1
|
Liebel M, Calderon I, Pazos-Perez N, van Hulst NF, Alvarez-Puebla RA. Widefield SERS for High-Throughput Nanoparticle Screening. Angew Chem Int Ed Engl 2022; 61:e202200072. [PMID: 35107845 DOI: 10.1002/anie.202200072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 12/22/2022]
Abstract
Surface-enhanced Raman scattering (SERS) imaging is a powerful technology with unprecedent potential for ultrasensitive chemical analysis. Point-by-point scanning and often excessively long spectral acquisition-times hamper the broad exploitation of the full analytical potential of SERS. Here, we introduce large-scale SERS particle screening (LSSPS), a multiplexed widefield screening approach to particle characterization, which is 500-1000 times faster than typical confocal Raman implementations. Beyond its higher throughput, LSSPS simultaneously quantifies both the sample's Raman and Rayleigh scattering to directly quantify the fraction of SERS-active particles which allows for an unprecedented correlation of SERS activity with particle size. .
Collapse
Affiliation(s)
- Matz Liebel
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Irene Calderon
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira i Virgili, Tarragona, Spain
| | - Nicolas Pazos-Perez
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira i Virgili, Tarragona, Spain
| | - Niek F van Hulst
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.,ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira i Virgili, Tarragona, Spain.,ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
2
|
Jiang S, D'Amario L, Dau H. Copper Carbonate Hydroxide as Precursor of Interfacial CO in CO 2 Electroreduction. CHEMSUSCHEM 2022; 15:e202102506. [PMID: 35289108 PMCID: PMC9314821 DOI: 10.1002/cssc.202102506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Copper electrodes are especially effective in catalysis of C2 and further multi-carbon products in the CO2 reduction reaction (CO2 RR) and therefore of major technological interest. The reasons for the unparalleled Cu performance in CO2 RR are insufficiently understood. Here, the electrode-electrolyte interface was highlighted as a dynamic physical-chemical system and determinant of catalytic events. Exploiting the intrinsic surface-enhanced Raman effect of previously characterized Cu foam electrodes, operando Raman experiments were used to interrogate structures and molecular interactions at the electrode-electrolyte interface at subcatalytic and catalytic potentials. Formation of a copper carbonate hydroxide (CuCarHyd) was detected, which resembles the mineral malachite. Its carbonate ions could be directly converted to CO at low overpotential. These and further experiments suggested a basic mode of CO2 /carbonate reduction at Cu electrodes interfaces that contrasted previous mechanistic models: the starting point in carbon reduction was not CO2 but carbonate ions bound to the metallic Cu electrode in form of CuCarHyd structures. It was hypothesized that Cu oxides residues could enhance CO2 RR indirectly by supporting formation of CuCarHyd motifs. The presence of CuCarHyd patches at catalytic potentials might result from alkalization in conjunction with local electrical potential gradients, enabling the formation of metastable CuCarHyd motifs over a large range of potentials.
Collapse
Affiliation(s)
- Shan Jiang
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Luca D'Amario
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
- Department of ChemistryÅngström LaboratoryUppsala UniversityBox 52375120UppsalaSweden
| | - Holger Dau
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| |
Collapse
|
3
|
Chang H, Liang Z, Wang L, Wang C. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts. NANOSCALE 2022; 14:5639-5656. [PMID: 35333268 DOI: 10.1039/d2nr00522k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a clean and renewable energy carrier, hydrogen (H2) has become an attractive alternative to dwindling fossil fuels. The key to realizing hydrogen-based energy systems is to develop efficient and economical hydrogen production methods. The water electrolysis technique has the advantages of cleanliness, sustainability, and high efficiency, which can be applied to large-scale hydrogen production. However, the electrocatalytic oxygen evolution reaction (OER) at the anode plays a decisive role in the efficiency of hydrogen evolution during water splitting. Generally, noble metal catalysts (such as ruthenium and iridium) are considered to exhibit the best OER performance; however, they exhibit disadvantages such as high costs, limited reserves, and poor stability. Therefore, the research on highly efficient non-noble metal catalysts that can replace their noble metal counterparts has always been important. This review presents the recent advances in the preparation of high-performance OER electrocatalysts by regulating the electronic structure of 3d transition metals. First, we introduce the reaction mechanism of water splitting and the OER, which reveals the high requirement of the complex four-electron process of the OER. Second, the electron transfer mode and development progress of highly active transition metal electrocatalysts are used to summarize the research situation of transition metal OER catalysts in water splitting. Finally, the future development direction and challenges of transition metal catalysts are prospected based on the current research progress.
Collapse
Affiliation(s)
- Haiyang Chang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Zhijian Liang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Cheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
4
|
Liebel M, Calderon I, Pazos‐Perez N, Hulst NF, Alvarez‐Puebla RA. Widefield SERS for High‐Throughput Nanoparticle Screening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Matz Liebel
- ICFO - Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Castelldefels Barcelona Spain
| | - Irene Calderon
- Department of Physical and Inorganic Chemistry and EMaS Universitat Rovira i Virgili Tarragona Spain
| | - Nicolas Pazos‐Perez
- Department of Physical and Inorganic Chemistry and EMaS Universitat Rovira i Virgili Tarragona Spain
| | - Niek F. Hulst
- ICFO - Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Castelldefels Barcelona Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Ramon A. Alvarez‐Puebla
- Department of Physical and Inorganic Chemistry and EMaS Universitat Rovira i Virgili Tarragona Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| |
Collapse
|
5
|
Ali S, Mansha M, Baig N, Khan SA. Recent Trends and Future Perspectives of Emergent Analytical Techniques for Mercury Sensing in Aquatic Environments. CHEM REC 2022; 22:e202100327. [PMID: 35253977 DOI: 10.1002/tcr.202100327] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 11/10/2022]
Abstract
Environmental emissions of mercury from industrial waste and natural sources, even in trace amounts, are toxic to organisms and ecosystems. However, industrial-scale mercury detection is limited by the high cost, low sensitivity/specificity, and poor selectivity of the available analytical tools. This review summarizes the key sensors for mercury detection in aqueous environments: colorimetric-, electrochemical-, fluorescence-, and surface-enhanced Raman spectroscopy-based sensors reported between 2014-2021. It then compares the performances of these sensors in the determination of inorganic mercury (Hg2+ ) and methyl mercury (CH3 Hg+ ) species in aqueous samples. Mercury sensors for aquatic applications still face serious challenges in terms of difficult deployment in remote areas and low robustness, reliability, and selectivity in harsh environments. We provide future perspectives on the selective detection of organomercury species, which are especially toxic and reactive in aquatic environments. This review is intended as a valuable resource for scientists in the field of mercury sensing.
Collapse
Affiliation(s)
- Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
6
|
Wen C, Wang L, Liu L, Shen XC, Chen H. Surface-enhanced Raman probes based on gold nanomaterials for in vivo diagnosis and imaging. Chem Asian J 2022; 17:e202200014. [PMID: 35178878 DOI: 10.1002/asia.202200014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has received considerable attention from researchers due to its high molecular specificity, high sensitivity, non-invasive and multiplexing. Recently, various metal substrates have been exploited for SERS analysis and imaging. Among them, gold nanomaterials are important SERS substrates with outstanding surface plasmon resonance effects, structural adjustability and good biocompatibility, making them widely used in biomedical diagnosis and clinical fields. In this minireview, we discuss the latest progress about the application of gold-based nanomaterials as SERS probes in biomedical research, primarily for in vivo disease diagnosis and imaging. This review mainly includes the basic shapes and morphologies of gold based SERS probes, such as gold nanoparticles (AuNPs), gold nanorods (AuNRs), gold nanostars (AuNSs), as well as other gold nanostructures. Finally, a brief outlook for the future development of SERS technique in the context of efficient diagnostics and therapy guidance is provided. We hope that this minireview will facilitate the design and future development of Surface-enhanced Raman probes based on gold nanomaterials.
