1
|
Maynard JRJ, Galmés B, Stergiou AD, Symes MD, Frontera A, Goldup SM. Anion-π Catalysis Enabled by the Mechanical Bond. Angew Chem Int Ed Engl 2022; 61:e202115961. [PMID: 35040543 PMCID: PMC9303940 DOI: 10.1002/anie.202115961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/13/2022]
Abstract
We report a series of rotaxane-based anion-π catalysts in which the mechanical bond between a bipyridine macrocycle and an axle containing an NDI unit is intrinsic to the activity observed, including a [3]rotaxane that catalyses an otherwise disfavoured Michael addition in >60 fold selectivity over a competing decarboxylation pathway that dominates under Brønsted base conditions. The results are rationalized by detailed experimental investigations, electrochemical and computational analysis.
Collapse
Affiliation(s)
| | - Bartomeu Galmés
- Department of ChemistryUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palma de MallorcaBalearesSpain
| | - Athanasios D. Stergiou
- WestCHEM School of ChemistryUniversity of Glasgow, Joseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| | - Mark D. Symes
- WestCHEM School of ChemistryUniversity of Glasgow, Joseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| | - Antonio Frontera
- Department of ChemistryUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palma de MallorcaBalearesSpain
| | | |
Collapse
|
2
|
Maynard JRJ, Galmés B, Stergiou A, Symes M, Frontera A, Goldup SM. Anion‐π Catalysis Enabled by the Mechanical Bond. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Mark Symes
- University of Glasgow Chemistry UNITED KINGDOM
| | | | | |
Collapse
|
3
|
Cirulli M, Salvadori E, Zhang Z, Dommett M, Tuna F, Bamberger H, Lewis JEM, Kaur A, Tizzard GJ, van Slageren J, Crespo‐Otero R, Goldup SM, Roessler MM. Rotaxane Co II Complexes as Field-Induced Single-Ion Magnets. Angew Chem Int Ed Engl 2021; 60:16051-16058. [PMID: 33901329 PMCID: PMC8361961 DOI: 10.1002/anie.202103596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/02/2022]
Abstract
Mechanically chelating ligands have untapped potential for the engineering of metal ion properties. Here we demonstrate this principle in the context of CoII -based single-ion magnets. Using multi-frequency EPR, susceptibility and magnetization measurements we found that these complexes show some of the highest zero field splittings reported for five-coordinate CoII complexes to date. The predictable coordination behaviour of the interlocked ligands allowed the magnetic properties of their CoII complexes to be evaluated computationally a priori and our combined experimental and theoretical approach enabled us to rationalize the observed trends. The predictable magnetic behaviour of the rotaxane CoII complexes demonstrates that interlocked ligands offer a new strategy to design metal complexes with interesting functionality.
