1
|
Shao Z, Yuan H, Zhou Z, Wang Y, Hou P, Nan H, Wang W, Tan W, Li J. Visualization of Protein‐Specific Glycation in Living Cells via Bioorthogonal Chemical Reporter. Angew Chem Int Ed Engl 2022; 61:e202210069. [DOI: 10.1002/anie.202210069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhentao Shao
- Institute of Molecular Medicine, Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| | - Hui Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| | - Zhilan Zhou
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| | - Ya Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| | - Peidong Hou
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| | - Hexin Nan
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| | - Juan Li
- Institute of Molecular Medicine, Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| |
Collapse
|
2
|
Shao Z, Yuan H, Zhou Z, Wang Y, Hou P, Nan H, Wang W, Tan W, Li J. Visualization of Protein‐Specific Glycation in Living Cells via Bioorthogonal Chemical Reporter. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhentao Shao
- Shanghai Jiaotong University: Shanghai Jiao Tong University Renji Hospital CHINA
| | - Hui Yuan
- Institue of Basic Medicine and Cancer No CHINA
| | - Zhilan Zhou
- Institute of Basic Medicine and Cancer No CHINA
| | - Ya Wang
- Institute of Basic Medicine and Cancer No CHINA
| | - Peidong Hou
- Institute of Basic Medicine and Cancer No CHINA
| | - Hexin Nan
- Institute of Basic Medicine and Cancer No CHINA
| | - Wei Wang
- Shanghai Jiao Tong University School of Medicine No CHINA
| | - Weihong Tan
- Institute of Basic Medicine and Cancer No CHINA
| | - Juan Li
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences No 150 Dongfang Street XiashaJianggan District Hangzhou 310000 Hangzhou CHINA
| |
Collapse
|
3
|
Liu N, Chen Z, Fan W, Su J, Lin T, Xiao S, Meng J, He J, Vittal JJ, Jiang J. Highly Efficient Multiphoton Absorption of Zinc‐AIEgen Metal–Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naifang Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Zhihui Chen
- Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University Changsha Hunan 410083 China
| | - Wenxuan Fan
- Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University Changsha Hunan 410083 China
| | - Jie Su
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Tingting Lin
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Innnovis, Singapore 138634 Singapore
| | - Si Xiao
- Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University Changsha Hunan 410083 China
| | - Jianqiao Meng
- Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University Changsha Hunan 410083 China
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University Changsha Hunan 410083 China
| | - Jagadese J. Vittal
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
4
|
Liu N, Chen Z, Fan W, Su J, Lin T, Xiao S, Meng J, He J, Vittal JJ, Jiang J. Highly Efficient Multiphoton Absorption of Zn-AIEgen Frameworks. Angew Chem Int Ed Engl 2021; 61:e202115205. [PMID: 34962680 DOI: 10.1002/anie.202115205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/07/2022]
Abstract
A series of luminescent frameworks were synthesized from the selective combination of AIE-linker tetra-(4-carboxylphenyl)ethylene (H 4 TCPE) and Zn 2+ . Complex 1 was formed by the close packing of Zn-TCPE hinge, and isostructural complexes 2 - 5 were constructed by the linkage of Zn-TCPE layer and pillar ligand. These complexes exhibit highly efficient multiphoton excited photoluminescence (MEPL) concomitant third-harmonic generation (THG). Interestingly, multiphoton apparent parameters of 1 are far superior to some excellent multiphoton emission materials, even the perovskite nanocrystal. The incorporation of pillar linkers slows down the charge transfer between layers of Zn-TCPE, and the aromatic core of pillar linkers has a great influence on the MEA performance of corresponding frameworks. The unprecedented structural and optical tuning of high performance MPA crystalline materials provides efficient suggestion for the design of next generation multiphoton absorption materials.
