and shapes using a DNA intercalator, K21. K21 can form transient excimers on the surface of DNA; the ratiometric emission of monomer and excimer correlate to DNA transient conformation stability in numerous DNA structures, including i-motifs, G-quadruplex structures, and single nucleotide mutation at random position. We analyzed the conformation dynamics of a single plasmid before and after enzyme digestion with confocal fluorescence microscopy. This method provides a label-free fluorescence strategy to probe transient conformation changes of DNA structures and has potential in uncovering transient genomic processes in living cells.
Collapse
Affiliation(s)
- Bin Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qiuling Huang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibei Qu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| |
Collapse
|
21
|
Chen B, Huang Q, Qu Z, Li C, Li Q, Shi J, Fan C, Wang L, Zuo X, Shen J, Li J. Probing Transient DNA Conformation Changes with an Intercalative Fluorescent Excimer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Chen
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Qiuling Huang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhibei Qu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Cong Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Qian Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| |
Collapse
|
22
|
Zheng R, Yang J, Mamuti M, Hou D, An H, Zhao Y, Wang H. Controllable Self‐Assembly of Peptide‐Cyanine Conjugates In Vivo as Fine‐Tunable Theranostics. Angew Chem Int Ed Engl 2021; 60:7809-7819. [DOI: 10.1002/anie.202015126] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/03/2021] [Indexed: 12/27/2022]
Affiliation(s)
- Rui Zheng
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
- School of Nanoscience and Technology University of Chinese Academy of Sciences (UCAS) Beijing 100049 China
| | - Jia Yang
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences (UCAS) Beijing 100049 China
| | - Muhetaerjiang Mamuti
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Da‐Yong Hou
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
| | - Hong‐Wei An
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 P. R. China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 P. R. China
| |
Collapse
|
23
|
Lewis BW, Bisballe N, Santella M, Summers PA, Vannier JB, Kuimova MK, Laursen BW, Vilar R. Assessing The Key Photophysical Properties of Triangulenium Dyes for DNA Binding by Alteration of the Fluorescent Core. Chemistry 2021; 27:2523-2536. [PMID: 33105523 DOI: 10.1002/chem.202003875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 11/09/2022]
Abstract
Four-stranded G-quadruplex (G4) DNA is a non-canonical DNA topology that has been proposed to form in cells and play key roles in how the genome is read and used by the cellular machinery. Previously, a fluorescent triangulenium probe (DAOTA-M2) was used to visualise G4s in cellulo, thanks to its distinct fluorescence lifetimes when bound to different DNA topologies. Herein, the library of available triangulenium probes is expanded to explore how modifications to the fluorescent core of the molecule affect its photophysical characteristics, interaction with DNA and cellular localisation. The benzo-bridged and isopropyl-bridged diazatriangulenium dyes, BDATA-M2 and CDATA-M2 respectively, featuring ethyl-morpholino substituents, were synthesised and characterised. The interactions of these molecules with different DNA topologies were studied to determine their binding affinity, fluorescence enhancement and fluorescence lifetime response. Finally, the cellular uptake and localisation of these optical probes were investigated. Whilst structural modifications to the triangulenium core only slightly alter the binding affinity to DNA, BDATA-M2 and CDATA-M2 cannot distinguish between DNA topologies through their fluorescence lifetime. It is argued theoretically and experimentally that this is due to reduced effectiveness of photoinduced electron transfer (PET) quenching. This work presents valuable new evidence into the critical role of PET quenching when using the fluorescence lifetime of triangulenium dyes to discriminate G4 DNA from duplex DNA, highlighting the importance of fine tuning redox and spectral properties when developing new triangulenium-based G4 probes.
