1
|
Ullah Khan W, Mazhar H, Shehzad F, Al-Harthi MA. Recent Advances in Transition Metal-Based Catalysts for Ethylene Copolymerization with Polar Comonomer. CHEM REC 2023; 23:e202200243. [PMID: 36715494 DOI: 10.1002/tcr.202200243] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Indexed: 01/31/2023]
Abstract
The synthesis of polar functionalized polyolefin (PFP) offers improvement in mixing properties, polymer surface, and rheological properties with the potential of upgraded polyolefins for modern and ingenious applications. The synthesis of PFP from metal-based catalyzed olefin (non-polar in nature) copolymerization with polar comonomers embodies energy-efficient, atom-efficient, and apparently an upfront methodology. Despite their outstanding success during conventional polymerization of olefin, 3rd and 4th group (early transition metal)-based catalysts, owing to their electrophilic nature, face challenges mainly due to Lewis basic sites of the polar monomers. On the contrary, late transition metal-based catalysts have also made progress, in recent years, for PFP synthesis. The recent past has also witnessed several advancements in the development of dominating palladium-based catalysts while their lower resistance towards ligand functional groups has limited the practical application of abundant and cheaper nickel-based catalysts. However, the relentless efforts of the scientific community, during the past half-decade, have indicated rigorous progress in the development of nickel-based catalysts for PFP synthesis. In this review, we have abridged the recent research trends in both early as well as late transition metal-based catalyst development. Furthermore, we have highlighted the role of transition metal-based catalysts in influencing the polymer properties.
Collapse
Affiliation(s)
- Wasim Ullah Khan
- Interdisciplinary Research Center for Refining & Advanced Chemicals, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Hassam Mazhar
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Farrukh Shehzad
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Mamdouh A Al-Harthi
- Interdisciplinary Research Center for Refining & Advanced Chemicals, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Capacchione C, Grisi F, Lamberti M, Mazzeo M, Milani B, Milione S, Pappalardo D, Zuccaccia C, Pellecchia C. Metal Catalyzed Polymerization: From Stereoregular Poly(α‐olefins) to Tailor‐Made Biodegradable/Biorenewable Polymers and Copolymers. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Carmine Capacchione
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Fabia Grisi
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Marina Lamberti
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Mina Mazzeo
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Barbara Milani
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste Via Licio Giorgieri 1 34127 Trieste Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Stefano Milione
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Daniela Pappalardo
- Dipartimento di Scienze e Tecnologie Università del Sannio Via de Sanctis snc 82100 Benevento Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Cristiano Zuccaccia
- Dipartimento di Chimica, Biologia e Biotecnologie Università di Perugia Via Elce di Sotto 8 06132 Perugia Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| |
Collapse
|
3
|
Zhang Z, Kang X, Jiang Y, Cai Z, Li S, Cui D. Access to Disentangled Ultrahigh Molecular Weight Polyethylene via a Binuclear Synergic Effect. Angew Chem Int Ed Engl 2023; 62:e202215582. [PMID: 36418237 DOI: 10.1002/anie.202215582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Disentangled ultrahigh molecular weight polyethylene (dis-UHMWPE) has excellent processability but can be achieved under extreme conditions. Herein, we report ethylene polymerization with the binuclear half-sandwich scandium complexes C1-Sc2 and C2-Sc2 to afford UHMWPE. C1-Sc2 bearing a short linker shows higher activity and gives higher molecular weight PEs than C2-Sc2 containing a flexible spacer and the mononuclear Sc1 . Strikingly, all UHMWPEs isolated from C1-Sc2 under broad temperature range (25-120 °C) and wide ethylene pressures (2-13 bar) feature very low degree of entanglement as proved by rheological test, DSC annealing study and SEM. These dis-UHMWPEs are facilely mediated solid-state-process at 130 °C and their tensile strength and modulus reach up to 149.2 MPa and 1.5 GPa, respectively. DFT simulations reveal that the formation of dis-UHMWPE is attributed to the binuclear synergic effect and the agostic interaction between the active center and the growing chain.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.,Department of Materials Science and Engineering, Jilin University, 130022, Changchun, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, 116044, Dalian, China
| | - Yang Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Zhongyi Cai
- Department of Materials Science and Engineering, Jilin University, 130022, Changchun, China
| | - Shihui Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
4
|
Wirtz L, Ghulam KY, Morgenstern B, Schäfer A. Constrained Geometry
ansa
‐Half‐Sandwich Complexes of Magnesium – Versatile
s
‐Block Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202201007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lisa Wirtz
- Faculty of Natural Science and Technology Department of Chemistry Saarland University Campus Saarbrücken 66123 Saarbrücken Germany
| | - Kinza Yasmin Ghulam
- Faculty of Natural Science and Technology Department of Chemistry Saarland University Campus Saarbrücken 66123 Saarbrücken Germany
| | - Bernd Morgenstern
- Faculty of Natural Science and Technology Department of Chemistry Saarland University Campus Saarbrücken 66123 Saarbrücken Germany
| | - André Schäfer
- Faculty of Natural Science and Technology Department of Chemistry Saarland University Campus Saarbrücken 66123 Saarbrücken Germany
| |
Collapse
|
5
|
Xiong S, Hong A, Bailey BC, Spinney HA, Senecal TD, Bailey H, Agapie T. Highly Active and Thermally Robust Nickel Enolate Catalysts for the Synthesis of Ethylene-Acrylate Copolymers. Angew Chem Int Ed Engl 2022; 61:e202206637. [PMID: 35723944 DOI: 10.1002/anie.202206637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/05/2022]
Abstract
The insertion copolymerization of polar olefins and ethylene remains a significant challenge in part due to catalysts' low activity and poor thermal stability. Herein we demonstrate a strategy toward addressing these obstacles through ligand design. Neutral nickel phosphine enolate catalysts with large phosphine substituents reaching the axial positions of Ni achieve activity of up to 7.7×103 kg mol-1 h-1 (efficiency >35×103 g copolymer/g Ni) at 110 °C, notable for ethylene/acrylate copolymerization. NMR analysis of resulting copolymers reveals highly linear microstructures with main-chain ester functionality. Structure-performance studies indicate a strong correlation between axial steric hindrance and catalyst performance.
