1
|
Gabius H, Cudic M, Diercks T, Kaltner H, Kopitz J, Mayo KH, Murphy PV, Oscarson S, Roy R, Schedlbauer A, Toegel S, Romero A. What is the Sugar Code? Chembiochem 2022; 23:e202100327. [PMID: 34496130 PMCID: PMC8901795 DOI: 10.1002/cbic.202100327] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Indexed: 12/18/2022]
Abstract
A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.
Collapse
Affiliation(s)
- Hans‐Joachim Gabius
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Maré Cudic
- Department of Chemistry and BiochemistryCharles E. Schmidt College of ScienceFlorida Atlantic University777 Glades RoadBoca RatonFlorida33431USA
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Herbert Kaltner
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Jürgen Kopitz
- Institute of PathologyDepartment of Applied Tumor BiologyFaculty of MedicineRuprecht-Karls-University HeidelbergIm Neuenheimer Feld 22469120HeidelbergGermany
| | - Kevin H. Mayo
- Department of BiochemistryMolecular Biology & BiophysicsUniversity of MinnesotaMinneapolisMN 55455USA
| | - Paul V. Murphy
- CÚRAM – SFI Research Centre for Medical Devices and theSchool of ChemistryNational University of Ireland GalwayUniversity RoadGalwayH91 TK33Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical BiologyUniversity College DublinBelfieldDublin 4Ireland
| | - René Roy
- Département de Chimie et BiochimieUniversité du Québec à MontréalCase Postale 888Succ. Centre-Ville MontréalQuébecH3C 3P8Canada
| | - Andreas Schedlbauer
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Antonio Romero
- Department of Structural and Chemical BiologyCIB Margarita Salas, CSICRamiro de Maeztu 928040MadridSpain
| |
Collapse
|
2
|
Sinha SK, Roy TK, Modak A, Maiti D. Enabling the Facile Synthesis of Arenes by Transition Metal Catalyzed Decarbonylation Methodology. CHEM REC 2021; 21:3990-3999. [PMID: 34713555 DOI: 10.1002/tcr.202100244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/11/2022]
Abstract
Transition metal-catalyzed decarbonylation is an essential paradigm of synthetic organic chemistry. Decarbonylation offers a unique pathway to decoding the skeletal structure of arenes and enabling easy synthesis of structurally complicated molecules. Due to the omnipresence of carbonyl groups in a wide array of synthetically important complex molecules, the variety and scope of these transformations are enormous. As a result, the development of transition metal catalysts in such a simple decarbonylation reaction ranks among one of the most important topics in synthetic organic chemistry. Transition metals that have been employed range from 3d metals like V to second-row transition metals like Pd. The growing potential of this methodology has driven the pioneers of synthetic organic chemistry into delving into the details of this transition metal-catalyzed decarbonylation pathways. This review aims to take the readers through the employment of transition metals in various decarbonylation processes developed by our group, sticking not only to the scope and diversification of synthetically complex molecules, but also enabling the readers to understand the mechanistic insights, through computational and kinetic studies put forward in such reaction protocol, hoping to pave the way for future organic chemists to delve and hopefully solve the unique problems associated with this protocol.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Triptesh Kumar Roy
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Atanu Modak
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
3
|
Korytiaková E, Kamińska E, Müller M, Carell T. Deformylation of 5-Formylcytidine in Different Cell Types. Angew Chem Int Ed Engl 2021; 60:16869-16873. [PMID: 34110681 PMCID: PMC8362038 DOI: 10.1002/anie.202107089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 12/19/2022]
Abstract
Epigenetic programming of cells requires methylation of deoxycytidines (dC) to 5-methyl-dC (mdC) followed by oxidation to 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC), and 5-carboxy-dC (cadC). Subsequent transformation of fdC and cadC back to dC by various pathways establishes a chemical intra-genetic control circle. One of the discussed pathways involves the Tdg-independent deformylation of fdC directly to dC. Here we report the synthesis of a fluorinated fdC feeding probe (F-fdC) to study direct deformylation to F-dC. The synthesis was performed along a novel pathway that circumvents any F-dC as a reaction intermediate to avoid contamination interference. Feeding of F-fdC and observation of F-dC formation in vivo allowed us to gain insights into the Tdg-independent removal process. While deformylation was shown to occur in stem cells, we here provide data that prove deformylation also in different somatic cell types. We also investigated active demethylation in a non-dividing neurogenin-inducible system of iPS cells that differentiate into bipolar neurons.