Collapse
Affiliation(s)
| | | | - Li Liu
- Guangxi Normal University, chemistry, CHINA
| | | | - Hua Chen
- Guangxi Normal University, school of chemistry, 15 Yucai Road, 541004, Guilin, CHINA
| |
Collapse
|
7
|
Scherrer D, Vogel D, Drechsler U, Olziersky A, Sparr C, Mayor M, Lörtscher E. Reaktionsverfolgung von Festphasensynthesen in selbstassemblierenden Monolagen mit oberflächenverstärkter Raman‐Spektroskopie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dominik Scherrer
- Science and Technology Department, IBM Research Europe Säumerstrasse 4 8803 Rüschlikon Schweiz
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - David Vogel
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Ute Drechsler
- Science and Technology Department, IBM Research Europe Säumerstrasse 4 8803 Rüschlikon Schweiz
| | - Antonis Olziersky
- Science and Technology Department, IBM Research Europe Säumerstrasse 4 8803 Rüschlikon Schweiz
| | - Christof Sparr
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Marcel Mayor
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Schweiz
- Institute for Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) P. O. Box 3640 76021 Karlsruhe Deutschland
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University (SYSU) Guangzhou 510275 VR China
| | - Emanuel Lörtscher
- Science and Technology Department, IBM Research Europe Säumerstrasse 4 8803 Rüschlikon Schweiz
| |
Collapse
|
8
|
Scherrer D, Vogel D, Drechsler U, Olziersky A, Sparr C, Mayor M, Lörtscher E. Monitoring Solid-Phase Reactions in Self-Assembled Monolayers by Surface-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2021; 60:17981-17988. [PMID: 34048139 PMCID: PMC8456949 DOI: 10.1002/anie.202102319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/18/2021] [Indexed: 12/27/2022]
Abstract
Nanopatterned surfaces enhance incident electromagnetic radiation and thereby enable the detection and characterization of self-assembled monolayers (SAMs), for instance in surface-enhanced Raman spectroscopy (SERS). Herein, Au nanohole arrays, developed and characterized as SERS substrates, are exemplarily used for monitoring a solid-phase deprotection and a subsequent copper(I)-catalyzed azide-alkyne cycloaddition "click" reaction, performed directly on the corresponding SAMs. The SERS substrate was found to be highly reliable in terms of signal reproducibility and chemical stability. Furthermore, the intermediates and the product of the solid-phase synthesis were identified by SERS. The spectra of the immobilized compounds showed minor differences compared to spectra of the microcrystalline solids. With its uniform SERS signals and the high chemical stability, the platform paves the way for monitoring molecular manipulations in surface functionalization applications.
Collapse
Affiliation(s)
- Dominik Scherrer
- Science and Technology Department, IBM Research EuropeSäumerstrasse 48803RüschlikonSwitzerland
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - David Vogel
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Ute Drechsler
- Science and Technology Department, IBM Research EuropeSäumerstrasse 48803RüschlikonSwitzerland
| | - Antonis Olziersky
- Science and Technology Department, IBM Research EuropeSäumerstrasse 48803RüschlikonSwitzerland
| | - Christof Sparr
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Marcel Mayor
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- Institute for Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)P. O. Box 364076021KarlsruheGermany
- Lehn Institute of Functional Materials (LIFM)School of ChemistrySun Yat-Sen University (SYSU)Guangzhou510275P.R. China
| | - Emanuel Lörtscher
- Science and Technology Department, IBM Research EuropeSäumerstrasse 48803RüschlikonSwitzerland
| |
Collapse
|
9
|
Ballotin FC, Hartman T, Koek J, Geitenbeek RG, Weckhuysen BM. Operando Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of the NO Reduction Reaction over Rhodium-Based Catalysts. Chemphyschem 2021; 22:1595-1602. [PMID: 34133834 PMCID: PMC8456812 DOI: 10.1002/cphc.202100375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/13/2021] [Indexed: 11/06/2022]
Abstract
Operando shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) with on-line mass spectrometry (MS) has been used to investigate the surface species, such as NO, NOH, NO2 , N2 O, and reaction products of the NO reduction reaction with CO and H2 over supported Rh-based catalysts in the form of catalyst extrudates. By correlating surface intermediates and reaction products, new insights in the reaction mechanism could be obtained. Upon applying different reaction conditions (i. e., H2 or CO), the selectivity of the catalytic reaction could be tuned towards the formation of N2 . Furthermore, in the absence of Rh, no reaction products were detected. The importance of the operando SHINERS as a surface-sensitive characterization technique in the field of heterogeneous catalysis provides routes towards a better understanding of catalytic performance.
Collapse
Affiliation(s)
- Fabiane C. Ballotin
- Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Thomas Hartman
- Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Joris Koek
- Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Robin G. Geitenbeek
- Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Bert M. Weckhuysen
- Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
10
|
Yu Z, Xu Y, Su J, Radjenovic PM, Wang Y, Zheng J, Teng B, Shao Y, Zhou X, Li J. Probing Interfacial Electronic Effects on Single‐Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Yu‐Xing Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin 300457 China
| | - Jun‐Qing Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Petar M. Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ya‐Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Ju‐Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin 300457 China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Xiao‐Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Jian‐Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
11
|
Yu Z, Xu YX, Su JQ, Radjenovic PM, Wang YH, Zheng JF, Teng B, Shao Y, Zhou XS, Li JF. Probing Interfacial Electronic Effects on Single-Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angew Chem Int Ed Engl 2021; 60:15452-15458. [PMID: 33884737 DOI: 10.1002/anie.202102587] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/17/2021] [Indexed: 11/11/2022]
Abstract
Clarifying interfacial electronic effects on molecular adsorption is significant in many chemical and biochemical processes. Here, we used STM breaking junction and shell-isolated nanoparticle-enhanced Raman spectroscopy to probe electron transport and adsorption geometries of 4,4'-bipyridine (4,4'-BPY) at Au(111). Modifying the surface with 1-butyl-3-methylimidazolium cation-containing ionic liquids (ILs) decreases surface electron density and stabilizes a vertical orientation of pyridine through nitrogen atom σ-bond interactions, resulting in uniform adsorption configurations for forming molecular junctions. Modulation from vertical, tilted, to flat, is achieved on adding water to ILs, leading to a new peak ascribed to CC stretching of adsorbed pyridyl ring and 316 % modulation of single-molecule conductance. The dihedral angle between adsorbed pyridyl ring and surface decreases with increasing surface electronic density, enhancing electron donation from surface to pyridyl ring.
Collapse
Affiliation(s)
- Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yu-Xing Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China.,Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jun-Qing Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
12
|
Wei J, Qin SN, Yang J, Ya HL, Huang WH, Zhang H, Hwang BJ, Tian ZQ, Li JF. Probing Single-Atom Catalysts and Catalytic Reaction Processes by Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2021; 60:9306-9310. [PMID: 33523581 DOI: 10.1002/anie.202100198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 02/03/2023]
Abstract
Developing advanced characterization techniques for single-atom catalysts (SACs) is of great significance to identify their structural and catalytic properties. Raman spectroscopy can provide molecular structure information, and thus, the technique is a promising tool for catalysis. However, its application in SACs remains a great challenge because of its low sensitivity. We develop a highly sensitive strategy that achieves the characterization of the structure of SACs and in situ monitoring of the catalytic reaction processes on them by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) for the first time. Using the strategy, Pd SACs on different supports were identified by Raman spectroscopy and the nucleation process of Pd species from single atoms to nanoparticles was revealed. Moreover, the catalytic reaction processes of the hydrogenation of nitro compounds on Pd SACs were monitored in situ, and molecular insights were obtained to uncover the unique catalytic properties of SACs. This work provides a new spectroscopic tool for the in situ study of SACs, especially at solid-liquid interfaces.
