1
|
Bera S, Basu S, Jana B, Dastidar P. Real-time Observation of Macroscopic Helical Morphologies under Optical Microscope: A Curious Case of π-π Stacking Driven Molecular Self-assembly of an Organic Gelator Devoid of Hydrogen Bonding. Angew Chem Int Ed Engl 2023; 62:e202216447. [PMID: 36479962 DOI: 10.1002/anie.202216447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Supramolecular assemblies such as tubules/helix/double helix/helical tape etc. are usually submicron objects preventing direct observation under optical microscope. Chiral-pure form of these assemblies is important for potential applications. Herein, we report a rare phenomenon wherein a DMSO gel of a simple terpyridine derivative [(4-CNPhe)4PyTerp] produced macroscopic helical morphologies (μm length scale) which could be observed under optical microscope, formation of which could be monitored by optical videography, stable enough to withstand acidic vapour, robust enough to display reversible gel↔sol in response to acidic and ammonia vapour and sturdy enough to be maneuvered with a needle. These properties appeared to be unique to the title compound as the other related derivatives failed to display such assembly structures. SXRD and MD simulation studies suggested that weak interactions (π-π stacking) played a crucial role in the self-assembly process.
Collapse
Affiliation(s)
- Sourabh Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sushmita Basu
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
2
|
Piras CC, Smith DK. Self-Propelling Hybrid Gels Incorporating an Active Self-Assembled, Low-Molecular-Weight Gelator. Chemistry 2021; 27:14527-14534. [PMID: 34339068 PMCID: PMC8597049 DOI: 10.1002/chem.202102472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 01/25/2023]
Abstract
Hybrid gel beads based on combining a low-molecular-weight gelator (LMWG) with a polymer gelator (PG) demonstrate an enhanced ability to self-propel in water, with the LMWG playing an active role. Hybrid gel beads were loaded with ethanol and shown to move in water owing to the Marangoni effect changes in surface tension caused by the expulsion of ethanol - smaller beads move farther and faster than larger beads. Flat shapes of the hybrid gel were cut using a "stamp" - circles moved the furthest, whereas stars showed more rotation on their own axes. Comparing hybrid LMWG/PG gel beads with PG-only beads demonstrated that the LMWG speeds up the beads, enhancing the rate of self-propulsion. Self-assembly of the LMWG into a "solid-like" network prevents its leaching from the gel. The LMWG also retains its own unique function - specifically, remediating methylene blue pollutant dye from basic water as a result of noncovalent interactions. The mobile hybrid beads accumulate this dye more effectively than PG-only beads. Self-propelling gel beads have potential applications in removal/delivery of active agents in environmental or biological settings. The ability of self-assembling LMWGs to enhance mobility and control removal/delivery suggests that adding them to self-propelling systems can add significant value.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - David K. Smith
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
3
|
Yao S, Brahmi R, Portier F, Putaux JL, Chen J, Halila S. Hierarchical Self-Assembly of Amphiphilic β-C-Glycosylbarbiturates into Multiresponsive Alginate-Like Supramolecular Hydrogel Fibers and Vesicle Hydrogel. Chemistry 2021; 27:16716-16721. [PMID: 34622999 DOI: 10.1002/chem.202102950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 01/03/2023]
Abstract
Ordered molecular self-assembly of glycoamphiphiles has been regarded as an attractive, practical and bottom-up approach to obtain stable, structurally well-defined, and functional mimics of natural polysaccharides. This study describes a versatile and rational design of carbohydrate-based hydrogelators through N,N'-substituted barbituric acid-mediated Knoevenagel condensation onto unprotected carbohydrates in water. Amphiphilic N-substituted β-C-maltosylbarbiturates self-assembled into pH- and calcium-triggered alginate-like supramolecular hydrogel fibers with a multistimuli responsiveness to temperature, pH and competitive metal chelating agent. In addition, amphiphilic N,N'-disubstituted β-C-maltosylbarbiturates formed vesicle gels in pure water that were scarcely observed for glyco-hydrogelators. Finally, barbituric acid worked as a multitasking group allowing chemoselective ligation onto reducing-end carbohydrates, structural diversity, stimuli-sensitiveness, and supramolecular interactions by hydrogen bonding.
Collapse
Affiliation(s)
- Shun Yao
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Robin Brahmi
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | | | | | - Jing Chen
- Zhejiang International Scientific and, Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Sami Halila
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| |
Collapse
|
4
|
Misra S, Mukherjee S, Ghosh A, Singh P, Mondal S, Ray D, Bhattacharya G, Ganguly D, Ghosh A, Aswal VK, Mahapatra AK, Satpati B, Nanda J. Single Amino-Acid Based Self-Assembled Biomaterials with Potent Antimicrobial Activity. Chemistry 2021; 27:16744-16753. [PMID: 34468048 DOI: 10.1002/chem.202103071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/18/2022]
Abstract
The design and development of soft biomaterials based on amino acid and short-peptide have gained much attention due to their potent biomedical applications. A slight alteration in the side-chain of single amino acid in a peptide or protein sequence has a huge impact on the structure and function. Phenylalanine is one of the most studied amino acids, which contains an aromatic phenyl group connected through a flexible -CH2 - unit. In this work, we have examined whether flexibility and aromatic functionality of phenylalanine (Phe) are important in gel formation of model gelator Fmoc-Phe-OH or not. To examine this hypothesis, we synthesized Fmoc-derivatives of three analogues unnatural amino acids including cyclohexylalanine, phenylglycine, and homophenylalanine; which are slightly varied from Phe. Interestingly, all these three new analogues formed hydrogels in phosphate buffer at pH 7.0 having different gelation efficacy and kinetics. This study suggests that the presence of aromatic side-chain and flexibility are not mandatory for the gelation of this model gelator. Newly synthesized unnatural amino acid derivatives have also exhibited promising antimicrobial activity towards gram-positive bacteria by inhibiting cellular oxygen consumption. We further determined the biocompatibility of these amino acid derivatives by using a hemolysis assay on human blood cells. Overall studies described the development of single amino acid-based new injectable biomaterials with improved antimicrobial activity by the slight alteration in the side-chain of amino acid.