Collapse
Affiliation(s)
- Naifang Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhihui Chen
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Wenxuan Fan
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Jie Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tingting Lin
- Institute of Materials Research and Engineering A*STAR, 2 Fusionopolis Way, Innnovis, Singapore, 138634, Singapore
| | - Si Xiao
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Jianqiao Meng
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Jagadese J Vittal
- Department of Chemistry, National University of Singapore 3, Science Drive 3, Singapore, 117543, Singapore
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
5
|
Zhu L, Xu Y, Wei X, Lin H, Huang M, Lin B, Song Y, Yang C. Coupling Aptamer‐based Protein Tagging with Metabolic Glycan Labeling for In Situ Visualization and Biological Function Study of Exosomal Protein‐Specific Glycosylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Yuanfeng Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Xinyu Wei
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Haoting Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Bingqian Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
- Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
6
|
Zhu L, Xu Y, Wei X, Lin H, Huang M, Lin B, Song Y, Yang C. Coupling Aptamer-based Protein Tagging with Metabolic Glycan Labeling for In Situ Visualization and Biological Function Study of Exosomal Protein-Specific Glycosylation. Angew Chem Int Ed Engl 2021; 60:18111-18115. [PMID: 34043264 DOI: 10.1002/anie.202103696] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Indexed: 12/15/2022]
Abstract
Exosomal glycoproteins play important roles in many physiological and pathological functions. Herein, we developed a dual labeling strategy based on a protein-specific aptamer tagging and metabolic glycan labeling for visualizing glycosylation of specific proteins on exosomes. The glycosylation of exosomal PD-L1 (exoPD-L1) was imaged in situ using intramolecular fluorescence resonance energy transfer (FRET) between fluorescent PD-L1 aptamers bound on exoPD-L1 and fluorescent tags on glycans introduced via metabolic glycan labeling. This method enables in situ visualization and biological function study of exosomal protein glycosylation. Exosomal PD-L1 glycosylation was confirmed to be required in interaction with PD-1 and participated in inhibiting of CD8+ T cell proliferation. This is an efficient and non-destructive method to study the presence and function of exosomal protein-specific glycosylation in situ, which provides a powerful tool for exosomal glycoproteomics research.
Collapse
Affiliation(s)
- Lin Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yuanfeng Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xinyu Wei
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Haoting Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Bingqian Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.,Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
7
|
Li S, Liu Y, Liu L, Feng Y, Ding L, Ju H. A Hierarchical Coding Strategy for Live Cell Imaging of Protein-Specific Glycoform. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Siqiao Li
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yiran Liu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Lu Liu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yimei Feng
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| |
Collapse
|
8
|
Li S, Liu Y, Liu L, Feng Y, Ding L, Ju H. A Hierarchical Coding Strategy for Live Cell Imaging of Protein-Specific Glycoform. Angew Chem Int Ed Engl 2018; 57:12007-12011. [DOI: 10.1002/anie.201807054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Siqiao Li
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yiran Liu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Lu Liu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yimei Feng
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| |
Collapse
|
9
|
Wang Y, An R, Luo Z, Ye D. Firefly Luciferin-Inspired Biocompatible Chemistry for Protein Labeling and In Vivo Imaging. Chemistry 2017; 24:5707-5722. [PMID: 29068109 DOI: 10.1002/chem.201704349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 12/27/2022]
Abstract
Biocompatible reactions have emerged as versatile tools to build various molecular imaging probes that hold great promise for the detection of biological processes in vitro and/or in vivo. In this Minireview, we describe the recent advances in the development of a firefly luciferin-inspired biocompatible reaction between cyanobenzothiazole (CBT) and cysteine (Cys), and highlight its versatility to label proteins and build multimodality molecular imaging probes. The review starts from the general introduction of biocompatible reactions, which is followed by briefly describing the development of the firefly luciferin-inspired biocompatible chemistry. We then discuss its applications for the specific protein labeling and for the development of multimodality imaging probes (fluorescence, bioluminescence, MRI, PET, photoacoustic, etc.) that enable high sensitivity and spatial resolution imaging of redox environment, furin and caspase-3/7 activity in living cells and mice. Finally, we offer the conclusions and our perspective on the various and potential applications of this reaction. We hope that this review will contribute to the research of biocompatible reactions for their versatile applications in protein labeling and molecular imaging.
