1
|
Chinnasamy R, Ravi J, Vinay Pradeep V, Manoharan D, Emmerling F, Bhattacharya B, Ghosh S, Chandrasekar R. Adaptable Optical Microwaveguides From Mechanically Flexible Crystalline Materials. Chemistry 2022; 28:e202200905. [DOI: 10.1002/chem.202200905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/07/2022]
Affiliation(s)
| | - Jada Ravi
- Advanced Organic Photonic Materials and Technology Laboratory School of Chemistry and Centre for Nanotechnology University of Hyderabad Gachibowli Hyderabad 500046 India
| | - Vuppu Vinay Pradeep
- Advanced Organic Photonic Materials and Technology Laboratory School of Chemistry and Centre for Nanotechnology University of Hyderabad Gachibowli Hyderabad 500046 India
| | - Deepak Manoharan
- Department of Chemistry SRM Institute of Science and Technology Chennai 603 203 India
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Biswajit Bhattacharya
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Soumyajit Ghosh
- Department of Chemistry SRM Institute of Science and Technology Chennai 603 203 India
| | - Rajadurai Chandrasekar
- Advanced Organic Photonic Materials and Technology Laboratory School of Chemistry and Centre for Nanotechnology University of Hyderabad Gachibowli Hyderabad 500046 India
| |
Collapse
|
2
|
Ji W, Yuan H, Xue B, Guerin S, Li H, Zhang L, Liu Y, Shimon LJW, Si M, Cao Y, Wang W, Thompson D, Cai K, Yang R, Gazit E. Co-Assembly Induced Solid-State Stacking Transformation in Amino Acid-Based Crystals with Enhanced Physical Properties. Angew Chem Int Ed Engl 2022; 61:e202201234. [PMID: 35170170 PMCID: PMC9311667 DOI: 10.1002/anie.202201234] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 02/02/2023]
Abstract
The physical characteristics of supramolecular assemblies composed of small building blocks are dictated by molecular packing patterns in the solid-state. Yet, the structure-property correlation is still not fully understood. Herein, we report the unexpected cofacial to herringbone stacking transformation of a small aromatic bipyridine through co-assembly with acetylated glutamic acid. The unique solid-state structural transformation results in enhanced physical properties of the supramolecular organizations. The co-assembly methodology was further expanded to obtain diverse molecular packings by different bipyridine and acetylated amino acid derivatives. This study presents a feasible co-assembly approach to achieve the solid-state stacking transformation of supramolecular organization and opens up new opportunities to further explore the relationship between molecular arrangement and properties of supramolecular assemblies by crystal engineering.
Collapse
Affiliation(s)
- Wei Ji
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, The National “111” Project for Biomechanics and Tissue Repair Engineering, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Hui Yuan
- School of Molecular Cell Biology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126China
| | - Bin Xue
- National Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093JiangsuChina
| | - Sarah Guerin
- Department of PhysicsBernal InstituteUniversity of LimerickLimerickV94 T9PXIreland
| | - Hui Li
- Science and Technology on Combustion and Explosion LaboratoryXi'an Modern Chemistry Research InstituteXi'an710065China
| | - Lei Zhang
- CAEP Software Center for High Performance Numerical SimulationBeijing100088China
| | - Yanqing Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of EducationLanzhou UniversityLanzhou730000China
| | - Linda J. W. Shimon
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovot7610001Israel
| | - Mingsu Si
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of EducationLanzhou UniversityLanzhou730000China
| | - Yi Cao
- National Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093JiangsuChina
| | - Wei Wang
- National Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093JiangsuChina
| | - Damien Thompson
- Department of PhysicsBernal InstituteUniversity of LimerickLimerickV94 T9PXIreland
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, The National “111” Project for Biomechanics and Tissue Repair Engineering, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Rusen Yang
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126China
| | - Ehud Gazit
- School of Molecular Cell Biology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| |
Collapse
|
3
|
Ji W, Yuan H, Xue B, Guerin S, Li H, Zhang L, Liu Y, Shimon LJW, Si M, Cao Y, Wang W, Thompson D, Cai K, Yang R, Gazit E. Co‐Assembly Induced Solid‐State Stacking Transformation in Amino Acid‐Based Crystals with Enhanced Physical Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Ji
- Key Laboratory of Biorheological Science and Technology Ministry of Education, The National “111” Project for Biomechanics and Tissue Repair Engineering, College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Hui Yuan
- School of Molecular Cell Biology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
- School of Advanced Materials and Nanotechnology Xidian University Xi'an 710126 China
| | - Bin Xue
- National Laboratory of Solid State Microstructure Department of Physics Nanjing University Nanjing 210093 Jiangsu China
| | - Sarah Guerin
- Department of Physics Bernal Institute University of Limerick Limerick V94 T9PX Ireland
| | - Hui Li
- Science and Technology on Combustion and Explosion Laboratory Xi'an Modern Chemistry Research Institute Xi'an 710065 China
| | - Lei Zhang
- CAEP Software Center for High Performance Numerical Simulation Beijing 100088 China
| | - Yanqing Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education Lanzhou University Lanzhou 730000 China
| | - Linda J. W. Shimon
- Department of Chemical Research Support Weizmann Institute of Science Rehovot 7610001 Israel
| | - Mingsu Si
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education Lanzhou University Lanzhou 730000 China
| | - Yi Cao
