1
|
Swann R, Slikboer S, Genady A, Silva LR, Janzen N, Faraday A, Valliant JF, Sadeghi S. Tetrazine-Derived Near-Infrared Dye for Targeted Photoacoustic Imaging of Bone. J Med Chem 2023; 66:6025-6036. [PMID: 37129217 DOI: 10.1021/acs.jmedchem.2c01685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A near-infrared photoacoustic probe was used to image bone in vivo through active and bioorthogonal pretargeting strategies that utilized coupling between a tetrazine-derived cyanine dye and a trans-cyclooctene-modified bisphosphonate. In vitro hydroxyapatite binding of the probe via active and pretargeting strategies showed comparable increases in percent binding vs a nontargeted control. Intrafemoral injection of the bisphosphonate-dye conjugate showed retention out to 24 h post-injection, with a 14-fold increase in signal over background, while the nontargeted dye exhibited negligible binding to bone and signal washout by 4 h post-injection. Intravenous injection, using both active and pretargeting strategies, demonstrated bone accumulation as earlier as 4 h post-injection, where the signal was found to be 3.6- and 1.5-fold higher, respectively, than the signal from the nontargeted dye. The described bone-targeted dye enabled in vivo photoacoustic imaging, while the synthetic strategy provides a convenient building block for developing new targeted photoacoustic probes.
Collapse
Affiliation(s)
- Rowan Swann
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Samantha Slikboer
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Afaf Genady
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Luis Rafael Silva
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Amber Faraday
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Saman Sadeghi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
2
|
Wang X, Li G, Li K, Shi Y, Lin W, Pan C, Li D, Chen H, Du J, Wang H. Controlled-release of apatinib for targeted inhibition of osteosarcoma by supramolecular nanovalve-modified mesoporous silica. Front Bioeng Biotechnol 2023; 11:1135655. [PMID: 36873361 PMCID: PMC9978000 DOI: 10.3389/fbioe.2023.1135655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Targeted delivery of antitumor drugs has been recognized as a promising therapeutic modality to improve treatment efficacy, reduce the toxic side effects and inhibit tumor recurrence. In this study, based on the high biocompatibility, large specific surface area, and easy surface modification of small-sized hollow mesoporous silica nanoparticles β-cyclodextrin (β-CD)-benzimidazole (BM) supramolecular nanovalve, together with bone-targeted alendronate sodium (ALN) were constructed on the surface of small-sized HMSNs. The drug loading capacity and efficiency of apatinib (Apa) in HMSNs/BM-Apa-CD-PEG-ALN (HACA) were 65% and 25%, respectively. More importantly, HACA nanoparticles can release the antitumor drug Apa efficiently compared with non-targeted HMSNs nanoparticles in the acidic microenvironment of the tumor. In vitro studies showed that HACA nanoparticles exhibited the most potent cytotoxicity in osteosarcoma cells (143B cells) and significantly reduced cell proliferation, migration and invasion. Therefore, the drug-efficient release of antitumor effect of HACA nanoparticles is a promising way to treat osteosarcoma.