Collapse
Affiliation(s)
- Benjamin W Lewis
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London, W12 0BZ, UK.,Institute of Chemical Biology, White City Campus, Imperial College London, London, W12 0BZ, UK
| | - Niels Bisballe
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Marco Santella
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Peter A Summers
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London, W12 0BZ, UK
| | - Jean-Baptiste Vannier
- Telomere Replication and Stability Group, Medical Research Council-London Institute of Medical Sciences, London, W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Marina K Kuimova
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London, W12 0BZ, UK.,Institute of Chemical Biology, White City Campus, Imperial College London, London, W12 0BZ, UK
| | - Bo W Laursen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Ramon Vilar
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London, W12 0BZ, UK.,Institute of Chemical Biology, White City Campus, Imperial College London, London, W12 0BZ, UK
| |
Collapse
|
24
|
Self-assembled heptamethine cyanine dye dimer as a novel theranostic drug delivery carrier for effective image-guided chemo-photothermal cancer therapy. J Control Release 2020; 329:50-62. [PMID: 33259849 DOI: 10.1016/j.jconrel.2020.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022]
Abstract
Near-infrared (NIR)-induced dye-based theranostic drug delivery carriers are used for critical image-guided chemo-photothermal cancer therapy. However, most carriers fail to deliver sufficient heat and fluorescence efficiently due to direct π-π stacking of the aromatic rings of the NIR dye and drug. In the work reported herein, we examined a self-assembled heptamethine cyanine dye dimer (CyD) with improved heat and fluorescence delivery that was developed by manipulating the unique structural and optical properties of the dimer. The H-aggregation of CyD in an aqueous solution generated a great amount of heat by transforming the energy of the excited electrons into non-radiative energy. Moreover, the disulfide bond of CyD assisted nanoparticles with a drug by minimizing the interaction between the NIR dye and drug, and also by releasing the drug in a redox environment. As a result, DOX encapsulated within CyD (CyD/DOX) showed strong heat generation and fluorescence imaging in tumor-bearing mice, allowing detection of the tumor site and inhibition of tumor growth by chemo-photothermal therapy. The multiplicity of features supplied by the newly developed CyD demonstrated the potential of CyD/DOX as an NIR dye-based theranostic drug-delivery carrier for effective chemo-photothermal cancer therapy.
Collapse
|
25
|
Bisballe N, Laursen BW. What is Best Strategy for Water Soluble Fluorescence Dyes?-A Case Study Using Long Fluorescence Lifetime DAOTA Dyes*. Chemistry 2020; 26:15969-15976. [PMID: 32639046 DOI: 10.1002/chem.202002457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/01/2020] [Indexed: 12/14/2022]
Abstract
The lipophilic nature of organic dyes complicates their effectiveness in aqueous solutions. In this work we investigate three different strategies for achieving water-solubility of the diazaoxatriangulenium (DAOTA+ ) chromophore: hydrophilic counter ions, aromatic sulfonation of the chromophore, and attachment of charged side chains. The long fluorescence lifetime (FLT, τf =20 ns) of DAOTA+ makes it a sensitive probe to analyze solvation and aggregation effects. Direct sulfonation of the chromophore was found to increase solubility drastically, but at the cost of greatly reduced quantum yields (QYs) due to enhanced non-radiative deactivation processes. The introduction of either cationic (4) or zwitterionic side chains (5), however, brings the FLT (τf =18 ns) and QY (ϕf =0.56) of the dye to the same level as the parent chromophore in acetonitrile. Time-resolved fluorescence spectroscopy also reveals a high resistance to aggregation and non-specific binding in a high loading of bovine serum albumin (BSA). The results clearly show that addition of charged flexible side chains is preferable to direct sulfonation of the chromophore core.
Collapse
Affiliation(s)
- Niels Bisballe
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Bo W Laursen
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
26
|
Würthner F. Aggregations‐induzierte Emission (AIE): Eine historische Betrachtung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007525] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank Würthner
- Universität Würzburg Institut für Organische Chemie & Center for Nanosystems Chemistry Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
27
|
Würthner F. Aggregation-Induced Emission (AIE): A Historical Perspective. Angew Chem Int Ed Engl 2020; 59:14192-14196. [PMID: 32662175 DOI: 10.1002/anie.202007525] [Citation(s) in RCA: 260] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 01/16/2023]
Abstract
Aggregation-induced emission (AIE) has attracted considerable interest over the last twenty years. In contrast to the large number of available reviews focusing specifically on AIE, this Essay discusses the AIE phenomenon from a broader perspective, with an emphasis on early observations related to AIE made long before the term was coined. Illustrative examples are highlighted from the 20th century where fluorescence enhancement upon rigidification of dyes in viscous or solid environments or J-aggregate formation was studied. It is shown that these examples already include typical AIE luminogens such as tetraphenylethylene (TPE) as well as stilbenes and oligo- or polyphenylenevinylenes and -ethynylenes, which became important fluorescent solid-state materials in OLED research in the 1990s. Further examples include cyanine dyes such as thiazole orange (TO) or its dimers (TOTOs), which have been widely applied as molecular probes in nucleic acid research. The up to 10 000-fold fluorescence enhancement of such dyes upon intercalation into double-stranded DNA, attributable to the restricted intramolecular motion (RIM) concept, afforded commercial products for bioimaging and fluorescence sensing applications already in the early 1990s.