- National Laboratory of Solid State Microstructure Department of Physics Nanjing University Nanjing 210093 Jiangsu China
| | - Wei Wang
- National Laboratory of Solid State Microstructure Department of Physics Nanjing University Nanjing 210093 Jiangsu China
| | - Damien Thompson
- Department of Physics Bernal Institute University of Limerick Limerick V94 T9PX Ireland
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education, The National “111” Project for Biomechanics and Tissue Repair Engineering, College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology Xidian University Xi'an 710126 China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
| |
Collapse
|
4
|
Karothu DP, Mahmoud Halabi J, Ahmed E, Ferreira R, Spackman PR, Spackman MA, Naumov P. Global Analysis of the Mechanical Properties of Organic Crystals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Durga Prasad Karothu
- Smart Materials Lab New York University Abu Dhabi PO Box 129188 Abu Dhabi United Arab Emirates
| | - Jad Mahmoud Halabi
- Smart Materials Lab New York University Abu Dhabi PO Box 129188 Abu Dhabi United Arab Emirates
| | - Ejaz Ahmed
- Smart Materials Lab New York University Abu Dhabi PO Box 129188 Abu Dhabi United Arab Emirates
| | - Rodrigo Ferreira
- Smart Materials Lab New York University Abu Dhabi PO Box 129188 Abu Dhabi United Arab Emirates
| | - Peter R. Spackman
- The University of Western Australia 35 Stirling Highway 6009 Perth Australia
- Current address: Curtin Institute for Computation School of Molecular and Life Sciences Curtin University PO Box U1987 Perth Western Australia 6845 Australia
| | - Mark A. Spackman
- The University of Western Australia 35 Stirling Highway 6009 Perth Australia
| | - Panče Naumov
- Smart Materials Lab New York University Abu Dhabi PO Box 129188 Abu Dhabi United Arab Emirates
- Radcliffe Institute for Advanced Study Harvard University 10 Garden St. Cambridge MA 02138 USA
- Molecular Design Institute Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
5
|
Quantifying Mechanical Properties of Molecular Crystals: A Critical Overview of Experimental Elastic Tensors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Das S, Saha S, Sahu M, Mondal A, Reddy CM. Temperature‐Reliant Dynamic Properties and Elasto‐Plastic to Plastic Crystal (Rotator) Phase Transition in a Metal Oxyacid Salt. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Susobhan Das
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
| | - Subhankar Saha
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
- Department of Chemistry Islampur College Islampur Uttar Dinajpur, West Bengal 733202 India
| | - Mrinmay Sahu
- Department of Physical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
| | - Amit Mondal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
| | - C. Malla Reddy
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
| |
Collapse
|
7
|
Das S, Saha S, Sahu M, Mondal A, Reddy CM. Temperature-Reliant Dynamic Properties and Elasto-Plastic to Plastic Crystal (Rotator) Phase Transition in a Metal Oxyacid Salt. Angew Chem Int Ed Engl 2021; 61:e202115359. [PMID: 34890475 DOI: 10.1002/anie.202115359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 01/27/2023]
Abstract
Although, dynamic crystals are attractive for use in many technologies, molecular level mechanisms of various solid-state dynamic processes and their interdependence, remain poorly understood. Here, we report a rare example of a dynamic crystal (1), involving a heavy transition metal, rhenium, with an initial two-face elasticity (within ≈1 % strain), followed by elasto-plastic deformation, at room temperature. Further, these crystals transform to a rotator (plastic) crystal phase at ≈105 °C, displaying exceptional malleability. Qualitative and quantitative mechanical tests, X-ray diffraction, μ-Raman and polarized light microscopy experiments reveal that the elasto-plastic deformation involves both partial molecular rotations and slip, while malleability in the rotator phase is facilitated by reorientational motions and increased symmetry (slip planes). Our work, connecting the plastically bendable (1D or 2D) crystals with the rotator phases (3D), is important for designing multi-functional dynamic crystals.
Collapse
Affiliation(s)
- Susobhan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Subhankar Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Department of Chemistry, Islampur College, Islampur, Uttar Dinajpur, West Bengal 733202, India
| | - Mrinmay Sahu
- Department of Physical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Amit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| |
Collapse
|
8
|
Karothu DP, Halabi JM, Ahmed E, Ferreira R, Spackman PR, Spackman MA, Naumov P. Global Analysis of the Mechanical Properties of Organic Crystals. Angew Chem Int Ed Engl 2021; 61:e202113988. [PMID: 34845806 DOI: 10.1002/anie.202113988] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/09/2022]
Abstract
Organic crystals, although widely studied, have not been considered nascent candidate materials in the engineering design. Here we summarize the reported mechanical properties of organic crystals reported over the past three decades, and we establish a global mechanical property profile that can be used to predict and identify mechanically robust organic crystals. Being composed of light elements, organic crystals populate a narrow region in the mechanical property-density space between soft, disordered organic materials and stiff, ordered materials. Two subsets of extraordinarily stiff and hard organic crystalline materials were identified and rationalized by the normalized number density, strength and directionality of their intermolecular interactions. We conclude that the future light-weight, soft, all-organic components in devices should capitalize on the combination of long-range structural order and softness as the greatest asset of organic single crystals.