Collapse
Affiliation(s)
- Eva Korytiaková
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Ewelina Kamińska
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Markus Müller
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Thomas Carell
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| |
Collapse
|
4
|
Korytiaková E, Kamińska E, Müller M, Carell T. Deformylierung von 5‐Formylcytidin in unterschiedlichen Zelltypen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eva Korytiaková
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Ewelina Kamińska
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Markus Müller
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Thomas Carell
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| |
Collapse
|
5
|
Schelter F, Kirchner A, Traube FR, Müller M, Steglich W, Carell T. 5-Hydroxymethyl-, 5-Formyl- and 5-Carboxydeoxycytidines as Oxidative Lesions and Epigenetic Marks. Chemistry 2021; 27:8100-8104. [PMID: 33769637 PMCID: PMC8252671 DOI: 10.1002/chem.202100551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 01/20/2023]
Abstract
The four non-canonical nucleotides in the human genome 5-methyl-, 5-hydroxymethyl-, 5-formyl- and 5-carboxydeoxycytidine (mdC, hmdC, fdC and cadC) form a second layer of epigenetic information that contributes to the regulation of gene expression. Formation of the oxidized nucleotides hmdC, fdC and cadC requires oxidation of mdC by ten-eleven translocation (Tet) enzymes that require oxygen, Fe(II) and α-ketoglutarate as cosubstrates. Although these oxidized forms of mdC are widespread in mammalian genomes, experimental evidence for their presence in fungi and plants is ambiguous. This vagueness is caused by the fact that these oxidized mdC derivatives are also formed as oxidative lesions, resulting in unclear basal levels that are likely to have no epigenetic function. Here, we report the xdC levels in the fungus Amanita muscaria in comparison to murine embryonic stem cells (mESCs), HEK cells and induced pluripotent stem cells (iPSCs), to obtain information about the basal levels of hmdC, fdC and cadC as DNA lesions in the genome.
Collapse
Affiliation(s)
- Florian Schelter
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Angie Kirchner
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeCB2 0REUK
| | | | - Markus Müller
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Wolfgang Steglich
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Thomas Carell
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|
6
|
Schön A, Kaminska E, Schelter F, Ponkkonen E, Korytiaková E, Schiffers S, Carell T. Analyse des aktiven Deformylierungsmechanismus von 5‐Formyl‐2′‐Desoxycytidin in Stammzellen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alexander Schön
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Ewelina Kaminska
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Florian Schelter
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Eveliina Ponkkonen
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Eva Korytiaková
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Sarah Schiffers
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Thomas Carell
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| |
Collapse
|
7
|
Schön A, Kaminska E, Schelter F, Ponkkonen E, Korytiaková E, Schiffers S, Carell T. Analysis of an Active Deformylation Mechanism of 5-Formyl-deoxycytidine (fdC) in Stem Cells. Angew Chem Int Ed Engl 2020; 59:5591-5594. [PMID: 31999041 PMCID: PMC7155088 DOI: 10.1002/anie.202000414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 11/30/2022]
Abstract
The removal of 5‐methyl‐deoxycytidine (mdC) from promoter elements is associated with reactivation of the silenced corresponding genes. It takes place through an active demethylation process involving the oxidation of mdC to 5‐hydroxymethyl‐deoxycytidine (hmdC) and further on to 5‐formyl‐deoxycytidine (fdC) and 5‐carboxy‐deoxycytidine (cadC) with the help of α‐ketoglutarate‐dependent Tet oxygenases. The next step can occur through the action of a glycosylase (TDG), which cleaves fdC out of the genome for replacement by dC. A second pathway is proposed to involve C−C bond cleavage that converts fdC directly into dC. A 6‐aza‐5‐formyl‐deoxycytidine (a‐fdC) probe molecule was synthesized and fed to various somatic cell lines and induced mouse embryonic stem cells, together with a 2′‐fluorinated fdC analogue (F‐fdC). While deformylation of F‐fdC was clearly observed in vivo, it did not occur with a‐fdC, thus suggesting that the C−C bond‐cleaving deformylation is initiated by nucleophilic activation.
