1
|
Shu D, Fayad E, Abu Ali OA, Qin HL. Discovery of A Synthetic Hub for Regio- and Stereoselective Construction of Triazolyl Vinyl Sulfonyl Fluorides. J Org Chem 2024; 89:16969-16974. [PMID: 39482943 DOI: 10.1021/acs.joc.4c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A new sulfonyl fluoride reagent 1-bromobut-3-ene-1,3-disulfonyl difluoride (BEDF) was developed. This unique reagent possesses two clickable functionalities to be used for both azide-alkyne cycloaddition click and SuFEx click reactions. This new reagent was applied for the regioselective construction of a class of novel triazolyl vinyl sulfonyl fluorides in which the C-4 position 1H-1,2,3-triazoles were functionalized with vinyl sulfonyl fluorides of exclusively E-configuration.
Collapse
Affiliation(s)
- Dengfeng Shu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Zebrowski P, Monkowius U, Waser M. Cooperative Chiral Lewis Base/Palladium-Catalyzed Asymmetric Syntheses of Methylene-Containing δ-Lactams. European J Org Chem 2023; 26:e202300982. [PMID: 38601429 PMCID: PMC11005102 DOI: 10.1002/ejoc.202300982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Indexed: 04/12/2024]
Abstract
We herein report a two-step approach for the enantioselective synthesis of novel chiral δ-lactams. By using a cooperative chiral ITU/achiral Pd-catalyst system, this protocol proceeds via an asymmetric α-allylation of activated aryl esters first, followed by an acid-mediated lactam formation. A variety of differently substituted products could be obtained with usually high levels of enantioselectivities and in reasonable yields (16 examples, up to 98 : 2 er and 73 % yield over two steps). In addition, further utilizations of the products via transformations of the exocyclic double bond were successfully carried out as well.
Collapse
Affiliation(s)
- Paul Zebrowski
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Uwe Monkowius
- School of EducationChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| |
Collapse
|
3
|
Stockhammer L, Radetzky M, Khatoon SS, Bechmann M, Waser M. Chiral Lewis Base-Catalysed Asymmetric Syntheses of Benzo-fused ϵ-Lactones. European J Org Chem 2023; 26:e202300704. [PMID: 38601860 PMCID: PMC11005097 DOI: 10.1002/ejoc.202300704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Indexed: 04/12/2024]
Abstract
We herein report a two-step protocol for the asymmetric synthesis of novel chiral benzofused ϵ-lactones starting from O-protected hydroxymethyl-para-quinone methides and activated aryl esters. By using chiral isothiourea Lewis base catalysts a broad variety of differently substituted products could be obtained in yields of around 50 % over both steps with high levels of enantioselectivities, albeit low diastereoselectivities only.
Collapse
Affiliation(s)
- Lotte Stockhammer
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Maximilian Radetzky
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Syeda Sadia Khatoon
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Matthias Bechmann
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| |
Collapse
|
4
|
Stockhammer L, Craik R, Monkowius U, Cordes DB, Smith AD, Waser M. Isothiourea-Catalyzed Enantioselective Functionalisation of Glycine Schiff Base Aryl Esters via 1,6- and 1,4-Additions. CHEMISTRYEUROPE 2023; 1:e202300015. [PMID: 38882579 PMCID: PMC7616101 DOI: 10.1002/ceur.202300015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 06/18/2024]
Abstract
The enantioselective α-functionalisation of glycine Schiff base aryl esters through isothiourea catalysis is successfully demonstrated for 1,6-additions to para-quinone methides (21 examples, up to 95:5 dr and 96:4 er) and 1,4-additions to methylene substituted dicarbonyl or disulfonyl Michael acceptors (17 examples, up to 98:2 er). This nucleophilic organocatalysis approach gives access to a range of α-functionalised α-amino acid derivatives and further transformations of the activated aryl ester group provide a straightforward entry to advanced amino acid-based esters, amides or thioesters.
Collapse
Affiliation(s)
- Lotte Stockhammer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| | - Rebecca Craik
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Uwe Monkowius
- School of Education, Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| | - David B. Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Andrew D. Smith
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| |
Collapse
|
5
|
Lonardi G, Parolin R, Licini G, Orlandi M. Catalytic Asymmetric Conjugate Reduction. Angew Chem Int Ed Engl 2023; 62:e202216649. [PMID: 36757599 DOI: 10.1002/anie.202216649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
Enantioselective reduction reactions are privileged transformations for the construction of trisubstituted stereogenic centers. While these include established synthetic strategies, such as asymmetric hydrogenation, methods based on the enantioselective addition of hydridic reagents to electrophilic prochiral substrates have also gained importance. In this context, the asymmetric conjugate reduction (ACR) of α,β-unsaturated compounds has become a convenient approach for the synthesis of chiral compounds with trisubstituted stereocenters in α-, β-, or γ-position to electron-withdrawing functional groups. Because such activating groups are diverse and amenable of further derivatizations, ACRs provide a general and powerful synthetic entry towards a variety of valuable chiral building blocks. This Review provides a comprehensive collection of catalytic ACR methods involving transition-metal, organic, and enzymatic catalysis since its first versions dating back to the late 1970s.