Collapse
Affiliation(s)
- Shuoyan Xiong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexandria Hong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brad C Bailey
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, MI 48667, USA
| | - Heather A Spinney
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, MI 48667, USA
| | - Todd D Senecal
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, MI 48667, USA
| | - Hannah Bailey
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, MI 48667, USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
Si G, Tan C, Chen M, Chen C. A Cocatalyst Strategy to Enhance Ruthenium‐Mediated Metathesis Reactivity towards Electron‐Deficient Substrates. Angew Chem Int Ed Engl 2022; 61:e202203796. [DOI: 10.1002/anie.202203796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Guifu Si
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Chen Tan
- Institutes of Physical Science and Information Technology Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 China
| | - Min Chen
- Institutes of Physical Science and Information Technology Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
7
|
Xiong S, Hong A, Bailey BC, Spinney HA, Senecal TD, Bailey H, Agapie T. Highly Active and Thermally Robust Nickel Enolate Catalysts for the Synthesis of Ethylene‐Acrylate Copolymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuoyan Xiong
- California Institute of Technology Division of Chemistry and Chemical Engineering UNITED STATES
| | - Alexandria Hong
- California Institute of Technology Chemistry and Chemical Engineering UNITED STATES
| | | | | | | | | | - Theodor Agapie
- California Institute of Technology Chemistry 1200 California BlvdMC 127-72 91106 Pasadena UNITED STATES
| |
Collapse
|
8
|
Si G, Tan C, Chen M, Chen C. A Cocatalyst Strategy to Enhance Ruthenium‐Mediated Metathesis Reactivity towards Electron‐Deficient Substrates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guifu Si
- University of Science and Technology of China Chemistry CHINA
| | - Chen Tan
- Anhui University Institutes of Physical Science and Information Technology CHINA
| | - Min Chen
- Anhui University Institutes of Physical Science and Information Technology CHINA
| | - Changle Chen
- University of Science and Technology of China Department of Polymer Science & Engineering Jinzhai Rd 96 230026 Hefei CHINA
| |
Collapse
|
9
|
Apilardmongkol P, Ratanasak M, Hasegawa JY, Parasuk V. Exploring the Reaction Mechanism of Heterobimetallic Nickel‐Alkali Catalysts for Ethylene Polymerization: Secondary‐Metal‐Ligand Cooperative Catalysis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pavee Apilardmongkol
- Chulalongkorn University Faculty of Science Chemistry Pathumwan 10330 Bangkok THAILAND
| | - Manussada Ratanasak
- Hokkaido University Catalysis Theory Research Division, Institute for Catalysis Kita21, Nishi10, Kita-ku, Sapporo, Hokkaido, Japan, 001-0021 001-0021 Sapporo JAPAN
| | - Jun-ya Hasegawa
- Hokkaido University: Hokkaido Daigaku Institute for Catalysis Kita21, Nishi10, Kita-ku, Sapporo 001-0021 Sappporo JAPAN
| | - Vudhichai Parasuk
- Chulalongkorn University Faculty of Science Chemistry Pathumwan 10330 Bangkok THAILAND
| |
Collapse
|
10
|
Peng D, Chen C. Photoresponsive Palladium and Nickel Catalysts for Ethylene Polymerization and Copolymerization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dan Peng
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Changle Chen
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| |
Collapse
|
11
|
Kitphaitun S, Yan Q, Nomura K. Effect of para-Substituents in Ethylene Copolymerizations with 1-Decene, 1-Dodecene, and with 2-Methyl-1-Pentene Using Phenoxide Modified Half-Titanocenes-MAO Catalyst Systems. ChemistryOpen 2021; 10:867-876. [PMID: 34227256 PMCID: PMC8409091 DOI: 10.1002/open.202100047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Effect of para-substituents in the ethylene (E) copolymerization with 1-decene (DC), 1-dodecene (DD), and with 2-methyl-1-pentene (2M1P) using a series of Cp*TiCl2 (O-2,6-i Pr2 -4-R-C6 H2 ) [R=H (1), t Bu (2), Ph (3), CHPh2 (4), CPh3 (5), SiMe3 (6), SiEt3 (7), and newly prepared 4-t BuC6 H4 (8) and 3,5-Me2 C6 H3 (9)]-MAO catalyst systems has been studied. The activities in these copolymerization reactions were affected by the para-substituent, and the SiMe3 (6), SiEt3 (7) and 3,5-Me2 C6 H3 (9) analogues showed the higher activities at 50 °C in the E copolymerization reactions with DC (1.06-1.44×106 kg-polymer/mol-Ti⋅h), DD (1.04-1.88×106 kg-polymer/mol-Ti⋅h) than the others, whereas no significant differences were observed in the comonomer incorporations. Complexes 6 and 7 also showed the higher activities at 50 °C in the E/2M1P copolymerization, and the 2M1P incorporation was affected by the para-substituent and the polymerization temperature; complex 9 showed better 2M1P incorporation at 25 °C.
Collapse
Affiliation(s)
- Suphitchaya Kitphaitun
- Department of ChemistryTokyo Metropolitan University1-1 Minami Osawa, HachiojiTokyo192-0397Japan
| | - Qing Yan
- Department of ChemistryTokyo Metropolitan University1-1 Minami Osawa, HachiojiTokyo192-0397Japan
| | - Kotohiro Nomura
- Department of ChemistryTokyo Metropolitan University1-1 Minami Osawa, HachiojiTokyo192-0397Japan
| |
Collapse
|
12
|
Hu X, Zhang Y, Li B, Jian Z. Fluorinated α-Diimine Nickel Mediated Ethylene (Co)Polymerization. Chemistry 2021; 27:11935-11942. [PMID: 34114692 DOI: 10.1002/chem.202101521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 11/10/2022]
Abstract
Fluorine substituents in transition metal catalysts are of great importance in olefin polymerization catalysis; however, the comprehensive effect of fluorine substituents is elusive in seminal late transition metal α-diimine catalytic system. In this contribution, fluorine substituents at various positions (ortho-, meta-, and para-F) and with different numbers (Fn ; n=0, 1, 2, 3, 5) were installed into the well-defined N-terphenyl amine and thus were studied for the first time in the nickel α-diimine promoted ethylene polymerization and copolymerization with polar monomers. The position of the fluorine substituent was particularly crucial in these polymerization reactions in terms of catalytic activity, polymer molecular weight, branching density, and incorporation of polar monomer, and thus a picture on the fluorine effect was given. As a notable result, the ortho-F substituted α-diimine nickel catalyst produced highly linear polyethylenes with an extremely high molecular weight (Mw =8703 kDa) and a significantly low degree of branching of 1.4/1000 C; however, the meta-F and/or para-F substituted α-diimine nickel catalysts generated highly branched (up to 80.2/1000 C) polyethylenes with significantly low molecular weights (Mw =20-50 kDa).