Collapse
Affiliation(s)
- Jie Wei
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Si-Na Qin
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Ji Yang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Han-Long Ya
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Wei-Hsiang Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Hua Zhang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Bing Joe Hwang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Zhong-Qun Tian
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Jian-Feng Li
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
13
|
Wei J, Qin S, Yang J, Ya H, Huang W, Zhang H, Hwang BJ, Tian Z, Li J. Probing Single‐Atom Catalysts and Catalytic Reaction Processes by Shell‐Isolated Nanoparticle‐Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jie Wei
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen 361005 China
| | - Si‐Na Qin
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen 361005 China
| | - Ji Yang
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen 361005 China
| | - Han‐Long Ya
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen 361005 China
| | - Wei‐Hsiang Huang
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Hua Zhang
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen 361005 China
| | - Bing Joe Hwang
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Zhong‐Qun Tian
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen 361005 China
| | - Jian‐Feng Li
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen 361005 China
| |
Collapse
|
14
|
Wang Y, Zhao X, Yu Z, Xu Z, Zhao B, Ozaki Y. A Chiral‐Label‐Free SERS Strategy for the Synchronous Chiral Discrimination and Identification of Small Aromatic Molecules. Angew Chem Int Ed Engl 2020; 59:19079-19086. [DOI: 10.1002/anie.202007771] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Yue Wang
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Xueqi Zhao
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Zhi Yu
- State Key Laboratory of Applied Optics Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences Changchun 130033 P. R. China
| | - Zhangrun Xu
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yukihiro Ozaki
- Department of Chemistry School of Science and Technology Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
- Toyota Physical and Chemical Research Institute Nagakute Aichi 480-1192 Japan
| |
Collapse
|
15
|
Wang Y, Zhao X, Yu Z, Xu Z, Zhao B, Ozaki Y. A Chiral‐Label‐Free SERS Strategy for the Synchronous Chiral Discrimination and Identification of Small Aromatic Molecules. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yue Wang
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Xueqi Zhao
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Zhi Yu
- State Key Laboratory of Applied Optics Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences Changchun 130033 P. R. China
| | - Zhangrun Xu
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yukihiro Ozaki
- Department of Chemistry School of Science and Technology Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
- Toyota Physical and Chemical Research Institute Nagakute Aichi 480-1192 Japan
| |
Collapse
|
16
|
Amini H, Ban Ž, Ferger M, Lorenzen S, Rauch F, Friedrich A, Crnolatac I, Kenđel A, Miljanić S, Piantanida I, Marder TB. Tetracationic Bis-Triarylborane 1,3-Butadiyne as a Combined Fluorimetric and Raman Probe for Simultaneous and Selective Sensing of Various DNA, RNA, and Proteins. Chemistry 2020; 26:6017-6028. [PMID: 32104942 PMCID: PMC7318631 DOI: 10.1002/chem.201905328] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Indexed: 11/22/2022]
Abstract
A bis-triarylborane tetracation (4-Ar2 B-3,5-Me2 C6 H2 )-C≡C-C≡C-(3,5-Me2 C6 H2 -4-BAr2 [Ar=(2,6-Me2 -4-NMe3 -C6 H2 )+ ] (24+ ) shows distinctly different behaviour in its fluorimetric response than that of our recently published bis-triarylborane 5-(4-Ar2 B-3,5-Me2 C6 H2 )-2,2'-(C4 H2 S)2 -5'-(3,5-Me2 C6 H2 -4-BAr2 ) (34+ ). Single-crystal X-ray diffraction data on the neutral bis-triarylborane precursor 2 N confirm its rod-like dumbbell structure, which is shown to be important for DNA/RNA targeting and also for BSA protein binding. Fluorimetric titrations with DNA/RNA/BSA revealed the very strong affinity of 24+ and indicated the importance of the properties of the linker connecting the two triarylboranes. Using the butadiyne rather than a bithiophene linker resulted in an opposite emission effect (quenching vs. enhancement), and 24+ bound to BSA 100 times stronger than 34+ . Moreover, 24+ interacted strongly with ss-RNA, and circular dichroism (CD) results suggest ss-RNA chain-wrapping around the rod-like bis-triarylborane dumbbell structure like a thread around a spindle, a very unusual mode of binding of ss-RNA with small molecules. Furthermore, 24+ yielded strong Raman/SERS signals, allowing DNA or protein detection at ca. 10 nm concentrations. The above observations, combined with low cytotoxicity, efficient human cell uptake and organelle-selective accumulation make such compounds intriguing novel lead structures for bio-oriented, dual fluorescence/Raman-based applications.
Collapse
Affiliation(s)
- Hashem Amini
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgWürzburg97074Germany
| | - Željka Ban
- Laboratory for Study of Interactions of BiomacromoleculesDivision of Organic Chemistry & BiochemistryRuđer Bošković InstituteZagrebHR-10000Croatia
| | - Matthias Ferger
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgWürzburg97074Germany
| | - Sabine Lorenzen
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgWürzburg97074Germany
| | - Florian Rauch
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgWürzburg97074Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgWürzburg97074Germany
| | - Ivo Crnolatac
- Laboratory for Study of Interactions of BiomacromoleculesDivision of Organic Chemistry & BiochemistryRuđer Bošković InstituteZagrebHR-10000Croatia
| | - Adriana Kenđel
- Division of Analytical ChemistryDepartment of ChemistryFaculty of ScienceUniversity of ZagrebZagrebHR-10000Croatia
| | - Snežana Miljanić
- Division of Analytical ChemistryDepartment of ChemistryFaculty of ScienceUniversity of ZagrebZagrebHR-10000Croatia
| | - Ivo Piantanida
- Laboratory for Study of Interactions of BiomacromoleculesDivision of Organic Chemistry & BiochemistryRuđer Bošković InstituteZagrebHR-10000Croatia
| | - Todd B. Marder
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgWürzburg97074Germany
| |
Collapse
|
17
|
Wondergem CS, Kromwijk JJG, Slagter M, Vrijburg WL, Hensen EJM, Monai M, Vogt C, Weckhuysen BM. In Situ Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of Nickel-Catalyzed Hydrogenation Reactions. Chemphyschem 2020; 21:625-632. [PMID: 31981395 PMCID: PMC7187311 DOI: 10.1002/cphc.201901162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/18/2020] [Indexed: 11/17/2022]
Abstract
Synthesis methods to prepare lower transition metal catalysts and specifically Ni for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) are explored. Impregnation, colloidal deposition, and spark ablation have been investigated as suitable synthesis routes to prepare SHINERS-active Ni/Au@SiO2 catalyst/Shell-Isolated Nanoparticles (SHINs). Ni precursors are confirmed to be notoriously difficult to reduce and the temperatures required are generally harsh enough to destroy SHINs, rendering SHINERS experiments on Ni infeasible using this approach. For colloidally synthesized Ni nanoparticles deposited on Au@SiO2 SHINs, stabilizing ligands first need to be removed before application is possible in catalysis. The required procedure results in transformation of the metallic Ni core to a fully oxidized metal nanoparticle, again too challenging to reduce at temperatures still compatible with SHINs. Finally, by use of spark ablation we were able to prepare metallic Ni catalysts directly on Au@SiO2 SHINs deposited on a Si wafer. These Ni/Au@SiO2 catalyst/SHINs were subsequently successfully probed with several molecules (i. e. CO and acetylene) of interest for heterogeneous catalysis, and we show that they could be used to study the in situ hydrogenation of acetylene. We observe the interaction of acetylene with the Ni surface. This study further illustrates the true potential of SHINERS by opening the door to studying industrially relevant reactions under in situ or operando reaction conditions.