Collapse
Affiliation(s)
- Frank Würthner
- Universität Würzburg, Institut für Organische Chemie & Center for Nanosystems Chemistry, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
28
|
Liu Y, Li A, Xu S, Xu W, Liu Y, Tian W, Xu B. Reversible Luminescent Switching in an Organic Cocrystal: Multi‐Stimuli‐Induced Crystal‐to‐Crystal Phase Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002220] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yingjie Liu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Aisen Li
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Yu Liu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| |
Collapse
|
29
|
Liu Y, Li A, Xu S, Xu W, Liu Y, Tian W, Xu B. Reversible Luminescent Switching in an Organic Cocrystal: Multi‐Stimuli‐Induced Crystal‐to‐Crystal Phase Transformation. Angew Chem Int Ed Engl 2020; 59:15098-15103. [DOI: 10.1002/anie.202002220] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/02/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Yingjie Liu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Aisen Li
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Yu Liu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| |
Collapse
|
30
|
Tsai M, Tsai S, Huang Y, Wang C, Sun S, Yang J. Hydrogen Bonding‐Induced H‐Aggregation for Fluorescence Turn‐On of the GFP Chromophore: Supramolecular Structural Rigidity. Chemistry 2020; 26:5942-5945. [DOI: 10.1002/chem.202000358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/25/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Meng‐Shiue Tsai
- Department of ChemistryNational (Taiwan) University, No 1, Sec 4 Roosevelt Rd Taipei 10617 Taiwan
- Institute of ChemistryAcademia Sinica, No. 128, Sec. 2 Academia Rd., Nankang Taipei 11529 Taiwan
| | - Sung‐Yu Tsai
- Department of Applied ChemistryNational Chiao-Tung University, No. 1001 University Rd Hsinchu 30010 Taiwan
| | - Yi‐Fan Huang
- Department of Applied ChemistryNational Chiao-Tung University, No. 1001 University Rd Hsinchu 30010 Taiwan
| | - Chien‐Lung Wang
- Department of Applied ChemistryNational Chiao-Tung University, No. 1001 University Rd Hsinchu 30010 Taiwan
| | - Shih‐Sheng Sun
- Institute of ChemistryAcademia Sinica, No. 128, Sec. 2 Academia Rd., Nankang Taipei 11529 Taiwan
| | - Jye‐Shane Yang
- Department of ChemistryNational (Taiwan) University, No 1, Sec 4 Roosevelt Rd Taipei 10617 Taiwan
| |
Collapse
|
31
|
Soufeena PP, Nibila TA, Aravindakshan KK. Coumarin based yellow emissive AIEE active probe: A colorimetric sensor for Cu 2+ and fluorescent sensor for picric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117201. [PMID: 31160185 DOI: 10.1016/j.saa.2019.117201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/20/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
A hydrazine derived ESIPT active Schiff base, 1-(8-methanylylidene-7-hydroxy-4-methyl-2H-chromen-2-one)-2-(2, 4-dihydroxybenzylidene) hydrazine, L was synthesized and characterized by elemental analysis and by various spectroscopic techniques. L exhibited a colourimetric response towards Cu2+ ion by changing from colorless to yellow with relatively a little or no interference of other common metal ions. The probe also showed good response for the detection of Cu2+ in real water samples. The H-aggregated L displayed AIEE property in acetonitrile/water mixture. The restriction of molecular motions endued the luminogen with a yellow fluorescence through ESIPT emission at 562 nm having relatively large Stock's shift of 205 nm. The scanning electron microscopic study was carried out to investigate the morphology of the nanoaggregate. The aggregated luminogen displayed it yellow emission in the pH range of 4-7 without affecting the intensity. The applicability of the probe for the detection of picric acid was also checked.