Collapse
Affiliation(s)
- Giovanni Lonardi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Riccardo Parolin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Giulia Licini
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Manuel Orlandi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| |
Collapse
|
6
|
Yu S, Tiekink EH, Vermeeren P, Bickelhaupt FM, Hamlin TA. How Bases Catalyze Diels-Alder Reactions. Chemistry 2023; 29:e202203121. [PMID: 36330879 PMCID: PMC10108159 DOI: 10.1002/chem.202203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
We have quantum chemically studied the base-catalyzed Diels-Alder (DA) reaction between 3-hydroxy-2-pyrone and N-methylmaleimide using dispersion-corrected density functional theory. The uncatalyzed reaction is slow and is preceded by the extrusion of CO2 via a retro-DA reaction. Base catalysis, for example, by triethylamine, lowers the reaction barrier up to 10 kcal mol-1 , causing the reaction to proceed smoothly at low temperature, which quenches the expulsion of CO2 , yielding efficient access to polyoxygenated natural compounds. Our activation strain analyses reveal that the base accelerates the DA reaction via two distinct electronic mechanisms: i) by the HOMO-raising effect, which enhances the normal electron demand orbital interaction; and ii) by donating charge into 3-hydroxy-2-pyrone which accumulates in its reactive region and promotes strongly stabilizing secondary electrostatic interactions with N-methylmaleimide.
Collapse
Affiliation(s)
- Song Yu
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
| | - Eveline H. Tiekink
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
| | - Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
- Department of Chemical SciencesUniversity of JohannesburgAuckland ParkJohannesburg2006South Africa
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
| |
Collapse
|
7
|
Wang Q, Nilsson T, Eriksson L, Szabó KJ. Sulfenofunctionalization of Chiral α-Trifluoromethyl Allylboronic Acids: Asymmetric Synthesis of SCF 3 , SCF 2 R, SCN and SAr Compounds. Angew Chem Int Ed Engl 2022; 61:e202210509. [PMID: 36152310 PMCID: PMC9828052 DOI: 10.1002/anie.202210509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 01/12/2023]
Abstract
We report herein a new method for the synthesis of densely functionalized chiral allyl SCF3 , SCF2 R, SCN and SAr species with a separate CF3 functionality. The synthetic approach is based on selenium-catalyzed sulfenofunctionalization of chiral α-CF3 allylboronic acids. The reactions proceeded with remarkably high stereo-, diastereo- and site-selectivity, based on the formation of a stable thiiranium ion followed by rapid deborylative ring opening.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Organic ChemistryStockholm UniversitySE-10691StockholmSweden
| | - Tomas Nilsson
- Department of Organic ChemistryStockholm UniversitySE-10691StockholmSweden
| | - Lars Eriksson
- Department of Materials and Environmental ChemistryStockholm UniversitySE-10691StockholmSweden
| | - Kálmán J. Szabó
- Department of Organic ChemistryStockholm UniversitySE-10691StockholmSweden
| |
Collapse
|
8
|
Schorpp M, Yadav R, Roth D, Greb L. Calix[4]pyrrolato Stibenium: Lewis Superacidity by Antimony(III)-Antimony(V) Electromerism. Angew Chem Int Ed Engl 2022; 61:e202207963. [PMID: 35925742 DOI: 10.1002/anie.202207963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 01/07/2023]
Abstract
Lewis superacids enable the activation of highly inert substrates. However, the permanent presence of a Lewis superacidic center comes along with a constantly increased intolerance toward functional groups or ambient conditions. Herein, we describe a strategy to unleash Lewis superacidity by electromerism. Experimental and computational results indicate that coordinating a Lewis base to Δ-calix[4]pyrrolato-antimony(III) triggers a ligand redox-noninnocent coupled transfer into antimony(V)-state that exhibits Lewis superacidic features. Lewis acidity by electromerism establishes a concept of potential generality for powerful yet robust reagents and on-site substrate activation approaches.