Collapse
Affiliation(s)
- Xinglong Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Gongke Li
- Department of Critical Care Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Ke Li
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Shi
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenzheng Lin
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Chun Pan
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Dandan Li
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Hao Chen
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianwei Du
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Huihui Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Thomas CN, Alfahad N, Capewell N, Cowley J, Hickman E, Fernandez A, Harrison N, Qureshi OS, Bennett N, Barnes NM, Dick AD, Chu CJ, Liu X, Denniston AK, Vendrell M, Hill LJ. Triazole-derivatized near-infrared cyanine dyes enable local functional fluorescent imaging of ocular inflammation. Biosens Bioelectron 2022; 216:114623. [PMID: 36029662 DOI: 10.1016/j.bios.2022.114623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Near-infrared (NIR) chemical fluorophores are promising tools for in-vivo imaging in real time but often succumb to rapid photodegradation. Indocyanine green (ICG) is the only NIR dye with regulatory approval for ocular imaging in humans; however, ICG, when employed for applications such as labelling immune cells, has limited sensitivity and does not allow precise detection of specific inflammatory events, for example leukocyte recruitment during uveitic flare-ups. We investigated the potential use of photostable novel triazole NIR cyanine (TNC) dyes for detecting and characterising activated T-cell activity within the eye. Three TNC dyes were evaluated for ocular cytotoxicity in-vitro using a MTT assay and optimised concentrations for intraocular detection within ex-vivo porcine eyes after topical application or intracameral injections of the dyes. TNC labelled T-cell tracking experiments and mechanistic studies were also performed in-vitro. TNC-1 and TNC-2 dyes exhibited greater fluorescence intensity than ICG at 10 μM, whereas TNC-3 was only detectable at 100 μM within the porcine eye. TNC dyes did not demonstrate any ocular cell toxicity at working concentrations of 10 μM. CD4+T-cells labelled with TNC-1 or TNC-2 were detected within the porcine eye, with TNC-1 being brighter than TNC-2. Detection of TNC-1 and TNC-2 into CD4+T-cells was prevented by prior incubation with dynole 34-2 (50 μM), suggesting active uptake of these dyes via dynamin-dependent processes. The present study provides evidence that TNC dyes are suitable to detect activated CD4+T-cells within the eye with potential as a diagnostic marker for ocular inflammatory diseases.
Collapse
Affiliation(s)
- Chloe N Thomas
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Nada Alfahad
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Nicholas Capewell
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Jamie Cowley
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Eleanor Hickman
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Antonio Fernandez
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Murcia, Spain; Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Neale Harrison
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Omar S Qureshi
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Naomi Bennett
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Nicholas M Barnes
- Neuropharmacology Research Group, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Andrew D Dick
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Academic Unit of Ophthalmology, Bristol Medical School and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Colin J Chu
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Academic Unit of Ophthalmology, Bristol Medical School and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Xiaoxuan Liu
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; Health Data Research UK, London, UK
| | - Alastair K Denniston
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; Health Data Research UK, London, UK; Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Marc Vendrell
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
4
|
Fukuda T, Yokomizo S, Casa S, Monaco H, Manganiello S, Wang H, Lv X, Ulumben AD, Yang C, Kang MW, Inoue K, Fukushi M, Sumi T, Wang C, Kang H, Bao K, Henary M, Kashiwagi S, Soo Choi H. Fast and Durable Intraoperative Near-infrared Imaging of Ovarian Cancer Using Ultrabright Squaraine Fluorophores. Angew Chem Int Ed Engl 2022; 61:e202117330. [PMID: 35150468 PMCID: PMC9007913 DOI: 10.1002/anie.202117330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Indexed: 12/19/2022]
Abstract
The residual tumor after surgery is the most significant prognostic factor of patients with epithelial ovarian cancer. Near-infrared (NIR) fluorescence-guided surgery is actively utilized for tumor localization and complete resection during surgery. However, currently available contrast-enhancing agents display low on-target binding, unfavorable pharmacokinetics, and toxicity, thus not ideal for clinical use. Here we report ultrabright and stable squaraine fluorophores with optimal pharmacokinetics by introducing an asymmetric molecular conformation and surface charges for rapid transporter-mediated cellular uptake. Among the tested, OCTL14 shows low serum binding and rapid distribution into cancer tissue via organic cation transporters (OCTs). Additionally, the charged squaraine fluorophores are retained in lysosomes, providing durable intraoperative imaging in a preclinical murine model of ovarian cancer up to 24 h post-injection. OCTL14 represents a significant departure from the current bioconjugation approach of using a non-targeted fluorophore and would provide surgeons with an indispensable tool to achieve optimal resection.