Collapse
Affiliation(s)
- Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhiliang Luo
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
10
|
Spiciarich DR, Nolley R, Maund SL, Purcell SC, Herschel J, Iavarone AT, Peehl DM, Bertozzi CR. Bioorthogonal Labeling of Human Prostate Cancer Tissue Slice Cultures for Glycoproteomics. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- David R. Spiciarich
- College of Chemistry; University of California, Berkeley; Berkeley CA 94720 USA
| | - Rosalie Nolley
- Department of Urology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Sophia L. Maund
- Department of Urology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Sean C. Purcell
- College of Chemistry; University of California, Berkeley; Berkeley CA 94720 USA
| | - Jason Herschel
- Department of Mathematics; California State University; East Bay Hayward CA 94542 USA
| | - Anthony T. Iavarone
- QB3/Chemistry Mass Spectrometry Facility; UC Berkeley; Berkeley CA 94720 USA
| | - Donna M. Peehl
- Department of Urology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Carolyn R. Bertozzi
- Department of Chemistry; Stanford University; Stanford CA 94305-4401 USA
- Howard Hughes Medical Institute; USA
| |
Collapse
|
11
|
Spiciarich DR, Nolley R, Maund SL, Purcell SC, Herschel J, Iavarone AT, Peehl DM, Bertozzi CR. Bioorthogonal Labeling of Human Prostate Cancer Tissue Slice Cultures for Glycoproteomics. Angew Chem Int Ed Engl 2017. [PMID: 28649697 DOI: 10.1002/anie.201701424] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sialylated glycans are found at elevated levels in many types of cancer and have been implicated in disease progression. However, the specific glycoproteins that contribute to the cancer cell-surface sialylation are not well characterized, specifically in bona fide human disease tissue. Metabolic and bioorthogonal labeling methods have previously enabled the enrichment and identification of sialoglycoproteins from cultured cells and model organisms. Herein, we report the first application of this glycoproteomic platform to human tissues cultured ex vivo. Both normal and cancerous prostate tissues were sliced and cultured in the presence of the azide-functionalized sialic acid biosynthetic precursor Ac4 ManNAz. The compound was metabolized to the azidosialic acid and incorporated into cell surface and secreted sialoglycoproteins. Chemical biotinylation followed by enrichment and mass spectrometry led to the identification of glycoproteins that were found at elevated levels or uniquely in cancerous prostate tissue. This work therefore extends the use of bioorthogonal labeling strategies to problems of clinical relevance.
Collapse
Affiliation(s)
- David R Spiciarich
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sophia L Maund
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sean C Purcell
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jason Herschel
- Department of Mathematics, California State University, East Bay Hayward, CA, 94542, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, UC Berkeley, Berkeley, CA, 94720, USA
| | - Donna M Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, 94305-4401, USA.,Howard Hughes Medical Institute, USA
| |
Collapse
|
12
|
Hui J, Bao L, Li S, Zhang Y, Feng Y, Ding L, Ju H. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingjing Hui
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Lei Bao
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Siqiao Li
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Yi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Yimei Feng
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| |
Collapse
|
13
|
Hui J, Bao L, Li S, Zhang Y, Feng Y, Ding L, Ju H. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform. Angew Chem Int Ed Engl 2017; 56:8139-8143. [PMID: 28557363 DOI: 10.1002/anie.201703406] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Indexed: 11/07/2022]
Abstract
Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability.
Collapse
Affiliation(s)
- Jingjing Hui
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Lei Bao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Siqiao Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Yi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Yimei Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
14
|
Xu AM, Wang DS, Shieh P, Cao Y, Melosh NA. Direct Intracellular Delivery of Cell-Impermeable Probes of Protein Glycosylation by Using Nanostraws. Chembiochem 2017; 18:623-628. [PMID: 28130882 DOI: 10.1002/cbic.201600689] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 12/24/2022]
Abstract
Bioorthogonal chemistry is an effective tool for elucidating metabolic pathways and measuring cellular activity, yet its use is currently limited by the difficulty of getting probes past the cell membrane and into the cytoplasm, especially if more complex probes are desired. Here we present a simple and minimally perturbative technique to deliver functional probes of glycosylation into cells by using a nanostructured "nanostraw" delivery system. Nanostraws provide direct intracellular access to cells through fluid conduits that remain small enough to minimize cell perturbation. First, we demonstrate that our platform can deliver an unmodified azidosugar, N-azidoacetylmannosamine, into cells with similar effectiveness to a chemical modification strategy (peracetylation). We then show that the nanostraw platform enables direct delivery of an azidosugar modified with a charged uridine diphosphate group (UDP) that prevents intracellular penetration, thereby bypassing multiple enzymatic processing steps. By effectively removing the requirement for cell permeability from the probe, the nanostraws expand the toolbox of bioorthogonal probes that can be used to study biological processes on a single, easy-to-use platform.