Collapse
Affiliation(s)
- Marcel Schorpp
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Ravi Yadav
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Daniel Roth
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz Greb
- Department of Chemistry and Biochemistry-Inorganic Chemistry, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| |
Collapse
|
9
|
Grenet E, Robidas R, van der Lee A, Legault CY, Salom-Roig XJ. Mechanistic Insights of Lewis Acid‐Controlled Torquoselective Nazarov Cyclization of Activated Dienones Bearing a Chiral Sulfoxide. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Erwann Grenet
- Université de Montpellier: Universite de Montpellier chemistry Place Eugène Bataillon 34090 Montpellier FRANCE
| | - Raphaël Robidas
- Université de Sherbrooke: Universite de Sherbrooke Departement of Chemistry 2500 boul. de l'Université J1K2R1 Sherbrooke CANADA
| | - Arie van der Lee
- Université de Montpellier: Universite de Montpellier Chemistry Place Eugène Bataillon 34090 Montpellier FRANCE
| | - Claude Y. Legault
- Université de Sherbrooke: Universite de Sherbrooke Department of Chemistry 2500 boul. de l'Université J1K2R1 Sherbrooke CANADA
| | - Xavier J. Salom-Roig
- Institut des Biomolécules Max Mousseron; Université de Montpellier Chimie organique, minérale et industrielle Place Eugène Bataillon 34095 Montpellier FRANCE
| |
Collapse
|
10
|
Schorpp M, Yadav R, Roth D, Greb L. Calix[4]pyrrolato Stibenium: Lewis Superacidity by Antimony(III)‐Antimony(V) Electromerism. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marcel Schorpp
- Ruprecht Karls Universitat Heidelberg Anorganisch-Chemisches Institut GERMANY
| | - Ravi Yadav
- Ruprecht Karls Universitat Heidelberg Anorganisch-Chemisches Institut GERMANY
| | - Daniel Roth
- Ruprecht Karls Universitat Heidelberg Anorganisch-Chemisches Institut GERMANY
| | - Lutz Greb
- Freie Universitat Berlin Institut für Chemie und Biochemie, Anorganische Chemie Institut für Anorganische ChemieFabeckstr. 34-36 14195 Berlin GERMANY
| |
Collapse
|
11
|
Liu Y, Wang X, Li Y. Lewis Base‐catalyzed β‐Addition of (Arylsulfonyl) fluoromethane Derivatives to Allenoates. ChemistrySelect 2022. [DOI: 10.1002/slct.202201567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong‐Liang Liu
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
| | - Xiao‐Ping Wang
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
| | - Ya Li
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA Institute for Frontier Medical Technology Shanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
| |
Collapse
|
12
|
Ansmann N, Hartmann D, Sailer S, Erdmann P, Maskey R, Schorpp M, Greb L. Synthesis and Characterization of Hypercoordinated Silicon Anions: Catching Intermediates of Lewis Base Catalysis. Angew Chem Int Ed Engl 2022; 61:e202203947. [PMID: 35438836 PMCID: PMC9325378 DOI: 10.1002/anie.202203947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/24/2022]
Abstract
Anionic hypercoordinated silicates with weak donors were proposed as key intermediates in numerous silicon-based reactions. However, their short-lived nature rendered even spectroscopic observations highly challenging. Here, we characterize hypercoordinated silicon anions, including the first bromido-, iodido-, formato-, acetato-, triflato- and sulfato-silicates. This is enabled by a new, donor-free polymeric form of Lewis superacidic bis(perchlorocatecholato)silane 1. Spectroscopic, structural, and computational insights allow a reassessment of Gutmann's empirical rules for the role of silicon hypercoordination in synthesis and catalysis. The electronic perturbations of 1 exerted on the bound anions indicate pronounced substrate activation.
Collapse
Affiliation(s)
- Nils Ansmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Deborah Hartmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Sonja Sailer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Philipp Erdmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Rezisha Maskey
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Marcel Schorpp
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Department of Chemistry and Biochemistry-Inorganic ChemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| |
Collapse
|
13
|
Zhang Q, Xu Y, Liang X, Ke Z. Amphiphilic Indoles as Efficient Phase-Transfer Catalysts for Bromination in Water. CHEMSUSCHEM 2022; 15:e202200574. [PMID: 35404501 DOI: 10.1002/cssc.202200574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Brominated compounds are important, but they are usually prepared in organic solvents. Here, efficient amphiphilic indole-based phase-transfer organocatalysts were developed for environmentally benign bromination reactions in water. As test reactions, hydroxybromination of olefins and aromatic bromination could be conducted in a greener and more sustainable manner compared with methods using organic solvents, producing the corresponding bromides in good yields. Some pure products could be obtained without column chromatography.
Collapse
Affiliation(s)
- Qingyu Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, P. R. China
| | - Yongyuan Xu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, P. R. China
| | - Xiaochen Liang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, P. R. China
| | - Zhihai Ke
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, P. R. China
| |
Collapse
|
14
|
Mondal S, Ghosh A, Biju AT. N-Heterocyclic Carbene (NHC)-Catalyzed Transformations Involving Azolium Enolates. CHEM REC 2022; 22:e202200054. [PMID: 35562645 DOI: 10.1002/tcr.202200054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Indexed: 11/08/2022]
Abstract
The recent advances in the N-heterocyclic carbene (NHC)-organocatalyzed generation of azolium enolate intermediates and their subsequent interception with electrophiles are highlighted. The NHC-bound azolium intermediates are generated by the addition of NHCs to suitably substituted aldehydes, acid derivatives or ketenes. A broad range of coupling partners can intercept the azolium enolates to form [2+n] cycloadducts (n=2,3,4) and various α-functionalized compounds. The enantioselective synthesis of the target compounds are achieved with the use of chiral NHCs. Herein, we summarized the development that occurred in this subclass of NHC catalysis.