Collapse
Affiliation(s)
- Takeshi Fukuda
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo, 116-8551, Japan
| | - Stefanie Casa
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Hailey Monaco
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sophia Manganiello
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Haoran Wang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xiangmin Lv
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amy Daniel Ulumben
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chengeng Yang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Min-Woong Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Daejeon, 301-721, South Korea
| | - Kazumasa Inoue
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo, 116-8551, Japan
| | - Masahiro Fukushi
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo, 116-8551, Japan
| | - Toshiyuki Sumi
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Cheng Wang
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Maged Henary
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
- Center for Diagnostics and Therapeutics, 145 Piedmont Avenue S.E., Atlanta, GA 30303, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
5
|
Fukuda T, Yokomizo S, Casa S, Monaco H, Manganiello S, Wang H, Lv X, Ulumben AD, Yang C, Kang MW, Inoue K, Fukushi M, Sumi T, Wang C, Kang H, Bao K, Henary M, Kashiwagi S, Choi HS. Fast and Durable Intraoperative Near‐infrared Imaging of Ovarian Cancer Using Ultrabright Squaraine Fluorophores. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Hailey Monaco
- Massachusetts General Hospital radiology UNITED STATES
| | | | - Haoran Wang
- Massachusetts General Hospital radiology UNITED STATES
| | - Xiangmin Lv
- Massachusetts General Hospital Obstetrics and Gynecology UNITED STATES
| | | | - Chengeng Yang
- Massachusetts General Hospital radiology UNITED STATES
| | | | - Kazumasa Inoue
- Tokyo Metropolitan University - Arakawa Campus: Tokyo Toritsu Daigaku - Arakawa Campus Radiation Science JAPAN
| | - Masahiro Fukushi
- Tokyo Metropolitan University - Arakawa Campus: Tokyo Toritsu Daigaku - Arakawa Campus Radiation Science JAPAN
| | - Toshiyuki Sumi
- Osaka City University: Osaka Shiritsu Daigaku Obstetrics and Gynecology JAPAN
| | - Cheng Wang
- Massachusetts General Hospital Obstetrics and Gynecology UNITED STATES
| | - Homan Kang
- Massachusetts General Hospital radiology UNITED STATES
| | - Kai Bao
- Massachusetts General Hospital radiology UNITED STATES
| | - Maged Henary
- Georgia State University Chemistry UNITED STATES
| | - Satoshi Kashiwagi
- Massachusetts General Hospital Radiology 149 13th Street 02129 Charlestown UNITED STATES
| | - Hak Soo Choi
- Massachusetts General Hospital Radiology 149 13th Street 02129 Boston UNITED STATES
| |
Collapse
|
6
|
2-((E)-2-((E)-4-Chloro-5-(2-((E)-5-methoxy-3,3-dimethyl-1-(3-phenylpropyl)indolin-2-ylidene) ethylidene)-1,1-dimethyl-1,2,5,6-tetrahydropyridin-1-ium-3-yl)vinyl)-5-methoxy-3,3-dimethyl-1-(3-phenylpropyl)-3H-indol-1-ium. MOLBANK 2021. [DOI: 10.3390/m1270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A heptamethine fluorophore, ERB-60, has been synthesized efficiently in four steps in a good yield. The structure of this fluorophore consists of an electron-donating group (methoxy), a hydrophobic moiety (phenylpropyl) with a rotatable bond, a quaternary ammonium fragment, and indolium rings at the terminal ends connected via polymethine chain. All these inherent chemical features fine-tuned the optical properties of the fluorophore. This compound was characterized by both 1H NMR, 13C NMR and mass spectra. The optical properties, including molar absorptivity, fluorescence, Stokes’s shift, and quantum yield, were measured in different solvents such as DMSO, DMF, MeCN, i-PrOH, MeOH, and H2O. The wavelengths of maximum absorbance of ERB-60 were found to be in the range of 745–770 nm based on the solvents used. In decreasing order, the maximum wavelength of absorbance of ERB-60 in the tested solvents was DMSO > DMF > i-PrOH > MeOH > MeCN > H2O while the decreasing order of the extinction coefficient was found to be MeCN > MeOH > DMSO > i-PrOH > H2O > DMF. ERB-60 was found to be more photostable than IR-786 iodide, a commercially available dye, and brighter than the FDA-approved dye, indocyanine green (ICG).