Collapse
Affiliation(s)
- Caterina S. Wondergem
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Josepha J. G. Kromwijk
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Mark Slagter
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Wilbert L. Vrijburg
- Laboratory of Inorganic Materials and CatalysisEindhoven University of Technology P.O. Box 5135600 MBEindhovenThe Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and CatalysisEindhoven University of Technology P.O. Box 5135600 MBEindhovenThe Netherlands
| | - Matteo Monai
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Charlotte Vogt
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
18
|
Bell SEJ, Charron G, Cortés E, Kneipp J, de la Chapelle ML, Langer J, Procházka M, Tran V, Schlücker S. Towards Reliable and Quantitative Surface-Enhanced Raman Scattering (SERS): From Key Parameters to Good Analytical Practice. Angew Chem Int Ed Engl 2020; 59:5454-5462. [PMID: 31588641 PMCID: PMC7154527 DOI: 10.1002/anie.201908154] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/11/2019] [Indexed: 01/15/2023]
Abstract
Experimental results obtained in different laboratories world-wide by researchers using surface-enhanced Raman scattering (SERS) can differ significantly. We, an international team of scientists with long-standing expertise in SERS, address this issue from our perspective by presenting considerations on reliable and quantitative SERS. The central idea of this joint effort is to highlight key parameters and pitfalls that are often encountered in the literature. To that end, we provide here a series of recommendations on: a) the characterization of solid and colloidal SERS substrates by correlative electron and optical microscopy and spectroscopy, b) on the determination of the SERS enhancement factor (EF), including suitable Raman reporter/probe molecules, and finally on c) good analytical practice. We hope that both newcomers and specialists will benefit from these recommendations to increase the inter-laboratory comparability of experimental SERS results and further establish SERS as an analytical tool.
Collapse
Affiliation(s)
- Steven E. J. Bell
- School of Chemistry and Chemical EngineeringQueen's UniversityBelfastBT9 5AGUK
| | | | - Emiliano Cortés
- Chair in Hybrid Nano-systemsNano-institute MunichFaculty of PhysicsLudwig-Maximilians-Universität München80539MunichGermany
| | - Janina Kneipp
- Department of ChemistryHumboldt-Universität zu Berlin12489BerlinGermany
| | | | - Judith Langer
- CIC biomaGUNE and CIBER-BBNPaseo de Miramón 18220014Donostia-San SebastianSpain
| | - Marek Procházka
- Institute of PhysicsFaculty of Mathematics and PhysicsCharles UniversityKe Karlovu 5121 16Prague 2Czech Republic
| | - Vi Tran
- Department of Chemistry and CENIDEUniversity of Duisburg-Essen45141EssenGermany
| | - Sebastian Schlücker
- Department of Chemistry and CENIDEUniversity of Duisburg-Essen45141EssenGermany
| |
Collapse
|
19
|
Ye Y, Bai H, Liu W, Li Y, Yu M, Li J, Xi G. Ultrasmall Ag Clusters Modified W
18
O
49
Ultrathin Nanowires for Sensitive Surface Enhanced Raman Spectroscopy Detection. ChemistrySelect 2020. [DOI: 10.1002/slct.202000567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuting Ye
- College of Mechanical and Electrical EngineeringChina Jiliang University No. 258, Xueyuan Street, Xiasha Higher Education Zone Hangzhou
- Institute of Industrial and Consumer Product SafetyChinese Academy of Inspection and Quarantine No. 11, Ronghua South Road Beijing
| | - Hua Bai
- Institute of Industrial and Consumer Product SafetyChinese Academy of Inspection and Quarantine No. 11, Ronghua South Road Beijing
| | - Wei Liu
- Institute of Industrial and Consumer Product SafetyChinese Academy of Inspection and Quarantine No. 11, Ronghua South Road Beijing
| | - Yahui Li
- Institute of Industrial and Consumer Product SafetyChinese Academy of Inspection and Quarantine No. 11, Ronghua South Road Beijing
| | - Mingzhou Yu
- College of Mechanical and Electrical EngineeringChina Jiliang University No. 258, Xueyuan Street, Xiasha Higher Education Zone Hangzhou
| | - Junfang Li
- Institute of Industrial and Consumer Product SafetyChinese Academy of Inspection and Quarantine No. 11, Ronghua South Road Beijing
| | - Guangcheng Xi
- Institute of Industrial and Consumer Product SafetyChinese Academy of Inspection and Quarantine No. 11, Ronghua South Road Beijing
| |
Collapse
|
20
|
Wang X, Guo L. SERS Activity of Semiconductors: Crystalline and Amorphous Nanomaterials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xiaotian Wang
- School of ChemistryKey Laboratory of Bio-Inspired Smart Interfacial Science and TechnologyMinistry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringBeihang University 100191 Beijing P. R. China
| | - Lin Guo
- School of ChemistryKey Laboratory of Bio-Inspired Smart Interfacial Science and TechnologyMinistry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringBeihang University 100191 Beijing P. R. China
| |
Collapse
|
21
|
Bell SEJ, Charron G, Cortés E, Kneipp J, Lamy de la Chapelle M, Langer J, Procházka M, Tran V, Schlücker S. Auf dem Weg zur verlässlichen und quantitativen SERS‐Spektroskopie: von Schlüsselparametern zur guten analytischen Praxis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201908154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Steven E. J. Bell
- School of Chemistry and Chemical Engineering Queen's University Belfast BT9 5AG Großbritannien
| | - Gaëlle Charron
- Laboratoire MSC Université Paris-Diderot 75013 Paris Frankreich
| | - Emiliano Cortés
- Lehrstuhl für hybride Nanosysteme Nano-Institut München Fakultät für Physik Ludwig-Maximilians-Universität München 80539 München Deutschland
| | - Janina Kneipp
- Institut für Chemie Humboldt-Universität zu Berlin 12489 Berlin Deutschland
| | - Marc Lamy de la Chapelle
- IMMM – UMR 6283 CNRS Le Mans Université Avenue Olivier Messiaen 72085 Le Mans, Cedex 9 Frankreich
| | - Judith Langer
- CIC biomaGUNE und CIBER-BBN Paseo de Miramón 182 20014 Donostia-San Sebastian Spanien
| | - Marek Procházka
- Institut für Physik, Fakultät für Mathematik und Physik Karls-Universität Ke Karlovu 5 121 16 Prague 2 Czech Republic
| | - Vi Tran
- Fakultät für Chemie und CENIDE Universität Duisburg-Essen 45141 Essen Deutschland
| | - Sebastian Schlücker
- Fakultät für Chemie und CENIDE Universität Duisburg-Essen 45141 Essen Deutschland
| |
Collapse
|
22
|
Zhang J, Gim S, Paris G, Dallabernardina P, Schmitt CNZ, Eickelmann S, Loeffler FF. Ultrasonic-Assisted Synthesis of Highly Defined Silver Nanodimers by Self-Assembly for Improved Surface-Enhanced Raman Spectroscopy. Chemistry 2020; 26:1243-1248. [PMID: 31834652 PMCID: PMC7027530 DOI: 10.1002/chem.201904518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 11/29/2022]
Abstract
Considerable research efforts have been devoted to surface-enhanced Raman spectroscopy (SERS), due to its excellent performance in biosensing and imaging. Here, a novel and facile strategy for the fabrication of well-defined and uniform nanodimers as SERS substrates is presented. By the assistance of ultrasound, the violent polyol process for particle generation becomes controllable, enabling the self-assembly of nanostars to nanodimers. Moreover, the aggregation of nanodimers can be easily tuned by post-ultrasonic treatment, which gives a sensitive substrate for SERS.
