1
|
Li Y, Gao H, Qi Z, Huang Z, Ma L, Liu J. Freezing-Assisted Conjugation of Unmodified Diblock DNA to Hydrogel Nanoparticles and Monoliths for DNA and Hg 2+ Sensing. Angew Chem Int Ed Engl 2021; 60:12985-12991. [PMID: 33792133 DOI: 10.1002/anie.202102330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Indexed: 12/22/2022]
Abstract
Acrydite-modified DNA is the most frequently used reagent to prepare DNA-functionalized hydrogels. Herein, we show that unmodified penta-adenine (A5 ) can reach up to 75 % conjugation efficiency in 8 h under a freezing polymerization condition in polyacrylamide hydrogels. DNA incorporation efficiency was reduced by forming duplex or other folded structures and by removing the freezing condition. By designing diblock DNA containing an A5 block, various functional DNA sequences were attached. Such hydrogels were designed for ultrasensitive DNA hybridization and Hg2+ detection, with detection limits of 50 pM and 10 nM, respectively, demonstrating the feasibility of using unmodified DNA to replace acrydite-DNA. The same method worked for both gel nanoparticles and monoliths. This work revealed interesting reaction products by exploiting freezing and has provided a cost-effective way to attach DNA to hydrogels.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Hang Gao
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Zengyao Qi
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, Hong Kong
| |
Collapse
|
2
|
Li Y, Gao H, Qi Z, Huang Z, Ma L, Liu J. Freezing‐Assisted Conjugation of Unmodified Diblock DNA to Hydrogel Nanoparticles and Monoliths for DNA and Hg
2+
Sensing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuqing Li
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Hang Gao
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Zengyao Qi
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Zhicheng Huang
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Lingzi Ma
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Juewen Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
- Centre for Eye and Vision Research 17W Hong Kong Science Park Hong Kong Hong Kong
| |
Collapse
|
3
|
Choi W, Sun H, Battistella C, Berger O, Vratsanos MA, Wang MM, Gianneschi NC. Biomolecular Densely Grafted Brush Polymers: Oligonucleotides, Oligosaccharides and Oligopeptides. Angew Chem Int Ed Engl 2020; 59:19762-19772. [PMID: 32436259 PMCID: PMC11042487 DOI: 10.1002/anie.202005379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 01/19/2023]
Abstract
In this Minireview, we describe synthetic polymers densely functionalized with sequence-defined biomolecular sidechains. We focus on synthetic brush polymers of oligonucleotides, oligosaccharides, and oligopeptides, prepared via graft-through polymerization from biomolecule functionalized monomers. The resulting structures are brush polymers wherein a biomolecular graft is positioned at each monomer backbone unit. We describe key synthetic milestones, identify synthetic opportunities, and highlight recent advances in the field, including biological applications.
Collapse
Affiliation(s)
- Wonmin Choi
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Hao Sun
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Claudia Battistella
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Or Berger
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Maria A. Vratsanos
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Max M. Wang
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Nathan C. Gianneschi
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| |
Collapse
|
4
|
Choi W, Sun H, Battistella C, Berger O, Vratsanos MA, Wang MM, Gianneschi NC. Biomolecular Densely Grafted Brush Polymers: Oligonucleotides, Oligosaccharides and Oligopeptides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wonmin Choi
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Hao Sun
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Claudia Battistella
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Or Berger
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Maria A. Vratsanos
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Max M. Wang
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Nathan C. Gianneschi
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| |
Collapse
|
5
|
Albert SK, Hu X, Park SJ. Dynamic Nanostructures from DNA-Coupled Molecules, Polymers, and Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900504. [PMID: 30985085 DOI: 10.1002/smll.201900504] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/28/2019] [Indexed: 05/20/2023]
Abstract
Dynamic and reconfigurable systems that can sense and react to physical and chemical signals are ubiquitous in nature and are of great interest in diverse areas of science and technology. DNA is a powerful tool for fabricating such smart materials and devices due to its programmable and responsive molecular recognition properties. For the past couple of decades, DNA-based self-assembly is actively explored to fabricate various DNA-organic and DNA-inorganic hybrid nanostructures with high-precision structural control. Building upon past development, researchers have recently begun to design and assemble dynamic nanostructures that can undergo an on-demand transformation in the structure, properties, and motion in response to various external stimuli. In this Review, recent advances in dynamic DNA nanostructures, focusing on hybrid structures fabricated from DNA-conjugated molecules, polymers, and nanoparticles, are introduced, and their potential applications and future perspectives are discussed.