Collapse
Affiliation(s)
| | | | - Ejaz Ahmed
- New York University - Abu Dhabi Campus, Science, UNITED ARAB EMIRATES
| | - Rodrigo Ferreira
- New York University - Abu Dhabi Campus, Science, UNITED ARAB EMIRATES
| | | | | | - Pance Naumov
- New York University Abu Dhabi, Division of Science and Mathematics, Saadiyat Island, 00000, Abu Dhabi, UNITED ARAB EMIRATES
| |
Collapse
|
9
|
Spackman PR, Grosjean A, Thomas SP, Karothu DP, Naumov P, Spackman MA. Quantifying Mechanical Properties of Molecular Crystals: A Critical Overview of Experimental Elastic Tensors. Angew Chem Int Ed Engl 2021; 61:e202110716. [PMID: 34664351 DOI: 10.1002/anie.202110716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/08/2022]
Abstract
This review presents a critical and comprehensive overview of current experimental measurements of complete elastic constant tensors for molecular crystals. For a large fraction of these molecular crystals, detailed comparisons are made with elastic tensors obtained using the corrected small basis set Hartree-Fock method S-HF-3c, and these are shown to be competitive with many of those obtained from more sophisticated density functional theory plus dispersion (DFT-D) approaches. These detailed comparisons between S-HF-3c, experimental and DFT-D computed tensors make use of a novel rotation-invariant spherical harmonic description of the Young's modulus, and identify outliers among sets of independent experimental results. The result is a curated database of experimental elastic tensors for molecular crystals, which we hope will stimulate more extensive use of elastic tensor information-experimental and computational-in studies aimed at correlating mechanical properties of molecular crystals with their underlying crystal structure.
Collapse
Affiliation(s)
- Peter R Spackman
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.,School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Arnaud Grosjean
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Sajesh P Thomas
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Århus C, Denmark.,Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Durga Prasad Karothu
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.,Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Mark A Spackman
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
10
|
Bhattacharya B, Roy D, Dey S, Puthuvakkal A, Bhunia S, Mondal S, Chowdhury R, Bhattacharya M, Mandal M, Manoj K, Mandal PK, Reddy CM. Mechanical‐Bending‐Induced Fluorescence Enhancement in Plastically Flexible Crystals of a GFP Chromophore Analogue. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Biswajit Bhattacharya
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Debjit Roy
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Somnath Dey
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Anisha Puthuvakkal
- Photosciences and Photonics Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| | - Surojit Bhunia
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
- Centre for Advanced Functional Materials (CAFM) Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Saikat Mondal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
- Centre for Advanced Functional Materials (CAFM) Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Rituparno Chowdhury
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Manjima Bhattacharya
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Mrinal Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Kochunnoonny Manoj
- Photosciences and Photonics Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| | - Prasun K. Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
- Centre for Advanced Functional Materials (CAFM) Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - C. Malla Reddy
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
- Centre for Advanced Functional Materials (CAFM) Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| |
Collapse
|
11
|
Bhattacharya B, Roy D, Dey S, Puthuvakkal A, Bhunia S, Mondal S, Chowdhury R, Bhattacharya M, Mandal M, Manoj K, Mandal PK, Reddy CM. Mechanical-Bending-Induced Fluorescence Enhancement in Plastically Flexible Crystals of a GFP Chromophore Analogue. Angew Chem Int Ed Engl 2020; 59:19878-19883. [PMID: 32667123 DOI: 10.1002/anie.202007760] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Indexed: 01/25/2023]
Abstract
Single crystals of optoelectronic materials that respond to external stimuli, such as mechanical, light, or heat, are immensely attractive for next generation smart materials. Here we report single crystals of a green fluorescent protein (GFP) chromophore analogue with irreversible mechanical bending and associated unusual enhancement of the fluorescence, which is attributed to the strained molecular packing in the perturbed region. Soft crystalline materials with such fluorescence intensity modulations occurring in response to mechanical stimuli under ambient pressure conditions will have potential implications for the design of technologically relevant tunable fluorescent materials.
Collapse
Affiliation(s)
- Biswajit Bhattacharya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Debjit Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Somnath Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Anisha Puthuvakkal
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Surojit Bhunia
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Saikat Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Rituparno Chowdhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Manjima Bhattacharya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Mrinal Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Kochunnoonny Manoj
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Prasun K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| |
Collapse
|
12
|
Athiyarath V, Sureshan KM. Designed Synthesis of a 1D Polymer in Twist-Stacked Topology via Single-Crystal-to-Single-Crystal Polymerization. Angew Chem Int Ed Engl 2020; 59:15580-15585. [PMID: 32779302 DOI: 10.1002/anie.202006758] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/05/2020] [Indexed: 12/16/2022]
Abstract
To synthesize a fully organic 1D polymer in a novel twist-stacked topology, we designed a peptide monomer HC≡CCH2 -NH-Ile-Leu-N3 , which crystallizes with its molecules H-bonded along a six-fold screw axis. These H-bonded columns pack parallelly such that molecules arrange head-to-tail, forming linear non-covalent chains in planes perpendicular to the screw axis. The chains arrange parallelly to form molecular layers which twist-stack along the screw axis. Crystals of this monomer, on heating, undergo single-crystal-to-single-crystal (SCSC) topochemical azide-alkyne cycloaddition (TAAC) polymerization to yield an exclusively 1,4-triazole-linked polymer in a twist-stacked layered topology. This topologically defined polymer shows better mechanical strength and thermal stability than its unordered form, as evidenced by nanoindentation studies and thermogravimetric analysis, respectively. This work illustrates the scope of topochemical polymerizations for synthesizing polymers in pre-decided topologies.