Collapse
Affiliation(s)
- Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
| | - Baixiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
13
|
Peng D, Chen C. Photoresponsive Palladium and Nickel Catalysts for Ethylene Polymerization and Copolymerization. Angew Chem Int Ed Engl 2021; 60:22195-22200. [PMID: 34312948 DOI: 10.1002/anie.202107883] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/20/2021] [Indexed: 11/11/2022]
Abstract
In this contribution, we install an azobenzene functionality in olefin polymerization catalysts and use light to modulate their properties via photoinduced trans-cis isomerization of the azobenzene moiety. The initially targeted azobenzene-functionalized α-diimine palladium and nickel catalysts are not photoresponsive. To address this issue, an imine-amine system bearing interrupted conjugation with the metal center, and a sandwich-type α-diimine system bearing an azobenzene unit at a position covalently far from the metal center were prepared and studied. We demonstrate that light can be used to tune their properties in ethylene polymerization and copolymerization with polar comonomers, enabling light-induced control of the polymerization processes, polymer microstructures and polymer properties. More interestingly, the light-mediated property changes were attributed to ligand electronic effects in one system and ligand steric effects in the other.
Collapse
Affiliation(s)
- Dan Peng
- University of Science and Technology of China, Department of Polymer Science and Engineering, CHINA
| | - Changle Chen
- University of Science and Technology of China, Department of Polymer Science & Engineering, Jinzhai Rd 96, 230026, Hefei, CHINA
| |
Collapse
|
14
|
Zhang H, Zou C, Zhao H, Cai Z, Chen C. Hydrogen-Bonding-Induced Heterogenization of Nickel and Palladium Catalysts for Copolymerization of Ethylene with Polar Monomers. Angew Chem Int Ed Engl 2021; 60:17446-17451. [PMID: 34036725 DOI: 10.1002/anie.202106682] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/23/2021] [Indexed: 02/04/2023]
Abstract
The practical synthesis of polar-functionalized polyolefins using transition-metal-catalyzed copolymerization of olefins with polar monomers is a challenge; the use of heterogeneous catalysts is little explored. Herein, we report the synthesis of heterogeneous naphthoquinone-based nickel (Ni/SiO2 ) and palladium (Pd/SiO2 ) catalysts through hydrogen bonding interactions of the ligands with the silica surface. Ni/SiO2 exhibits high activities (up to 2.65×106 g mol-1 h-1 ) during the copolymerization of ethylene with 5-hexene-1-yl-acetate, affording high-molecular-weight (Mn up to 630 000) polar-functionalized semicrystalline polyethylene (comonomer incorporation up to 2.8 mol %), along with great morphology control. The resulting copolymers possess improved surface properties and great mechanical properties. Pd/SiO2 can mediate ethylene copolymerization with polar monomers with moderate activity to produce high-molecular-weight copolymers with tunable comonomer incorporation.
Collapse
Affiliation(s)
- Hu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Huipeng Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhengguo Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
15
|
Zhang H, Zou C, Zhao H, Cai Z, Chen C. Hydrogen‐Bonding‐Induced Heterogenization of Nickel and Palladium Catalysts for Copolymerization of Ethylene with Polar Monomers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Huipeng Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Zhengguo Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
16
|
Zhang J, Mason AH, Wang Y, Motta A, Kobayashi T, Pruski M, Gao Y, Marks TJ. Beyond the Active Site. Cp*ZrMe
3
/Sulfated Alumina‐Catalyzed Olefin Polymerization Tacticity via Catalyst⋅⋅⋅Surface Ion‐Pairing. ChemCatChem 2021. [DOI: 10.1002/cctc.202100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jialong Zhang
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP) Northwestern University 2145 Sheridan Road Evanston IL 60208–3113 USA
| | - Alexander H. Mason
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP) Northwestern University 2145 Sheridan Road Evanston IL 60208–3113 USA
| | - Yang Wang
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP) Northwestern University 2145 Sheridan Road Evanston IL 60208–3113 USA
| | - Alessandro Motta
- Dipartimento di Scienze Chimiche Università di Roma “La Sapienza” and INSTM UdR Roma Piazzale Aldo Moro 5 I-00185 Roma Italy
| | - Takeshi Kobayashi
- U.S. DOE Ames Laboratory Iowa State University Ames IA 50011–3020 USA
| | - Marek Pruski
- U.S. DOE Ames Laboratory Iowa State University Ames IA 50011–3020 USA
| | - Yanshan Gao
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP) Northwestern University 2145 Sheridan Road Evanston IL 60208–3113 USA
| | - Tobin J. Marks
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP) Northwestern University 2145 Sheridan Road Evanston IL 60208–3113 USA
| |
Collapse
|
17
|
Wang C, Kang X, Dai S, Cui F, Li Y, Mu H, Mecking S, Jian Z. Efficient Suppression of Chain Transfer and Branching via C s -Type Shielding in a Neutral Nickel(II) Catalyst. Angew Chem Int Ed Engl 2021; 60:4018-4022. [PMID: 33200862 PMCID: PMC7898505 DOI: 10.1002/anie.202013069] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Indexed: 11/30/2022]
Abstract
An effective shielding of both apical positions of a neutral NiII active site is achieved by dibenzosuberyl groups, both attached via the same donors' N-aryl group in a Cs -type arrangement. The key aniline building block is accessible in a single step from commercially available dibenzosuberol. This shielding approach suppresses chain transfer and branch formation to such an extent that ultrahigh molecular weight polyethylenes (5×106 g mol-1 ) are accessible, with a strictly linear microstructure (<0.1 branches/1000C). Key features of this highly active (4.3×105 turnovers h-1 ) catalyst are an exceptionally facile preparation, thermal robustness (up to 90 °C polymerization temperature), ability for living polymerization and compatibility with THF as a polar reaction medium.