Collapse
Affiliation(s)
- P P Soufeena
- Department of Chemistry, University of Calicut, Malappuram, Kerala 673 635, India
| | - T A Nibila
- Department of Chemistry, University of Calicut, Malappuram, Kerala 673 635, India
| | - K K Aravindakshan
- Department of Chemistry, University of Calicut, Malappuram, Kerala 673 635, India.
| |
Collapse
|
32
|
Qiu YH, Ding SJ, Nan F, Wang Q, Chen K, Hao ZH, Zhou L, Li X, Wang QQ. Manipulating the fluorescence of exciton-plasmon hybrids in the strong coupling regime with dual resonance enhancements. NANOSCALE 2019; 11:22033-22041. [PMID: 31714554 DOI: 10.1039/c9nr05442a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Strong couplings between molecular excitons and metal plasmons bring advantages to effectively manipulate the optical properties of hybrid systems, including both absorption and fluorescence. In contrast to absorption behaviours, which have been quite well understood and can be categorized into different regimes such as Fano dip and Rabi splitting, the characteristics of fluorescence in strongly coupled hybrids remain largely unexplored. Quenching instead of the enhancement of fluorescence is usually observed in the corresponding experiments, and a theoretical model to deal with this phenomenon is still lacking. Herein, we demonstrate a largely enhanced fluorescence in a hybrid system with Cy5 dye molecules strongly coupled to Ag nanoparticle films, signified by the huge Rabi splitting absorption spectra. The plexciton Rabi splitting of the hybrids can be tuned from 320 meV to as large as 750 meV by adjusting both plasmon strength and molecular concentration. Moreover, when the excitation and emission wavelengths are respectively tuned to be resonant with the two Rabi peaks, the hybrid acting as a plexcitonic dual resonant antenna exhibits an enhanced fluorescence 44 times larger than that of the free dye molecule. We also develop a theoretical model to simultaneously study the characteristics of both the absorption and emission spectra, including the peak shifting and strength. These findings offer a new strategy to design and fabricate plexcitonic devices with tunable optical responses and efficient fluorescence.
Collapse
Affiliation(s)
- Yun-Hang Qiu
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Department of Physics, Institute for Advanced Study, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Unexpectedly bright photoluminescence emission can be observed in materials incorporating inorganic carbon when their size is reduced from macro–micro to nano. At present, there is no consensus in its understanding, and many suggested explanations are not consistent with the broad range of experimental data. In this Review, I discuss the possible role of collective excitations (excitons) generated by resonance electronic interactions among the chromophore elements within these nanoparticles. The Förster-type resonance energy transfer (FRET) mechanism of energy migration within nanoparticles operates when the composing fluorophores are the localized electronic systems interacting at a distance. Meanwhile, the resonance interactions among closely located fluorophores may lead to delocalization of the excited states over many molecules resulting in Frenkel excitons. The H-aggregate-type quantum coherence originating from strong coupling among the transition dipoles of adjacent chromophores in a co-facial stacking arrangement and exciton transport to emissive traps are the basis of the presented model. It can explain most of the hitherto known experimental observations and must stimulate the progress towards their versatile applications.