Collapse
Affiliation(s)
- Vignesh Athiyarath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
13
|
Athiyarath V, Sureshan KM. Designed Synthesis of a 1D Polymer in Twist‐Stacked Topology via Single‐Crystal‐to‐Single‐Crystal Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vignesh Athiyarath
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
14
|
Kusumoto S, Saso A, Ohmagari H, Hasegawa M, Kim Y, Nakamura M, Lindoy LF, Hayami S. Solvent-Dependent Bending Ability of Salen-Derived Organic Crystals. Chempluschem 2020; 85:1692-1696. [PMID: 32558396 DOI: 10.1002/cplu.202000362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/15/2020] [Indexed: 11/09/2022]
Abstract
The formation of plastic or brittle organic crystals of salen derivatives that depend on the solvents employed for crystallization is demonstrated. Large yellow crystals (ranging from mm to cm size) of ten different salen derivatives were obtained and investigated. Among them, (bis(2-hydroxyacetophenone)ethylenediimine) 2, which was recrystallized from dichloromethane, tetrahydrofuran or chloroform, exhibited plastic deformation behaviour when mechanical force was applied to the (001) face. In contrast, when 2 was recrystallized from benzene, brittle crystals were obtained. Face indexing confirmed that different crystal faces were obtained by depending on the solvent employed for recrystallization, which leads to either flexible (plastic) or brittle crystals. Photoluminescence with a band maximum at 510 nm and thermochromism related to tautomerism between OH and NH forms were also investigated, and indicate that 2 is a flexible organic single-crystal material with multifunctional properties.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Akira Saso
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Kanagawa, Japan
| | - Hitomi Ohmagari
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Kanagawa, Japan
| | - Miki Hasegawa
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Kanagawa, Japan
| | - Yang Kim
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Leonard F Lindoy
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.,Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
15
|
Annadhasan M, Agrawal AR, Bhunia S, Pradeep VV, Zade SS, Reddy CM, Chandrasekar R. Mechanophotonics: Flexible Single‐Crystal Organic Waveguides and Circuits. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003820] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mari Annadhasan
- Functional Molecular Nano/Micro Solids Laboratory School of Chemistry University of Hyderabad Prof. C. R. Rao Road, Gachibowli Hyderabad 500 046 Telangana India
| | - Abhijeet R. Agrawal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Surojit Bhunia
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
- Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Vuppu Vinay Pradeep
- Functional Molecular Nano/Micro Solids Laboratory School of Chemistry University of Hyderabad Prof. C. R. Rao Road, Gachibowli Hyderabad 500 046 Telangana India
| | - Sanjio S. Zade
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - C. Malla Reddy
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
- Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Rajadurai Chandrasekar
- Functional Molecular Nano/Micro Solids Laboratory School of Chemistry University of Hyderabad Prof. C. R. Rao Road, Gachibowli Hyderabad 500 046 Telangana India
| |
Collapse
|
16
|
Annadhasan M, Agrawal AR, Bhunia S, Pradeep VV, Zade SS, Reddy CM, Chandrasekar R. Mechanophotonics: Flexible Single-Crystal Organic Waveguides and Circuits. Angew Chem Int Ed Engl 2020; 59:13852-13858. [PMID: 32392396 DOI: 10.1002/anie.202003820] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/17/2020] [Indexed: 01/23/2023]
Abstract
We present the one-dimensional optical-waveguiding crystal dithieno[3,2-a:2',3'-c]phenazine with a high aspect ratio, high mechanical flexibility, and selective self-absorbance of the blue part of its fluorescence (FL). While macrocrystals exhibit elasticity, microcrystals deposited at a glass surface behave more like plastic crystals due to significant surface adherence, making them suitable for constructing photonic circuits via micromechanical operation with an atomic-force-microscopy cantilever tip. The flexible crystalline waveguides display optical-path-dependent FL signals at the output termini in both straight and bent configurations, making them appropriate for wavelength-division multiplexing technologies. A reconfigurable 2×2-directional coupler fabricated via micromanipulation by combining two arc-shaped crystals splits the optical signal via evanescent coupling and delivers the signals at two output terminals with different splitting ratios. The presented mechanical micromanipulation technique could also be effectively extended to other flexible crystals.
Collapse
Affiliation(s)
- Mari Annadhasan
- Functional Molecular Nano/Micro Solids Laboratory, School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046, Telangana, India
| | - Abhijeet R Agrawal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Surojit Bhunia
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Vuppu Vinay Pradeep
- Functional Molecular Nano/Micro Solids Laboratory, School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046, Telangana, India
| | - Sanjio S Zade
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Rajadurai Chandrasekar
- Functional Molecular Nano/Micro Solids Laboratory, School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046, Telangana, India
| |
Collapse
|
17
|
Mondal A, Bhattacharya B, Das S, Bhunia S, Chowdhury R, Dey S, Reddy CM. Metal‐like Ductility in Organic Plastic Crystals: Role of Molecular Shape and Dihydrogen Bonding Interactions in Aminoboranes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001060] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amit Mondal
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Biswajit Bhattacharya
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Susobhan Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Surojit Bhunia
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Centre for Advanced Functional Materials (CAFM)Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Rituparno Chowdhury
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Somnath Dey
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Institute of CrystallographyRWTH Aachen University Jägerstraße 17–19 52066 Aachen Germany
| | - C. Malla Reddy
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Centre for Advanced Functional Materials (CAFM)Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| |
Collapse
|
18
|
Mondal A, Bhattacharya B, Das S, Bhunia S, Chowdhury R, Dey S, Reddy CM. Metal‐like Ductility in Organic Plastic Crystals: Role of Molecular Shape and Dihydrogen Bonding Interactions in Aminoboranes. Angew Chem Int Ed Engl 2020; 59:10971-10980. [PMID: 32087039 DOI: 10.1002/anie.202001060] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/09/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Amit Mondal
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Biswajit Bhattacharya
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Susobhan Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Surojit Bhunia
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Centre for Advanced Functional Materials (CAFM)Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Rituparno Chowdhury
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Somnath Dey
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Institute of CrystallographyRWTH Aachen University Jägerstraße 17–19 52066 Aachen Germany
| | - C. Malla Reddy
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Centre for Advanced Functional Materials (CAFM)Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| |
Collapse
|
19
|
Bhattacharya B, Michalchuk AAL, Silbernagl D, Rautenberg M, Schmid T, Feiler T, Reimann K, Ghalgaoui A, Sturm H, Paulus B, Emmerling F. A Mechanistic Perspective on Plastically Flexible Coordination Polymers. Angew Chem Int Ed Engl 2020; 59:5557-5561. [PMID: 31837270 PMCID: PMC7155097 DOI: 10.1002/anie.201914798] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 01/05/2023]
Abstract
Mechanical flexibility in single crystals of covalently bound materials is a fascinating and poorly understood phenomenon. We present here the first example of a plastically flexible one-dimensional (1D) coordination polymer. The compound [Zn(μ-Cl)2 (3,5-dichloropyridine)2 ]n is flexible over two crystallographic faces. Remarkably, the single crystal remains intact when bent to 180°. A combination of microscopy, diffraction, and spectroscopic studies have been used to probe the structural response of the crystal lattice to mechanical bending. Deformation of the covalent polymer chains does not appear to be responsible for the observed macroscopic bending. Instead, our results suggest that mechanical bending occurs by displacement of the coordination polymer chains. Based on experimental and theoretical evidence, we propose a new model for mechanical flexibility in 1D coordination polymers. Moreover, our calculations propose a cause of the different mechanical properties of this compound and a structurally similar elastic material.