Collapse
Affiliation(s)
- Junfang Zhang
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Soeun Gim
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Grigori Paris
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Pietro Dallabernardina
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Clemens N. Z. Schmitt
- Department of BiomaterialsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Stephan Eickelmann
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Felix F. Loeffler
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
23
|
Wang X, Guo L. SERS Activity of Semiconductors: Crystalline and Amorphous Nanomaterials. Angew Chem Int Ed Engl 2019; 59:4231-4239. [PMID: 31733023 DOI: 10.1002/anie.201913375] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Indexed: 11/06/2022]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy on semiconductors has attracted increasing attention due to its high spectral reproducibility and unique selectively to target molecules. Recently, endeavors have been made in fabricating novel SERS-active semiconductor substrates and exploring new enhancement mechanisms to improve the sensitivity of semiconductor substrates. This Minireview explains the enhancement mechanism of the semiconductor SERS effect in a brief tutorial and summarize recent developments of novel semiconductor substrates, in particular with regard to the remarkable SERS activity of amorphous semiconductor nanomaterials. Potential applications of semiconductor SERS are also a key issue of concern. We discuss a variety of promising applications of semiconductor SERS in the fields of in situ analytical chemistry, spectroelectrochemical analysis, biological sensing, and trace detection.
Collapse
Affiliation(s)
- Xiaotian Wang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, P. R. China
| | - Lin Guo
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, P. R. China
| |
Collapse
|
24
|
Wondergem CS, van Swieten TP, Geitenbeek RG, Erné BH, Weckhuysen BM. Extending Surface-Enhanced Raman Spectroscopy to Liquids Using Shell-Isolated Plasmonic Superstructures. Chemistry 2019; 25:15772-15778. [PMID: 31478273 DOI: 10.1002/chem.201903204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Indexed: 12/20/2022]
Abstract
Plasmonic superstructures (PS) based on Au/SiO2 were prepared for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) in liquid phase applications. These superstructures are composed of functionalized SiO2 spheres with plasmonic Au nanoparticles (NPs) on their surface. Functionalization was performed with (3-aminopropyl)trimethoxysilane, (3-mercaptopropyl)trimethoxysilane and poly(ethylene-imine) (PEI). Of these three, PEI-functionalized spheres showed the highest adsorption density of Au NPs in TEM, UV/Vis and dynamic light scattering (DLS) experiments. Upon decreasing the Au NP/SiO2 sphere size ratio, an increase in adsorption density was also observed. To optimize plasmonic activity, 61 nm Au NPs were adsorbed onto 900 nm SiO2 -PEI spheres and these PS were coated with an ultrathin layer (1-2 nm) of SiO2 to obtain Shell-Isolated Plasmonic Superstructures (SHIPS), preventing direct contact between Au NPs and the liquid medium. Zeta potential measurements, TEM and SHINERS showed that SiO2 coating was successful. The detection limit for SHINERS using SHIPS and a 638 nm laser was around 10-12 m of Rhodamine (10-15 m for uncoated PS), all with acquisition settings suitable for catalysis applications.
Collapse
Affiliation(s)
- Caterina S Wondergem
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Thomas P van Swieten
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Robin G Geitenbeek
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Ben H Erné
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| |
Collapse
|
25
|
Wang YH, Le JB, Li WQ, Wei J, Radjenovic PM, Zhang H, Zhou XS, Cheng J, Tian ZQ, Li JF. In situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts towards the Oxygen Reduction Reaction (ORR). Angew Chem Int Ed Engl 2019; 58:16062-16066. [PMID: 31513325 DOI: 10.1002/anie.201908907] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 11/07/2022]
Abstract
It is vital to understand the oxygen reduction reaction (ORR) mechanism at the molecular level for the rational design and synthesis of high activity fuel-cell catalysts. Surface enhanced Raman spectroscopy (SERS) is a powerful technique capable of detecting the bond vibrations of surface species in the low wavenumber range, however, using it to probe practical nanocatalysts remains extremely challenging. Herein, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was used to investigate ORR processes on the surface of bimetallic Pt3 Co nanocatalyst structures. Direct spectroscopic evidence of *OOH suggests that ORR undergoes an associative mechanism on Pt3 Co in both acidic and basic environments. Density functional theory (DFT) calculations show that the weak *O adsorption arise from electronic effect on the Pt3 Co surface accounts for enhanced ORR activity. This work shows SHINERS is a promising technique for the real-time observation of catalytic processes.
Collapse
Affiliation(s)
- Ya-Hao Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jia-Bo Le
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei-Qiong Li
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jie Wei
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Petar M Radjenovic
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hua Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jun Cheng
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Zhong-Qun Tian
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jian-Feng Li
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| |
Collapse
|
26
|
Wang Y, Le J, Li W, Wei J, Radjenovic PM, Zhang H, Zhou X, Cheng J, Tian Z, Li J. In situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts towards the Oxygen Reduction Reaction (ORR). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908907] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ya‐Hao Wang
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Jia‐Bo Le
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Wei‐Qiong Li
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Jie Wei
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Petar M. Radjenovic
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Hua Zhang
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Xiao‐Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 China
| | - Jun Cheng
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Zhong‐Qun Tian
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
| | - Jian‐Feng Li
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringCollege of EnergyCollege of MaterialsXiamen University Xiamen 361005 China
- Shenzhen Research Institute of Xiamen University Shenzhen 518000 China
| |
Collapse
|
27
|
Wei W, Bai F, Fan H. Oriented Gold Nanorod Arrays: Self‐Assembly and Optoelectronic Applications. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wenbo Wei
- Key Laboratory for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High-efficiency Display and Lighting TechnologySchool of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and ApplicationsHenan University Kaifeng 475004 China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High-efficiency Display and Lighting TechnologySchool of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and ApplicationsHenan University Kaifeng 475004 China
| | - Hongyou Fan
- Department of Chemical and Biological EngineeringThe University of New Mexico Albuquerque NM 87131 USA
- Advanced Materials LaboratorySandia National Laboratories Albuquerque NM 87106 USA
- Center for Integrated NanotechnologiesSandia National Laboratories Albuquerque NM 87185 USA
| |
Collapse
|
28
|
Wei W, Bai F, Fan H. Oriented Gold Nanorod Arrays: Self-Assembly and Optoelectronic Applications. Angew Chem Int Ed Engl 2019; 58:11956-11966. [PMID: 30913343 DOI: 10.1002/anie.201902620] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 11/07/2022]
Abstract
Self-assembly of anisotropic plasmonic nanomaterials into ordered superstructures has become popular in nanoscience because of their unique anisotropic optical and electronic properties. Gold nanorods (GNRs) are a well-defined functional building block for fabrication of these superstructures. They possess important anisotropic plasmonic characteristics that result from strong local electric field and are responsive to visible and near-IR light. There are recent examples of assembling the GNRs into ordered arrays or superstructures through processes such as solvent evaporation and interfacial assembly. In this Minireview, recent progress in the development of the self-assembled GNR arrays is described, with focus on the formation of oriented GNR arrays on substrates. Key driving forces are discussed, and different strategies and self-assembly processes of forming oriented GNR arrays are presented. The applications of the oriented GNR arrays in optoelectronic devices are also overviewed, especially surface enhanced Raman scattering (SERS).