Collapse
Affiliation(s)
- Martina Cirulli
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Enrico Salvadori
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
- Department of ChemistryUniversity of TorinoVia Giuria 710125TorinoItaly
| | - Zhi‐Hui Zhang
- ChemistryUniversity of SouthamptonHighfieldSO 17 1BJUK
| | - Michael Dommett
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Floriana Tuna
- Department of Chemistry and Photon Science InstituteUniversity of ManchesterOxford RoadManchesterM13 0PLUK
| | - Heiko Bamberger
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - James E. M. Lewis
- ChemistryUniversity of SouthamptonHighfieldSO 17 1BJUK
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWood LaneLondonW12 0BZUK
| | | | - Graham J. Tizzard
- EPSRC National Crystallographic ServiceUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Joris van Slageren
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Rachel Crespo‐Otero
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | | | - Maxie M. Roessler
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWood LaneLondonW12 0BZUK
| |
Collapse
|
4
|
Cirulli M, Salvadori E, Zhang Z, Dommett M, Tuna F, Bamberger H, Lewis JEM, Kaur A, Tizzard GJ, Slageren J, Crespo‐Otero R, Goldup SM, Roessler MM. Rotaxane Co
II
Complexes as Field‐Induced Single‐Ion Magnets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martina Cirulli
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| | - Enrico Salvadori
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
- Department of Chemistry University of Torino Via Giuria 7 10125 Torino Italy
| | - Zhi‐Hui Zhang
- Chemistry University of Southampton Highfield SO 17 1BJ UK
| | - Michael Dommett
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute University of Manchester Oxford Road Manchester M13 0PL UK
| | - Heiko Bamberger
- Institut für Physikalische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - James E. M. Lewis
- Chemistry University of Southampton Highfield SO 17 1BJ UK
- Department of Chemistry Imperial College London Molecular Sciences Research Hub Wood Lane London W12 0BZ UK
| | - Amanpreet Kaur
- Chemistry University of Southampton Highfield SO 17 1BJ UK
| | - Graham J. Tizzard
- EPSRC National Crystallographic Service University of Southampton Highfield Southampton SO17 1BJ UK
| | - Joris Slageren
- Institut für Physikalische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Rachel Crespo‐Otero
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| | | | - Maxie M. Roessler
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
- Department of Chemistry Imperial College London Molecular Sciences Research Hub Wood Lane London W12 0BZ UK
| |
Collapse
|
5
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter*. Angew Chem Int Ed Engl 2021; 60:12066-12073. [PMID: 33666324 PMCID: PMC8251797 DOI: 10.1002/anie.202101870] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/12/2022]
Abstract
We report the characterization of rotaxanes based on a carbazole-benzophenone thermally activated delayed fluorescence luminophore. We find that the mechanical bond leads to an improvement in key photophysical properties of the emitter, notably an increase in photoluminescence quantum yield and a decrease in the energy difference between singlet and triplet states, as well as fine tuning of the emission wavelength, a feat that is difficult to achieve when using covalently bound substituents. Computational simulations, supported by X-ray crystallography, suggest that this tuning of properties occurs due to weak interactions between the axle and the macrocycle that are enforced by the mechanical bond. This work highlights the benefits of using the mechanical bond to refine existing luminophores, providing a new avenue for emitter optimization that can ultimately increase the performance of these molecules.
Collapse
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Materials Research CentreIndian Institute of ScienceBangalore560012India
| | - Federica Rizzi
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Wenbo Li
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Michael A. Jinks
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Abhishek Kumar Gupta
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ifor D. W. Samuel
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
6
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Materials Research Centre Indian Institute of Science Bangalore 560012 India
| | - Federica Rizzi
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Wenbo Li
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Michael A. Jinks
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Stephen M. Goldup
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Eli Zysman‐Colman
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
7
|
Kench T, Summers PA, Kuimova MK, Lewis JEM, Vilar R. Rotaxanes as Cages to Control DNA Binding, Cytotoxicity, and Cellular Uptake of a Small Molecule*. Angew Chem Int Ed Engl 2021; 60:10928-10934. [PMID: 33577711 DOI: 10.1002/anie.202100151] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/08/2021] [Indexed: 11/08/2022]
Abstract
The efficacy of many drugs can be limited by undesirable properties, such as poor aqueous solubility, low bioavailability, and "off-target" interactions. To combat this, various drug carriers have been investigated to enhance the pharmacological profile of therapeutic agents. In this work, we demonstrate the use of mechanical protection to "cage" a DNA-targeting metallodrug within a photodegradable rotaxane. More specifically, we report the synthesis of rotaxanes incorporating as a stoppering unit a known G-quadruplex DNA binder, namely a PtII -salphen complex. This compound cannot interact with DNA when it is part of the mechanically interlocked assembly. The second rotaxane stopper can be cleaved by either light or an esterase, releasing the PtII -salphen complex. This system shows enhanced cell permeability and limited cytotoxicity within osteosarcoma cells compared to the free drug. Light activation leads to a dramatic increase in cytotoxicity, arising from the translocation of PtII -salphen to the nucleus and its binding to DNA.