Collapse
Affiliation(s)
- Biswajit Bhattacharya
- BAM Federal Institute for Materials Research and TestingRichard-Willstätter-Strasse12489BerlinGermany
| | - Adam A. L. Michalchuk
- BAM Federal Institute for Materials Research and TestingRichard-Willstätter-Strasse12489BerlinGermany
| | - Dorothee Silbernagl
- BAM Federal Institute for Materials Research and TestingRichard-Willstätter-Strasse12489BerlinGermany
| | - Max Rautenberg
- BAM Federal Institute for Materials Research and TestingRichard-Willstätter-Strasse12489BerlinGermany
| | - Thomas Schmid
- BAM Federal Institute for Materials Research and TestingRichard-Willstätter-Strasse12489BerlinGermany
- School of Analytical Sciences Adlershof (SALSA)Humboldt-Universität zu BerlinBerlinGermany
| | - Torvid Feiler
- BAM Federal Institute for Materials Research and TestingRichard-Willstätter-Strasse12489BerlinGermany
| | - Klaus Reimann
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie12489BerlinGermany
| | - Ahmed Ghalgaoui
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie12489BerlinGermany
| | - Heinz Sturm
- BAM Federal Institute for Materials Research and TestingRichard-Willstätter-Strasse12489BerlinGermany
| | - Beate Paulus
- Institut für Chemie und BiochemieFreie Universität BerlinBerlinGermany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and TestingRichard-Willstätter-Strasse12489BerlinGermany
- School of Analytical Sciences Adlershof (SALSA)Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
20
|
Lu Z, Zhang Y, Liu H, Ye K, Liu W, Zhang H. Optical Waveguiding Organic Single Crystals Exhibiting Physical and Chemical Bending Features. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhuoqun Lu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Yuping Zhang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Wentao Liu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| |
Collapse
|
21
|
Bhattacharya B, Michalchuk AAL, Silbernagl D, Rautenberg M, Schmid T, Feiler T, Reimann K, Ghalgaoui A, Sturm H, Paulus B, Emmerling F. Ein mechanistischer Blick auf plastisch flexible Koordinationspolymere. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Biswajit Bhattacharya
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-St. 12489 Berlin Deutschland
| | - Adam A. L. Michalchuk
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-St. 12489 Berlin Deutschland
| | - Dorothee Silbernagl
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-St. 12489 Berlin Deutschland
| | - Max Rautenberg
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-St. 12489 Berlin Deutschland
| | - Thomas Schmid
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-St. 12489 Berlin Deutschland
- School of Analytical Sciences Adlershof (SALSA) Humboldt-Universität zu Berlin Berlin Deutschland
| | - Torvid Feiler
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-St. 12489 Berlin Deutschland
| | - Klaus Reimann
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie 12489 Berlin Deutschland
| | - Ahmed Ghalgaoui
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie 12489 Berlin Deutschland
| | - Heinz Sturm
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-St. 12489 Berlin Deutschland
| | - Beate Paulus
- Institut für Chemie und Biochemie Freie Universität Berlin Berlin Deutschland
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-St. 12489 Berlin Deutschland
- School of Analytical Sciences Adlershof (SALSA) Humboldt-Universität zu Berlin Berlin Deutschland
| |
Collapse
|
22
|
Lu Z, Zhang Y, Liu H, Ye K, Liu W, Zhang H. Optical Waveguiding Organic Single Crystals Exhibiting Physical and Chemical Bending Features. Angew Chem Int Ed Engl 2020; 59:4299-4303. [PMID: 31943587 DOI: 10.1002/anie.201914026] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Bendable (elastic and plastic) organic single crystals have been widely studied as emerging flexible materials with highly ordered packing structures. However, even though manifold bendable organic crystals have been recently reported, most of them bend in response to only one stimulus. Herein, we report an organic single crystal of (Z)-4-(1-cyano-2-(4-(dimethylamino)phenyl)vinyl)benzonitrile, which bends under external stress (physical process) and also hydrochloric acid atmosphere (chemical process). This observation indicates that a single organic crystal, whose structure has been optimized simultaneously at both the molecular and supramolecular levels, may display multiple crystal-bending modes. Furthermore, the crystals exhibit bright orange-yellow emission and can serve as an active low-loss optical waveguide in both the straight and the bent state, which indicates a potential optical application.