Collapse
Affiliation(s)
- Souvik Misra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | | | - Anamika Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | - Pijush Singh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| | - Sanjoy Mondal
- Polymer Science Unit, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400085, India
| | | | - Debabani Ganguly
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, Kolkata, 700091, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - V K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400085, India
| | - Ajit K Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, PIN-734301, India
| |
Collapse
|
5
|
Ayzac V, Dirany M, Raynal M, Isare B, Bouteiller L. Energetics of Competing Chiral Supramolecular Polymers. Chemistry 2021; 27:9627-9633. [PMID: 33871118 DOI: 10.1002/chem.202100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 11/06/2022]
Abstract
Chirality can have unexpected consequences including on properties other than spectroscopic. We show herein that a racemic mixture of bis-urea stereoisomers forms thermodynamically stable supramolecular polymers that result in a more viscous solution than for the pure stereoisomer. The origin of this macroscopic property was probed by characterizing the structure and stability of the assemblies. Both racemic and non-racemic bis-urea stereoisomers form two competing helical supramolecular polymers in solution: a double and a single helical structure at low and high temperature, respectively. The transition temperature between these assemblies, as probed by spectroscopic and calorimetric analyses, is strongly influenced by the composition (by up to 70 °C). A simple model that accounts for the thermodynamics of this system, indicates that the stereochemical defects (chiral mismatches and helix reversals) affect much more the stability of single helices. Therefore, the heterochiral double helical structure predominates over the single helical structure (whilst the opposite holds for the homochiral structures), which explains the aforementioned higher viscosity of the racemic bis-urea solution. This rationale constitutes a new basis to tune the macroscopic properties of the increasing number of supramolecular polymers reported to exhibit competing chiral nanostructures.
Collapse
Affiliation(s)
- Virgile Ayzac
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Equipe Chimie des Polymères, Sorbonne Université, 75005, Paris, France
| | - Mohammed Dirany
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Equipe Chimie des Polymères, Sorbonne Université, 75005, Paris, France
| | - Matthieu Raynal
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Equipe Chimie des Polymères, Sorbonne Université, 75005, Paris, France
| | - Benjamin Isare
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Equipe Chimie des Polymères, Sorbonne Université, 75005, Paris, France
| | - Laurent Bouteiller
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Equipe Chimie des Polymères, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
6
|
Komiyama T, Harada Y, Hase T, Mori S, Kimura S, Yokoya M, Yamanaka M. Effect of Alkyl Chain Length of N-Alkyl-N'-(2-benzylphenyl)ureas on Gelation. Chem Asian J 2021; 16:1750-1755. [PMID: 34008323 DOI: 10.1002/asia.202100433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Indexed: 11/07/2022]
Abstract
Urea derivatives that were substituted with a 2-benzylphenyl group and an alkyl group functioned as low molecular weight gelators for various organic solvents and ionic liquids. Urea derivatives with long alkyl chains were effective for the gelation of polar solvents. However, they were not suitable for the gelation of non-polar solvents, whereas urea derivatives with short alkyl chains were effective. Ionic liquids were similar to polar solvents in that urea derivatives with long alkyl chains were the most effective gelators. The physical properties of the formed supramolecular gels were analyzed by dynamic viscoelasticity measurements using a rheometer.
Collapse
Affiliation(s)
- Tomoki Komiyama
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.,Department of Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yoko Harada
- Department of Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takayuki Hase
- Department of Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Sota Mori
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Shinya Kimura
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Masashi Yokoya
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Masamichi Yamanaka
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
7
|
Chen S, Costil R, Leung FK, Feringa BL. Self-Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media. Angew Chem Int Ed Engl 2021; 60:11604-11627. [PMID: 32936521 PMCID: PMC8248021 DOI: 10.1002/anie.202007693] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 12/22/2022]
Abstract
Amphiphilic molecules, comprising hydrophobic and hydrophilic moieties and the intrinsic propensity to self-assemble in aqueous environment, sustain a fascinating spectrum of structures and functions ranging from biological membranes to ordinary soap. Facing the challenge to design responsive, adaptive, and out-of-equilibrium systems in water, the incorporation of photoresponsive motifs in amphiphilic molecular structures offers ample opportunity to design supramolecular systems that enables functional responses in water in a non-invasive way using light. Here, we discuss the design of photoresponsive molecular amphiphiles, their self-assembled structures in aqueous media and at air-water interfaces, and various approaches to arrive at adaptive and dynamic functions in isotropic and anisotropic systems, including motion at the air-water interface, foam formation, reversible nanoscale assembly, and artificial muscle function. Controlling the delicate interplay of structural design, self-assembling conditions and external stimuli, these responsive amphiphiles open several avenues towards application such as soft adaptive materials, controlled delivery or soft actuators, bridging a gap between artificial and natural dynamic systems.
Collapse
Affiliation(s)
- Shaoyu Chen
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| | - Romain Costil
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| | - Franco King‐Chi Leung
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
- Present address: State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong KongChina
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| |
Collapse
|
8
|
Chen S, Costil R, Leung FK, Feringa BL. Self‐Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shaoyu Chen
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| | - Romain Costil
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| | - Franco King‐Chi Leung
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
- Present address: State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hong Kong China
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| |
Collapse
|
9
|
Yokoya M, Kimura S, Yamanaka M. Urea Derivatives as Functional Molecules: Supramolecular Capsules, Supramolecular Polymers, Supramolecular Gels, Artificial Hosts, and Catalysts. Chemistry 2021; 27:5601-5614. [DOI: 10.1002/chem.202004367] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/11/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Masashi Yokoya
- Meiji Pharmaceutical University (MPU) 2-522-1 Noshio Kiyose 204-8588 Japan
| | - Shinya Kimura
- Meiji Pharmaceutical University (MPU) 2-522-1 Noshio Kiyose 204-8588 Japan
| | - Masamichi Yamanaka
- Meiji Pharmaceutical University (MPU) 2-522-1 Noshio Kiyose 204-8588 Japan
| |
Collapse
|
10
|
Mondal S, Dastidar P. Designing Metallogelators Derived from NSAID-based Zn(II) Coordination Complexes for Drug-Delivery Applications. Chem Asian J 2020; 15:3558-3567. [PMID: 32955791 DOI: 10.1002/asia.202000815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/29/2020] [Indexed: 11/05/2022]
Abstract
A crystal engineering approach has been invoked to design a new series of eight Zn(II) coordination complexes derived from various non-steroidal anti-inflammatory drugs (NSAIDs), namely diclofenac (DIC), ibuprofen (IBU), naproxen (NAP), flufenamic acid (FLU) and meclofenamic acid (MEC), and two co-ligands, namely N-phenyl-3-pyridylamide (3-Py) and N-phenyl-4-pyridylamide (4-Py), and Zn(NO3 )2 as potential supramolecular gelators. Half of the coordination complexes thus synthesized were able to form aqueous gels (MG-3-PyMEC, MG-3-PyDIC, MG-4-PyNAP and MG-4-PyMEC). Single-crystal structures of all eight complexes revealed that they possessed a gelation-inducing 1D hydrogen-bonded network including amide…amide synthon in some cases, which supported strongly the design principles based on which these complexes were synthesized. Interestingly, one such metallogelator complex, namely 3-PyMEC, showed an intriguing anticancer property against a human breast cancer cell line (MDA-MB-231), as revealed by both MTT and cell migration assays.