Collapse
Affiliation(s)
- Santigopal Mondal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012
| | - Arghya Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012
| |
Collapse
|
15
|
Guo F, Wang H, Ye X, Tan CH. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fenfen Guo
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Hong Wang
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Xinyi Ye
- Zhejiang University of Technology College of Pharmaceutical Science 18 Chaowang Road 310014 Hangzhou CHINA
| | - Choon-Hong Tan
- Nanyang Technological University School of Physical and Mathematical Sciences SINGAPORE
| |
Collapse
|
16
|
Pillitteri S, Ranjan P, Van der Eycken EV, Sharma UK. Uncovering the Potential of Boronic Acid and Derivatives as Radical Source in Photo(electro)chemical Reactions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Prabhat Ranjan
- Aachen Maastricht Institute for Biobased Materials (AMIBM) Maastricht University Urmonderbaan 22 6167 RD Geleen The Netherlands
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya street 6 RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
17
|
Ansmann N, Hartmann D, Sailer S, Erdmann P, Maskey R, Schorpp M, Greb L. Synthesis and Characterization of Hypercoordinated Silicon Anions: Catching Intermediates of Lewis Base Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nils Ansmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Deborah Hartmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sonja Sailer
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Philipp Erdmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Rezisha Maskey
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marcel Schorpp
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz Greb
- Department of Chemistry and Biochemistry-Inorganic Chemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
18
|
|
19
|
Mayr S, Zipse H. Annelated Pyridine Bases for the Selective Acylation of 1,2‐Diols. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Stefanie Mayr
- Ludwig-Maximilians-Universitat Munchen Chemistry GERMANY
| | - Hendrik Zipse
- Ludwig-Maximilians-Universität Department of Chemistry Butenandt-Str. 5-13 81377 München GERMANY
| |
Collapse
|
20
|
Meng Y, Chen L, Li EQ. Recent Advances in Lewis Base-Catalysed Chemo-, Diastereo- and Enantiodivergent Reactions of Electron-deficient Olefins and Alkynes. CHEM REC 2021; 22:e202100276. [PMID: 34962071 DOI: 10.1002/tcr.202100276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Indexed: 01/28/2023]
Abstract
Lewis base catalysis provides powerful synthetic strategies for the selective construction of carbon-carbon and carbon-heteroatom bonds. Thus continuous efforts have been deployed to develop effective methodologies involving Lewis base catalysis. The nucleophilicity and steric hindrance of Lewis base catalyst often plays a major role in catalytic reactivity and selectivity in the reaction. In the past decades, tremendous progress has been made in the divergent construction of valuable motifs under Lewis base catalysis. In this review, we provide a comprehensive and updated summary of Lewis base-catalysed chemo-, diastereo- and enantiodivergent reaction, as well as the related mechanism will be highlighted in detail.
Collapse
Affiliation(s)
- Yinggao Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lihui Chen
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
21
|
Wang S, Ma S, Yang J, Li W, Li D, Yang J. Copper‐Phosphine Mediated Oxidative Phosphorylation of Aromatic Amines and P(OR)
3
under Aerobic Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shihaozhi Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Shidi Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Jiale Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Wenshuang Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Dianjun Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| |
Collapse
|
22
|
Mahaut D, Chardon A, Mineur L, Berionni G, Champagne B. Rational Development of a Metal-Free Bifunctional System for the C-H Activation of Methane: A Density Functional Theory Investigation. Chemphyschem 2021; 22:1958-1966. [PMID: 34309144 DOI: 10.1002/cphc.202100527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/10/2022]
Abstract
The activation or heterolytic splitting of methane, a challenging substrate usually restricted to transition metals, has so far proven elusive in experimental frustrated Lewis pair (FLP) chemistry. In this article, we demonstrate, using density functional theory (DFT), that 1-aza-9-boratriptycene is a conceptually simple intramolecular FLP for the activation of methane. Systematic comparison with other FLP systems allows to gain insight into their reactivity with methane. The thermodynamics and kinetics of methane activation are interpreted by referring to the analysis of the natural charges and by employing the distortion-interaction/activation strain (DIAS) model. These showed that the nature of the Lewis base influences the selectivity over the reaction pathway, with N Lewis bases favoring the deprotonation mechanism and P bases the hydride abstraction one. The lower barrier of activation for 1-aza-9-boratriptycene and the higher products stability are due to a better interaction energy than its counterparts, itself due to electrostatic interactions with the methane moiety, favorable orbital overlaps allowed by the side-attack, and space proximity between the B and N atoms.