Collapse
Affiliation(s)
- Timothy Kench
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Peter A Summers
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - James E M Lewis
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, UK
| |
Collapse
|
8
|
Kench T, Summers PA, Kuimova MK, Lewis JEM, Vilar R. Rotaxanes as Cages to Control DNA Binding, Cytotoxicity, and Cellular Uptake of a Small Molecule**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Timothy Kench
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Peter A. Summers
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Marina K. Kuimova
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - James E. M. Lewis
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Ramon Vilar
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| |
Collapse
|
9
|
Gawel P, Woltering SL, Xiong Y, Christensen KE, Anderson HL. Masked Alkyne Equivalents for the Synthesis of Mechanically Interlocked Polyynes*. Angew Chem Int Ed Engl 2021; 60:5941-5947. [PMID: 33253464 DOI: 10.1002/anie.202013623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 11/12/2022]
Abstract
Polyyne polyrotaxanes, encapsulated cyclocarbon catenanes and other fascinating mechanically interlocked carbon-rich architectures should become accessible if masked alkyne equivalents (MAEs) can be developed that are large enough to prevent unthreading of a macrocycle, and that can be cleanly unmasked under mild conditions. Herein, we report the synthesis of a new bulky MAE based on t-butylbicyclo[4.3.1]decatriene. This MAE was used to synthesize a polyyne [2]rotaxane and a masked-polyyne [3]rotaxane by Cadiot-Chodkiewicz coupling. Glaser cyclo-oligomerization of the [2]rotaxane gave masked cyclocarbon catenanes. The unmasking behavior of the catenanes and rotaxanes was tested by photolysis at a range of UV wavelengths. Photochemical unmasking did not proceed cleanly enough to prepare extended encapsulated polyyne polyrotaxanes. We highlight the scope and challenges involved with this approach to interlocked carbon-rich architectures.
Collapse
Affiliation(s)
- Przemyslaw Gawel
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK.,Current address: Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka, 44/52, Warsaw, Poland
| | - Steffen L Woltering
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Yaoyao Xiong
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Kirsten E Christensen
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Harry L Anderson
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| |
Collapse
|
10
|
Gawel P, Woltering SL, Xiong Y, Christensen KE, Anderson HL. Masked Alkyne Equivalents for the Synthesis of Mechanically Interlocked Polyynes**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Przemyslaw Gawel
- Department of Chemistry Oxford University Chemistry Research Laboratory Oxford OX1 3TA UK
- Current address: Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 Warsaw Poland
| | - Steffen L. Woltering
- Department of Chemistry Oxford University Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Yaoyao Xiong
- Department of Chemistry Oxford University Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Kirsten E. Christensen
- Department of Chemistry Oxford University Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Harry L. Anderson
- Department of Chemistry Oxford University Chemistry Research Laboratory Oxford OX1 3TA UK
| |
Collapse
|
11
|
Taghavi Shahraki B, Maghsoudi S, Fatahi Y, Rabiee N, Bahadorikhalili S, Dinarvand R, Bagherzadeh M, Verpoort F. The flowering of Mechanically Interlocked Molecules: Novel approaches to the synthesis of rotaxanes and catenanes. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Alcântara AFP, Fontana LA, Almeida MP, Rigolin VH, Ribeiro MA, Barros WP, Megiatto JD. Control over the Redox Cooperative Mechanism of Radical Carbene Transfer Reactions for the Efficient Active‐Metal‐Template Synthesis of [2]Rotaxanes. Chemistry 2020; 26:7808-7822. [DOI: 10.1002/chem.201905602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Arthur F. P. Alcântara
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
- Instituto Federal do Sertão Pernambucano Estrada do Tamboril 56200-000 Ouricuri Brazil
| | - Liniquer A. Fontana