Collapse
Affiliation(s)
- Chaoqun Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesRenmin Street 5625Changchun130022China
- University of Science and Technology of ChinaHefei230026China
| | - Xiaohui Kang
- College of PharmacyDalian Medical UniversityDalian116044China
| | - Shengyu Dai
- Institutes of Physical Science and Information TechnologyKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationAnhui UniversityHefeiAnhui230601China
| | - Fengchao Cui
- Key laboratory of Polyoxometalate Science of the Ministry of EducationFaculty of ChemistryNortheast Normal UniversityChangchun130024China
| | - Yunqi Li
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesRenmin Street 5625Changchun130022China
| | - Hongliang Mu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesRenmin Street 5625Changchun130022China
| | - Stefan Mecking
- Chair of Chemical Materials ScienceDepartment of ChemistryUniversity of Konstanz78457KonstanzGermany
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesRenmin Street 5625Changchun130022China
- University of Science and Technology of ChinaHefei230026China
| |
Collapse
|
18
|
Wang C, Kang X, Dai S, Cui F, Li Y, Mu H, Mecking S, Jian Z. Efficient Suppression of Chain Transfer and Branching via
C
s
‐Type Shielding in a Neutral Nickel(II) Catalyst. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Xiaohui Kang
- College of Pharmacy Dalian Medical University Dalian 116044 China
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 China
| | - Fengchao Cui
- Key laboratory of Polyoxometalate Science of the Ministry of Education Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Yunqi Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
| | - Hongliang Mu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
| | - Stefan Mecking
- Chair of Chemical Materials Science Department of Chemistry University of Konstanz 78457 Konstanz Germany
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
19
|
The Effect of SiMe
3
and SiEt
3
Para
Substituents for High Activity and Introduction of a Hydroxy Group in Ethylene Copolymerization Catalyzed by Phenoxide‐Modified Half‐Titanocenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Gragert MM, Tomov AK, Bettonville S, Pannier G, White AJP, Britovsek GJP. Biaryl Group 4 Metal Complexes as Non‐Metallocene Catalysts for Polyethylene with Long Chain Branching. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maria M. Gragert
- Department of Chemistry, MSRH Imperial College White City Campus, 80 Wood Lane W12 0BZ London United Kingdom
| | - Atanas K. Tomov
- Department of Chemistry, MSRH Imperial College White City Campus, 80 Wood Lane W12 0BZ London United Kingdom
| | - Serge Bettonville
- INEOS, NOH Technology Centre Rue de Ransbeek 310 1120 Brussels Belgium
| | - Gaëlle Pannier
- INEOS, NOH Technology Centre Rue de Ransbeek 310 1120 Brussels Belgium
| | - Andrew J. P. White
- Department of Chemistry, MSRH Imperial College White City Campus, 80 Wood Lane W12 0BZ London United Kingdom
| | - George J. P. Britovsek
- Department of Chemistry, MSRH Imperial College White City Campus, 80 Wood Lane W12 0BZ London United Kingdom
| |
Collapse
|
21
|
Kitphaitun S, Yan Q, Nomura K. The Effect of SiMe 3 and SiEt 3 Para Substituents for High Activity and Introduction of a Hydroxy Group in Ethylene Copolymerization Catalyzed by Phenoxide-Modified Half-Titanocenes. Angew Chem Int Ed Engl 2020; 59:23072-23076. [PMID: 32886419 DOI: 10.1002/anie.202010559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/29/2020] [Indexed: 11/07/2022]
Abstract
Remarkable effects of SiMe3 and SiEt3 para-substituents in the phenoxide-modified half-titanocenes, Cp*TiCl2 (O-2,6-i Pr2 -4-R-C6 H2 ) [R=SiMe3 (6), SiEt3 (7)], toward the catalytic activities in ethylene copolymerizations with 2-methyl-1-pentene, 1-decene, 1-dodecene and with 9-decen-1-ol (DC-OH) have been demonstrated. The activities by 6, 7 at 50 °C showed higher than those conducted at 25 °C in all cases in the presence of MAO cocatalyst. Efficient synthesis of high-molecular-weight (HMW) ethylene copolymers incorporating DC-OH (or 5-hexen-1-ol, HX-OH) has been attained in the copolymerization by 7, which showed better DC-OH (HX-OH) incorporation at 50 °C to afford the HMW copolymers, poly(ethylene-co-DC-OH)s, with high activities (activity 1.21-3.81×105 kg-polymer mol-1 -Ti h, Mn =6.55-10.0×104 , DC-OH 2.3-3.6 mol %).
Collapse
Affiliation(s)
- Suphitchaya Kitphaitun
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0376, Japan
| | - Qing Yan
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0376, Japan
| | - Kotohiro Nomura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0376, Japan
| |
Collapse
|
22
|
Zhang Y, Wang C, Mecking S, Jian Z. Ultrahigh Branching of Main-Chain-Functionalized Polyethylenes by Inverted Insertion Selectivity. Angew Chem Int Ed Engl 2020; 59:14296-14302. [PMID: 32441874 PMCID: PMC7496749 DOI: 10.1002/anie.202004763] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/09/2020] [Indexed: 11/06/2022]
Abstract
Branched polyolefin microstructures resulting from so-called "chain walking" are a fascinating feature of late transition metal catalysts; however, to date it has not been demonstrated how desirable branched polyolefin microstructures can be generated thereby. We demonstrate how highly branched polyethylenes with methyl branches (220 Me/1000 C) exclusively and very high molecular weights (ca. 106 g mol-1 ), reaching the branch density and microstructure of commercial ethylene-propylene elastomers, can be generated from ethylene alone. At the same time, polar groups on the main chain can be generated by in-chain incorporation of methyl acrylate. Key to this strategy is a novel rigid environment in an α-diimine PdII catalyst with a steric constraint that allows for excessive chain walking and branching, but restricts branch formation to methyl branches, hinders chain transfer to afford a living polymerization, and inverts the regioselectivity of acrylate insertion to a 1,2-mode.