Collapse
Affiliation(s)
- Alexander M Xu
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA.,Present address: Chemistry and Chemical Engineering Division, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, 91106, USA
| | - Derek S Wang
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA
| | - Peyton Shieh
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA
| | - Yuhong Cao
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA
| |
Collapse
|
15
|
de Moliner F, Kielland N, Lavilla R, Vendrell M. Modern Synthetic Avenues for the Preparation of Functional Fluorophores. Angew Chem Int Ed Engl 2017; 56:3758-3769. [PMID: 27907246 PMCID: PMC5396271 DOI: 10.1002/anie.201609394] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Indexed: 12/19/2022]
Abstract
Biomedical research relies on the fast and accurate profiling of specific biomolecules and cells in a non‐invasive manner. Functional fluorophores are powerful tools for such studies. As these sophisticated structures are often difficult to access through conventional synthetic strategies, new chemical processes have been developed in the past few years. In this Minireview, we describe the most recent advances in the design, preparation, and fine‐tuning of fluorophores by means of multicomponent reactions, C−H activation processes, cycloadditions, and biomolecule‐based chemical transformations.
Collapse
Affiliation(s)
- Fabio de Moliner
- MRC/UoE Centre for Inflammation Research, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Nicola Kielland
- Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona Science Park, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Rodolfo Lavilla
- Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona Science Park, Baldiri Reixac 10-12, Barcelona, 08028, Spain.,CIBER-BBN, Networking Centre for Bioengineering, Biomaterials and Nanomedicine, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Marc Vendrell
- MRC/UoE Centre for Inflammation Research, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
16
|
de Moliner F, Kielland N, Lavilla R, Vendrell M. Moderne Strategien zur Synthese funktioneller Fluorophore. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Fabio de Moliner
- MRC/UoE Centre for Inflammation Research; The University of Edinburgh; 47 Little France Crescent Edinburgh EH16 4TJ Großbritannien
| | - Nicola Kielland
- Laboratory of Organic Chemistry, Faculty of Pharmacy; University of Barcelona; Barcelona Science Park, Baldiri Reixac 10-12 Barcelona 08028 Spanien
| | - Rodolfo Lavilla
- Laboratory of Organic Chemistry, Faculty of Pharmacy; University of Barcelona; Barcelona Science Park, Baldiri Reixac 10-12 Barcelona 08028 Spanien
- CIBER-BBN, Networking Centre for Bioengineering, Biomaterials and Nanomedicine; Baldiri Reixac 10-12 Barcelona 08028 Spanien
| | - Marc Vendrell
- MRC/UoE Centre for Inflammation Research; The University of Edinburgh; 47 Little France Crescent Edinburgh EH16 4TJ Großbritannien
| |
Collapse
|
17
|
Sheng L, Cai L, Liu J, Zhang S, Xu JJ, Zhang X, Chen HY. Imaging specific newly synthesized proteins within cells by fluorescence resonance energy transfer. Chem Sci 2017; 8:748-754. [PMID: 28451223 PMCID: PMC5299820 DOI: 10.1039/c6sc02610a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/07/2016] [Indexed: 12/03/2022] Open
Abstract
Metabolic azide amino acid labelling followed by the use of bioorthogonal chemistry is an efficient technique for imaging newly synthesized proteins. Recently, AHA-labelling together with the proximity-ligation assay was used to identify newly synthesized proteins of interest (POI) (Tom Dieck et al., Nat. Meth. 2015, 12, 411). Here we build on this study replacing the proximity-ligation assay with FRET to improve the spatial resolution. Herein, we develop a FRET-based strategy for imaging the newly synthesized endogenous POI within cells: a FRET acceptor is installed onto the newly synthesized proteins via click chemistry, and a FRET donor onto the POI via immunocytochemistry. We found that a photobleaching based FRET efficiency imaging mode and a fluorescence lifetime imaging mode showed the distribution of newly synthesized proteins more accurately compared to the direct observation of FRET signals. We demonstrated the capability of this FRET-based imaging method by visualizing several newly synthesized proteins including TDP-43, tubulin and CaMKIIα in different cell lines. This novel analytical imaging method could be used to visualize other specific endogenous proteins of interest in situ.