Collapse
|
7
|
Tang S, Huang Y, Zheng J. Salivary Excretion of Renal-Clearable Silver Nanoparticles. Angew Chem Int Ed Engl 2020; 59:19894-19898. [PMID: 32705738 PMCID: PMC8635779 DOI: 10.1002/anie.202008416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/18/2020] [Indexed: 11/05/2022]
Abstract
Salivary elimination is an important pathway for the body to excrete small molecules with digestive enzymes. However, very few engineered nanoparticles can be excreted through salivary glands, which often host bacteria or viruses during infection and involve in disease transmission. Herein, we report that renal clearable glutathione coated AgNPs (GS-AgNPs) can selectively accumulate in the submandibular salivary gland, followed by being excreted in its excretory duct. By conducting head-to-head comparison on in vivo transport and interactions of both GS-AgNPs and glutathione coated gold nanoparticles (GS-AuNPs) with the same sizes, we found that low-density GS-AgNPs showed much higher vascular permeability than GS-AuNPs and can rapidly penetrate into submandibular salivary glands, be efficiently taken up by striated and excretory duct cells, and eventually secreted into saliva.
Collapse
Affiliation(s)
- Shaoheng Tang
- Department of Chemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Yingyu Huang
- Department of Chemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Jie Zheng
- Department of Chemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| |
Collapse
|
8
|
3D Printing and NIR Fluorescence Imaging Techniques for the Fabrication of Implants. MATERIALS 2020; 13:ma13214819. [PMID: 33126650 PMCID: PMC7662749 DOI: 10.3390/ma13214819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) printing technology holds great potential to fabricate complex constructs in the field of regenerative medicine. Researchers in the surgical fields have used 3D printing techniques and their associated biomaterials for education, training, consultation, organ transplantation, plastic surgery, surgical planning, dentures, and more. In addition, the universal utilization of 3D printing techniques enables researchers to exploit different types of hardware and software in, for example, the surgical fields. To realize the 3D-printed structures to implant them in the body and tissue regeneration, it is important to understand 3D printing technology and its enabling technologies. This paper concisely reviews 3D printing techniques in terms of hardware, software, and materials with a focus on surgery. In addition, it reviews bioprinting technology and a non-invasive monitoring method using near-infrared (NIR) fluorescence, with special attention to the 3D-bioprinted tissue constructs. NIR fluorescence imaging applied to 3D printing technology can play a significant role in monitoring the therapeutic efficacy of 3D structures for clinical implants. Consequently, these techniques can provide individually customized products and improve the treatment outcome of surgeries.
Collapse
|
9
|
Zorlu Y, Brown C, Keil C, Ayhan MM, Haase H, Thompson RB, Lengyel I, Yücesan G. Fluorescent Arylphosphonic Acids: Synergic Interactions between Bone and the Fluorescent Core. Chemistry 2020; 26:11129-11134. [PMID: 32293767 PMCID: PMC7496659 DOI: 10.1002/chem.202001613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/23/2022]
Abstract
Herein, we report the third generation of fluorescent probes (arylphosphonic acids) to target calcifications, particularly hydroxyapatite (HAP). In this study, we use highly conjugated porphyrin-based arylphosphonic acids and their diesters, namely 5,10,15,20-tetrakis[m-(diethoxyphosphoryl)phenyl]porphyrin (m-H8 TPPA-OEt8 ) and 5,10,15,20-tetrakis [m-phenylphosphonic acid]porphyrin (m-H8 TPPA), in comparison with their positional isomers 5,10,15,20-tetrakis[p-(diisopropoxyphosphoryl)phenyl]porphyrin (p-H8 TPPA-iPr8 ) and 5,10,15,20-tetrakis [p-phenylphosphonic acid]porphyrin (p-H8 TPPA), which have phosphonic acid units bonded to sp2 carbon atoms of the fluorescent core. The conjugation of the fluorescent core is thus extended to the (HAP) through sp2 -bonded -PO3 H2 units, which generates increased fluorescence upon HAP binding. The resulting fluorescent probes are highly sensitive towards the HAP in rat bone sections. The designed probes are readily taken up by cells. Due to the lower reported toxicity of (p-H8 TPPA), these probes could find applications in monitoring bone resorption or adsorption, or imaging vascular or soft tissue calcifications for breast cancer diagnosis etc.