Collapse
Affiliation(s)
- Yuxing Zhang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesRenmin Street 5625Changchun130022China
- University of Science and Technology of ChinaHefei230026China
| | - Chaoqun Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesRenmin Street 5625Changchun130022China
- University of Science and Technology of ChinaHefei230026China
| | - Stefan Mecking
- Chair of Chemical Materials ScienceDepartment of ChemistryUniversity of Konstanz78457KonstanzGermany
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesRenmin Street 5625Changchun130022China
- University of Science and Technology of ChinaHefei230026China
| |
Collapse
|
23
|
Zhang Y, Wang C, Mecking S, Jian Z. Ultrahigh Branching of Main‐Chain‐Functionalized Polyethylenes by Inverted Insertion Selectivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuxing Zhang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Stefan Mecking
- Chair of Chemical Materials Science Department of Chemistry University of Konstanz 78457 Konstanz Germany
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
24
|
Dai S, Chen C. A Self-Supporting Strategy for Gas-Phase and Slurry-Phase Ethylene Polymerization using Late-Transition-Metal Catalysts. Angew Chem Int Ed Engl 2020; 59:14884-14890. [PMID: 32419295 DOI: 10.1002/anie.202004024] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 12/12/2022]
Abstract
The polyolefin industry is dominated by gas-phase and slurry-phase polymerization using heterogeneous catalysts. In contrast, academic research is focused on homogeneous systems, especially for late-transition-metal catalysts. The heterogenization of homogeneous catalysts is a general strategy to provide catalyst solutions for existing industrial polyolefin synthesis. Herein, we report an alternative, potentially general strategy for using homogeneous late-transition-metal catalysts in gas-phase and slurry-phase polymerization. In this self-supporting strategy, catalysts with moderate chain-walking capabilities produced porous polymer supports during gas-phase ethylene polymerization. Chain walking, in which the metal center can move up and down the polymer chain during polymerization, ensures that the metal center can travel along the polymer chain to find suitable sites for ethylene enchainment. This strategy enables simple heterogenization of catalysts on solid supports for slurry-phase polymerization. Most importantly, various branched ultra-high-molecular-weight polyethylenes can be prepared under various polymerization conditions with proper catalyst selection.
Collapse
Affiliation(s)
- Shengyu Dai
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
25
|
Dai S, Chen C. A Self‐Supporting Strategy for Gas‐Phase and Slurry‐Phase Ethylene Polymerization using Late‐Transition‐Metal Catalysts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shengyu Dai
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
- Institutes of Physical Science and Information Technology Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
26
|
Chen J, Gao Y, Marks TJ. Early Transition Metal Catalysis for Olefin–Polar Monomer Copolymerization. Angew Chem Int Ed Engl 2020; 59:14726-14735. [DOI: 10.1002/anie.202000060] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Jiazhen Chen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Yanshan Gao
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Tobin J. Marks
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
27
|
Chen J, Gao Y, Marks TJ. Early Transition Metal Catalysis for Olefin–Polar Monomer Copolymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jiazhen Chen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Yanshan Gao
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Tobin J. Marks
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
28
|
Rishina LA, Kissin YV, Lalayan SS, Gagieva SC, Tuskaev VA, Krasheninnikov VG, Grinev VG. Polymerization and Copolymerization Reactions of Light Alkenes with Postmetallocene Catalysts Containing Titanium Complexes with Bidentate Pinacol Ligands. ChemistrySelect 2020. [DOI: 10.1002/slct.202000807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Laura A. Rishina
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences 4 Kosygin St. Moscow 119991 Russia
| | - Yury V. Kissin
- Rutgers The State University of New Jersey Department of Chemistry and Chemical Biology 123 Bevier Rd. Piscataway NJ 08854 USA
| | - Svetlana S. Lalayan
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences 4 Kosygin St. Moscow 119991 Russia
| | - Svetlana Ch. Gagieva
- Moscow State University Department of Chemistry 11 Leninskie Gory Moscow 119991 Russia
| | - Vladislav A. Tuskaev
- Moscow State University Department of Chemistry 11 Leninskie Gory Moscow 119991 Russia
| | - Vadim G. Krasheninnikov
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences 4 Kosygin St. Moscow 119991 Russia
| | - Vitaly G. Grinev
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences 4 Kosygin St. Moscow 119991 Russia
| |
Collapse
|
29
|
Göttker‐Schnetmann I, Kenyon P, Mecking S. Coordinative Chain Transfer Polymerization of Butadiene with Functionalized Aluminum Reagents. Angew Chem Int Ed Engl 2019; 58:17777-17781. [PMID: 31571376 PMCID: PMC6899983 DOI: 10.1002/anie.201909843] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/17/2019] [Indexed: 11/18/2022]
Abstract
Functionalized aluminum alkyls enable effective coordinative chain transfer polymerization with selective chain initiation by the functionalized alkyl. (ω-Aminoalkyl)diisobutylaluminum reagents (12 examples studied) obtained by hydroalumination of α-amino-ω-enes with diisobutylaluminum hydride promote the stereoselective catalytic chain growth of butadiene on aluminum in the presence of Nd(versatate)3 , Cp*2 Nd(allyl), or Cp*2 Gd(allyl) precatalysts and [PhNMe2 H+ ]/[B(C6 F5 )4 - ]. Carbazolyl- and indolylaluminum reagents result in efficient molecular weight control and chain initiation by the aminoalkyl rather than the isobutyl substituent bound to aluminum. As confirmed for (3-(9H-carbazol-9-yl)propyl)-initiated polybutadiene (PBD), for example, by deuterium quenching studies, polymer chain transfer by β-hydride transfer is negligible in comparison to back-transfer to aluminum.