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marlon P. Almeida
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Vitor H. Rigolin
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marcos A. Ribeiro
- Departamento de QuímicaUniversidade Federal do Espírito Santo Av. Fernando Ferrari, 514 29075-910 Vitória Brazil
| | - Wdeson P. Barros
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Jackson D. Megiatto
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| |
Collapse
|
13
|
Van Raden JM, White BM, Zakharov LN, Jasti R. Nanohoop Rotaxanes from Active Metal Template Syntheses and Their Potential in Sensing Applications. Angew Chem Int Ed Engl 2019; 58:7341-7345. [DOI: 10.1002/anie.201901984] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Jeff M. Van Raden
- Department of Chemistry & Biochemistry and Material Science InstituteUniversity of Oregon Eugene OR 97403 USA
| | - Brittany M. White
- Department of Chemistry & Biochemistry and Material Science InstituteUniversity of Oregon Eugene OR 97403 USA
| | - Lev N. Zakharov
- Department of Chemistry & Biochemistry and Material Science InstituteUniversity of Oregon Eugene OR 97403 USA
| | - Ramesh Jasti
- Department of Chemistry & Biochemistry and Material Science InstituteUniversity of Oregon Eugene OR 97403 USA
| |
Collapse
|
14
|
Van Raden JM, White BM, Zakharov LN, Jasti R. Nanohoop Rotaxanes from Active Metal Template Syntheses and Their Potential in Sensing Applications. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jeff M. Van Raden
- Department of Chemistry & Biochemistry and Material Science InstituteUniversity of Oregon Eugene OR 97403 USA
| | - Brittany M. White
- Department of Chemistry & Biochemistry and Material Science InstituteUniversity of Oregon Eugene OR 97403 USA
| | - Lev N. Zakharov
- Department of Chemistry & Biochemistry and Material Science InstituteUniversity of Oregon Eugene OR 97403 USA
| | - Ramesh Jasti
- Department of Chemistry & Biochemistry and Material Science InstituteUniversity of Oregon Eugene OR 97403 USA
| |
Collapse
|
15
|
Modicom F, Jamieson EMG, Rochette E, Goldup SM. Chemical Consequences of the Mechanical Bond: A Tandem Active Template-Rearrangement Reaction. Angew Chem Int Ed Engl 2019; 58:3875-3879. [PMID: 30600892 PMCID: PMC6589916 DOI: 10.1002/anie.201813950] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 01/07/2023]
Abstract
We report the unexpected discovery of a tandem active template CuAAC-rearrangement process, in which N2 is extruded on the way to the 1,2,3-triazole product to give instead acrylamide rotaxanes. Mechanistic investigations suggest this process is dictated by the mechanical bond, which stabilizes the CuI -triazolide intermediate of the CuAAC reaction and diverts it down the rearrangement pathway; when no mechanical bond is formed, the CuAAC product is isolated.
Collapse
Affiliation(s)
- Florian Modicom
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | | | - Elise Rochette
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | | |
Collapse
|
16
|
Modicom F, Jamieson EMG, Rochette E, Goldup SM. Chemical Consequences of the Mechanical Bond: A Tandem Active Template‐Rearrangement Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Florian Modicom
- ChemistryUniversity of Southampton, Highfield Southampton SO17 1BJ UK
| | | | - Elise Rochette
- ChemistryUniversity of Southampton, Highfield Southampton SO17 1BJ UK
| | - Stephen M. Goldup
- ChemistryUniversity of Southampton, Highfield Southampton SO17 1BJ UK
| |
Collapse
|
17
|
Jinks MA, de Juan A, Denis M, Fletcher CJ, Galli M, Jamieson EMG, Modicom F, Zhang Z, Goldup SM. Stereoselective Synthesis of Mechanically Planar Chiral Rotaxanes. Angew Chem Int Ed Engl 2018; 57:14806-14810. [PMID: 30253008 PMCID: PMC6220991 DOI: 10.1002/anie.201808990] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Indexed: 01/14/2023]
Abstract
Chiral interlocked molecules in which the mechanical bond provides the sole stereogenic unit are typically produced with no control over the mechanical stereochemistry. Here we report a stereoselective approach to mechanically planar chiral rotaxanes in up to 98:2 d.r. using a readily available α-amino acid-derived azide. Symmetrization of the covalent stereocenter yields a rotaxane in which the mechanical bond provides the only stereogenic element.