Collapse
|
34
|
Effect of molecular packing on modulation of electronic properties of organic donor–acceptor hybrid gels. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Qi J, Hu X, Dong X, Lu Y, Lu H, Zhao W, Wu W. Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool. Adv Drug Deliv Rev 2019; 143:206-225. [PMID: 31158405 DOI: 10.1016/j.addr.2019.05.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/04/2019] [Accepted: 05/29/2019] [Indexed: 01/12/2023]
Abstract
One of the current challenges in the monitoring of drug nanocarriers lies in the difficulties in discriminating the carrier-bound signals from the bulk signals of probes. Environment-responsive probes that enable signal switching are making steps towards a solution to this problem. Aggregation-caused quenching (ACQ), a phenomenon generally regarded as unfavorable in bioimaging, has turned out to be a promising characteristic for achieving environment-responsiveness and eliminating free-probe interference. So-called ACQ probes emit fluorescence when dispersed molecularly within the carrier matrix but quench immediately and absolutely once they are released into the ambient aqueous environment upon the degradation of the nanocarriers. Therefore, the fluorescence observed represents integral nanocarriers. Based on this rationale, the in vivo fates of various nanocarriers have been explored using live imaging equipment, with very interesting findings revealing the role of the particles. The current applications are however restricted to nanocarriers with highly hydrophobic matrices (lipid or polyester nanoparticles) or with a hydrophobic core-hydrophilic shell structure (micelles). The ACQ-based bioimaging strategy is emerging as a promising tool to achieve more accurate bioimaging of drug nanocarriers. This review article provides an overview of the ACQ phenomenon and the rationale for and examples of applications, as well as the limitations of the ACQ-based strategy, with a focus on improving the accuracy of bioimaging of nanoparticles.
Collapse
|
36
|
Sebastian E, Philip AM, Benny A, Hariharan M. Null Exciton Splitting in Chromophoric Greek Cross (+) Aggregate. Angew Chem Int Ed Engl 2018; 57:15696-15701. [PMID: 30338635 DOI: 10.1002/anie.201810209] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 12/29/2022]
Abstract
Exciton interactions in molecular aggregates play a crucial role in tailoring the optical behaviour of π-conjugated materials. Though vital for optoelectronic applications, ideal Greek cross-dipole (α=90°) stacking of chromophores remains elusive. We report a novel Greek cross (+) assembly of 1,7-dibromoperylene-3,4,9,10-tetracarboxylic tetrabutylester (PTE-Br2 ) which exhibits null exciton coupling mediated monomer-like optical characteristics in the crystalline state. In contrast, nonzero exciton coupling in X-type (α=70.2°, PTE-Br0 ) and J-type (α=0°, θ=48.4°, PTE-Br4 ) assemblies have perturbed optical properties. Additionally, the semi-classical Marcus theory of charge-transfer rates predicts a selective hole transport phenomenon in the orthogonally stacked PTE-Br2 . Precise rotation angle dependent optoelectronic properties in crystalline PTE-Br2 can have consequences in the rational design of novel π-conjugated materials for photonic and molecular electronic applications.
Collapse
Affiliation(s)
- Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Abbey M Philip
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Alfy Benny
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
37
|
Sebastian E, Philip AM, Benny A, Hariharan M. Null Exciton Splitting in Chromophoric Greek Cross (+) Aggregate. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ebin Sebastian
- School of Chemistry; Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM); Maruthamala P. O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Abbey M. Philip
- School of Chemistry; Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM); Maruthamala P. O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Alfy Benny
- School of Chemistry; Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM); Maruthamala P. O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Mahesh Hariharan
- School of Chemistry; Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM); Maruthamala P. O., Vithura Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
38
|
Xiao L, Sun H. Novel properties and applications of carbon nanodots. NANOSCALE HORIZONS 2018; 3:565-597. [PMID: 32254112 DOI: 10.1039/c8nh00106e] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the most recent decade, carbon dots have drawn intensive attention and triggered substantial investigation. Carbon dots manifest superior merits, including excellent biocompatibility both in vitro and in vivo, resistance to photobleaching, easy surface functionalization and bio-conjugation, outstanding colloidal stability, eco-friendly synthesis, and low cost. All of these endow them with the great potential to replace conventional unsatisfactory fluorescent heavy metal-containing semiconductor quantum dots or organic dyes. Even though the understanding of their photoluminescence mechanism is still controversial, carbon dots have already exhibited many versatile applications. In this article, we summarize and review the recent progress achieved in the field of carbon dots, and provide a comprehensive summary and discussion on their synthesis methods and emission mechanisms. We also present the applications of carbon dots in bioimaging, drug delivery, microfluidics, light emitting diode (LED), sensing, logic gates, and chiral photonics, etc. Some unaddressed issues, challenges, and future prospects of carbon dots are also discussed. We envision that carbon dots will eventually have great commercial utilization and will become a strong competitor to some currently used fluorescent materials. It is our hope that this review will provide insights into both the fundamental research and practical applications of carbon dots.