Collapse
Affiliation(s)
- Inigo Göttker‐Schnetmann
- Chair of Chemical Materials ScienceDepartment of ChemistryUniversity of Konstanz78457KonstanzGermany
| | - Philip Kenyon
- Chair of Chemical Materials ScienceDepartment of ChemistryUniversity of Konstanz78457KonstanzGermany
| | - Stefan Mecking
- Chair of Chemical Materials ScienceDepartment of ChemistryUniversity of Konstanz78457KonstanzGermany
| |
Collapse
|
30
|
Göttker‐Schnetmann I, Kenyon P, Mecking S. Coordinative Chain Transfer Polymerization of Butadiene with Functionalized Aluminum Reagents. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Inigo Göttker‐Schnetmann
- Chair of Chemical Materials ScienceDepartment of ChemistryUniversity of Konstanz 78457 Konstanz Germany
| | - Philip Kenyon
- Chair of Chemical Materials ScienceDepartment of ChemistryUniversity of Konstanz 78457 Konstanz Germany
| | - Stefan Mecking
- Chair of Chemical Materials ScienceDepartment of ChemistryUniversity of Konstanz 78457 Konstanz Germany
| |
Collapse
|
31
|
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213 United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213 United States
| |
Collapse
|
32
|
Keyes A, Basbug Alhan HE, Ordonez E, Ha U, Beezer DB, Dau H, Liu Y, Tsogtgerel E, Jones GR, Harth E. Olefins and Vinyl Polar Monomers: Bridging the Gap for Next Generation Materials. Angew Chem Int Ed Engl 2019; 58:12370-12391. [DOI: 10.1002/anie.201900650] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Anthony Keyes
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Hatice E. Basbug Alhan
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Estela Ordonez
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Uyen Ha
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Dain B. Beezer
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Huong Dau
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Yu‐Sheng Liu
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Enkhjargal Tsogtgerel
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Glen R. Jones
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Eva Harth
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| |
Collapse
|
33
|
Nishikawa T, Ouchi M. An Alkenyl Boronate as a Monomer for Radical Polymerizations: Boron as a Guide for Chain Growth and as a Replaceable Side Chain for Post‐Polymerization Transformation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tsuyoshi Nishikawa
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| | - Makoto Ouchi
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
34
|
Nishikawa T, Ouchi M. An Alkenyl Boronate as a Monomer for Radical Polymerizations: Boron as a Guide for Chain Growth and as a Replaceable Side Chain for Post‐Polymerization Transformation. Angew Chem Int Ed Engl 2019; 58:12435-12439. [DOI: 10.1002/anie.201905135] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/07/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Tsuyoshi Nishikawa
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| | - Makoto Ouchi
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
35
|
Keyes A, Basbug Alhan HE, Ordonez E, Ha U, Beezer DB, Dau H, Liu Y, Tsogtgerel E, Jones GR, Harth E. Olefine und polare Vinylmonomere: Überbrückung der Lücke für Materialien der nächsten Generation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900650] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Anthony Keyes
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Hatice E. Basbug Alhan
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Estela Ordonez
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Uyen Ha
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Dain B. Beezer
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Huong Dau
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Yu‐Sheng Liu
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Enkhjargal Tsogtgerel
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Glen R. Jones
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| | - Eva Harth
- Department of ChemistryCenter of Excellence in Polymer ChemistryUniversity of Houston 3585 Cullen Boulevard Houston Texas 77030 USA
| |
Collapse
|
36
|
Tan C, Chen C. Emerging Palladium and Nickel Catalysts for Copolymerization of Olefins with Polar Monomers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814634] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chen Tan
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei 230026 China
| | - Changle Chen
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei 230026 China
| |
Collapse
|
37
|
Tan C, Chen C. Emerging Palladium and Nickel Catalysts for Copolymerization of Olefins with Polar Monomers. Angew Chem Int Ed Engl 2019; 58:7192-7200. [PMID: 30719812 DOI: 10.1002/anie.201814634] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Indexed: 01/18/2023]
Abstract
Transition-metal-catalyzed copolymerization of olefins with polar monomers represents a challenge because of the large variety of substrate-induced side reactions. However, this approach also holds the potential for the direct synthesis of polar functionalized polyolefins with unique properties. After decades of research, only a few catalyst systems have been found to be suitable for this reaction. Some major advances in catalyst development have been made in the past five years. This Minireview summarizes some of the recent progress in the extensively studied Brookhart and Drent catalyst systems, as well as emerging alternative palladium and nickel catalysts.
Collapse
Affiliation(s)
- Chen Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Changle Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
38
|
Propene oligomerisation at ambient temperature with [Cp(C5H4SiMe2tol)ZrMe2] (Cp = C5H5; tol = p-C6H5Me). Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Yamamoto T, Mitsuno K, Mori S, Itoyama S, Shiota Y, Yoshizawa K, Ishida M, Furuta H. Two Discrete RuCp* (Cp*=Pentamethylcyclopentadienyl) Binding Modes of N-Confused Porphyrins: Peripheral π Complex and Sitting Atop Ruthenocenophane Complex by Skeletal Transformation. Chemistry 2018. [PMID: 29532964 DOI: 10.1002/chem.201801237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complexation of a RuCp* cation with N-confused tetraarylporphyrins (NCPs) forms directly bound ruthenium(II) pentamethylcyclopentadienyl (Cp*) π-complex on a specific meso-aryl group (e.g., phenyl) neighboring peripheral imino nitrogen of NCPs in high yields. In contrast, in the case of NCPs bearing bulky meso-substituents (e.g., 3,5-di-tert-butylphenyl), new ruthenocenophane-like complex embedded on an N-confused calix[4]phyrin was formed through multiple C-H bond activation of methyl groups of Cp* ligand. The mechanistic insight into the formation of the ruthenocenophane was derived from DFT calculations.