Collapse
Affiliation(s)
- Yunus Zorlu
- Department of ChemistryFaculty of ScienceGebze Technical University41400Gebze-KocaeliTurkey
| | - Connor Brown
- Wellcome-Wolfson Institute for Experimental MedicineSchool of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastBT9 7BLUK
| | - Claudia Keil
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| | - M. Menaf Ayhan
- Department of ChemistryFaculty of ScienceGebze Technical University41400Gebze-KocaeliTurkey
| | - Hajo Haase
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| | - Richard B. Thompson
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland21201USA
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental MedicineSchool of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastBT9 7BLUK
| | - Gündoğ Yücesan
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| |
Collapse
|
10
|
|
11
|
Braun AB, Wehl I, Kölmel DK, Schepers U, Bräse S. New Polyfluorinated Cyanine Dyes for Selective NIR Staining of Mitochondria. Chemistry 2019; 25:7998-8002. [PMID: 30947363 DOI: 10.1002/chem.201900412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Indexed: 12/26/2022]
Abstract
In this communication, the synthesis of three unknown polyfluorinated cyanine dyes and their application as selective markers for mitochondria are presented. By incorporating fluorous side chains into cyanine dyes, their remarkable photophysical properties were enhanced. To investigate their biological application, several different cell lines were incubated with the synthesized cyanine dyes. It was discovered that the presented dyes can be utilized for selective near-infrared-light (NIR) staining of mitochondria, with very low cytotoxicity determined by MTT assay. This is the first time that polyfluorinated cyanine fluorophores are presented as selective markers for mitochondria. Due to the versatile applications of polyfluorinated fluorophores in bioimaging and materials science, it is expected that the presented fluorophores will be stimulating for the scientific community.
Collapse
Affiliation(s)
- Alexander B Braun
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dominik K Kölmel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Chiminazzo A, Borsato G, Favero A, Fabbro C, McKenna CE, Dalle Carbonare LG, Valenti MT, Fabris F, Scarso A. Diketopyrrolopyrrole Bis‐Phosphonate Conjugate: A New Fluorescent Probe for In Vitro Bone Imaging. Chemistry 2019; 25:3617-3626. [PMID: 30600841 DOI: 10.1002/chem.201805436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Andrea Chiminazzo
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari di Venezia via Torino 155 30172 Mestre (VE) Italy
| | - Giuseppe Borsato
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari di Venezia via Torino 155 30172 Mestre (VE) Italy
| | - Alessia Favero
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità AmbientaleUniversità di Parma Italy
| | - Chiara Fabbro
- Department of ChemistryImperial College London Wood Lane London W12 0BZ UK
| | - Charles E. McKenna
- Department of ChemistryUniversity of Southern California Los Angeles California 90089 USA
| | | | | | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari di Venezia via Torino 155 30172 Mestre (VE) Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari di Venezia via Torino 155 30172 Mestre (VE) Italy
| |
Collapse
|
13
|
Ostadhossein F, Benig L, Tripathi I, Misra SK, Pan D. Fluorescence Detection of Bone Microcracks Using Monophosphonated Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19408-19415. [PMID: 29757601 DOI: 10.1021/acsami.8b03727] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phosphonated compounds, in particular, bisanalogs are widely applied in clinical settings for the treatment of severe bone turnovers and recently as imaging probes when conjugated with organic fluorophores. Herein, we introduce a bone seeking luminescent probe that shows a high binding affinity toward bone minerals based on monophosphonated carbon dots (CDs). Spheroidal CDs tethered with PEG monophosphates are synthesized in a one-pot hydrothermal method and are physicochemically characterized, where the retention of phosphonates is confirmed by 13P NMR and X-ray photoelectron spectroscopy. Interestingly, the high abundance of multiple monodentate phosphonates exhibited strong binding to hydroxyapatite, the main bone mineral constituent. The remarkable optophysical properties of monophosphonated CDs were confirmed in an ex vivo model of the bovine cortical bone where the imaging feasibility of microcracks, which are calcium-rich regions, was demonstrated. The in vivo studies specified the potential application of monophosphonated CDs for imaging when injected intramuscularly. The biodigestible nature and cytocompatibility of the probe presented here obviate the demand for a secondary fluorophore, while offering a nanoscale strategy for bone targeting and can eventually be employed for potential bone therapy in the future.