Collapse
Affiliation(s)
- Shine K Albert
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Xiaole Hu
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
6
|
Pan X, Lathwal S, Mack S, Yan J, Das SR, Matyjaszewski K. Automated Synthesis of Well-Defined Polymers and Biohybrids by Atom Transfer Radical Polymerization Using a DNA Synthesizer. Angew Chem Int Ed Engl 2017; 56:2740-2743. [PMID: 28164438 PMCID: PMC5341381 DOI: 10.1002/anie.201611567] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/30/2016] [Indexed: 11/07/2022]
Abstract
A DNA synthesizer was successfully employed for preparation of well-defined polymers by atom transfer radical polymerization (ATRP), in a technique termed AutoATRP. This method provides well-defined homopolymers, diblock copolymers, and biohybrids under automated photomediated ATRP conditions. PhotoATRP was selected over other ATRP methods because of mild reaction conditions, ambient temperature, tolerance to oxygen, and no need to introduce reducing agents or radical initiators. Both acrylate and methacrylate monomers were successfully polymerized with excellent control in the DNA synthesizer. Diblock copolymers were synthesized with different targeted degrees of polymerization and with high retention of chain-end functionality. Both hydrophobic and hydrophilic monomers were grafted from DNA. The DNA-polymer hybrids were characterized by SEC and DLS. The AutoATRP method provides an efficient route to prepare a range of different polymeric materials, especially polymer-biohybrids.
Collapse
Affiliation(s)
- Xiangcheng Pan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Sushil Lathwal
- Department of Chemistry and Center for Nucleic Acids Science & Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Stephanie Mack
- Department of Chemistry and Center for Nucleic Acids Science & Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Jiajun Yan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Subha R Das
- Department of Chemistry and Center for Nucleic Acids Science & Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
7
|
Pan X, Lathwal S, Mack S, Yan J, Das SR, Matyjaszewski K. Automated Synthesis of Well-Defined Polymers and Biohybrids by Atom Transfer Radical Polymerization Using a DNA Synthesizer. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiangcheng Pan
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Sushil Lathwal
- Department of Chemistry and Center for Nucleic Acids Science & Technology; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Stephanie Mack
- Department of Chemistry and Center for Nucleic Acids Science & Technology; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Jiajun Yan
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Subha R. Das
- Department of Chemistry and Center for Nucleic Acids Science & Technology; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
8
|
De Stefano M, Vesterager Gothelf K. Dynamic Chemistry of Disulfide Terminated Oligonucleotides in Duplexes and Double-Crossover Tiles. Chembiochem 2016; 17:1122-6. [PMID: 26994867 DOI: 10.1002/cbic.201600076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 02/03/2023]
Abstract
Designed nanostructures formed by self-assembly of multiple DNA strands suffer from low stability at elevated temperature and under other denaturing conditions. Here, we propose a method for covalent coupling of DNA strands in such structures by the formation of disulfide bonds; this allows disassembly of the structure under reducing conditions. The dynamic chemistry of disulfides and thiols was applied to crosslink DNA strands with terminal disulfide modifications. The formation of disulfide-linked DNA duplexes consisting of three strands is demonstrated, as well as a more-complex DNA double-crossover tile. All the strands in the fully disulfide-linked structures are covalently and geometrically interlocked, and it is demonstrated that the structures are stable under heating and in the presence of denaturants. Such a reversible system can be exploited in applications where higher DNA stability is needed only temporarily, such as delivery of cargoes to cells by DNA nanostructures.