Collapse
Affiliation(s)
- Wenbo Wei
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Hongyou Fan
- Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM, 87131, USA.,Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM, 87106, USA.,Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| |
Collapse
|
29
|
González‐Domínguez JM, Colusso A, Litti L, Ostric A, Meneghetti M, Da Ros T. Thiolated Graphene Oxide Nanoribbons as Templates for Anchoring Gold Nanoparticles: Two‐Dimensional Nanostructures for SERS. Chempluschem 2019; 84:862-871. [DOI: 10.1002/cplu.201900150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/16/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Jose M. González‐Domínguez
- INSTM Department of Chemical and Pharmaceutical SciencesUniversity of Trieste Via L. Giorgieri 1 34127 Trieste Italy
- Instituto de Carboquímica (CSIC) C/Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - Andrea Colusso
- Department of Chemical SciencesUniversity of Padova Via Marzolo 1 35131 Padova Italy
| | - Lucio Litti
- Department of Chemical SciencesUniversity of Padova Via Marzolo 1 35131 Padova Italy
| | - Adrian Ostric
- INSTM Department of Chemical and Pharmaceutical SciencesUniversity of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Moreno Meneghetti
- Department of Chemical SciencesUniversity of Padova Via Marzolo 1 35131 Padova Italy
| | - Tatiana Da Ros
- INSTM Department of Chemical and Pharmaceutical SciencesUniversity of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| |
Collapse
|
30
|
Bizzotto F, Ouhbi H, Fu Y, Wiberg GKH, Aschauer U, Arenz M. Examining the Structure Sensitivity of the Oxygen Evolution Reaction on Pt Single‐Crystal Electrodes: A Combined Experimental and Theoretical Study. Chemphyschem 2019; 20:3154-3162. [DOI: 10.1002/cphc.201900193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Francesco Bizzotto
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Hassan Ouhbi
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Yongchun Fu
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
- present address: College of Chemistry and Chemical EngineeringHunan University 410082 Changsha China
| | - Gustav K. H. Wiberg
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
- present address: Department of Physical ScienceHarold Washington College, City colleges of Chicago 30 E Lake St Chicago IL 60601 USA
| | - Ulrich Aschauer
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Matthias Arenz
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
31
|
Garoz‐Ruiz J, Perales‐Rondon JV, Heras A, Colina A. Spectroelectrochemistry of Quantum Dots. Isr J Chem 2019. [DOI: 10.1002/ijch.201900028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jesus Garoz‐Ruiz
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | - Juan V. Perales‐Rondon
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | - Aranzazu Heras
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | - Alvaro Colina
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| |
Collapse
|
32
|
Garoz‐Ruiz J, Perales‐Rondon JV, Heras A, Colina A. Spectroelectrochemical Sensing: Current Trends and Challenges. ELECTROANAL 2019. [DOI: 10.1002/elan.201900075] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jesus Garoz‐Ruiz
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | | | - Aranzazu Heras
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | - Alvaro Colina
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| |
Collapse
|
33
|
Tran V, Walkenfort B, König M, Salehi M, Schlücker S. Rapid, Quantitative, and Ultrasensitive Point-of-Care Testing: A Portable SERS Reader for Lateral Flow Assays in Clinical Chemistry. Angew Chem Int Ed Engl 2019; 58:442-446. [PMID: 30288886 PMCID: PMC6582447 DOI: 10.1002/anie.201810917] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 11/27/2022]
Abstract
The design of a portable Raman/SERS-LFA reader with line illumination using a custom-made fiber optic probe for rapid, quantitative, and ultrasensitive point-of-care testing (POCT) is presented. The pregnancy hormone human chorionic gonadotropin (hCG) is detectable in clinical samples within only 2-5 s down to approximately 1.6 mIU mL-1 . This acquisition time is several orders of magnitude shorter than those of existing approaches requiring expensive Raman instrumentation, and the method is 15-times more sensitive than a commercially available lateral flow assay (LFA) as the gold standard. The SERS-LFA technology paves the way for affordable, quantitative, and ultrasensitive POCT with multiplexing potential in real-world applications, ranging from clinical chemistry to food and environmental analysis as well as drug and biowarfare agent testing.
Collapse
Affiliation(s)
- Vi Tran
- Department of ChemistryCenter for Nanointegration Duisburg-Essen (CENIDE), andCenter of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 545141EssenGermany
| | - Bernd Walkenfort
- Department of ChemistryCenter for Nanointegration Duisburg-Essen (CENIDE), andCenter of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 545141EssenGermany
| | - Matthias König
- Department of ChemistryCenter for Nanointegration Duisburg-Essen (CENIDE), andCenter of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 545141EssenGermany
| | - Mohammad Salehi
- Department of ChemistryCenter for Nanointegration Duisburg-Essen (CENIDE), andCenter of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 545141EssenGermany
| | - Sebastian Schlücker
- Department of ChemistryCenter for Nanointegration Duisburg-Essen (CENIDE), andCenter of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 545141EssenGermany
| |
Collapse
|
34
|
Gao ST, Xiang SQ, Jiang Y, Zhao LB. A Density Functional Theoretical Study on the Charge-Transfer Enhancement in Surface-Enhanced Raman Scattering. Chemphyschem 2018; 19:3401-3409. [PMID: 30294973 DOI: 10.1002/cphc.201800812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 11/09/2022]
Abstract
The chemical enhancement due to ground-state charge transfer (GSCT) and photon-driven charge transfer (PDCT) in surface-enhanced Raman scattering (SERS) has been investigated by density functional theory. Para-substituted thiophenol derivatives adsorbed on silver and gold surfaces are selected as model systems to evaluate the chemical enhancement factor. By changing the functional groups on thiophenol, we are allowed to modulate the chemical interactions between the thiophenol and the metal cluster in both ground state and charge transfer excited state. Both off-resonance and pre-resonance SERS spectra are simulated to calculate the chemical enhancement factors. The GSCT enhancement factor, EFGSCT , shows a roughly linear relationship to (ωTP /ωM-TP )4 , where ωTP denotes the HOMO-LUMO gap of free molecule, and ωM-TP denotes the energy difference between the HOMO of the molecule and the LUMO of the metal. The PDCT enhancement factor, EFPDCT , is governed by the energy difference between the incident light energy and the excitation energy to the CT excited state. EFPDCT first increases and then decreases with the increase of incident light energy.