Collapse
Affiliation(s)
- Lian Xiao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | | |
Collapse
|
39
|
Hinton DA, Ng JD, Sun J, Lee S, Saikin SK, Logsdon J, White DS, Marquard AN, Cavell AC, Krasecki VK, Knapper KA, Lupo KM, Wasielewski MR, Aspuru-Guzik A, Biteen JS, Gopalan P, Goldsmith RH. Mapping Forbidden Emission to Structure in Self-Assembled Organic Nanoparticles. J Am Chem Soc 2018; 140:15827-15841. [DOI: 10.1021/jacs.8b09149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel A. Hinton
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - James D. Ng
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Jian Sun
- Department of Materials Science and Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Stephen Lee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Semion K. Saikin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Jenna Logsdon
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - David S. White
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
- Department of Neuroscience, University of Wisconsin−Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Angela N. Marquard
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Andrew C. Cavell
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Veronica K. Krasecki
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Kassandra A. Knapper
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Katherine M. Lupo
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Biologically-Inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5S 1M1, Canada
- Department of Chemistry and Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario M5S 1M1, Canada
| | - Julie S. Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Padma Gopalan
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
- Department of Materials Science and Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Randall H. Goldsmith
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
40
|
Niu Y, Wang R, Shao P, Wang Y, Zhang Y. Nitrostyrene-Modified 2-(2-Hydroxyphenyl)benzothiazole: Enol-Emission Solvatochromism by ESICT-ESIPT and Aggregation-Induced Emission Enhancement. Chemistry 2018; 24:16670-16676. [DOI: 10.1002/chem.201803938] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yahui Niu
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 P. R. China
| | - Rong Wang
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 P. R. China
| | - Panlin Shao
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of, Natural Product Synthesis and Drug Research; Chongqing University; 55 Daxuecheng South Road, Shapingba Chongqing 401331 P. R. China
| | - Yuxiu Wang
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 P. R. China
| | - Yanrong Zhang
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 P. R. China
| |
Collapse
|
41
|
Direct C−H Borylation at the 2- and 2,7-Positions of Pyrene Leading to Brightly Blue- and Green-Emitting Chromophores. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Hawes CS, Ó Máille GM, Byrne K, Schmitt W, Gunnlaugsson T. Tetraarylpyrrolo[3,2-b]pyrroles as versatile and responsive fluorescent linkers in metal-organic frameworks. Dalton Trans 2018; 47:10080-10092. [PMID: 29999051 DOI: 10.1039/c8dt01784k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first examples of crystalline coordination polymers containing the tetraarylpyrrolo[3,2-b]pyrrole (TPP) fluorophore are presented. We have prepared three new TPP ligands L1, H2L2 and H2L3, containing nitrile, carboxylate and mixed imidazole-carboxylate donor functionality, respectively. The ligands themselves each show significant fluorescence in the solution phase, with the nitrile species exhibiting solvatofluorochromism and the two carboxylate-containing compounds exhibiting concentration-dependent emission colour suggesting aggregation processes in solution. Three 3-dimensional polymeric structures are then presented. The compound poly-[AgL12]SbF6·3THF·2H2O 1 is an eightfold-interpenetrated diamondoid material, while poly-[Zn4O(L2)3]·20DMA·10H2O 2 is a porous Metal-Organic Framework with pcu topology, and both 1 and 2 show notable luminescence in the solid state. Complex 2 readily undergoes guest exchange accompanied by a reversible switching in emission colour with no change in chemical structure. While complex poly-[CdL3]·2.5DMA·3.5H2O 3 is non-emissive, it displays a twofold interpenetrated pts topology with hexagonal symmetry and an extremely long hexagonal pitch of 100.3 Å, and shows an impressive 22 wt% CO2 uptake capacity at 278 K and 1 bar.