Collapse
Affiliation(s)
- Michael A. Jinks
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | - Alberto de Juan
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | - Mathieu Denis
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | | | - Marzia Galli
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | | | - Florian Modicom
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | - Zhihui Zhang
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | | |
Collapse
|
18
|
Jinks MA, de Juan A, Denis M, Fletcher CJ, Galli M, Jamieson EMG, Modicom F, Zhang Z, Goldup SM. Stereoselective Synthesis of Mechanically Planar Chiral Rotaxanes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Michael A. Jinks
- Chemistry; University of Southampton, Highfield; Southampton SO17 1BJ UK
| | - Alberto de Juan
- Chemistry; University of Southampton, Highfield; Southampton SO17 1BJ UK
| | - Mathieu Denis
- Chemistry; University of Southampton, Highfield; Southampton SO17 1BJ UK
| | | | - Marzia Galli
- Chemistry; University of Southampton, Highfield; Southampton SO17 1BJ UK
| | | | - Florian Modicom
- Chemistry; University of Southampton, Highfield; Southampton SO17 1BJ UK
| | - Zhihui Zhang
- Chemistry; University of Southampton, Highfield; Southampton SO17 1BJ UK
| | - Stephen M. Goldup
- Chemistry; University of Southampton, Highfield; Southampton SO17 1BJ UK
| |
Collapse
|
19
|
Denis M, Qin L, Turner P, Jolliffe KA, Goldup SM. A Fluorescent Ditopic Rotaxane Ion-Pair Host. Angew Chem Int Ed Engl 2018; 57:5315-5319. [PMID: 29393993 PMCID: PMC5947583 DOI: 10.1002/anie.201713105] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 12/21/2022]
Abstract
We report a rotaxane based on a simple urea motif that binds Cl- selectively as a separated ion pair with H+ and reports the anion binding event through a fluorescence switch-on response. The host selectively binds Cl- over more basic anions, which deprotonate the framework, and less basic anions, which bind more weakly. The mechanical bond also imparts size selectivity to the ditopic host.
Collapse
Affiliation(s)
- Mathieu Denis
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Lei Qin
- School of ChemistryThe University of SydneySydneyNSW2006Australia
| | - Peter Turner
- School of ChemistryThe University of SydneySydneyNSW2006Australia
| | | | | |
Collapse
|
20
|
Denis M, Pancholi J, Jobe K, Watkinson M, Goldup SM. Chelating Rotaxane Ligands as Fluorescent Sensors for Metal Ions. Angew Chem Int Ed Engl 2018; 57:5310-5314. [PMID: 29537728 PMCID: PMC5947674 DOI: 10.1002/anie.201712931] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 01/08/2023]
Abstract
Although metal-ion-binding interlocked molecules have been under intense investigation for over three decades, their application as scaffolds for the development of sensors for metal ions remains underexplored. In this work, we demonstrate the potential of simple rotaxanes as metal-ion-responsive ligand scaffolds through the development of a proof-of-concept selective sensor for Zn2+ .