Collapse
Affiliation(s)
- Zhuoqun Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Yuping Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Wentao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| |
Collapse
|
23
|
Kato M, Ito H, Hasegawa M, Ishii K. Soft Crystals: Flexible Response Systems with High Structural Order. Chemistry 2019; 25:5105-5112. [PMID: 30653768 PMCID: PMC6593753 DOI: 10.1002/chem.201805641] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/16/2019] [Indexed: 11/07/2022]
Abstract
A new material concept of soft crystals is proposed. Soft crystals respond to gentle stimuli such as vapor exposure and rubbing but maintain their structural order and exhibit remarkable visual changes in their shape, color, and luminescence. Various interesting examples of soft crystals are introduced in the article. By exploring the interesting formation and phase-transition phenomena of soft crystals through interdisciplinary collaboration, new materials having both the characteristics of ordered hard crystals and those of flexible soft matter are expected.
Collapse
Affiliation(s)
- Masako Kato
- Department of Chemistry, Faculty of ScienceHokkaido UniversitySapporo060-0810HokkaidoJapan
| | - Hajime Ito
- Department of Applied Chemistry, Faculty of EngineeringHokkaido UniversitySapporo060-8628HokkaidoJapan
| | - Miki Hasegawa
- Department of Chemistry and Biological ScienceAoyama Gakuin UniversitySagamihara252-5258KanagawaJapan
| | - Kazuyuki Ishii
- Institute of Industrial ScienceUniversity of TokyoKomaba153-8505TokyoJapan
| |
Collapse
|
24
|
Bhandary S, Rani G, Mangalampalli SRNK, Rao GBD, Ramamurty U, Chopra D. Guest Solvent-dependence of the Nanomechanical Response in Substituted Dihydropyrimidinone Crystals. Chem Asian J 2019; 14:607-611. [PMID: 30600930 DOI: 10.1002/asia.201801842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 11/08/2022]
Abstract
The nanomechanical responses of two crystalline phases of a dihydropyrimidine analogue (1) were similar irrespective of the presence (or absence) of the guest solvent. In contrast, the mechanical responses of two differently solvated forms of the second related (2) crystals were significantly different. These contrasting behaviors are rationalized in terms of intermolecular interactions and energy distributions.
Collapse
Affiliation(s)
- Subhrajyoti Bhandary
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal-By-Pass Road, Bhauri, Bhopal-, 462066, Madhya, Pradesh, India
| | - Gulshan Rani
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal-By-Pass Road, Bhauri, Bhopal-, 462066, Madhya, Pradesh, India
| | - S R N Kiran Mangalampalli
- Nanomechanics Laboratory, Sir C.V. Raman Block, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - G B Dharma Rao
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal-By-Pass Road, Bhauri, Bhopal-, 462066, Madhya, Pradesh, India
| | - Upadrasta Ramamurty
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Deepak Chopra
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal-By-Pass Road, Bhauri, Bhopal-, 462066, Madhya, Pradesh, India
| |
Collapse
|
25
|
SeethaLekshmi S, Kiran MSRN, Ramamurty U, Varughese S. Molecular Basis for the Mechanical Response of Sulfa Drug Crystals. Chemistry 2018; 25:526-537. [DOI: 10.1002/chem.201803987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Sunil SeethaLekshmi
- Chemical Science and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology Trivandrum 695 019 India
| | - Mangalampalli S. R. N. Kiran
- Nanomechanics Laboratory, Department of Physics and NanotechnologySRM Institute of Science and Technology Chennai 603203 India
| | - Upadrasta Ramamurty
- School of Mechanical & Aerospace EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Sunil Varughese
- Chemical Science and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology Trivandrum 695 019 India
- Academy of Scientific and Innovative Research, CSIR-NIIST Campus Trivandrum 695 019 India
| |
Collapse
|
26
|
Ahmed E, Karothu DP, Naumov P. Crystal Adaptronics: Mechanically Reconfigurable Elastic and Superelastic Molecular Crystals. Angew Chem Int Ed Engl 2018; 57:8837-8846. [DOI: 10.1002/anie.201800137] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Ejaz Ahmed
- New York University Abu Dhabi; PO Box 129188 Abu Dhabi United Arab Emirates
| | | | - Panče Naumov
- New York University Abu Dhabi; PO Box 129188 Abu Dhabi United Arab Emirates
| |
Collapse
|
27
|
Ahmed E, Karothu DP, Naumov P. Kristall-Adaptronik: Mechanisch rekonfigurierbare elastische und superelastische molekulare Kristalle. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800137] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ejaz Ahmed
- New York University Abu Dhabi; PO Box 129188 Abu Dhabi Vereinigte Arabische Emirate
| | - Durga Prasad Karothu
- New York University Abu Dhabi; PO Box 129188 Abu Dhabi Vereinigte Arabische Emirate
| | - Panče Naumov
- New York University Abu Dhabi; PO Box 129188 Abu Dhabi Vereinigte Arabische Emirate
| |
Collapse
|
28
|
Mondal PK, Kiran MSRN, Ramamurty U, Chopra D. Quantitative Investigation of the Structural, Thermal, and Mechanical Properties of Polymorphs of a Fluorinated Amide. Chemistry 2016; 23:1023-1027. [DOI: 10.1002/chem.201604711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Pradip Kumar Mondal
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal, Bhauri; Bhopal 462066 India
| | - M. S. R. N. Kiran
- Department of Materials Engineering; Indian Institute of Science; Bangalore 560012 India
- Department of Physics and Nanotechnology; SRM University, Kattankulathur-; 603203 Chennai, Tamilnadu India
| | - U. Ramamurty
- Department of Materials Engineering; Indian Institute of Science; Bangalore 560012 India
| | - Deepak Chopra
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal, Bhauri; Bhopal 462066 India
| |
Collapse
|
29
|
Liu G, Liu J, Ye X, Nie L, Gu P, Tao X, Zhang Q. Self‐Healing Behavior in a Thermo‐Mechanically Responsive Cocrystal during a Reversible Phase Transition. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609667] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guangfeng Liu
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore Singapore
| | - Jie Liu
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P.R. China