Collapse
Affiliation(s)
- Swapneswar Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
11
|
Fuentes E, Boháčová K, Fuentes‐Caparrós AM, Schweins R, Draper ER, Adams DJ, Pujals S, Albertazzi L. PAINT-ing Fluorenylmethoxycarbonyl (Fmoc)-Diphenylalanine Hydrogels. Chemistry 2020; 26:9869-9873. [PMID: 32428285 PMCID: PMC7496660 DOI: 10.1002/chem.202001560] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Self-assembly of fluorenylmethoxycarbonyl-protected diphenylalanine (FmocFF) in water is widely known to produce hydrogels. Typically, confocal microscopy is used to visualize such hydrogels under wet conditions, that is, without freezing or drying. However, key aspects of hydrogels like fiber diameter, network morphology and mesh size are sub-diffraction limited features and cannot be visualized effectively using this approach. In this work, we show that it is possible to image FmocFF hydrogels by Points Accumulation for Imaging in Nanoscale Topography (PAINT) in native conditions and without direct gel labelling. We demonstrate that the fiber network can be visualized with improved resolution (≈50 nm) both in 2D and 3D. Quantitative information is extracted such as mesh size and fiber diameter. This method can complement the existing characterization tools for hydrogels and provide useful information supporting the design of new materials.
Collapse
Affiliation(s)
- Edgar Fuentes
- Nanoscopy for nanomedicine labInstitute for Bioengineering of CataloniaBaldiri Reixac08028BarcelonaSpain
| | - Kamila Boháčová
- Nanoscopy for nanomedicine labInstitute for Bioengineering of CataloniaBaldiri Reixac08028BarcelonaSpain
- Department School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | | | - Ralf Schweins
- Large Scale Structures GroupInstitut Laue-Langevin71 Avenue des Martyrs, CS 2015638042Grenoble, CEDEX 9France
| | - Emily R. Draper
- Department School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Dave J. Adams
- Department School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Silvia Pujals
- Nanoscopy for nanomedicine labInstitute for Bioengineering of CataloniaBaldiri Reixac08028BarcelonaSpain
- Department of Electronics and Biomedical EngineeringFaculty of PhysicsUniversitat de BarcelonaAv. Diagonal 64708028BarcelonaSpain
| | - Lorenzo Albertazzi
- Nanoscopy for nanomedicine labInstitute for Bioengineering of CataloniaBaldiri Reixac08028BarcelonaSpain
- Department of Biomedical EngineeringInstitute of Complex Molecular Systems (ICMS)Eindhoven University of Technology (TUE)PO Box 513, 5600 MBEindhovenThe Netherlands
| |
Collapse
|
12
|
Amino Acid Residues Vary the Self‐Assembly and Photophysical Properties of Diphenylamine‐Cyanostilbene‐Capped Amphiphiles. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Zhang K, Oldenhof S, Wang Y, Esch JH, Mendes E. Spatial Manipulation and Integration of Supramolecular Filaments on Hydrogel Substrates towards Advanced Soft Devices. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kai Zhang
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Sander Oldenhof
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
- Netherlands Forensic Institute Laan van Ypenburg 6 2497 GB Den Haag The Netherlands
| | - Yiming Wang
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Meilong Road 130 200237 Shanghai China
| | - Jan H. Esch
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Eduardo Mendes
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
14
|
Zhang K, Oldenhof S, Wang Y, Esch JH, Mendes E. Spatial Manipulation and Integration of Supramolecular Filaments on Hydrogel Substrates towards Advanced Soft Devices. Angew Chem Int Ed Engl 2020; 59:8601-8607. [DOI: 10.1002/anie.201915100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Kai Zhang
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Sander Oldenhof
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
- Netherlands Forensic Institute Laan van Ypenburg 6 2497 GB Den Haag The Netherlands
| | - Yiming Wang
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Meilong Road 130 200237 Shanghai China
| | - Jan H. Esch
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Eduardo Mendes
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
15
|
Piras CC, Slavik P, Smith DK. Self-Assembling Supramolecular Hybrid Hydrogel Beads. Angew Chem Int Ed Engl 2020; 59:853-859. [PMID: 31697017 PMCID: PMC6973155 DOI: 10.1002/anie.201911404] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Indexed: 12/11/2022]
Abstract
With the goal of imposing shape and structure on supramolecular gels, we combine a low-molecular-weight gelator (LMWG) with the polymer gelator (PG) calcium alginate in a hybrid hydrogel. By imposing thermal and temporal control of the orthogonal gelation methods, the system either forms an extended interpenetrating network or core-shell-structured gel beads-a rare example of a supramolecular gel formulated inside discrete gel spheres. The self-assembled LMWG retains its unique properties within the beads, such as remediating PdII and reducing it in situ to yield catalytically active Pd0 nanoparticles. A single PdNP-loaded gel bead can catalyse the Suzuki-Miyaura reaction, constituting a simple and easy-to-use reaction-dosing form. These uniquely shaped and structured LMWG-filled gel beads are a versatile platform technology with great potential in a range of applications.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Petr Slavik
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - David K. Smith
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
16
|
Dubey M, Dixit MK, Kumar Y, Shukla J, Chinthakuntla M. Bis(Acylhydrazone)‐Based Bolaamphiphiles: Effect of Spacer Length on Metalloorganogel Formation, Fluorescence and Conductance Properties. Chempluschem 2019. [DOI: 10.1002/cplu.201900589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mrigendra Dubey
- Indian Institute of Technology IndoreDiscipilne of metallurgy engineering and materials science Discipline of metallurgy engineering and material science (MEMS)Indian Institute of Technology Indore,, Khandwa Road, Simrol 453552 INDORE INDIA
| | | | - Yeeshu Kumar
- Indian Institute of Technology IndoreMetallugy Engineering and Materials Science INDIA
| | - Jay Shukla
- Indian Institute of Technology IndoreMetallurgy Engineering and materials Science INDIA
| | | |
Collapse
|
17
|
Piras CC, Slavik P, Smith DK. Self‐Assembling Supramolecular Hybrid Hydrogel Beads. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Petr Slavik
- Department of ChemistryUniversity of York Heslington York YO10 5DD UK
| | - David K. Smith
- Department of ChemistryUniversity of York Heslington York YO10 5DD UK
| |
Collapse
|
18
|
Kar T, Patra N. Pyrene‐based fluorescent supramolecular hydrogel: scaffold for nanoparticle synthesis. J PHYS ORG CHEM 2019. [DOI: 10.1002/poc.4026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tanmoy Kar
- Department of ChemistryVivekananda Mission Mahavidyalaya Chaitanyapur, Haldia West Bengal India
| | - Nitai Patra
- Centre for Surface Science, Physical Chemistry Section, Department of ChemistryJadavpur University Kolkata West Bengal India
| |
Collapse
|
19
|
Sperandio C, Quintard G, Naubron J, Giorgi M, Yemloul M, Parrain J, Rodriguez J, Quintard A. Strategic Stereoselective Halogen (F, Cl) Insertion: A Tool to Enhance Supramolecular Properties in Polyols. Chemistry 2019; 25:15098-15105. [PMID: 31453654 DOI: 10.1002/chem.201902983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/26/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Céline Sperandio
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Guilhem Quintard
- Université de Lyon, INSA LYON, Ingénierie des Matériaux Polymères, IMP-UMR CNRS 5223 69621 Villeurbanne France
| | - Jean‐Valere Naubron
- Aix Marseille Université, CNRS, Centrale Marseille, Spectropole Marseille France
| | - Michel Giorgi
- Aix Marseille Université, CNRS, Centrale Marseille, Spectropole Marseille France
| | - Mehdi Yemloul
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Jean‐Luc Parrain
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Jean Rodriguez
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Adrien Quintard
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| |
Collapse
|
20
|
Ayzac V, Sallembien Q, Raynal M, Isare B, Jestin J, Bouteiller L. A Competing Hydrogen Bonding Pattern to Yield a Thermo-Thickening Supramolecular Polymer. Angew Chem Int Ed Engl 2019; 58:13849-13853. [PMID: 31380603 DOI: 10.1002/anie.201908954] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 01/06/2023]
Abstract
Introduction of competing interactions in the design of a supramolecular polymer (SP) creates pathway complexity. Ester-bis-ureas contain both a strong bis-urea sticker that is responsible for the build-up of long rod-like objects by hydrogen bonding and ester groups that can interfere with this main pattern in a subtle way. Spectroscopic (FTIR and CD), calorimetric (DSC), and scattering (SANS) techniques show that such ester-bis-ureas self-assemble into three competing rod-like SPs. The previously unreported low-temperature SP is stabilized by hydrogen bonds between the interfering ester groups and the urea moieties. It also features a weak macroscopic alignment of the rods. The other structures form isotropic dispersions of rods stabilized by the more classical urea-urea hydrogen bonding pattern. The transition from the low-temperature structure to the next occurs reversibly by heating and is accompanied by an increase in viscosity, a rare feature for solutions in hydrocarbons.