Collapse
Affiliation(s)
- Alexander Schön
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Ewelina Kaminska
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Florian Schelter
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Eveliina Ponkkonen
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Eva Korytiaková
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Sarah Schiffers
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
8
|
Wildenhof TM, Schiffers S, Traube FR, Mayer P, Carell T. Influencing Epigenetic Information with a Hydrolytically Stable Carbocyclic 5‐Aza‐2′‐deoxycytidine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas M. Wildenhof
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Sarah Schiffers
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Franziska R. Traube
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Peter Mayer
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Thomas Carell
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| |
Collapse
|
9
|
Wildenhof TM, Schiffers S, Traube FR, Mayer P, Carell T. Influencing Epigenetic Information with a Hydrolytically Stable Carbocyclic 5‐Aza‐2′‐deoxycytidine. Angew Chem Int Ed Engl 2019; 58:12984-12987. [DOI: 10.1002/anie.201904794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/31/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas M. Wildenhof
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Sarah Schiffers
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Franziska R. Traube
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Peter Mayer
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Thomas Carell
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| |
Collapse
|
10
|
|
11
|
Carell T, Kurz MQ, Müller M, Rossa M, Spada F. Non-canonical Bases in the Genome: The Regulatory Information Layer in DNA. Angew Chem Int Ed Engl 2018; 57:4296-4312. [DOI: 10.1002/anie.201708228] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Carell
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Matthias Q. Kurz
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Markus Müller
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Martin Rossa
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Fabio Spada
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| |
Collapse
|
12
|
Kizaki S, Chandran A, Sugiyama H. Identification of Sequence Specificity of 5-Methylcytosine Oxidation by Tet1 Protein with High-Throughput Sequencing. Chembiochem 2016; 17:403-6. [PMID: 26715454 DOI: 10.1002/cbic.201500646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 12/23/2022]
Abstract
Tet (ten-eleven translocation) family proteins have the ability to oxidize 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC). However, the oxidation reaction of Tet is not understood completely. Evaluation of genomic-level epigenetic changes by Tet protein requires unbiased identification of the highly selective oxidation sites. In this study, we used high-throughput sequencing to investigate the sequence specificity of mC oxidation by Tet1. A 6.6×10(4) -member mC-containing random DNA-sequence library was constructed. The library was subjected to Tet-reactive pulldown followed by high-throughput sequencing. Analysis of the obtained sequence data identified the Tet1-reactive sequences. We identified mCpG as a highly reactive sequence of Tet1 protein.
Collapse
Affiliation(s)
- Seiichiro Kizaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan
| | - Anandhakumar Chandran
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan. .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8501, Japan.
| |
Collapse
|
13
|
Persch E, Dumele O, Diederich F. Molekulare Erkennung in chemischen und biologischen Systemen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408487] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Persch E, Dumele O, Diederich F. Molecular recognition in chemical and biological systems. Angew Chem Int Ed Engl 2015; 54:3290-327. [PMID: 25630692 DOI: 10.1002/anie.201408487] [Citation(s) in RCA: 424] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 12/13/2022]
Abstract
Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water.
Collapse
Affiliation(s)
- Elke Persch
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
| | | | | |
Collapse
|
15
|
Vaníková Z, Hocek M. Polymerase Synthesis of Photocaged DNA Resistant against Cleavage by Restriction Endonucleases. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Vaníková Z, Hocek M. Polymerase synthesis of photocaged DNA resistant against cleavage by restriction endonucleases. Angew Chem Int Ed Engl 2014; 53:6734-7. [PMID: 24850380 DOI: 10.1002/anie.201402370] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/23/2014] [Indexed: 12/12/2022]
Abstract
5-[(2-Nitrobenzyl)oxymethyl]-2'-deoxyuridine 5'-O-triphosphate was used for polymerase (primer extension or PCR) synthesis of photocaged DNA that is resistant to the cleavage by restriction endonucleases. Photodeprotection of the caged DNA released 5-hydroxymethyluracil-modified nucleic acids, which were fully recognized and cleaved by restriction enzymes.