Collapse
Affiliation(s)
- Takaaki Yamamoto
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Koki Mitsuno
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigeki Mori
- Advanced Research Support Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Shuhei Itoyama
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
40
|
Allouche F, Chan KW, Fedorov A, Andersen RA, Copéret C. Silica-Supported Pentamethylcyclopentadienyl Ytterbium(II) and Samarium(II) Sites: Ultrahigh Molecular Weight Polyethylene without Co-Catalyst. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Florian Allouche
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 1-5 8093 Zürich Switzerland
| | - Ka Wing Chan
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 1-5 8093 Zürich Switzerland
| | - Alexey Fedorov
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 1-5 8093 Zürich Switzerland
| | - Richard A. Andersen
- Department of Chemistry; University of California; Berkeley CA 94720-1460 USA
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 1-5 8093 Zürich Switzerland
| |
Collapse
|
41
|
Allouche F, Chan KW, Fedorov A, Andersen RA, Copéret C. Silica-Supported Pentamethylcyclopentadienyl Ytterbium(II) and Samarium(II) Sites: Ultrahigh Molecular Weight Polyethylene without Co-Catalyst. Angew Chem Int Ed Engl 2018; 57:3431-3434. [DOI: 10.1002/anie.201800542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Florian Allouche
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 1-5 8093 Zürich Switzerland
| | - Ka Wing Chan
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 1-5 8093 Zürich Switzerland
| | - Alexey Fedorov
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 1-5 8093 Zürich Switzerland
| | - Richard A. Andersen
- Department of Chemistry; University of California; Berkeley CA 94720-1460 USA
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 1-5 8093 Zürich Switzerland
| |
Collapse
|
42
|
Nakamura Y, Ebeling B, Wolpers A, Monteil V, D'Agosto F, Yamago S. Controlled Radical Polymerization of Ethylene Using Organotellurium Compounds. Angew Chem Int Ed Engl 2018; 57:305-309. [PMID: 29144596 DOI: 10.1002/anie.201709946] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/13/2017] [Indexed: 11/06/2022]
Abstract
The first successfully controlled radical polymerization (CRP) of ethylene is reported using several organotellurium chain-transfer agents (CTAs) under mild conditions (70 °C, 200 bar of ethylene) within the concept of organotellurium-mediated radical polymerization (TERP). In contrast to preceding works on CRPs of ethylene applying reversible addition-fragmentation chain-transfer (RAFT), the TERP system provided a high livingness and chain-end functionalization of polyethylene chains. Molar-mass distributions with dispersities between 1.3 and 2.1 were obtained up to average molar masses of 5000 g mol-1 . As in the RAFT system, the high reactivity of the growing polyethylenyl radical led to an inherent side reaction. For the presented TERP systems, however, this side reaction did not result in dead chains, while it could even be effectively suppressed by a good choice of the CTA.
Collapse
Affiliation(s)
- Yasuyuki Nakamura
- Institute for Chemical Research, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| | - Bastian Ebeling
- Université de Lyon, Université Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire C2P2, Équipe LCPP, 69616, Villeurbanne CEDEX, France
| | - Arne Wolpers
- Université de Lyon, Université Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire C2P2, Équipe LCPP, 69616, Villeurbanne CEDEX, France
| | - Vincent Monteil
- Université de Lyon, Université Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire C2P2, Équipe LCPP, 69616, Villeurbanne CEDEX, France
| | - Franck D'Agosto
- Université de Lyon, Université Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire C2P2, Équipe LCPP, 69616, Villeurbanne CEDEX, France
| | - Shigeru Yamago
- Institute for Chemical Research, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
43
|
Nakamura Y, Ebeling B, Wolpers A, Monteil V, D'Agosto F, Yamago S. Controlled Radical Polymerization of Ethylene Using Organotellurium Compounds. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709946] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yasuyuki Nakamura
- Institute for Chemical Research; Kyoto University; Gokasyo Uji, Kyoto 611-0011 Japan
| | - Bastian Ebeling
- Université de Lyon, Université Lyon 1; CPE Lyon, CNRS UMR 5265, Laboratoire C2P2, Équipe LCPP; 69616 Villeurbanne CEDEX France
| | - Arne Wolpers
- Université de Lyon, Université Lyon 1; CPE Lyon, CNRS UMR 5265, Laboratoire C2P2, Équipe LCPP; 69616 Villeurbanne CEDEX France
| | - Vincent Monteil
- Université de Lyon, Université Lyon 1; CPE Lyon, CNRS UMR 5265, Laboratoire C2P2, Équipe LCPP; 69616 Villeurbanne CEDEX France
| | - Franck D'Agosto
- Université de Lyon, Université Lyon 1; CPE Lyon, CNRS UMR 5265, Laboratoire C2P2, Équipe LCPP; 69616 Villeurbanne CEDEX France
| | - Shigeru Yamago
- Institute for Chemical Research; Kyoto University; Gokasyo Uji, Kyoto 611-0011 Japan
| |
Collapse
|
44
|
Oliva L, Oliva P, Galdi N, Pellecchia C, Sian L, Macchioni A, Zuccaccia C. Solution Structure and Reactivity with Metallocenes of AlMe2
F: Mimicking Cation-Anion Interactions in Metallocenium-Methylalumoxane Inner-Sphere Ion Pairs. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Leone Oliva
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II 132-84084 Fisciano (SA) Italia
| | - Patrizia Oliva
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II 132-84084 Fisciano (SA) Italia
| | - Nunzia Galdi
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II 132-84084 Fisciano (SA) Italia
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II 132-84084 Fisciano (SA) Italia
| | - Leonardo Sian
- Dipartimento di Chimica, Biologia e Biotecnologie; Università degli Studi di Perugia; Via Elce di Sotto 8-06123 Perugia Italia
| | - Alceo Macchioni
- Dipartimento di Chimica, Biologia e Biotecnologie; Università degli Studi di Perugia; Via Elce di Sotto 8-06123 Perugia Italia
| | - Cristiano Zuccaccia
- Dipartimento di Chimica, Biologia e Biotecnologie; Università degli Studi di Perugia; Via Elce di Sotto 8-06123 Perugia Italia
| |
Collapse
|
45
|
Oliva L, Oliva P, Galdi N, Pellecchia C, Sian L, Macchioni A, Zuccaccia C. Solution Structure and Reactivity with Metallocenes of AlMe2
F: Mimicking Cation-Anion Interactions in Metallocenium-Methylalumoxane Inner-Sphere Ion Pairs. Angew Chem Int Ed Engl 2017; 56:14227-14231. [DOI: 10.1002/anie.201707194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Leone Oliva