Collapse
Affiliation(s)
- Mattia De Stefano
- Danish National Research Foundation, Center for DNA Nanotechnology, Department of Chemistry and iNANO, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kurt Vesterager Gothelf
- Danish National Research Foundation, Center for DNA Nanotechnology, Department of Chemistry and iNANO, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| |
Collapse
|
9
|
Vyborna Y, Vybornyi M, Rudnev AV, Häner R. DNA-Grafted Supramolecular Polymers: Helical Ribbon Structures Formed by Self-Assembly of Pyrene-DNA Chimeric Oligomers. Angew Chem Int Ed Engl 2015; 54:7934-8. [DOI: 10.1002/anie.201502066] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 03/31/2015] [Indexed: 12/31/2022]
|
10
|
Vyborna Y, Vybornyi M, Rudnev AV, Häner R. DNA-Grafted Supramolecular Polymers: Helical Ribbon Structures Formed by Self-Assembly of Pyrene-DNA Chimeric Oligomers. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Liu K, Shuai M, Chen D, Tuchband M, Gerasimov JY, Su J, Liu Q, Zajaczkowski W, Pisula W, Müllen K, Clark NA, Herrmann A. Solvent-free Liquid Crystals and Liquids from DNA. Chemistry 2015; 21:4898-903. [PMID: 25712569 DOI: 10.1002/chem.201500159] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 01/29/2023]
Abstract
As DNA exhibits persistent structures with dimensions that exceed the range of their intermolecular forces, solid-state DNA undergoes thermal degradation at elevated temperatures. Therefore, the realization of solvent-free DNA fluids, including liquid crystals and liquids, still remains a significant challenge. To address this intriguing issue, we demonstrate that combining DNA with suitable cationic surfactants, followed by dehydration, can be a simple generic scheme for producing these solvent-free DNA fluid systems. In the anhydrous smectic liquid crystalline phase, DNA sublayers are intercalated between aliphatic hydrocarbon sublayers. The lengths of the DNA and surfactant are found to be extremely important in tuning the physical properties of the fluids. Stable liquid-crystalline and liquid phases are obtained in the -20 °C to 200 °C temperature range without thermal degradation of the DNA. Thus, a new type of DNA-based soft biomaterial has been achieved, which will promote the study and application of DNA in a much broader context.
Collapse
Affiliation(s)
- Kai Liu
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen (The Netherlands)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Guo W, Lu CH, Qi XJ, Orbach R, Fadeev M, Yang HH, Willner I. Switchable Bifunctional Stimuli-Triggered Poly-N-Isopropylacrylamide/DNA Hydrogels. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405692] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Guo W, Lu CH, Qi XJ, Orbach R, Fadeev M, Yang HH, Willner I. Switchable Bifunctional Stimuli-Triggered Poly-N-Isopropylacrylamide/DNA Hydrogels. Angew Chem Int Ed Engl 2014; 53:10134-8. [DOI: 10.1002/anie.201405692] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/14/2014] [Indexed: 11/06/2022]
|
14
|
Albert SK, Thelu HVP, Golla M, Krishnan N, Chaudhary S, Varghese R. Self-assembly of DNA-oligo(p-phenylene-ethynylene) hybrid amphiphiles into surface-engineered vesicles with enhanced emission. Angew Chem Int Ed Engl 2014; 53:8352-7. [PMID: 24962762 DOI: 10.1002/anie.201403455] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/19/2014] [Indexed: 11/09/2022]
Abstract
Surface-addressable nanostructures of linearly π-conjugated molecules play a crucial role in the emerging field of nanoelectronics. Herein, by using DNA as the hydrophilic segment, we demonstrate a solid-phase "click" chemistry approach for the synthesis of a series of DNA-chromophore hybrid amphiphiles and report their reversible self-assembly into surface-engineered vesicles with enhanced emission. DNA-directed surface addressability of the vesicles was demonstrated through the integration of gold nanoparticles onto the surface of the vesicles by sequence-specific DNA hybridization. This system could be converted to a supramolecular light-harvesting antenna by integrating suitable FRET acceptors onto the surface of the nanostructures. The general nature of the synthesis, surface addressability, and biocompatibility of the resulting nanostructures offer great promises for nanoelectronics, energy, and biomedical applications.