Collapse
Affiliation(s)
- Linfeng Sheng
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , 210023 , China .
| | - Lesi Cai
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China .
| | - Jie Liu
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China .
| | - Sichun Zhang
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China .
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , 210023 , China .
| | - Xinrong Zhang
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China .
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , 210023 , China .
| |
Collapse
|
18
|
Wu N, Bao L, Ding L, Ju H. A Single Excitation-Duplexed Imaging Strategy for Profiling Cell Surface Protein-Specific Glycoforms. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Na Wu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Lei Bao
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| |
Collapse
|
19
|
Wu N, Bao L, Ding L, Ju H. A Single Excitation-Duplexed Imaging Strategy for Profiling Cell Surface Protein-Specific Glycoforms. Angew Chem Int Ed Engl 2016; 55:5220-4. [PMID: 27001418 DOI: 10.1002/anie.201601233] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 11/10/2022]
Abstract
This work develops a site-specific duplexed luminescence resonance energy transfer system on cell surface for simultaneous imaging of two kinds of monosaccharides on a specific protein by single near-infrared excitation. The single excitation-duplexed imaging system utilizes aptamer modified upconversion luminescent nanoparticles as an energy donor to target the protein, and two fluorescent dye acceptors to tag two kinds of cell surface monosaccharides by a dual metabolic labeling technique. Upon excitation at 980 nm, only the dyes linked to protein-specific glycans can be lit up by the donor by two parallel energy transfer processes, for in situ duplexed imaging of glycoforms on specific protein. Using MUC1 as the model, this strategy can visualize distinct glycoforms of MUC1 on various cell types and quantitatively track terminal monosaccharide pattern. This approach provides a versatile platform for profiling protein-specific glycoforms, thus contributing to the study of the regulation mechanisms of protein functions by glycosylation.
Collapse
Affiliation(s)
- Na Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Lei Bao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China.
| |
Collapse
|
20
|
Doll F, Buntz A, Späte AK, Schart VF, Timper A, Schrimpf W, Hauck CR, Zumbusch A, Wittmann V. Visualisierung proteinspezifischer Glycosylierung in lebenden Zellen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201503183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Franziska Doll
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Annette Buntz
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Anne-Katrin Späte
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Verena F. Schart
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Alexander Timper
- Fachbereich Biologie und Graduate School Biological Science; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Waldemar Schrimpf
- Department Chemie und Munich Center for Integrated Protein Science and Center for Nanoscience; Ludwig-Maximilians-Universität München; Butenandtstraße 11 81377 München Deutschland
| | - Christof R. Hauck
- Fachbereich Biologie und Graduate School Biological Science; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Andreas Zumbusch
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Valentin Wittmann
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
21
|
Doll F, Buntz A, Späte AK, Schart VF, Timper A, Schrimpf W, Hauck CR, Zumbusch A, Wittmann V. Visualization of Protein-Specific Glycosylation inside Living Cells. Angew Chem Int Ed Engl 2016; 55:2262-6. [DOI: 10.1002/anie.201503183] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/29/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Franziska Doll
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Annette Buntz
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Anne-Katrin Späte
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Verena F. Schart
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Alexander Timper
- Department of Biology and Graduate School Biological Science; University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Waldemar Schrimpf
- Department of Chemistry and Munich Center for Integrated Protein Science and Center for Nanoscience; Ludwig-Maximilians-Universität München; Butenandtstraße 11 81377 Munich Germany
| | - Christof R. Hauck
- Department of Biology and Graduate School Biological Science; University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Andreas Zumbusch
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|
22
|
Protein-Specific Imaging of O-GlcNAcylation in Single Cells. Chembiochem 2015; 16:2571-5. [DOI: 10.1002/cbic.201500544] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 12/15/2022]
|