Collapse
Affiliation(s)
- Damien Mahaut
- Department of Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Aurélien Chardon
- Department of Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Loïc Mineur
- Department of Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Guillaume Berionni
- Department of Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Benoît Champagne
- Department of Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium
| |
Collapse
|
23
|
Thorwart T, Roth D, Greb L. Bis(pertrifluoromethylcatecholato)silane: Extreme Lewis Acidity Broadens the Catalytic Portfolio of Silicon. Chemistry 2021; 27:10422-10427. [PMID: 33852170 PMCID: PMC8361710 DOI: 10.1002/chem.202101138] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 11/10/2022]
Abstract
Given its earth abundance, silicon is ideal for constructing Lewis acids of use in catalysis or materials science. Neutral silanes were limited to moderate Lewis acidity, until halogenated catecholato ligands provoked a significant boost. However, catalytic applications of bis(perhalocatecholato)silanes were suffering from very poor solubility and unknown deactivation pathways. In this work, the novel per(trifluoromethyl)catechol, H2 catCF3 , and adducts of its silicon complex Si(catCF3 )2 (1) are described. According to the computed fluoride ion affinity, 1 ranks among the strongest neutral Lewis acids currently accessible in the condensed phase. The improved robustness and affinity of 1 enable deoxygenations of aldehydes, ketones, amides, or phosphine oxides, and a carbonyl-olefin metathesis. All those transformations have never been catalyzed by a neutral silane. Attempts to obtain donor-free 1 attest to the extreme Lewis acidity by stabilizing adducts with even the weakest donors, such as benzophenone or hexaethyl disiloxane.
Collapse
Affiliation(s)
- Thaddäus Thorwart
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Daniel Roth
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
24
|
Chen W, Tan C, Wang H, Ye X. The Development of Organocatalytic Asymmetric Reduction of Carbonyls and Imines Using Silicon Hydrides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenchao Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Choon‐Hong Tan
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| |
Collapse
|
25
|
Fang S, Tan J, Pan J, Zhang H, Chen Y, Ren X, Wang T. Enantiodivergent Kinetic Resolution of 1,1′‐Biaryl‐2,2′‐Diols and Amino Alcohols by Dipeptide‐Phosphonium Salt Catalysis Inspired by the Atherton–Todd Reaction. Angew Chem Int Ed Engl 2021; 60:14921-14930. [DOI: 10.1002/anie.202102352] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jian‐Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Jianke Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
26
|
Fang S, Tan J, Pan J, Zhang H, Chen Y, Ren X, Wang T. Enantiodivergent Kinetic Resolution of 1,1′‐Biaryl‐2,2′‐Diols and Amino Alcohols by Dipeptide‐Phosphonium Salt Catalysis Inspired by the Atherton–Todd Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jian‐Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Jianke Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
27
|
Ma Y, He X, Yang Q, Boucherif A, Xuan J. Recent Advances in Organocatalytic Asymmetric Cycloaddition Reactions Through
Ortho
‐Quinone Methide Scaffolds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yu‐Hong Ma
- College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang Hubei 443002 P. R. China
| | - Xiao‐Yu He
- College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang Hubei 443002 P. R. China
| | - Qing‐Qing Yang
- College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang Hubei 443002 P. R. China
| | - Amina Boucherif
- Department of biology Aboubeker Belkaïd University BP119 Tlemcen 13000 Algeria
| | - Jun Xuan
- College of Chemistry & Chemical Engineering Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Anhui University Anhui Hefei 230601 P. R. China
| |
Collapse
|
28
|
McLaughlin C, Smith AD. Generation and Reactivity of C(1)-Ammonium Enolates by Using Isothiourea Catalysis. Chemistry 2021; 27:1533-1555. [PMID: 32557875 PMCID: PMC7894297 DOI: 10.1002/chem.202002059] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 12/17/2022]
Abstract
C(1)-Ammonium enolates are powerful, catalytically generated synthetic intermediates applied in the enantioselective α-functionalisation of carboxylic acid derivatives. This minireview describes the recent developments in the generation and application of C(1)-ammonium enolates from various precursors (carboxylic acids, anhydrides, acyl imidazoles, aryl esters, α-diazoketones, alkyl halides) using isothiourea Lewis base organocatalysts. Their synthetic utility in intra- and intermolecular enantioselective C-C and C-X bond forming processes on reaction with various electrophiles will be showcased utilising two distinct catalyst turnover approaches.