Collapse
Affiliation(s)
- Virgile Ayzac
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 75005, Paris, France
| | - Quentin Sallembien
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 75005, Paris, France
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 75005, Paris, France
| | - Benjamin Isare
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 75005, Paris, France
| | - Jacques Jestin
- Laboratoire Léon Brillouin, UMR 12 CNRS-CEA, 91191, Gif-sur-Yvette Cedex, France
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 75005, Paris, France
| |
Collapse
|
21
|
Ayzac V, Sallembien Q, Raynal M, Isare B, Jestin J, Bouteiller L. A Competing Hydrogen Bonding Pattern to Yield a Thermo‐Thickening Supramolecular Polymer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Virgile Ayzac
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie MoléculaireEquipe Chimie des Polymères 75005 Paris France
| | - Quentin Sallembien
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie MoléculaireEquipe Chimie des Polymères 75005 Paris France
| | - Matthieu Raynal
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie MoléculaireEquipe Chimie des Polymères 75005 Paris France
| | - Benjamin Isare
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie MoléculaireEquipe Chimie des Polymères 75005 Paris France
| | - Jacques Jestin
- Laboratoire Léon BrillouinUMR 12 CNRS-CEA 91191 Gif-sur-Yvette Cedex France
| | - Laurent Bouteiller
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie MoléculaireEquipe Chimie des Polymères 75005 Paris France
| |
Collapse
|
22
|
Piras CC, Smith DK. Sequential Assembly of Mutually Interactive Supramolecular Hydrogels and Fabrication of Multi-Domain Materials. Chemistry 2019; 25:11318-11326. [PMID: 31237367 DOI: 10.1002/chem.201902158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Indexed: 11/09/2022]
Abstract
A two-component self-sorting hydrogel based on acylhydrazide and carboxylic acid derivatives of 1,3:2,4-dibenzylidene-d-sorbitol (DBS-CONHNH2 and DBS-COOH) is reported. A heating-cooling cycle induces the self-assembly of DBS-CONHNH2 , followed by the self-assembly of DBS-COOH induced by decreasing pH. Although the networks are formed sequentially, there is spectroscopic evidence of interactions between them, which impact on the mechanical properties and significantly enhance the ability of these low-molecular-weight gelators (LMWGs) to form gels when mixed. The DBS-COOH network can be switched "off" and "on" within the two-component gel through a pH change. By using a photo-acid generator, the two-component gel can be prepared combining the thermal trigger with photo-irradiation. Photo-patterned self-assembly of DBS-COOH within a pre-formed DBS-CONHNH2 gel under a mask yields spatially controlled multi-domain gels. Different gel domains can have different functions, for example, controlling the rate of release of heparin incorporated into the gel, or directing gold nanoparticle assembly. Such photo-patterned multi-component hydrogels have potential applications in regenerative medicine or bio-nano-electronics.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
23
|
Dixit MK, Mahendar C, Dubey M. Cd2+‐induced Fluorescent Metallogel: A case of CHEF and ACQ phenomenon. Chem Asian J 2019; 17:e201900559. [DOI: 10.1002/asia.201900559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/27/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Manish Kumar Dixit
- Indian Institute of Technology (BHU)Chemistry Department of ChemistryIIT (BHU) 221005 Varanasi INDIA
| | - Chinthakuntla Mahendar
- IIT indoreMEMS Discipline of metallurgy engineering and material science (MIIT Indore, Simrol, Indore452020 INDORE INDIA
| | - Mrigendra Dubey
- Indian Institute of Technology IndoreDiscipilne of metallurgy engineering and materials science Discipline of metallurgy engineering and material science (MEMS)Indian Institute of Technology Indore,, Khandwa Road, Simrol 453552 INDORE INDIA
| |
Collapse
|
24
|
Kartha KK, Allampally NK, Yagai S, Albuquerque RQ, Fernández G. Mechanistic Insights into the Self-Assembly of an Acid-Sensitive Photoresponsive Supramolecular Polymer. Chemistry 2019; 25:9230-9236. [PMID: 30937962 PMCID: PMC7187368 DOI: 10.1002/chem.201900775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 12/19/2022]
Abstract
The supramolecular polymerization of an acid‐sensitive pyridyl‐based ligand (L1) bearing a photoresponsive azobenzene moiety was elucidated by mechanistic studies. Addition of trifluoroacetic acid (TFA) led to the transformation of the antiparallel H‐bonded fibers of L1 in methylcyclohexane into superhelical braid‐like fibers stabilized by H‐bonding of parallel‐stacked monomer units. Interestingly, L1 dimers held together by unconventional pyridine–TFA N⋅⋅⋅H⋅⋅⋅O bridges represent the main structural elements of the assembly. UV‐light irradiation caused a strain‐driven disassembly and subsequent aggregate reconstruction, which ultimately led to short fibers. The results allowed to understand the mechanism of mutual influence of acid and light stimuli on supramolecular polymerization processes, thus opening up new possibilities to design advanced stimuli‐triggered supramolecular systems.