Collapse
Affiliation(s)
- Chris S Hawes
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK.
| | | | | | | | | |
Collapse
|
43
|
Kazantsev RV, Dannenhoffer A, Aytun T, Harutyunyan B, Fairfield DJ, Bedzyk MJ, Stupp SI. Molecular Control of Internal Crystallization and Photocatalytic Function in Supramolecular Nanostructures. Chem 2018; 4:1596-1608. [PMID: 30740552 DOI: 10.1016/j.chempr.2018.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Supramolecular light-absorbing nanostructures are useful building blocks for the design of next-generation artificial photosynthetic systems. Development of such systems requires a detailed understanding of how molecular packing influences the material's optoelectronic properties. We describe a series of crystalline supramolecular nanostructures in which the substituents on their monomeric units strongly affects morphology, ordering kinetics, and exciton behavior. By designing constitutionally-isomeric perylene monoimide (PMI) amphiphiles, the effect of side chain sterics on nanostructure crystallization was studied. Molecules with short amine linked alkyl-tails rapidly crystallize upon dissolution in water, while bulkier tails require the addition of salt to screen electrostatic repulsion and annealing to drive crystallization. A PMI monomer bearing a 3-pentylamine tail was found to possess a unique structure that results in strongly red-shifted absorbance, indicative of charge-transfer exciton formation. This particular supramolecular structure was found to have an enhanced ability to photosensitize a thiomolybdate, [(NH4)2Mo3S13], catalyst to generate hydrogen gas.
Collapse
Affiliation(s)
- Roman V Kazantsev
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Argonne Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, IL 60208, USA
| | - Adam Dannenhoffer
- Department of Materials Science and Engineering, Evanston, IL 60208, USA
| | - Taner Aytun
- Department of Materials Science and Engineering, Evanston, IL 60208, USA
| | - Boris Harutyunyan
- Argonne Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, IL 60208, USA.,Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Daniel J Fairfield
- Department of Materials Science and Engineering, Evanston, IL 60208, USA
| | - Michael J Bedzyk
- Department of Materials Science and Engineering, Evanston, IL 60208, USA.,Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Argonne Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, IL 60208, USA.,Department of Materials Science and Engineering, Evanston, IL 60208, USA.,Department of Medicine, Northwestern University, Chicago, IL 60611, USA.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.,Lead Contact
| |
Collapse
|
44
|
Šmidlehner T, Kurutos A, Slade J, Belužić R, Ang DL, Rodger A, Piantanida I. Versatile Click Cyanine Amino Acid Conjugates Showing One-Atom-Influenced Recognition of DNA/RNA Secondary Structure and Mitochondrial Localisation in Living Cells. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701765] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tamara Šmidlehner
- Division of Organic Chemistry & Biochemistry; Ruđer Bošković Institute; Bijenička cesta 54 10002 Zagreb Croatia
| | - Atanas Kurutos
- Inter- and IntraMolecular Processes Group; Bulgarian Academy of Science; 1113 Sofia Bulgaria
| | - Jakov Slade
- Division of Organic Chemistry & Biochemistry; Ruđer Bošković Institute; Bijenička cesta 54 10002 Zagreb Croatia
| | - Robert Belužić
- Division of Organic Chemistry & Biochemistry; Ruđer Bošković Institute; Bijenička cesta 54 10002 Zagreb Croatia
| | - Dale L. Ang
- Nanoscale Organisation and Dynamics Group; Western Sydney University; 2560 Campbelltown NSW Australia
| | - Alison Rodger
- Chemistry and Biomolecular Sciences; Macquarie University; 2109 Sydney NSW Australia
| | - Ivo Piantanida
- Division of Organic Chemistry & Biochemistry; Ruđer Bošković Institute; Bijenička cesta 54 10002 Zagreb Croatia
| |
Collapse
|
45
|
Shahamirifard SA, Ghaedi M, Montazerozohori M. Application of nanostructure ZnLI
2
complex in construction of optical pH sensor. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Bricks JL, Slominskii YL, Panas ID, Demchenko AP. Fluorescent J-aggregates of cyanine dyes: basic research and applications review. Methods Appl Fluoresc 2017; 6:012001. [DOI: 10.1088/2050-6120/aa8d0d] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Poronik YM, Bernaś T, Wrzosek A, Banasiewicz M, Szewczyk A, Gryko DT. One-Photon and Two-Photon Mitochondrial Fluorescent Probes Based on a Rhodol Chromophore. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yevgen M. Poronik