Collapse
Affiliation(s)
- Mathieu Denis
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Jessica Pancholi
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Kajally Jobe
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Michael Watkinson
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | | |
Collapse
|
21
|
Denis M, Pancholi J, Jobe K, Watkinson M, Goldup SM. Chelating Rotaxane Ligands as Fluorescent Sensors for Metal Ions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mathieu Denis
- Chemistry; University of Southampton; Highfield Southampton SO17 1BJ UK
| | - Jessica Pancholi
- School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Kajally Jobe
- School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Michael Watkinson
- School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Stephen M. Goldup
- Chemistry; University of Southampton; Highfield Southampton SO17 1BJ UK
| |
Collapse
|
22
|
Denis M, Qin L, Turner P, Jolliffe KA, Goldup SM. A Fluorescent Ditopic Rotaxane Ion-Pair Host. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mathieu Denis
- Chemistry; University of Southampton; Highfield Southampton SO17 1BJ UK
| | - Lei Qin
- School of Chemistry; The University of Sydney; Sydney NSW 2006 Australia
| | - Peter Turner
- School of Chemistry; The University of Sydney; Sydney NSW 2006 Australia
| | | | - Stephen M. Goldup
- Chemistry; University of Southampton; Highfield Southampton SO17 1BJ UK
| |
Collapse
|
23
|
Miyazaki Y, Kahlfuss C, Ogawa A, Matsumoto T, Wytko JA, Oohora K, Hayashi T, Weiss J. CuAAC in a Distal Pocket: Metal Active-Template Synthesis of Strapped-Porphyrin [2]Rotaxanes. Chemistry 2017; 23:13579-13582. [DOI: 10.1002/chem.201702553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Yuta Miyazaki
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Christophe Kahlfuss
- Institut de Chimie; UMR 7177 CNRS-Université de Strasbourg; 4 rue Blaise Pascal 67000 Strasbourg France
| | - Ayumu Ogawa
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Takashi Matsumoto
- Application Laboratories; Rigaku Corporation; 3-9-12, Matsubara-cho, Akishima Tokyo 196-8666 Japan
| | - Jennifer A. Wytko
- Institut de Chimie; UMR 7177 CNRS-Université de Strasbourg; 4 rue Blaise Pascal 67000 Strasbourg France
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Jean Weiss
- Institut de Chimie; UMR 7177 CNRS-Université de Strasbourg; 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
24
|
Santra S, Ghosh P. Rotamer-Induced Dynamic Nature of a [2]Rotaxane and Control of the Dynamics by External Stimuli. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Saikat Santra
- Department of Inorganic Chemistry; Indian Association for the Cultivation of Science; 2A and 2B Raja S.C. Mullick Road Kolkata India
| | - Pradyut Ghosh
- Department of Inorganic Chemistry; Indian Association for the Cultivation of Science; 2A and 2B Raja S.C. Mullick Road Kolkata India
| |
Collapse
|
25
|
Neal EA, Goldup SM. A Kinetic Self-Sorting Approach to Heterocircuit [3]Rotaxanes. Angew Chem Int Ed Engl 2016; 55:12488-93. [PMID: 27600208 PMCID: PMC5113769 DOI: 10.1002/anie.201606640] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/24/2022]
Abstract
In this proof-of-concept study, an active-template coupling is used to demonstrate a novel kinetic self-sorting process. This process iteratively increases the yield of the target heterocircuit [3]rotaxane product at the expense of other threaded species.