Collapse
Affiliation(s)
- Kalathil K Kartha
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | | | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33-Yayoi-cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Rodrigo Q Albuquerque
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
25
|
Self‐Assembled Gels Formed in Deep Eutectic Solvents: Supramolecular Eutectogels with High Ionic Conductivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Ruiz-Olles J, Slavik P, Whitelaw NK, Smith DK. Self-Assembled Gels Formed in Deep Eutectic Solvents: Supramolecular Eutectogels with High Ionic Conductivity. Angew Chem Int Ed Engl 2019; 58:4173-4178. [PMID: 30682215 DOI: 10.1002/anie.201810600] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 12/27/2022]
Abstract
1,3:2,4-Dibenzylidene-d-sorbitol (DBS), a simple, commercially relevant compound, was found to self-assemble as a result of intermolecular noncovalent interactions into supramolecular gels in deep eutectic solvents (DESs) based on choline chloride combined with alcohols/ureas. DBS formed gels at a loading of 5 % w/v. Rheology confirmed the gel-like nature of the materials, electron microscopy and X-ray diffraction indicated underpinning nanofibrillar DBS networks, and differential scanning calorimetry showed the DES nature of the liquid-like phase was retained. The ionic conductivities of the gels were similar to those of the unmodified DESs, thus proving the deep eutectic nature of the ionic liquid-like phase. Gelation was tolerant of ionic additives Li+ , Mg2+ , and Ca2+ ; the resulting gels had similar conductivities to electrolyte dissolved in the native DES. The low-molecular-weight gelator DBS is thus a low-cost additive that forms gels in DESs from readily available constituents, with conductivity levels suitable for practical applications.
Collapse
Affiliation(s)
- Jorge Ruiz-Olles
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Petr Slavik
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Nicole K Whitelaw
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
27
|
Ganta S, Chand DK. Discrete and Polymeric Self-Assembled Palladium(II) Complexes as Supramolecular Gelators. Chem Asian J 2018; 13:3777-3789. [PMID: 30231185 DOI: 10.1002/asia.201801161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/13/2018] [Indexed: 12/29/2022]
Abstract
Supramolecular gels prepared from low-molecular-weight gelators have been extensively explored. However, the exploitation of discrete or polymeric metal complexes as gelators is a relatively recent trend. The synthesis of self-assembled coordination complexes from palladium(II) and selected ligands is well established, but the potential of these complexes as gelators is a less explored treasure. Herein we focus on the gelation abilities of some self-assembled palladium(II) complexes and the resulting unique properties. First, discrete complexes with PdL, PdL2 , Pd2 L, Pd2 L2 , Pd2 L4 , and Pd3 L6 compositions are discussed. Second, gelation behavior promoted by coordination-polymer-like gelators formed in situ is explored. These gel samples have been employed in catalysis and the uptake of organic and dye molecules from the solution and gas phases. It is concluded that untapped unique properties can be realized by further exploration of designer palladium(II) complexes.
Collapse
Affiliation(s)
- Sudhakar Ganta
- Department of Chemistry, Indian Institute of Technology Madras, Chennnai, 600036, India
| | - Dillip Kumar Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennnai, 600036, India
| |
Collapse
|
28
|
Rahim MA, Kristufek SL, Pan S, Richardson JJ, Caruso F. Phenolische Bausteine für die Assemblierung von Funktionsmaterialien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807804] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Md. Arifur Rahim
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| | - Samantha L. Kristufek
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| |
Collapse
|
29
|
Rahim MA, Kristufek SL, Pan S, Richardson JJ, Caruso F. Phenolic Building Blocks for the Assembly of Functional Materials. Angew Chem Int Ed Engl 2018; 58:1904-1927. [DOI: 10.1002/anie.201807804] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Md. Arifur Rahim
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Samantha L. Kristufek
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
30
|
Nakanishi H, Deák A, Hólló G, Lagzi I. Existence of a Precipitation Threshold in the Electrostatic Precipitation of Oppositely Charged Nanoparticles. Angew Chem Int Ed Engl 2018; 57:16062-16066. [PMID: 30325100 DOI: 10.1002/anie.201809779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/10/2018] [Indexed: 01/23/2023]
Abstract
Oppositely charged nanoparticles precipitate rapidly only at the point of electroneutrality, wherein their charges are macroscopically compensated. We investigated the aggregation and precipitation of oppositely charged nanoparticles at concentrations ranging from 10 to 10-3 mm (based on gold atoms) by using UV/Vis measurements. We employed solutions of equally sized (4.6 nm) gold nanoparticles, which were functionalized and stabilized with either positively or with negatively charged alkanethiols. Results showed that oppositely charged nanoparticles do not precipitate if their concentration is below a certain threshold even if the electroneutrality condition is fulfilled. This finding suggests a universal behavior of chemical systems comprising oppositely charged building blocks such as ions and charged nanoparticles.
Collapse
Affiliation(s)
- Hideyuki Nakanishi
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto, 606-8585, Japan
| | - András Deák
- Hungarian Academy of Sciences Centre for Energy Research, Konkoly-Thege út 29-33, 1120, Budapest, Hungary
| | - Gábor Hólló
- MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics, 1111, Budafoki út 8, Budapest, Hungary
| | - István Lagzi
- MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics, 1111, Budafoki út 8, Budapest, Hungary.,Department of Physics, Budapest University of Technology and Economics, Hungary
| |
Collapse
|
31
|
Sarkar K, Dastidar P. Rational Approach Towards Designing Metallogels From a Urea-Functionalized Pyridyl Dicarboxylate: Anti-inflammatory, Anticancer, and Drug Delivery. Chem Asian J 2018; 14:194-204. [PMID: 30358173 DOI: 10.1002/asia.201801462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/25/2018] [Indexed: 12/25/2022]
Abstract
A structural rationale was adopted to design a series of metallogels from a newly synthesized urea-functionalized dicarboxylate ligand, namely, 5-[3-(pyridin-3-yl)ureido]isophthalic acid (PUIA), that produces metallogels upon reaction with various metal salts (CuII , ZnII , CoII , CdII , and NiII salts) at room temperature. The gels were characterized by dynamic rheology and transmission electron microscopy (TEM). The existence of a coordination bond in the gel state was probed by FTIR and 1 H NMR spectroscopy in a ZnII metallogel (i.e., MG2). Single crystals isolated from the reaction mixture of PUIA and CoII or CdII salts characterized by X-ray diffraction revealed lattice inclusion of solvent molecules, which was in agreement with the hypothesis based on which the metallogels were designed. MG2 displayed anti-inflammatory response (prostaglandin E2 assay) in the macrophage cell line (RAW 264.7) and anticancer properties (cell migration assay) on a highly aggressive human breast cancer cell line (MDA-MB-231). The MG2 metallogel matrix could also be used to load and release (pH responsive) the anticancer drug doxorubicin. Fluorescence imaging of MDA-MB-231 cells treated with MG2 revealed that it was successfully internalized.