- Institute of Organic Chemistry of Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Tytus Bernaś
- Nencki Institute of Experimental Biology of Polish Academy of Sciences; Pasteur 3 02-093 Warsaw Poland
| | - Antoni Wrzosek
- Nencki Institute of Experimental Biology of Polish Academy of Sciences; Pasteur 3 02-093 Warsaw Poland
| | | | - Adam Szewczyk
- Nencki Institute of Experimental Biology of Polish Academy of Sciences; Pasteur 3 02-093 Warsaw Poland
| | - Daniel T. Gryko
- Institute of Organic Chemistry of Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
48
|
Kumar A, Prakash K, Sahoo PR, Kumar S. Visible Light Controlled Aggregation of a Spiropyran-HSO4
−
Complex as a Strategy for Reversible Detection in Water. ChemistrySelect 2017. [DOI: 10.1002/slct.201701357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ajeet Kumar
- Department of Chemistry; University Enclave, St. Stephen's College; Delhi-110007 India
| | - Kunal Prakash
- Department of Chemistry; University Enclave, St. Stephen's College; Delhi-110007 India
| | - Priya Ranjan Sahoo
- Department of Chemistry; University Enclave, St. Stephen's College; Delhi-110007 India
| | - Satish Kumar
- Department of Chemistry; University Enclave, St. Stephen's College; Delhi-110007 India
| |
Collapse
|
49
|
Horak E, Vianello R, Hranjec M, Krištafor S, Zamola GK, Steinberg IM. Benzimidazole acrylonitriles as multifunctional push-pull chromophores: Spectral characterisation, protonation equilibria and nanoaggregation in aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 178:225-233. [PMID: 28199927 DOI: 10.1016/j.saa.2017.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 06/06/2023]
Abstract
Heterocyclic donor-π-acceptor molecular systems based on an N,N-dimethylamino phenylacrylonitrile benzimidazole skeleton have been characterised and are proposed for potential use in sensing applications. The benzimidazole moiety introduces a broad spectrum of useful multifunctional properties to the system including electron accepting ability, pH sensitivity and compatibility with biomolecules. The photophysical characterisation of the prototropic forms of these chromophores has been carried out in both solution and on immobilisation in polymer films. The experimental results are further supported by computational determination of pKa values. It is noticed that compound 3 forms nanoaggregates in aqueous solutions with aggregation-induced emission (AIE) at 600nm. All the systems demonstrate spectral pH sensitivity in acidic media which shifts towards near-neutral values upon immobilisation in polymer films or upon aggregation in an aqueous environment (compound 3). The structure-property relationships of these functional chromophores, involving their spectral characteristics, acid-base equilibria, pKa values and aggregation effects have been determined. Potential applications of the molecules as pH and biomolecular sensors are proposed based on their pH sensitivity and AIE properties.
Collapse
Affiliation(s)
- Ema Horak
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR 10000 Zagreb, Croatia
| | - Robert Vianello
- Computational Organic Chemistry and Biochemistry Group, Ruđer Bošković Institute, Bijenička cesta 54, HR 10000 Zagreb, Croatia
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, HR 10000 Zagreb, Croatia
| | - Svjetlana Krištafor
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR 10000 Zagreb, Croatia
| | - Grace Karminski Zamola
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, HR 10000 Zagreb, Croatia
| | - Ivana Murković Steinberg
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR 10000 Zagreb, Croatia.
| |
Collapse
|
50
|
Krieger A, Fuenzalida Werner JP, Mariani G, Gröhn F. Functional Supramolecular Porphyrin–Dendrimer Assemblies for Light Harvesting and Photocatalysis. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02435] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Anja Krieger
- Department of Chemistry and
Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Juan Pablo Fuenzalida Werner
- Department of Chemistry and
Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Giacomo Mariani
- Department of Chemistry and
Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Franziska Gröhn
- Department of Chemistry and
Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|