Collapse
Affiliation(s)
- Shu-Ting Gao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shi-Qin Xiang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yimin Jiang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Liu-Bin Zhao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
35
|
Kang L, Guo Y, Miao P, Sun M, Song B, Xu P, Liu X. Study of Surface Plasmon Assisted Reactions to Understand the Light‐Induced Decarboxylation of N719 Sensitizer. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Leilei Kang
- School of Chemistry and Chemical Engineering Harbin Institute of Technology 150001 Harbin China
- Dalian Institute of Chemical Physics 116023 Dalian China
| | - Yan Guo
- School of Chemistry and Chemical Engineering Harbin Institute of Technology 150001 Harbin China
| | - Peng Miao
- School of Chemistry and Chemical Engineering Harbin Institute of Technology 150001 Harbin China
| | - Mengtao Sun
- School of Mathematics and Physics University of Science and Technology Beijing 100083 Beijing China
| | - Bo Song
- School of Chemistry and Chemical Engineering Harbin Institute of Technology 150001 Harbin China
| | - Ping Xu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology 150001 Harbin China
| | - Xiaoyan Liu
- Dalian Institute of Chemical Physics 116023 Dalian China
| |
Collapse
|
36
|
Tran V, Walkenfort B, König M, Salehi M, Schlücker S. Schnelle, quantitative und hochempfindliche patientennahe Labordiagnostik: ein tragbares Raman-Lesegerät für seitliche Flusstests in der klinischen Chemie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vi Tran
- Fakultät für Chemie; Center for Nanointegration Duisburg-Essen (CENIDE); Zentrum für Medizinische Biotechnologie (ZMB); Universität Duisburg-Essen; Universitätsstraße 5 45141 Essen Deutschland
| | - Bernd Walkenfort
- Fakultät für Chemie; Center for Nanointegration Duisburg-Essen (CENIDE); Zentrum für Medizinische Biotechnologie (ZMB); Universität Duisburg-Essen; Universitätsstraße 5 45141 Essen Deutschland
| | - Matthias König
- Fakultät für Chemie; Center for Nanointegration Duisburg-Essen (CENIDE); Zentrum für Medizinische Biotechnologie (ZMB); Universität Duisburg-Essen; Universitätsstraße 5 45141 Essen Deutschland
| | - Mohammad Salehi
- Fakultät für Chemie; Center for Nanointegration Duisburg-Essen (CENIDE); Zentrum für Medizinische Biotechnologie (ZMB); Universität Duisburg-Essen; Universitätsstraße 5 45141 Essen Deutschland
| | - Sebastian Schlücker
- Fakultät für Chemie; Center for Nanointegration Duisburg-Essen (CENIDE); Zentrum für Medizinische Biotechnologie (ZMB); Universität Duisburg-Essen; Universitätsstraße 5 45141 Essen Deutschland
| |
Collapse
|
37
|
Zhu K, Zhu X, Yang W. Application of In Situ Techniques for the Characterization of NiFe-Based Oxygen Evolution Reaction (OER) Electrocatalysts. Angew Chem Int Ed Engl 2018; 58:1252-1265. [PMID: 29665168 DOI: 10.1002/anie.201802923] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 11/11/2022]
Abstract
Developing high-efficiency and affordable electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a crucial bottleneck on the way to the practical applications of rechargeable energy storage technologies and water splitting for producing clean fuel (H2 ). In recent years, NiFe-based materials have proven to be excellent electrocatalysts for OER. Understanding the characteristics that affect OER activity and determining the OER mechanism are of vital importance for the development of OER electrocatalysts. Therefore, in situ characterization techniques performed under OER conditions are urgently needed to monitor the key intermediates together with identifying the OER active centers and phases. In this Minireview, recent advances regarding in situ techniques for the characterization of NiFe-based electrocatalysts are thoroughly summarized, including Raman spectroscopy, X-ray absorption spectroscopy, ambient pressure X-ray photoelectron spectroscopy, Mössbauer spectroscopy, Ultraviolet-visible spectroscopy, differential electrochemical mass spectrometry, and surface interrogation scanning electrochemical microscopy. The results from these in situ measurements not only reveal the structural transformation and the progressive oxidation of the catalytic species under OER conditions, but also disclose the crucial role of Ni and Fe during the OER. Finally, the need for developing new in situ techniques and theoretical investigations is discussed to better understand the OER mechanism and design promising OER electrocatalysts.
Collapse
Affiliation(s)
- Kaiyue Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457# Zhongshan Road, Dalian, 116023, Liaoning, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457# Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457# Zhongshan Road, Dalian, 116023, Liaoning, China
| |
Collapse
|
38
|
Zhu K, Zhu X, Yang W. In-situ-Methoden zur Charakterisierung elektrochemischer NiFe-Sauerstoffentwicklungskatalysatoren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802923] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kaiyue Zhu
- State Key Laboratory of Catalysis; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; 457# Zhongshan Road, Dalian 116023 Liaoning China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Xuefeng Zhu
- State Key Laboratory of Catalysis; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; 457# Zhongshan Road, Dalian 116023 Liaoning China
| | - Weishen Yang
- State Key Laboratory of Catalysis; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; 457# Zhongshan Road, Dalian 116023 Liaoning China
| |
Collapse
|
39
|
Spectro-Electrochemical Microfluidic Platform for Monitoring Multi-Step Cascade Reactions. ChemElectroChem 2018. [DOI: 10.1002/celc.201800578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
40
|
Hartman T, Wondergem CS, Weckhuysen BM. Practical Guidelines for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of Heterogeneous Catalysts. Chemphyschem 2018; 19:2461-2467. [PMID: 29971926 DOI: 10.1002/cphc.201800509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Indexed: 11/11/2022]
Abstract
Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) has proven to be a useful characterization tool for heterogeneous catalysis research. The advantage of SHINERS lies in studying surface reactions on solid catalysts, including the detection of reactants, intermediates and products, in real time. However, due to the extremely strong local electric fields, minor amounts of contaminants can already have a big impact on the quality and interpretation of the spectroscopic data obtained. Often, a large part of the organic fingerprint region (1100-1700 cm-1 ) is omitted from SHINER spectra as this is not the main region of interest. However, we show that bands in this region are an important indication of the cleanliness of the substrate. In this work, we propose robust synthesis and measurement protocols to obtain clean SHINERS substrates amenable for catalysis research. By cleaning the substrates with various heat and oxidation treatments, featureless Raman spectra can be obtained. Furthermore, very pure gas feeds are required and must be obtained by flushing the gas lines and the reaction chamber beforehand and installing a filter for further cleaning the gas feed. Controlling the laser power to limit substrate and sample degradation is also a crucial aspect of proper measurement protocols.
Collapse
Affiliation(s)
- Thomas Hartman
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99, 3584 CG Utrecht, (The Netherlands)
| | - Caterina S Wondergem
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99, 3584 CG Utrecht, (The Netherlands)
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99, 3584 CG Utrecht, (The Netherlands)
| |
Collapse
|
41
|
Galvan DD, Yu Q. Surface-Enhanced Raman Scattering for Rapid Detection and Characterization of Antibiotic-Resistant Bacteria. Adv Healthc Mater 2018; 7:e1701335. [PMID: 29504273 DOI: 10.1002/adhm.201701335] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/30/2017] [Indexed: 12/19/2022]
Abstract
As the prevalence of antibiotic-resistant bacteria continues to rise, biosensing technologies are needed to enable rapid diagnosis of bacterial infections. Furthermore, understanding the unique biochemistry of resistance mechanisms can facilitate the development of next generation therapeutics. Surface-enhanced Raman scattering (SERS) offers a potential solution to real-time diagnostic technologies, as well as a route to fundamental, mechanistic studies. In the current review, SERS-based approaches to the detection and characterization of antibiotic-resistant bacteria are covered. The commonly used nanomaterials (nanoparticles and nanostructured surfaces) and surface modifications (antibodies, aptamers, reporters, etc.) for SERS bacterial detection and differentiation are discussed first, and followed by a review of SERS-based detection of antibiotic-resistant bacteria from environmental/food processing and clinical sources. Antibiotic susceptibility testing and minimum inhibitory concentration testing with SERS are then summarized. Finally, recent developments of SERS-based chemical imaging/mapping of bacteria are reviewed.