Collapse
Affiliation(s)
- Koushik Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| |
Collapse
|
32
|
Nakanishi H, Deák A, Hólló G, Lagzi I. Existence of a Precipitation Threshold in the Electrostatic Precipitation of Oppositely Charged Nanoparticles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hideyuki Nakanishi
- Department of Macromolecular Science and Engineering, Graduate School of Science and TechnologyKyoto Institute of Technology Matsugasaki Kyoto 606-8585 Japan
| | - András Deák
- Hungarian Academy of Sciences Centre for Energy Research Konkoly-Thege út 29–33 1120 Budapest Hungary
| | - Gábor Hólló
- MTA-BME Condensed Matter Research GroupBudapest University of Technology and Economics 1111 Budafoki út 8 Budapest Hungary
| | - István Lagzi
- MTA-BME Condensed Matter Research GroupBudapest University of Technology and Economics 1111 Budafoki út 8 Budapest Hungary
- Department of PhysicsBudapest University of Technology and Economics Hungary
| |
Collapse
|
33
|
Vieira VMP, Lima AC, de Jong M, Smith DK. Commercially Relevant Orthogonal Multi-Component Supramolecular Hydrogels for Programmed Cell Growth. Chemistry 2018; 24:15112-15118. [PMID: 30021050 DOI: 10.1002/chem.201803292] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 12/18/2022]
Abstract
This study reports the ability of synthetically simple, commercially viable sugar-derived 1,3:2,4-dibenzylidenesorbitol-4',4"-diacylhydrazide (DBS-CONHNH2 ) to support cell growth. Simple mixing and orthogonal self-sorting can formulate heparin, agarose, and heparin-binding micelles into these gels-easily incorporating additional function. Interestingly, the components used in the gel formulation, direct the ability of cells to grow, meaning the chemical programming of these multi-component gels is directly translated to the biological systems in contact with them. This simple approach has potential for future development in regenerative medicine.
Collapse
Affiliation(s)
- Vânia M P Vieira
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Ana C Lima
- Nano Fiber Matrices, Groningen, The Netherlands
| | | | - David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
34
|
Arivazhagan C, Satapathy S, Jana A, Malakar P, Prasad E, Ghosh S. Phenothiazine-Based Oligo(p
-phenylenevinylene)s: Substituents Affected Self-Assembly, Optical Properties, and Morphology-Induced Transport. Chemistry 2018; 24:13213-13222. [DOI: 10.1002/chem.201801810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/24/2018] [Indexed: 01/05/2023]
Affiliation(s)
- C. Arivazhagan
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| | - Sitakanta Satapathy
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| | - Arijit Jana
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| | - Partha Malakar
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| | - Edamana Prasad
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| | - Sundargopal Ghosh
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| |
Collapse
|
35
|
Hayashi S, Koizumi T. Mechanically Induced Shaping of Organic Single Crystals: Facile Fabrication of Fluorescent and Elastic Crystal Fibers. Chemistry 2018; 24:8507-8512. [DOI: 10.1002/chem.201801965] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/07/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Shotaro Hayashi
- Department of Applied Chemistry; National Defence Academy; 1-10-20 Hashirimizu Yokosuka 239-8686 Japan
| | - Toshio Koizumi
- Department of Applied Chemistry; National Defence Academy; 1-10-20 Hashirimizu Yokosuka 239-8686 Japan
| |
Collapse
|
36
|
Biswas P, Ganguly S, Dastidar P. Stimuli-Responsive Metallogels for Synthesizing Ag Nanoparticles and Sensing Hazardous Gases. Chem Asian J 2018; 13:1941-1949. [PMID: 29863308 DOI: 10.1002/asia.201800743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/31/2018] [Indexed: 02/28/2024]
Abstract
A newly synthesized bis-pyridyl ligand having a diphenyl ether backbone (LP6) displayed the ability to form crystalline coordination polymers (CP1-CP6) which were fully characterized by single crystal X-ray diffraction. Most of the resulting polymers were lattice-occluded crystalline solids-a structural characteristic reminiscent to gels. The reactants of the coordination polymers produced metallogels in DMSO/water confirming the validity of the design principles with which the coordination polymers were synthesized. Some of the metallogels displayed material properties like in situ synthesis of Ag nanoparticles and stimuli-responsive gel-sol transition including sensing hazardous gases like ammonia and hydrogen sulfide.
Collapse
Affiliation(s)
- Protap Biswas
- Department of Organic Chemistry, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road Jadavpur, Kolkata, 700032, West Bengal, India
| | - Sumi Ganguly
- Department of Organic Chemistry, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road Jadavpur, Kolkata, 700032, West Bengal, India
| | - Parthasarathi Dastidar
- Department of Organic Chemistry, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road Jadavpur, Kolkata, 700032, West Bengal, India
| |
Collapse
|
37
|
Sawada H, Yamanaka M. Synthesis of a Bis-Urea Dimer and Its Effects on the Physical Properties of an Amphiphilic Tris-Urea Supramolecular Hydrogel. Chem Asian J 2018; 13:929-933. [PMID: 29512335 DOI: 10.1002/asia.201800217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/01/2018] [Indexed: 12/20/2022]
Abstract
The successful development of stiff supramolecular gels is an important goal toward their practical application. One approach to stiffen supramolecular gels is to introduce covalent cross-links. The bis-urea dimer 2, having a structure similar to that of the low-molecular-weight gelator 1, was synthesized. Supramolecular hydrogels were formed from mixtures of 1 and 2 in appropriate ratios, with 2 acting as a covalent cross-linker to connect the fibrous aggregates formed by the self-assembly of 1. The introduction of these covalent cross-links greatly influenced the dynamic viscoelasticity of the supramolecular hydrogels. In the supramolecular hydrogel of 1 mixed with 5 % 2, the storage modulus was 1.35 times higher than that of the supramolecular hydrogel of 1 alone, and the crossover strain was extended from 5 % to over 20 %. The supramolecular hydrogel of 1 and 2 was free-standing and supported 13 times its own weight.