Collapse
Affiliation(s)
- Calum McLaughlin
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughFifeKY16 9STScotland
| | - Andrew D. Smith
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughFifeKY16 9STScotland
| |
Collapse
|
29
|
Shi Y, Pan B, Yu J, Zhou Y, Zhou J. Recent Advances in Applying Carbonyl‐stabilized Phosphorus Ylides for Catalysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202001371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yang Shi
- College of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 P. R. China
| | - Bo‐Wen Pan
- College of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 P. R. China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Shanghai 200062 P. R. China
| | - Ying Zhou
- College of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 P. R. China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Shanghai 200062 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry CAS Shanghai 200032 P. R. China
| |
Collapse
|
30
|
Kotani S, Nakajima M. Asymmetric cross-Aldol Reactions between Two Carbonyl Compounds Catalyzed by Chiral Phosphine Oxides. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.1163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shunsuke Kotani
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Makoto Nakajima
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
31
|
Gernet A, Ratovelomanana‐Vidal V, Pirat J, Virieux D, Ayad T. Efficient Synthesis of 2‐Amino‐1‐Arylethanols Through a Lewis Base‐Catalyzed SiCl
4
‐Mediated Asymmetric Passerini‐Type Reaction. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aurélie Gernet
- CNRS, AM2N, ENSCM Institut Charles Gerhardt UMR 5253 8 rue de l'Ecole Normale 34296 Montpellier France
| | - Virginie Ratovelomanana‐Vidal
- Institute of Chemistry for Life & Health Sciences PSL University, Chimie ParisTech‐CNRS 11 rue Pierre et Marie Curie 75005 Paris France
| | - Jean‐Luc Pirat
- CNRS, AM2N, ENSCM Institut Charles Gerhardt UMR 5253 8 rue de l'Ecole Normale 34296 Montpellier France
| | - David Virieux
- CNRS, AM2N, ENSCM Institut Charles Gerhardt UMR 5253 8 rue de l'Ecole Normale 34296 Montpellier France
| | - Tahar Ayad
- CNRS, AM2N, ENSCM Institut Charles Gerhardt UMR 5253 8 rue de l'Ecole Normale 34296 Montpellier France
- Institute of Chemistry for Life & Health Sciences PSL University, Chimie ParisTech‐CNRS 11 rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
32
|
Matviitsuk A, Panger JL, Denmark SE. Katalytische enantioselektive Sulfenofunktionalisierung von Alkenen: Entwicklung und aktuelle Fortschritte. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anastassia Matviitsuk
- Roger Adams Laboratory Department of Chemistry University of Illinois Urbana Illinois 61801 USA
| | - Jesse L. Panger
- Roger Adams Laboratory Department of Chemistry University of Illinois Urbana Illinois 61801 USA
| | - Scott E. Denmark
- Roger Adams Laboratory Department of Chemistry University of Illinois Urbana Illinois 61801 USA
| |
Collapse
|
33
|
Matviitsuk A, Panger JL, Denmark SE. Catalytic, Enantioselective Sulfenofunctionalization of Alkenes: Development and Recent Advances. Angew Chem Int Ed Engl 2020; 59:19796-19819. [PMID: 32452077 PMCID: PMC7936392 DOI: 10.1002/anie.202005920] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/13/2022]
Abstract
The last decade has witnessed a burgeoning of new methods for the enantioselective vicinal difunctionalization of alkenes initiated by electrophilic sulfenyl group transfer. The addition of sulfenium ions to alkenes results in the generation of chiral, non-racemic thiiranium ions. These highly reactive intermediates are susceptible to attack by a myriad of nucleophiles in a stereospecific ring-opening event to afford anti 1,2-sulfenofunctionalized products. The practical application of sulfenium ion transfer has been enabled by advances in the field of Lewis base catalysis. This Review will chronicle the initial discovery and characterization of thiiranium ion intermediates followed by the determination of their configurational stability and the challenges of developing enantioselective variants. Once the framework for the reactivity and stability of thiiranium ions has been established, a critical analysis of pioneering studies will be presented. Finally, a comprehensive discussion of modern synthetic applications will be categorized around the type of nucleophile employed for sulfenofunctionalization.
Collapse
Affiliation(s)
- Anastassia Matviitsuk
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, 61801, USA
| | - Jesse L Panger
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, 61801, USA
| | - Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, 61801, USA
| |
Collapse
|
34
|
Wang H, Zhong H, Xu X, Xu W, Jiang X. Catalytic Enantioselective Bromoaminocyclization and Bromocycloetherification. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haitao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Haijing Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Xi Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Wei Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Xiaojian Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| |
Collapse
|
35
|
Kotani S, Hanamure T, Mori Y, Nakajima M. Phosphine‐oxide‐catalyzed Enantioselective Cross‐aldol Reactions of Aldehydes with Trichlorosilane as Lewis Acid Promoter. ChemCatChem 2020. [DOI: 10.1002/cctc.202000914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shunsuke Kotani
- Graduate School of Pharmaceutical Sciences Kumamoto University 5-1 Oe-honmachi Chuo-ku Kumamoto 862-0973 Japan
| | - Takuya Hanamure
- Graduate School of Pharmaceutical Sciences Kumamoto University 5-1 Oe-honmachi Chuo-ku Kumamoto 862-0973 Japan
| | - Yoshiki Mori
- Graduate School of Pharmaceutical Sciences Kumamoto University 5-1 Oe-honmachi Chuo-ku Kumamoto 862-0973 Japan