Collapse
Affiliation(s)
- Edward A Neal
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Stephen M Goldup
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| |
Collapse
|
26
|
Neal EA, Goldup SM. A Kinetic Self-Sorting Approach to Heterocircuit [3]Rotaxanes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Edward A. Neal
- School of Biological and Chemical Sciences; Queen Mary University of London; UK
| | - Stephen M. Goldup
- School of Chemistry; University of Southampton; Highfield Southampton SO17 1BJ UK
| |
Collapse
|
27
|
Byrne JP, Blasco S, Aletti AB, Hessman G, Gunnlaugsson T. Formation of Self-Templated 2,6-Bis(1,2,3-triazol-4-yl)pyridine [2]Catenanes by Triazolyl Hydrogen Bonding: Selective Anion Hosts for Phosphate. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joseph P. Byrne
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
- Departement für Chemie und Biochemie; Universität Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Salvador Blasco
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Anna B. Aletti
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Gary Hessman
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| |
Collapse
|
28
|
Byrne JP, Blasco S, Aletti AB, Hessman G, Gunnlaugsson T. Formation of Self-Templated 2,6-Bis(1,2,3-triazol-4-yl)pyridine [2]Catenanes by Triazolyl Hydrogen Bonding: Selective Anion Hosts for Phosphate. Angew Chem Int Ed Engl 2016; 55:8938-43. [DOI: 10.1002/anie.201603213] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Joseph P. Byrne
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
- Departement für Chemie und Biochemie; Universität Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Salvador Blasco
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Anna B. Aletti
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Gary Hessman
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| |
Collapse
|
29
|
Galli M, Lewis JEM, Goldup SM. A Stimuli-Responsive Rotaxane-Gold Catalyst: Regulation of Activity and Diastereoselectivity. Angew Chem Int Ed Engl 2015; 54:13545-9. [PMID: 26387887 PMCID: PMC4678423 DOI: 10.1002/anie.201505464] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/06/2015] [Indexed: 12/20/2022]
Abstract
A rotaxane-based Au catalyst was developed and the effect of the mechanical bond on its behavior was studied. Unlike the non-interlocked thread, the rotaxane requires a catalytically innocent cofactor, the identity of which significantly influences both the yield and diastereoselectivity of the reaction. Under optimized conditions, Au(I) (the catalyst), Ag(I) (to abstract the Cl(-) ligand), and Cu(I) (the cofactor) combine to produce a catalyst with excellent activity and selectivity.
Collapse
Affiliation(s)
- Marzia Galli
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ (UK)
| | - James E M Lewis
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ (UK)
| | - Stephen M Goldup
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ (UK).
| |
Collapse
|
30
|
Galli M, Lewis JEM, Goldup SM. A Stimuli-Responsive Rotaxane-Gold Catalyst: Regulation of Activity and Diastereoselectivity. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505464] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Wang D, Etienne L, Echeverria M, Moya S, Astruc D. A Highly Active and Magnetically Recoverable Tris(triazolyl)-CuICatalyst for Alkyne-Azide Cycloaddition Reactions. Chemistry 2014; 20:4047-54. [DOI: 10.1002/chem.201304536] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 01/30/2023]
|
32
|
Xu L, Li Y, Li Y. Application of “Click” Chemistry to the Construction of Supramolecular Functional Systems. ASIAN J ORG CHEM 2014. [DOI: 10.1002/ajoc.201300245] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Joosten A, Trolez Y, Heitz V, Sauvage JP. Use of cleavable coordinating rings as protective groups in the synthesis of a rotaxane with an axis that incorporates more chelating groups than threaded macrocycles. Chemistry 2013; 19:12815-23. [PMID: 23934923 DOI: 10.1002/chem.201301717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Indexed: 02/04/2023]
Abstract
A new methodology allowing preparation of a linear "unsaturated" [3]rotaxane consisting of an axis incorporating more coordination sites than threaded rings was developed. It was based on the preliminary synthesis of a "saturated" [5]rotaxane consisting of a four-chelating site axis threaded through four macrocyclic components, two of them being cleavable rings incorporating a lactone function and the two others being "secure" non-cleavable rings. The stoppering reaction was based on click chemistry. Subsequently, cleavage and removal of the two lactone-containing macrocycles from the [5]rotaxane in basic medium afforded the desired "unsaturated" [3]rotaxane in quantitative yield.