Collapse
Affiliation(s)
- Hiroki Sawada
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Masamichi Yamanaka
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|
38
|
Fang W, Zhang Y, Wu J, Liu C, Zhu H, Tu T. Recent Advances in Supramolecular Gels and Catalysis. Chem Asian J 2018; 13:712-729. [DOI: 10.1002/asia.201800017] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Weiwei Fang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Department of Chemistry; Fudan University; 2205 Songhu Road Shanghai 200438 China
| | - Yang Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Department of Chemistry; Fudan University; 2205 Songhu Road Shanghai 200438 China
| | - Jiajie Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Department of Chemistry; Fudan University; 2205 Songhu Road Shanghai 200438 China
| | - Cong Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Department of Chemistry; Fudan University; 2205 Songhu Road Shanghai 200438 China
| | - Haibo Zhu
- School of Chemistry, Biology and Material Science; East China University of Technology; Nanchang 330013 China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Department of Chemistry; Fudan University; 2205 Songhu Road Shanghai 200438 China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
39
|
Krishnan BP, Sureshan KM. A Library of Multipurpose Supramolecular Supergelators: Fabrication of Structured Silica, Porous Plastics, and Fluorescent Gels. Chem Asian J 2017; 13:187-193. [PMID: 29195010 DOI: 10.1002/asia.201701657] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Supramolecular gels find applications in various fields. Usually, a specific gelator is useful only for a specific application. This one-gelator-one-application format is one factor that limits the usefulness of supramolecular gels. We report the synthesis of a library of gelators from a common core by using a click-chemistry approach. Thus, the click reaction of β-azido-4,6-O-benzylidene-galactopyranoside (1) with various alkynes gave 11 different gelators having varying gelation abilities. Whereas gelators having alkyl-chain substituents congealed alkanes and tetraethylorthosilicate (TEOS), the gelators having aromatic substituents congealed aromatic solvents. We exploited this difference in gelling behavior in the templated synthesis of silica rods and porous plastics. The styrene gel of gelator 2 j was polymerized, and the gelator was removed by washing to obtain porous polystyrene. The TEOS gel of gelator 2 b was polymerized to silica, and the gelator template was removed by calcination to give microstructured silica rods. We also developed fluorescent gelator 2 f by this method, which might find applications by virtue of its fluorescence in the assembled state.
Collapse
Affiliation(s)
- Baiju P Krishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura campus, Thiruvananthapuram, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura campus, Thiruvananthapuram, 695551, India
| |
Collapse
|
40
|
Dawn A, Kumari H. Low Molecular Weight Supramolecular Gels Under Shear: Rheology as the Tool for Elucidating Structure-Function Correlation. Chemistry 2017; 24:762-776. [PMID: 28952169 DOI: 10.1002/chem.201703374] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Indexed: 12/23/2022]
Abstract
Self-healing low molecular weight supramolecular gels (SMGs) represent an emerging class of smart materials, which can closely mimic the complex biological healing process, such as blood clotting, bone repair or wound healing. However, a lack of understanding of the structure-function correlation in the self-assembly process limits their molecular design and subsequent property tuning. The indispensability of a rheological study on supramolecular gels lies in direct transcription of the assembly property to the viscoelastic behavior of the material. This is similarly relevant to healable and non-healable systems. Thus, using rheology as a tool for elucidating structure-function relationships in self-assembled systems has huge potential. This review article will depict a general introduction of rheology in the field of soft matter including SMGs, followed by representative studies with interpretations, and discussion on future challenges. Altogether, this would be an effort, where an in-depth rheological study complemented with a real-time visualization with the help of microscopy, and introduction of other sophisticated real-time experiments, could be a step forward to capture the mystery of self-assembly process.
Collapse
Affiliation(s)
- Arnab Dawn
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| |
Collapse
|
41
|
Lin Q, Mao PP, Fan YQ, Jia PP, Liu J, Zhang YM, Yao H, Wei TB. Novel multi-analyte responsive ionic supramolecular gels based on pyridinium functionalized-naphthalimide. SOFT MATTER 2017; 13:7360-7364. [PMID: 28933493 DOI: 10.1039/c7sm01624g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel ionic supramolecular gel (is-G) is synthesized using N-(pyridinium-4-yl)-naphthalimide (G1) and n-pentanoic acid. By rationally introducing competitive coordination into is-G, two ion coordinated ionic supramolecular gels is-IG and is-FeG (coordinated with I- and Fe3+, respectively) are obtained. is-IG could fluorescently "turn-on" detect Hg2+ and l-Arg with specific selectivity, whereas, is-FeG could accurately identify l-Ser via fluorescence in water. Moreover, ion or amino acid responsive films based on these ionic supramolecular gels are prepared. These ionic supramolecular gels and films could act as multi-analyte detection materials as well as fluorescent display materials.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schneider HJ. Logic-Gate Functions in Chemomechanical Materials. Chemphyschem 2017; 18:2306-2313. [DOI: 10.1002/cphc.201700186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/16/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Hans-Jörg Schneider
- FR Organische Chemie der; Universität des Saarlandes; 66123 Saarbrücken Germany
| |
Collapse
|
43
|
Hu WB, Cai HR, Hu WJ, Zhao XL, Liu YA, Li JS, Jiang B, Wen K. Pillar[5]arene-Py-Cu Gel, the First Pillar[5]arene-Based Metallo(organo)gel, and Adsorption of Sudan III by Its Gel-Precipitate. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei-Bo Hu
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; 201210 Shanghai China
- University of Chinese Academy of Sciences; 100039 Beijing P. R. China
| | - Hong-Rui Cai
- School of Physical Science and Technology; ShanghaiTech University; 201210 Shanghai China
| | - Wen-Jing Hu
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; 201210 Shanghai China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; and Department of Chemistry; East China Normal University; 200062 Shanghai China
| | - Yahu A. Liu
- Medicinal Chemistry; ChemBridge Research Laboratories; 92127 San Diego CA USA
| | - Jiu-Sheng Li
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; 201210 Shanghai China
| | - Biao Jiang
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; 201210 Shanghai China
| | - Ke Wen
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; 201210 Shanghai China
- School of Physical Science and Technology; ShanghaiTech University; 201210 Shanghai China
| |
Collapse
|
44
|
Takeshita J, Hasegawa Y, Yanai K, Yamamoto A, Ishii A, Hasegawa M, Yamanaka M. Organic Dye Adsorption by Amphiphilic Tris-Urea Supramolecular Hydrogel. Chem Asian J 2017; 12:2029-2032. [DOI: 10.1002/asia.201700708] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 05/25/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Juri Takeshita
- Department of Chemistry; Faculty of Science; Shizuoka University; 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Yuki Hasegawa
- College of Science and Engineering; Aoyama Gakuin University; 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - Kazushige Yanai
- Department of Chemistry; Faculty of Science; Shizuoka University; 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Ayumu Yamamoto
- Department of Chemistry; Faculty of Science; Shizuoka University; 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Ayumi Ishii
- College of Science and Engineering; Aoyama Gakuin University; 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - Miki Hasegawa
- College of Science and Engineering; Aoyama Gakuin University; 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - Masamichi Yamanaka
- Department of Chemistry; Faculty of Science; Shizuoka University; 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| |
Collapse
|
45
|
Wang H, Feng Z, Lu A, Jiang Y, Wu H, Xu B. Instant Hydrogelation Inspired by Inflammasomes. Angew Chem Int Ed Engl 2017; 56:7579-7583. [PMID: 28481474 PMCID: PMC5551645 DOI: 10.1002/anie.201702783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 11/10/2022]
Abstract
Based on the recent near-atomic structures of the PYRIN domain of ASC in the protein filament of inflammasomes and the observation that the active form of vitamin B6 (pyridoxal phosphate, P5P) modulates the self-assembly of ASC, we rationally designed an N-terminal capped nonapeptide (Nap-FFKKFKLKL, 1) to form supramolecular nanofibers consisting of α-helix. The addition of P5P to the solution of 1 results in a hydrogel almost instantly (about 4 seconds). Several other endogenous small molecules (for example, pyridoxal, folinic acid, ATP, and AMP) also convert the solution of 1 into a hydrogel. As the demonstration of correlating assemblies of peptides and the relevant protein epitopes, this work illustrates a bioinspired approach to develop supramolecular structures modulated by endogenous small molecules.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| | - Zhaoqianqi Feng
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| | - Alvin Lu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Yujie Jiang
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Bing Xu
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| |
Collapse
|
46
|
Xiao T, Zhang X, Wu J, Yang J, Yang Y. Aliphatic-Alcohol-Induced Opaque-to-Transparent Transformation and Application of Solubility Theory in a Bis-Dipeptide-Based Supramolecular Gel. Chempluschem 2017; 82:879-887. [PMID: 31961561 DOI: 10.1002/cplu.201700206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 12/20/2022]
Abstract
A bis-dipeptide supramolecular gelator (DMPV) is prepared, based on l-valine moieties having a pyridinyl group and a long fatty diamine. It is found that the gelator can immobilize organic/water binary mixed solvents, and gel-to-gel transitions with unprecedented opaque-to-transparent transformations are observed upon using aliphatic alcohols such as methanol, ethanol, 1-propyl alcohol, and isopropanol as the organic components. Morphological investigations indicate that a reassembly process occurs, and microstructure evolutions from agglomerates to nanofibers are observed. Opaque and transparent assemblies can interconvert, and respond and restore under mechanical force and pH stimuli. Moreover, Hansen and Flory-Huggins parameters are used to investigate the effect of the solvent on the gelation performance of DMPV. This may facilitate the structure and solvent optimizations and aid the development of advanced gel systems.