| | - Makoto Nakajima
- Graduate School of Pharmaceutical Sciences Kumamoto University 5-1 Oe-honmachi Chuo-ku Kumamoto 862-0973 Japan
| |
Collapse
|
36
|
Kohlmeyer C, Schäfer A, Huy PH, Hilt G. Formamide-Catalyzed Nucleophilic Substitutions: Mechanistic Insight and Rationalization of Catalytic Activity. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Corinna Kohlmeyer
- Oldenburg University, Institute of Chemistry, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
| | - André Schäfer
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, 66123 Saarbruecken, Germany
| | - Peter H. Huy
- Rostock University, Institute for Chemistry, Albert-Einstein-Straße 3A, 18059 Rostock, Germany
| | - Gerhard Hilt
- Oldenburg University, Institute of Chemistry, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
| |
Collapse
|
37
|
Blank BR, Andrews IP, Kwon O. Phosphine-Catalyzed (4+1) Annulation: Rearrangement of Allenylic Carbamates to 3-Pyrrolines through Phosphonium Diene Intermediates. ChemCatChem 2020; 12:4352-4372. [PMID: 34447481 PMCID: PMC8386297 DOI: 10.1002/cctc.202000626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 01/02/2023]
Abstract
We have developed a phosphine-catalyzed (4+1) annulative rearrangement for the preparation of 3-pyrrolines from allenylic carbamates via phosphonium diene intermediates. We employed this methodology to synthesize an array of 1,3-disubstituted- and 1,2,3-trisubstituted-3-pyrrolines, including the often difficult to prepare 2-alkyl variants. A mechanistic investigation employing allenylic acetates and mononucleophiles unexpectedly unveiled that a phosphine-catalyzed (4+1) reaction for the construction of cyclopentene products, previously reported by Tong, might not occur through a phosphonium diene, as had been proposed, but rather through multiple mechanisms working in concert. Consequently, our phosphine-catalyzed rearrangement is most likely the first transformation to involve the unequivocal formation of a phosphonium diene intermediate along the reaction pathway. To demonstrate the synthetic utility of this newly developed reaction, we have completed concise formal syntheses of the pyrrolizidine alkaloids (±)-trachelanthamidine and (±)-supinidine.
Collapse
Affiliation(s)
- Brian R Blank
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California, 90095-1569 (USA)
| | - Ian P Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California, 90095-1569 (USA)
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California, 90095-1569 (USA)
| |
Collapse
|
38
|
Qu Z, Zhu H, Grimme S. Mechanistic Insights for Aniline‐Catalyzed Halogenation Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.202000981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zheng‐Wang Qu
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| |
Collapse
|
39
|
Wu L, Chen K, Huang Y, Li E. Phosphine‐Catalyzed δ‐Addition Reaction of γ‐Substituted Allenoates with Isatin Derivatives. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lulu Wu
- School of ScienceHenan Agricultural University Zhengzhou 450002 China
| | - Kaihong Chen
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of chemistryNankai University Tianjin 300071 China
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of chemistryNankai University Tianjin 300071 China
| | - Er‐Qing Li
- College of ChemistryGreen Catalysis CenterZhengzhou University Zhengzhou 450001 China
| |
Collapse
|
40
|
Hussein MA, Tran UPN, Huynh VT, Ho J, Bhadbhade M, Mayr H, Nguyen TV. Halide Anion Triggered Reactions of Michael Acceptors with Tropylium Ion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201910578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | - Junming Ho
- School of Chemistry UNSW Sydney Australia
| | | | | | | |
Collapse
|
41
|
Yang W, Ling B, Hu B, Yin H, Mao J, Walsh PJ. Synergistic N‐Heterocyclic Carbene/Palladium‐Catalyzed Umpolung 1,4‐Addition of Aryl Iodides to Enals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wenjun Yang
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Bo Ling
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Bowen Hu
- Roy and Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Haolin Yin
- Roy and Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Jianyou Mao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
42
|
Hussein MA, Tran UPN, Huynh VT, Ho J, Bhadbhade M, Mayr H, Nguyen TV. Halide Anion Triggered Reactions of Michael Acceptors with Tropylium Ion. Angew Chem Int Ed Engl 2019; 59:1455-1459. [DOI: 10.1002/anie.201910578] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/27/2019] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | - Junming Ho
- School of Chemistry UNSW Sydney Australia
| | | | | | | |
Collapse
|
43
|
Yang W, Ling B, Hu B, Yin H, Mao J, Walsh PJ. Synergistic N‐Heterocyclic Carbene/Palladium‐Catalyzed Umpolung 1,4‐Addition of Aryl Iodides to Enals. Angew Chem Int Ed Engl 2019; 59:161-166. [DOI: 10.1002/anie.201912584] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Wenjun Yang
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Bo Ling
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Bowen Hu
- Roy and Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Haolin Yin
- Roy and Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Jianyou Mao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
44
|
Huy PH. Lewis Base Catalysis Promoted Nucleophilic Substitutions – Recent Advances and Future Directions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901495] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter H. Huy
- Institute for Organic Chemistry Saarland University P. O. Box 151150 66041 Saarbruecken Germany
| |
Collapse
|
45
|