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II 132-84084 Fisciano (SA) Italia
| | - Patrizia Oliva
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II 132-84084 Fisciano (SA) Italia
| | - Nunzia Galdi
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II 132-84084 Fisciano (SA) Italia
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II 132-84084 Fisciano (SA) Italia
| | - Leonardo Sian
- Dipartimento di Chimica, Biologia e Biotecnologie; Università degli Studi di Perugia; Via Elce di Sotto 8-06123 Perugia Italia
| | - Alceo Macchioni
- Dipartimento di Chimica, Biologia e Biotecnologie; Università degli Studi di Perugia; Via Elce di Sotto 8-06123 Perugia Italia
| | - Cristiano Zuccaccia
- Dipartimento di Chimica, Biologia e Biotecnologie; Università degli Studi di Perugia; Via Elce di Sotto 8-06123 Perugia Italia
| |
Collapse
|
46
|
Varga V, Večeřa M, Gyepes R, Pinkas J, Horáček M, Merna J, Lamač M. Effects of the Linking of Cyclopentadienyl and Ketimide Ligands in Titanium Half-Sandwich Olefin Polymerization Catalysts. ChemCatChem 2017. [DOI: 10.1002/cctc.201700498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Vojtech Varga
- J. Heyrovský Institute of Physical Chemistry; The Czech Academy of Sciences, v.v.i.; Dolejškova 2155/3 18223 Prague 8 Czech Republic
| | - Miloš Večeřa
- J. Heyrovský Institute of Physical Chemistry; The Czech Academy of Sciences, v.v.i.; Dolejškova 2155/3 18223 Prague 8 Czech Republic
| | - Róbert Gyepes
- J. Heyrovský Institute of Physical Chemistry; The Czech Academy of Sciences, v.v.i.; Dolejškova 2155/3 18223 Prague 8 Czech Republic
- Department of Inorganic Chemistry; Faculty of Science; Charles University in Prague; Hlavova 2030 12840 Prague 2 Czech Republic
| | - Jiří Pinkas
- J. Heyrovský Institute of Physical Chemistry; The Czech Academy of Sciences, v.v.i.; Dolejškova 2155/3 18223 Prague 8 Czech Republic
| | - Michal Horáček
- J. Heyrovský Institute of Physical Chemistry; The Czech Academy of Sciences, v.v.i.; Dolejškova 2155/3 18223 Prague 8 Czech Republic
| | - Jan Merna
- Department of Polymers; University of Chemistry and Technology Prague; Technická 5 166 28 Prague 6 Czech Republic
| | - Martin Lamač
- J. Heyrovský Institute of Physical Chemistry; The Czech Academy of Sciences, v.v.i.; Dolejškova 2155/3 18223 Prague 8 Czech Republic
| |
Collapse
|
47
|
Ehm C, Budzelaar PHM, Busico V. Tuning the Relative Energies of Propagation and Chain Termination Barriers in Polyolefin Catalysis through Electronic and Steric Effects. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christian Ehm
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cinthia 80126 Napoli Italy
| | - Peter H. M. Budzelaar
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cinthia 80126 Napoli Italy
| | - Vincenzo Busico
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cinthia 80126 Napoli Italy
| |
Collapse
|
48
|
Maestre MC, Gratal PB, Mosquera MEG, Cuenca T, Jiménez G. Suitable Approach to Prepare N‐Substituted Niobium Complexes – Study of the Factors Controlling the Process. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M. Carmen Maestre
- Department of Química Orgánica y Química Inorgánica Universidad de Alcalá Campus Universitario 28871 Alcalá de Henares Spain
| | - Patricia B. Gratal
- Department of Química Orgánica y Química Inorgánica Universidad de Alcalá Campus Universitario 28871 Alcalá de Henares Spain
| | - Marta E. G. Mosquera
- Department of Química Orgánica y Química Inorgánica Universidad de Alcalá Campus Universitario 28871 Alcalá de Henares Spain
| | - Tomás Cuenca
- Department of Química Orgánica y Química Inorgánica Universidad de Alcalá Campus Universitario 28871 Alcalá de Henares Spain
| | - Gerardo Jiménez
- Department of Química Orgánica y Química Inorgánica Universidad de Alcalá Campus Universitario 28871 Alcalá de Henares Spain
| |
Collapse
|
49
|
Boulho C, Zijlstra HS, Hofmann A, Budzelaar PHM, Harder S. Insight into Oxide-Bridged Heterobimetallic Al/Zr Olefin Polymerization Catalysts. Chemistry 2016; 22:17450-17459. [PMID: 27763715 DOI: 10.1002/chem.201602674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 11/07/2022]
Abstract
Reaction of (TBBP)AlMe⋅THF with [Cp*2 Zr(Me)OH] gave [(TBBP)Al(THF)-O-Zr(Me)Cp*2 ] (TBBP=3,3',5,5'-tetra-tBu-2,2'-biphenolato). Reaction of [DIPPnacnacAl(Me)-O-Zr(Me)Cp2 ] with [PhMe2 NH]+ [B(C6 F5 )4 ]- gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)-O-Zr(THF)Cp2 ]+ [B(C6 F5 )4 ]- (DIPPnacnac=HC[(Me)C=N(2,6-iPr2 -C6 H3 )]2 ). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40-47 kcal mol-1 ) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six-membered-ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal-Me-C angle that prevents synchronized bond-breaking and making. A more-likely pathway is dissociation of the Al-O-Zr complex into an aluminate and the active polymerization catalyst [Cp*2 ZrMe]+ .
Collapse
Affiliation(s)
- Cédric Boulho
- Inorganic and Organometallic Chemistry, University of Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany.,Dutch Polymer Institute (DPI), P. O. Box 902, 5600 AX, Eindhoven, Netherlands
| | - Harmen S Zijlstra
- Inorganic and Organometallic Chemistry, University of Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany.,Dutch Polymer Institute (DPI), P. O. Box 902, 5600 AX, Eindhoven, Netherlands.,Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Alexander Hofmann
- Inorganic and Organometallic Chemistry, University of Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Peter H M Budzelaar
- Dutch Polymer Institute (DPI), P. O. Box 902, 5600 AX, Eindhoven, Netherlands.,Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, University of Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany.,Dutch Polymer Institute (DPI), P. O. Box 902, 5600 AX, Eindhoven, Netherlands
| |
Collapse
|
50
|
Berionni G, Kurouchi H, Eisenburger L, Mayr H. Nucleophilicity of Alkyl Zirconocene and Titanocene Precatalysts, and Kinetics of Activation by Carbenium Ions and by B(C6F5)3. Chemistry 2016; 22:11196-200. [DOI: 10.1002/chem.201602452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Guillaume Berionni
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstr. 5-13 81377 München Germany
| | - Hiroaki Kurouchi
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstr. 5-13 81377 München Germany
| | - Lucien Eisenburger
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstr. 5-13 81377 München Germany
| | - Herbert Mayr
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstr. 5-13 81377 München Germany
| |
Collapse
|