Collapse
Affiliation(s)
- Daniel D. Galvan
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Qiuming Yu
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
42
|
Pinheiro PC, Daniel-da-Silva AL, Nogueira HIS, Trindade T. Functionalized Inorganic Nanoparticles for Magnetic Separation and SERS Detection of Water Pollutants. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paula C. Pinheiro
- Department of Chemistry-CICECO; University of Aveiro; 3810-193 Aveiro Portugal
| | | | | | - Tito Trindade
- Department of Chemistry-CICECO; University of Aveiro; 3810-193 Aveiro Portugal
| |
Collapse
|
43
|
Clausmeyer J, Nebel M, Grützke S, Kayran YU, Schuhmann W. Local Surface Modifications Investigated by Combining Scanning Electrochemical Microscopy and Surface-Enhanced Raman Scattering. Chempluschem 2018; 83:414-417. [DOI: 10.1002/cplu.201800031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/20/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Jan Clausmeyer
- Analytical Chemistry, Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätsstrasse 150 44780 Bochum Germany
| | - Michaela Nebel
- Sensolytics GmbH; Universitätsstrasse 142 44799 Bochum Germany
| | - Stefanie Grützke
- Analytical Chemistry, Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätsstrasse 150 44780 Bochum Germany
| | - Yasin U. Kayran
- Analytical Chemistry, Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätsstrasse 150 44780 Bochum Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry, Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätsstrasse 150 44780 Bochum Germany
| |
Collapse
|
44
|
Hartman T, Weckhuysen BM. Thermally Stable TiO 2 - and SiO 2 -Shell-Isolated Au Nanoparticles for In Situ Plasmon-Enhanced Raman Spectroscopy of Hydrogenation Catalysts. Chemistry 2018; 24:3733-3741. [PMID: 29388737 PMCID: PMC5873377 DOI: 10.1002/chem.201704370] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Indexed: 12/22/2022]
Abstract
Raman spectroscopy is known as a powerful technique for solid catalyst characterization as it provides vibrational fingerprints of (metal) oxides, reactants, and products. It can even become a strong surface-sensitive technique by implementing shell-isolated surface-enhanced Raman spectroscopy (SHINERS). Au@TiO2 and Au@SiO2 shell-isolated nanoparticles (SHINs) of various sizes were therefore prepared for the purpose of studying heterogeneous catalysis and the effect of metal oxide coating. Both SiO2 - and TiO2 -SHINs are effective SHINERS substrates and thermally stable up to 400 °C. Nano-sized Ru and Rh hydrogenation catalysts were assembled over the SHINs by wet impregnation of aqueous RuCl3 and RhCl3 . The substrates were implemented to study CO adsorption and hydrogenation under in situ conditions at various temperatures to illustrate the differences between catalysts and shell materials with SHINERS. This work demonstrates the potential of SHINS for in situ characterization studies in a wide range of catalytic reactions.
Collapse
Affiliation(s)
- Thomas Hartman
- Inorganic Chemistry and Catalysis GroupDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis GroupDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
45
|
Harroun SG. The Controversial Orientation of Adenine on Gold and Silver. Chemphyschem 2018; 19:1003-1015. [DOI: 10.1002/cphc.201701223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Scott G. Harroun
- Department of Chemistry; Université de Montréal; Montréal Québec H3C 3J7 Canada
| |
Collapse
|
46
|
Miao P, Huang W, Gao M, Chu J, Song B, Xu P. Photothermally Enhanced Plasmon-Driven Catalysis on Fe5
C2
@Au Core-Shell Nanostructures. ChemCatChem 2018. [DOI: 10.1002/cctc.201701901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Peng Miao
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P.R. China
| | - Wei Huang
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P.R. China
| | - Mansha Gao
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P.R. China
| | - Jiayu Chu
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P.R. China
| | - Bo Song
- Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Harbin 150001 P.R. China
| | - Ping Xu
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P.R. China
| |
Collapse
|
47
|
Clemente I, Ristori S, Pierucci F, Muniz-Miranda M, Salvatici MC, Giordano C, Meacci E, Feis A, Gonnelli C. Gold Nanoparticles from Vegetable Extracts Using Different Plants from the Market: A Study on Stability, Shape and Toxicity. ChemistrySelect 2017. [DOI: 10.1002/slct.201701681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ilaria Clemente
- Department of Biology; University of Florence; via Gino Capponi 9 Firenze 50121 Italy
| | - Sandra Ristori
- Department Chemistry and CSGI; University of Florence; via della Lastruccia 3 Sesto Fiorentino 50019 Italy
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”; Research unit of Molecular and Applied Biology; University of Florence; Viale GB Morgagni 50 Firenze 50134 Italy
| | - Maurizio Muniz-Miranda
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3 Sesto Fiorentino 50019 Italy
| | - Maria Cristina Salvatici
- CEME - Centre of Electron Microscopy “Laura Bonzi”, ICCOM; National Research Council (CNR); Via Madonna del Piano 10 Sesto Fiorentino 50019 Italy
| | - Cristiana Giordano
- CEME - Centre of Electron Microscopy “Laura Bonzi”, ICCOM; National Research Council (CNR); Via Madonna del Piano 10 Sesto Fiorentino 50019 Italy
- Trees and Timber Institute, IVALSA; National Research Council (CNR); Via Madonna del Piano 10 Sesto Fiorentino 50019 Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”; Research unit of Molecular and Applied Biology; University of Florence; Viale GB Morgagni 50 Firenze 50134 Italy
| | - Alessandro Feis
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3 Sesto Fiorentino 50019 Italy
| | - Cristina Gonnelli
- Department of Biology; University of Florence; via Gino Capponi 9 Firenze 50121 Italy
| |
Collapse
|
48
|
Adarsh N, Ramya AN, Maiti KK, Ramaiah D. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells. Chemistry 2017; 23:14286-14291. [DOI: 10.1002/chem.201702626] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Nagappanpillai Adarsh
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram- 695 019, Kerala India
| | - Adukkadan N. Ramya
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram- 695 019, Kerala India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR-NIIST; Thiruvananthapuram India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram- 695 019, Kerala India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR-NIIST; Thiruvananthapuram India
| | - Danaboyina Ramaiah
- Academy of Scientific and Innovative Research (AcSIR)-CSIR-NIIST; Thiruvananthapuram India
- CSIR-North East Institute of Science and Technology (CSIR-NEIST); Jorhat, Assam India
| |
Collapse
|
49
|
Sheen Mers SV, Umadevi S, Ganesh V. Controlled Growth of Gold Nanostars: Effect of Spike Length on SERS Signal Enhancement. Chemphyschem 2017; 18:1358-1369. [PMID: 28266094 DOI: 10.1002/cphc.201601380] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/06/2017] [Indexed: 11/10/2022]
Abstract
Two different types of gold nanostars (Au NS), namely, short-spiked nanostars (SSNS) and long-spiked nanostars (LSNS), are prepared by using a hexagonal lyotropic liquid-crystalline (LLC) phase as a template. The formation, size and length of spikes or arms of the resultant Au NS are controlled by preparation in either a hexagonal LLC phase or an isotropic phase. These NS are anchored onto indium tin oxide (ITO) electrodes through a self-assembled monolayer of 3-mercaptopropyltrimethoxysilane, which acts as a linker molecule. Structural and morphological characterisations of SSNS- and LSNS-anchored ITO electrodes are performed by means of microscopic and spectroscopic analyses. Further electrochemical techniques, namely, cyclic voltammetry and electrochemical impedance spectroscopy, are also used to confirm the immobilisation of these Au NS on ITO electrodes and to study the electrochemical characteristics. These studies clearly reveal the formation of star-shaped, branched, anisotropic nanostructures of gold during the template preparation method and these Au NS are successfully anchored onto ITO electrodes through a covalent immobilisation strategy. Furthermore, the SERS activity of these Au NS is analysed by using glutathione and crystal violet as analytes and by employing glass and ITO as substrates. It is interesting to note that SSNS show a significant enhancement in SERS signals relative to those of LSNS.
Collapse
Affiliation(s)
- S V Sheen Mers
- Electrodics and Electrocatalysis (EEC) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, 630003, Tamilnadu, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - S Umadevi
- Department of Industrial Chemistry, Alagappa University, Karaikudi, 630003, Tamilnadu, India
| | - V Ganesh
- Electrodics and Electrocatalysis (EEC) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, 630003, Tamilnadu, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| |
Collapse
|
50
|
Li H, Dai H, Zhang Y, Tong W, Gao H, An Q. Surface-Enhanced Raman Spectra Promoted by a Finger Press in an All-Solid-State Flexible Energy Conversion and Storage Film. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Haitao Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 China
| | - Han Dai
- Yantai Nanshan University; Longkou Shandong Province 265713 China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 China
| | - Wangshu Tong
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 China
| | - Hua Gao
- School of Science; China University of Geosciences; Beijing 100083 P.R. China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 China
| |
Collapse
|