Collapse
Affiliation(s)
- Zuzana Vaníková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup
| | | |
Collapse
|
17
|
Synthesis of Bis(heteroaryl) Ketones by Removal of Benzylic CHR and CO Groups. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Maji A, Rana S, Akanksha, Maiti D. Synthesis of bis(heteroaryl) ketones by removal of benzylic CHR and CO groups. Angew Chem Int Ed Engl 2014; 53:2428-32. [PMID: 24481978 DOI: 10.1002/anie.201308785] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/10/2013] [Indexed: 12/20/2022]
Abstract
A copper-catalyzed method for synthesis of diaryl ketones (Ar-CO-Ar') through removal of benzylic -CH2-, -CO-, and -CHR- groups from Ar-CO-CXR-Ar' has been discovered. A number of symmetrical and unsymmetrical heterocyclic ketones, which are usually difficult to synthesize, can be prepared in good to excellent yields. This method was applied to the synthesis of the nonsteroidal anti-inflammatory drug suprofen (47% yield over three steps). Based on preliminary mechanistic and kinetic studies, an active Cu/O2 species is proposed to mediate the rearrangement reaction.
Collapse
Affiliation(s)
- Arun Maji
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076 (India)
| | | | | | | |
Collapse
|
19
|
Li WW, Gong L, Bayley H. Single-Molecule Detection of 5-Hydroxymethylcytosine in DNA through Chemical Modification and Nanopore Analysis. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Li WW, Gong L, Bayley H. Single-Molecule Detection of 5-Hydroxymethylcytosine in DNA through Chemical Modification and Nanopore Analysis. Angew Chem Int Ed Engl 2013; 52:4350-5. [DOI: 10.1002/anie.201300413] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Indexed: 12/16/2022]
|
21
|
Schütz AP, Osawa S, Mathis J, Hirsch AKH, Bernet B, Illarionov B, Fischer M, Bacher A, Diederich F. Exploring the Ribose Sub-Pocket of the Substrate-Binding Site in Escherichia coli IspE: Structure-Based Design, Synthesis, and Biological Evaluation of Cytosines and Cytosine Analogues. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Ladwein KI, Jung M. Oxidized Cytosine Metabolites Offer a Fresh Perspective for Active DNA Demethylation. Angew Chem Int Ed Engl 2011; 50:12143-5. [DOI: 10.1002/anie.201106690] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Indexed: 01/13/2023]
|
23
|
Ladwein KI, Jung M. Oxidierte Cytosin-Derivate - der Schlüssel zur aktiven DNA-Demethylierung? Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Münzel M, Lischke U, Stathis D, Pfaffeneder T, Gnerlich FA, Deiml CA, Koch SC, Karaghiosoff K, Carell T. Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. Chemistry 2011; 17:13782-8. [PMID: 22069110 DOI: 10.1002/chem.201102782] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Indexed: 11/10/2022]
Abstract
5-Formylcytosine (fC or (5-CHO)dC) and 5-carboxylcytosine (caC or (5-COOH)dC) have recently been identified as constituents of mammalian DNA. The nucleosides are formed from 5-methylcytosine (mC or (5-Me)dC) via 5-hydroxymethylcytosine (hmC or (5-HOMe)dC) and are possible intermediates of an active DNA demethylation process. Here we show efficient syntheses of phosphoramidites which enable the synthesis of DNA strands containing these cytosine modifications based on Pd(0)-catalyzed functionalization of 5-iododeoxycytidine. The first crystal structure of fC reveals the existence of an intramolecular H-bond between the exocyclic amine and the formyl group, which controls the conformation of the formyl substituent. Using a newly designed in vitro mutagenicity assay we show that fC and caC are only marginally mutagenic, which is a prerequisite for the bases to function as epigenetic control units.
Collapse
Affiliation(s)
- Martin Münzel
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jurkowski TP, Jeltsch A. Burning off DNA methylation: new evidence for oxygen-dependent DNA demethylation. Chembiochem 2011; 12:2543-5. [PMID: 21998074 DOI: 10.1002/cbic.201100549] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Indexed: 11/12/2022]
Abstract
Where do you stop? Three recent publications have described how the oxidation of 5-methylcytosine by Tet dioxygenases does not stop at the 5-hydroxymethylcytosine (5hmC) state, rather further oxidation of 5hmC is involved in DNA demethylation. The nature of the enzymes involved in this process shed light on the dynamics of epigenetic signaling and its evolutionary origin.
Collapse
Affiliation(s)
- Tomasz P Jurkowski
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | |
Collapse
|