| | - Xin Ye
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P.R. China
| | - Lina Nie
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore Singapore
| | - Peiyang Gu
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore Singapore
| | - Xutang Tao
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P.R. China
| | - Qichun Zhang
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore Singapore
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 639798 Singapore Singapore
| |
Collapse
|
30
|
Liu G, Liu J, Ye X, Nie L, Gu P, Tao X, Zhang Q. Self-Healing Behavior in a Thermo-Mechanically Responsive Cocrystal during a Reversible Phase Transition. Angew Chem Int Ed Engl 2016; 56:198-202. [PMID: 27930841 DOI: 10.1002/anie.201609667] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/27/2016] [Indexed: 11/10/2022]
Abstract
The molecular-level motions of a coronene-based supramolecular rotator are amplified into macroscopic changes of crystals by co-assembly of coronene and TCNB (1,2,4,5-tetracyanobenzene) into a charge-transfer complex. The as-prepared cocrystals show remarkable self-healing behavior and thermo-mechanical responses during thermally-induced reversible single-crystal-to-single-crystal (SCSC) phase transitions. Comprehensive analysis of the microscopic observations as well as differential scanning calorimetry (DSC) measurements and crystal habits reveal that a thermally-reduced-rate-dependent dynamic character exists in the phase transition. The crystallographic studies show that the global similarity of the packing patterns of both phases with local differences, such as molecular stacking sequence and orientations, should be the origin of the self-healing behavior of these crystals.
Collapse
Affiliation(s)
- Guangfeng Liu
- School of Materials Science and Engineering, Nanyang Technological University Singapore, 639798, Singapore, Singapore
| | - Jie Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| | - Xin Ye
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| | - Lina Nie
- School of Materials Science and Engineering, Nanyang Technological University Singapore, 639798, Singapore, Singapore
| | - Peiyang Gu
- School of Materials Science and Engineering, Nanyang Technological University Singapore, 639798, Singapore, Singapore
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| | - Qichun Zhang
- School of Materials Science and Engineering, Nanyang Technological University Singapore, 639798, Singapore, Singapore.,Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 639798, Singapore, Singapore
| |
Collapse
|
31
|
Manchineella S, Govindaraju T. Molecular Self-Assembly of Cyclic Dipeptide Derivatives and Their Applications. Chempluschem 2016; 82:88-106. [PMID: 31961506 DOI: 10.1002/cplu.201600450] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/20/2016] [Indexed: 01/08/2023]
Abstract
Cyclic dipeptides (CDPs) are heterocyclic 2,5-diketopiperazines with exceptional structural rigidity, enzymatic stability, and biological activity, exhibiting a substantial tendency to take part in intermolecular interactions. Strong intermolecular interactions driven by unique hydrogen bonding patterns render CDPs with a high propensity to undergo molecular self-assembly. In this Review, the aim is to provide a comprehensive summary of design strategies used to engineer the molecular self-assembly of CDPs into functional nano- and micro-architectures and molecular gels with potential applications in biomedical and materials engineering fields.
Collapse
Affiliation(s)
- Shivaprasad Manchineella
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, 560064, India
| | - T Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, 560064, India
| |
Collapse
|
32
|
Affiliation(s)
- Patrick Commins
- New York University Abu Dhabi; Abu Dhabi United Arab Emirates
| | - Hideyuki Hara
- Bruker Biospin K.K.; 3-9, Moriya, Kanagawa, Yokohama Kanagawa 221-0022 Japan
| | - Panče Naumov
- New York University Abu Dhabi; Abu Dhabi United Arab Emirates
| |
Collapse
|
33
|
Commins P, Hara H, Naumov P. Self-Healing Molecular Crystals. Angew Chem Int Ed Engl 2016; 55:13028-13032. [DOI: 10.1002/anie.201606003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Patrick Commins
- New York University Abu Dhabi; Abu Dhabi United Arab Emirates
| | - Hideyuki Hara
- Bruker Biospin K.K.; 3-9, Moriya, Kanagawa, Yokohama Kanagawa 221-0022 Japan
| | - Panče Naumov
- New York University Abu Dhabi; Abu Dhabi United Arab Emirates
| |
Collapse
|
34
|
Seki T, Ito H. Molecular-Level Understanding of Structural Changes of Organic Crystals Induced by Macroscopic Mechanical Stimulation. Chemistry 2016; 22:4322-9. [DOI: 10.1002/chem.201504361] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Tomohiro Seki
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo, Hokkaido 060-8628 Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo, Hokkaido 060-8628 Japan
| |
Collapse
|
35
|
Azuri I, Meirzadeh E, Ehre D, Cohen SR, Rappe AM, Lahav M, Lubomirsky I, Kronik L. Unusually Large Young’s Moduli of Amino Acid Molecular Crystals. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Azuri I, Meirzadeh E, Ehre D, Cohen SR, Rappe AM, Lahav M, Lubomirsky I, Kronik L. Unusually Large Young's Moduli of Amino Acid Molecular Crystals. Angew Chem Int Ed Engl 2015; 54:13566-70. [PMID: 26373817 DOI: 10.1002/anie.201505813] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 11/08/2022]
Abstract
Young's moduli of selected amino acid molecular crystals were studied both experimentally and computationally using nanoindentation and dispersion-corrected density functional theory. The Young modulus is found to be strongly facet-dependent, with some facets exhibiting exceptionally high values (as large as 44 GPa). The magnitude of Young's modulus is strongly correlated with the relative orientation between the underlying hydrogen-bonding network and the measured facet. Furthermore, we show computationally that the Young modulus can be as large as 70-90 GPa if facets perpendicular to the primary direction of the hydrogen-bonding network can be stabilized. This value is remarkably high for a molecular solid and suggests the design of hydrogen-bond networks as a route for rational design of ultra-stiff molecular solids.