Collapse
Affiliation(s)
- Shine K Albert
- School of Chemistry, Indian Institute of Science Education and Research-Thiruvananthapuram (IISER-TVM), CET campus, Trivandrum-695016 (India)
| | | | | | | | | | | |
Collapse
|
15
|
Albert SK, Thelu HVP, Golla M, Krishnan N, Chaudhary S, Varghese R. Self-Assembly of DNA-Oligo(p-phenylene-ethynylene) Hybrid Amphiphiles into Surface-Engineered Vesicles with Enhanced Emission. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403455] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Averick SE, Dey SK, Grahacharya D, Matyjaszewski K, Das SR. Solid-Phase Incorporation of an ATRP Initiator for Polymer-DNA Biohybrids. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Averick SE, Dey SK, Grahacharya D, Matyjaszewski K, Das SR. Solid-Phase Incorporation of an ATRP Initiator for Polymer-DNA Biohybrids. Angew Chem Int Ed Engl 2014; 53:2739-44. [DOI: 10.1002/anie.201308686] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/04/2013] [Indexed: 01/04/2023]
|
18
|
Rodríguez-Pulido A, Kondrachuk AI, Prusty DK, Gao J, Loi MA, Herrmann A. Light-triggered sequence-specific cargo release from DNA block copolymer-lipid vesicles. Angew Chem Int Ed Engl 2013; 52:1008-12. [PMID: 23109173 PMCID: PMC3563227 DOI: 10.1002/anie.201206783] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Alberto Rodríguez-Pulido
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 4, 9747 AG Groningen (The Netherlands)
| | - Alina I Kondrachuk
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 4, 9747 AG Groningen (The Netherlands)
| | - Deepak K Prusty
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 4, 9747 AG Groningen (The Netherlands)
| | - Jia Gao
- Department of Photophysics and Optoelectronics, University of Groningen(The Netherlands)
| | - Maria A Loi
- Department of Photophysics and Optoelectronics, University of Groningen(The Netherlands)
| | - Andreas Herrmann
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 4, 9747 AG Groningen (The Netherlands)
| |
Collapse
|
19
|
Rodríguez-Pulido A, Kondrachuk AI, Prusty DK, Gao J, Loi MA, Herrmann A. Light-Triggered Sequence-Specific Cargo Release from DNA Block Copolymer-Lipid Vesicles. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206783] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Schacher FH, Rupar PA, Manners I. Funktionale Blockcopolymere: nanostrukturierte Materialien mit neuen Anwendungsmöglichkeiten. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200310] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Schacher FH, Rupar PA, Manners I. Functional Block Copolymers: Nanostructured Materials with Emerging Applications. Angew Chem Int Ed Engl 2012; 51:7898-921. [DOI: 10.1002/anie.201200310] [Citation(s) in RCA: 564] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Indexed: 01/07/2023]
|
22
|
Díaz JA, Grewer DM, Gibbs-Davis JM. Tuning ratios, densities, and supramolecular spacing in bifunctional DNA-modified gold nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:873-883. [PMID: 22228478 DOI: 10.1002/smll.201101922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/25/2011] [Indexed: 05/31/2023]
Abstract
Methods for combining multiple functions into well-defined nanomaterials are still lacking, despite their need in nanomedicine and within the broader field of nanotechnology. Here several strategies for controlling the amount and the ratio of combinations of labeled DNA on 13-nm gold nanoparticles using self-assembly of thiolated DNA and/or DNA-directed assembly are explored. It is found that the self-assembly of mixtures of fluorescently labeled DNA can lead to a higher amount of labeled DNA per particle; however, the ratio of fluorophores on the nanoparticles differs greatly from that in the self-assembly solution. In contrast, when fluorescently labeled DNA are hybridized to DNA-modified gold nanoparticles, the fluorophore ratio on the nanoparticles is much closer to their ratio in solution. The use of bifunctional DNA-doublers in self-assembly and DNA-directed assembly is also explored to increase the complexity of these materials and control their composition. Finally, tuning the distance between the labels from 2.9 to 5.4 nm was achieved using different hybridized DNA clamp complexes. Fluorescent results suggest that assembling these clamps on nanoparticle surfaces may be possible, although the resulting label spacing could not be quantified.
Collapse
Affiliation(s)
- Julián A Díaz
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | |
Collapse
|
23
|
Talom RM, Fuks G, Kaps L, Oberdisse J, Cerclier C, Gaillard C, Mingotaud C, Gauffre F. DNA-polymer micelles as nanoparticles with recognition ability. Chemistry 2011; 17:13495-501. [PMID: 22025327 DOI: 10.1002/chem.201101561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/25/2011] [Indexed: 01/01/2023]
Abstract
The Watson-Crick binding of DNA single strands is a powerful tool for the assembly of nanostructures. Our objective is to develop polymer nanoparticles equipped with DNA strands for surface-patterning applications, taking advantage of the DNA technology, in particular, recognition and reversibility. A hybrid DNA copolymer is synthesized through the conjugation of a ssDNA (22-mer) with a poly(ethylene oxide)-poly(caprolactone) diblock copolymer (PEO-b-PCl). It is shown that, in water, the PEO-b-PCl-ssDNA(22) polymer forms micelles with a PCl hydrophobic core and a hydrophilic corona made of PEO and DNA. The micelles are thoroughly characterized using electron microscopy (TEM and cryoTEM) and small-angle neutron scattering. The binding of these DNA micelles to a surface through DNA recognition is monitored using a quartz crystal microbalance and imaged by atomic force microscopy. The micelles can be released from the surface by a competitive displacement event.
Collapse
Affiliation(s)
- Renée Mayap Talom
- Université de Toulouse, CNRS, Laboratoire des IMRCP, UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|