Chen J, McGraw M, Chen EYX. Diverse Catalytic Systems and Mechanistic Pathways for Hydrosilylative Reduction of CO 2. CHEMSUSCHEM 2019; 12:4543-4569. [PMID: 31386795 DOI: 10.1002/cssc.201901764] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Catalytic hydrosilylation of carbon dioxide has emerged as a promising approach for carbon dioxide utilization. It allows the reductive transformation of carbon dioxide into value-added products at the levels of formate, formaldehyde, methanol, and methane. Tremendous progress has been made in the area of carbon dioxide hydrosilylation since the first reports in 1981. This focus review describes recent advances in the design and catalytic performance of leading catalyst systems, including transition-metal, main-group, and transition-metal/main-group and main-group/main-group tandem catalysts. Emphasis is placed on discussions of key mechanistic features of these systems and efforts towards the development of more selective, efficient, and sustainable carbon dioxide hydrosilylation processes.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Michael McGraw
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
46
|
Yadav A, Kanoo P. Metal-Organic Frameworks as Platform for Lewis-Acid-Catalyzed Organic Transformations. Chem Asian J 2019; 14:3531-3551. [PMID: 31509343 DOI: 10.1002/asia.201900876] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Indexed: 11/05/2022]
Abstract
Metal-organic frameworks (MOFs) are highly promising Lewis acid catalysts; they either inherently possess Lewis acid sites (LASs) on it or the LASs can be generated through various post-synthetic methods, the later can be performed in MOFs in a trivial fashion. MOFs are suitable platform for catalysis because of its highly crystalline and porous nature. Moreover, with recent advancements, thermal and chemical stability is not a problem with many MOFs. In this Minireview, an enormous versatility of MOFs, in terms of their microporosity/mesoporosity, size/shape selectivity, chirality, pore size, etc., has been highlighted. These are advantageous for designing and performing various targeted organic transformations. Although, many organic transformations catalyzed by MOFs with LASs have been reported in the recent past. In this Minireview, we have restricted ourselves to four important organic reactions: (i) cyanosilylation, (ii) Diels-Alder reaction, (iii) C-H activation, and (iv) CO2 -addition. The discussion focuses mostly on the recent reports (42 examples).
Collapse
Affiliation(s)
- Anand Yadav
- Department of Chemistry, School of Chemical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India
| | - Prakash Kanoo
- Department of Chemistry, School of Chemical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India
| |
Collapse
|
47
|
McLaughlin C, Slawin AMZ, Smith AD. Base‐free Enantioselective C(1)‐Ammonium Enolate Catalysis Exploiting Aryloxides: A Synthetic and Mechanistic Study. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Calum McLaughlin
- EaStCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland KY16 9ST UK
| | - Alexandra M. Z. Slawin
- EaStCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland KY16 9ST UK
| | - Andrew D. Smith
- EaStCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland KY16 9ST UK
| |
Collapse
|
48
|
McLaughlin C, Slawin AMZ, Smith AD. Base-free Enantioselective C(1)-Ammonium Enolate Catalysis Exploiting Aryloxides: A Synthetic and Mechanistic Study. Angew Chem Int Ed Engl 2019; 58:15111-15119. [PMID: 31436380 DOI: 10.1002/anie.201908627] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/21/2022]
Abstract
An isothiourea-catalyzed enantioselective Michael addition of aryl ester pronucleophiles to vinyl bis-sulfones via C(1)-ammonium enolate intermediates has been developed. This operationally simple method allows the base-free functionalization of aryl esters to form α-functionalized products containing two contiguous tertiary stereogenic centres in excellent yield and stereoselectivity (all ≥99:1 er). Key to the success of this methodology is the multifunctional role of the aryloxide, which operates as a leaving group, Brønsted base, Brønsted acid and Lewis base within the catalytic cycle. Comprehensive mechanistic studies, including variable time normalization analysis (VTNA) and isotopologue competition experiments, have been carried out. These studies have identified (i) orders of all reactants; (ii) a turnover-limiting Michael addition step, (iii) product inhibition, (iv) the catalyst resting state and (v) catalyst deactivation through protonation.
Collapse
Affiliation(s)
- Calum McLaughlin
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK
| |
Collapse
|
49
|
Wang W, He H, Gan M, Wang H, Wang Y, Jiang X. Enantioselective Syntheses of α‐
exo
‐Methylene‐Lactones via Organocatalytic Halolactonization. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Haoquan He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Min Gan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Haitao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Yuqiang Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Xiaojian Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| |
Collapse
|
50
|
Reddy KN, Rao MVK, Sridhar B, Subba Reddy BV. BINOL Phosphoric Acid‐Catalyzed Asymmetric Mannich Reaction of Cyclic
N
‐Acyl Ketimines with Cyclic Enones. Chem Asian J 2019; 14:2958-2965. [DOI: 10.1002/asia.201900556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/22/2019] [Indexed: 12/29/2022]
Affiliation(s)
- K. Nagarjuna Reddy
- Fluoro & AgrochemicalsCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi 110025 India
| | - M. V. Krishna Rao
- Fluoro & AgrochemicalsCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi 110025 India
| | - B. Sridhar
- Laboratory of X-ray CrystallographyCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - B. V. Subba Reddy
- Fluoro & AgrochemicalsCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| |
Collapse
|