Collapse
Affiliation(s)
- Tingting Xiao
- Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xiaoyang Zhang
- Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jingyu Wu
- NARI Group Corporation, State Grid electric Power Research Institute, Nanjing, 211106, P. R. China
| | - Jiazhi Yang
- Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yong Yang
- Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
47
|
Zhao H, Jiang D, Schäfer AH, Seela F. 8-Aza-2'-deoxyisoguanosine Forms Fluorescent Hydrogels whereas 8-Aza-2'-deoxyguanosine Assembles into Nucleoside Nanotubes. Chempluschem 2017; 82:778-784. [PMID: 31961520 DOI: 10.1002/cplu.201700156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/03/2017] [Indexed: 02/05/2023]
Abstract
Fluorescent hydrogels have attracted attention for applications in tissue engineering, drug delivery or as molecular machines. This study describes a nucleoside hydrogel formed by 8-aza-2'-deoxyisoguanosine (z8 isoGd ). The new hydrogel is the first guanosine gel that has intrinsic fluorescence. It has long-term stability and a higher thermal stability (Tgel =77 °C) than gels of 2'-deoxyisoguanosine (Tgel =67 °C) and 2'-deoxyguanosine (Tgel =50 °C). Furthermore, the minimum gel concentration is lower at 0.3 mg per 100 μL for z8 isoGd compared to 0.7 mg for 2'-deoxyisoguanosine. Scanning electron microscopy images show that the z8 isoGd gel forms dense bundles of fibers. The related nucleoside 8-aza-2'-deoxyguanosine does not form a hydrogel but forms nanotube-like structures in the solid state. The fluorescence of the z8 isoGd hydrogel responds to external stimuli such as the addition of alkali metal ions, pH change, heat, and UV irradiation. In binary mixtures with nucleoside shape mimics such as 7-deaza-2'-deoxyisoguanosine, the z8 isoGd hydrogel disintegrates.
Collapse
Affiliation(s)
- Hang Zhao
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Dawei Jiang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany
| | - Andreas H Schäfer
- nanoAnalytics GmbH, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany
| |
Collapse
|
48
|
Wang H, Feng Z, Lu A, Jiang Y, Wu H, Xu B. Instant Hydrogelation Inspired by Inflammasomes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Huaimin Wang
- Department of chemistry Brandeis University 415 South St Waltham MA 02454 USA
| | - Zhaoqianqi Feng
- Department of chemistry Brandeis University 415 South St Waltham MA 02454 USA
| | - Alvin Lu
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital Boston MA USA
| | - Yujie Jiang
- Department of chemistry Brandeis University 415 South St Waltham MA 02454 USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital Boston MA USA
| | - Bing Xu
- Department of chemistry Brandeis University 415 South St Waltham MA 02454 USA
| |
Collapse
|
49
|
Li Y, Duan P, Liu M. Solvent-Regulated Self-Assembly of an Achiral Donor-Acceptor Complex in Confined Chiral Nanotubes: Chirality Transfer, Inversion and Amplification. Chemistry 2017; 23:8225-8231. [DOI: 10.1002/chem.201700613] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Yuangang Li
- College of Chemistry and Chemical Engineering; Xi'an University of Science and Technology; No. 58, Yanta Road 710054 Xi'an P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao 100190 Beijing P. R. China
| | - Minghua Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao 100190 Beijing P. R. China
- Beijing National Laboratory for Molecular Science; CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; No. 2 ZhongGuanCun BeiYiJie 100190 Beijing P. R. China
| |
Collapse
|
50
|
Liao P, Fang H, Zhang J, Hu Y, Chen L, Su C. Transforming HKUST‐1 Metal–Organic Frameworks into Gels – Stimuli‐Responsiveness and Morphology Evolution. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peisen Liao
- Lehn Institute of Functional Materials MOE Laboratory of Bioinorganic and Synthetic Chemistry Sun Yat‐Sen University 510275 Guangzhou China
| | - Haobin Fang
- Lehn Institute of Functional Materials MOE Laboratory of Bioinorganic and Synthetic Chemistry Sun Yat‐Sen University 510275 Guangzhou China
| | - Jianyong Zhang
- Lehn Institute of Functional Materials MOE Laboratory of Bioinorganic and Synthetic Chemistry Sun Yat‐Sen University 510275 Guangzhou China
| | - Ya Hu
- Lehn Institute of Functional Materials MOE Laboratory of Bioinorganic and Synthetic Chemistry Sun Yat‐Sen University 510275 Guangzhou China
| | - Liuping Chen
- Lehn Institute of Functional Materials MOE Laboratory of Bioinorganic and Synthetic Chemistry Sun Yat‐Sen University 510275 Guangzhou China
| | - Cheng‐Yong Su
- Lehn Institute of Functional Materials MOE Laboratory of Bioinorganic and Synthetic Chemistry Sun Yat‐Sen University 510275 Guangzhou China
| |
Collapse
|