Collapse
Affiliation(s)
- Ido Azuri
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel)
| | - Elena Meirzadeh
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel)
| | - David Ehre
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel)
| | - Sidney R Cohen
- Chemical Research Support, Weizmann Institute of Science, Rehovoth 76100 (Israel)
| | - Andrew M Rappe
- The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323 (USA)
| | - Meir Lahav
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel)
| | - Igor Lubomirsky
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel).
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel).
| |
Collapse
|
37
|
Mishra MK, Ramamurty U, Desiraju GR. Hardness Alternation in α,ω-Alkanedicarboxylic Acids. Chem Asian J 2015; 10:2176-81. [PMID: 25919633 DOI: 10.1002/asia.201500322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/09/2022]
Abstract
The variation of hardness as a function of the number of carbon atoms in α,ω-alkanedicarboxylic acids, C(N)H(2N-2)O4 (4≤N≤9), was examined by recourse to nanoindentation on the major faces of single crystals. Hardness exhibits odd-even alternation, with the odd acids being softer and the even ones harder; the differences decrease with increasing chain length. These variations are similar to those seen for other mechanical, physical, and thermal properties of these diacids. The softness of odd acids is rationalized due to strained molecular conformations in them, which facilitate easier plastic deformation. Relationships between structural features, such as interplanar spacing, interlayer separation distance, molecular chain length, and signatures of the nanoindentation responses, namely, discrete displacement bursts, were also examined. Shear sliding of molecular layers past each other during indentation is key to the mechanism for plastic deformation in these organic crystals.
Collapse
Affiliation(s)
- Manish Kumar Mishra
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560 012, India
| | - Upadrasta Ramamurty
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560 012, India. .,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Gautam R Desiraju
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
38
|
Ghosh S, Mishra MK, Kadambi SB, Ramamurty U, Desiraju GR. Designing Elastic Organic Crystals: Highly Flexible PolyhalogenatedN-Benzylideneanilines. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410730] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Ghosh S, Mishra MK, Kadambi SB, Ramamurty U, Desiraju GR. Designing Elastic Organic Crystals: Highly Flexible PolyhalogenatedN-Benzylideneanilines. Angew Chem Int Ed Engl 2015; 54:2674-8. [DOI: 10.1002/anie.201410730] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 12/24/2022]
|
40
|
Mishra MK, Desiraju GR, Ramamurty U, Bond AD. Studying microstructure in molecular crystals with nanoindentation: intergrowth polymorphism in felodipine. Angew Chem Int Ed Engl 2014; 53:13102-5. [PMID: 25264144 DOI: 10.1002/anie.201406898] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/01/2014] [Indexed: 11/08/2022]
Abstract
Intergrowth polymorphism refers to the existence of distinct structural domains within a single crystal of a compound. The phenomenon is exhibited by form II of the active pharmaceutical ingredient felodipine, and the associated microstructure is a significant feature of the compound's structural identity. Employing the technique of nanoindentation on form II reveals a bimodal mechanical response on specific single-crystal faces, demonstrating distinct properties for two polymorphic forms within the same crystal.
Collapse
Affiliation(s)
- Manish Kumar Mishra
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India)
| | | | | | | |
Collapse
|
41
|
Mishra MK, Desiraju GR, Ramamurty U, Bond AD. Studying Microstructure in Molecular Crystals With Nanoindentation: Intergrowth Polymorphism in Felodipine. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Spencer EC, Kiran MSRN, Li W, Ramamurty U, Ross NL, Cheetham AK. Pressure-Induced Bond Rearrangement and Reversible Phase Transformation in a Metal-Organic Framework. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310276] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Spencer EC, Kiran MSRN, Li W, Ramamurty U, Ross NL, Cheetham AK. Pressure-Induced Bond Rearrangement and Reversible Phase Transformation in a Metal-Organic Framework. Angew Chem Int Ed Engl 2014; 53:5583-6. [DOI: 10.1002/anie.201310276] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/17/2014] [Indexed: 11/10/2022]
|
44
|
New Members of the Royal Irish Academy: P. J. Guiry and C. Hardacre / Honorary Doctorate: G. R. Desiraju / RUSNANOPRIZE: O. Farokhzad and R. S. Langer / Prelog Medal and Lectureship: P. Wender / Nature Award for Mentoring in Science: V. Balzani / Eucor Me. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/anie.201309938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Neue Mitglieder der Royal Irish Academy: P. J. Guiry und C. Hardacre / Ehrendoktorwürde: G. R. Desiraju / RUSNANOPRIZE: O. Farokhzad und R. S. Langer / Prelog-Medaille und -Vorlesung: P. Wender / Nature Award for Mentoring in Science: V. Balzani / Eucor-M. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201309938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|