Collapse
Affiliation(s)
- Antoine Joosten
- Laboratoire de Chimie Organo-Minérale, Institut de Chimie, Université de Strasbourg-CNRS/UMR7177, 4 rue Blaise Pascal 67070 Strasbourg-Cedex (France)
| | | | | | | |
Collapse
|
34
|
Ayme JF, Lux J, Sauvage JP, Sour A. [2]Catenanes built around octahedral transition-metal complexes that contain two intertwined endocyclic but non-sterically hindering tridentate ligands. Chemistry 2012; 18:5565-73. [PMID: 22431359 DOI: 10.1002/chem.201104061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Indexed: 11/07/2022]
Abstract
Sterically hindering bidentate chelates, such as 2,9-diphenyl-1,10-phenanthroline, form entwined complexes with copper(I) and other tetrahedrally coordinated transition-metal centres. To prepare octahedral complexes containing two entwined tridentate ligands and thus apply a strategy similar to that used for making catenanes with tetrahedral metal centres, the use of the classical terpy ligand (terpy=2,2':6',2''-terpyridine) appears to be attractive. In fact, 6,6''-diphenyl-2,2':6',2''-terpyridine (dp-terpy) is not appropriate due to strong "pinching" of the organic backbone by coordination to the metal and thus stable entwined complexes with this ligand cannot be obtained. Herein, we report the synthesis and coordination properties of a new family of tridentate ligands, the main features of which are their endocyclic nature and non-sterically hindering character. The coordinating fragment consists of two 8'-phenylisoquinolin-3'-yl groups attached at the 2 and 6 positions of a pyridine nucleus. Octahedral complexes containing two such entangled ligands around an octahedral metal centre, such as Fe(II) , Ru(II) or Co(III) , are highly stable, with no steric congestion around the metal. By using functionalised ligands bearing terminal olefins, double ring-closing metathesis leads to [2]catenanes in good yield with Fe(II) or Co(III) as the templating metal centre. The X-ray crystallography structures of the Fe(II) precursor and the Fe(II) catenane are also reported. These show that although significant pinching of the ligand is observed in both Fe(II) complexes, the system is very open and no steric constraints can be detected.
Collapse
Affiliation(s)
- Jean-François Ayme
- Laboratoire de Chimie Organo-Minérale, Institut de Chimie, University de Strasbourg-CNRS/UMR, France
| | | | | | | |
Collapse
|
35
|
Beves JE, Blight BA, Campbell CJ, Leigh DA, McBurney RT. Strategien und Taktiken für die metallgesteuerte Synthese von Rotaxanen, Knoten, Catenanen und Verschlingungen höherer Ordnung. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007963] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Beves JE, Blight BA, Campbell CJ, Leigh DA, McBurney RT. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew Chem Int Ed Engl 2011; 50:9260-327. [PMID: 21928462 DOI: 10.1002/anie.201007963] [Citation(s) in RCA: 577] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Indexed: 11/06/2022]
Abstract
More than a quarter of a century after the first metal template synthesis of a [2]catenane in Strasbourg, there now exists a plethora of strategies available for the construction of mechanically bonded and entwined molecular level structures. Catenanes, rotaxanes, knots and Borromean rings have all been successfully accessed by methods in which metal ions play a pivotal role. Originally metal ions were used solely for their coordination chemistry; acting either to gather and position the building blocks such that subsequent reactions generated the interlocked products or by being an integral part of the rings or "stoppers" of the interlocked assembly. Recently the role of the metal has evolved to encompass catalysis: the metal ions not only organize the building blocks in an entwined or threaded arrangement but also actively promote the reaction that covalently captures the interlocked structure. This Review outlines the diverse strategies that currently exist for forming mechanically bonded molecular structures with metal ions and details the tactics that the chemist can utilize for creating cross-over points, maximizing the yield of interlocked over non-interlocked products, and the reactions-of-choice for the covalent capture of threaded and entwined intermediates.
Collapse
Affiliation(s)
- Jonathon E Beves
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Barran PE, Cole HL, Goldup SM, Leigh DA, McGonigal PR, Symes MD, Wu J, Zengerle M. Active-Metal Template Synthesis of a Molecular Trefoil Knot. Angew Chem Int Ed Engl 2011; 50:12280-4. [DOI: 10.1002/anie.201105012] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Indexed: 11/06/2022]
|