Collapse
Affiliation(s)
- Fatemeh Ostadhossein
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Lily Benig
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Indu Tripathi
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Santosh K Misra
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Dipanjan Pan
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
14
|
Ong MJH, Debieu S, Moreau M, Romieu A, Richard JA. Synthesis ofN,N-Dialkylamino-nor-Dihydroxanthene-Hemicyanine Fused Near-Infrared Fluorophores and Their First Water-Soluble and/or Bioconjugatable Analogues. Chem Asian J 2017; 12:936-946. [DOI: 10.1002/asia.201700176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Michelle Jui Hsien Ong
- Organic Chemistry, Institute of Chemical and Engineering Sciences, ICES; Agency for Science, Technology and Research, A*STAR; 8 Biomedical Grove, Neuros, #07-01 Singapore 138665 Singapore
| | - Sylvain Debieu
- ICMUB, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
| | - Mathieu Moreau
- ICMUB, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
- Institut Universitaire de France; 103, Boulevard Saint-Michel 75005 Paris France
| | - Jean-Alexandre Richard
- Organic Chemistry, Institute of Chemical and Engineering Sciences, ICES; Agency for Science, Technology and Research, A*STAR; 8 Biomedical Grove, Neuros, #07-01 Singapore 138665 Singapore
| |
Collapse
|
15
|
Haque A, Faizi MSH, Rather JA, Khan MS. Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: A review. Bioorg Med Chem 2017; 25:2017-2034. [PMID: 28284863 DOI: 10.1016/j.bmc.2017.02.061] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Abstract
Cancer is a group of diseases responsible for the major causes of mortality and morbidity among people of all ages. Even though medical sciences have made enormous growth, complete treatment of this deadly disease is still a challenging task. Last few decades witnessed an impressive growth in the design and development of near infrared (NIR) fluorophores with and without recognition moieties for molecular recognitions, imaging and image guided surgeries. The present article reviews recently reported NIR emitting organic/inorganic fluorophores that targets and accumulates in organelle/organs specifically for molecular imaging of cancerous cells. Near infrared (NIR probe) with or without a tumor-targeting warhead have been considered and discussed for their applications in the field of cancer imaging. In addition, challenges persist in this area are also delineated in this review.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman.
| | | | - Jahangir Ahmad Rather
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman
| | - Muhammad S Khan
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
16
|
Martinez V, Henary M. Nile Red and Nile Blue: Applications and Syntheses of Structural Analogues. Chemistry 2016; 22:13764-13782. [DOI: 10.1002/chem.201601570] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Vincent Martinez
- Department of Chemistry; Georgia State University; Atlanta GA 30302 USA
| | - Maged Henary
- Department of Chemistry; Georgia State University; Atlanta GA 30302 USA
| |
Collapse
|
17
|
Kolmakov K, Hebisch E, Wolfram T, Nordwig LA, Wurm CA, Ta H, Westphal V, Belov VN, Hell SW. Far-Red Emitting Fluorescent Dyes for Optical Nanoscopy: Fluorinated Silicon-Rhodamines (SiRF Dyes) and Phosphorylated Oxazines. Chemistry 2015; 21:13344-56. [DOI: 10.1002/chem.201501394] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/16/2015] [Indexed: 12/30/2022]
|
18
|
Hyun H, Owens EA, Wada H, Levitz A, Park G, Park MH, Frangioni JV, Henary M, Choi HS. Cartilage-Specific Near-Infrared Fluorophores for Biomedical Imaging. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Hyun H, Owens EA, Wada H, Levitz A, Park G, Park MH, Frangioni JV, Henary M, Choi HS. Cartilage-Specific Near-Infrared Fluorophores for Biomedical Imaging. Angew Chem Int Ed Engl 2015; 54:8648-52. [PMID: 26095685 DOI: 10.1002/anie.201502287] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 11/08/2022]
Abstract
A novel class of near-infrared fluorescent contrast agents was developed. These agents target cartilage with high specificity and this property is inherent to the chemical structure of the fluorophore. After a single low-dose intravenous injection and a clearance time of approximately 4 h, these agents bind to all three major types of cartilage (hyaline, elastic, and fibrocartilage) and perform equally well across species. Analysis of the chemical structure similarities revealed a potential pharmacophore for cartilage targeting. Our results lay the foundation for future improvements in tissue engineering, joint surgery, and cartilage-specific drug development.
Collapse
Affiliation(s)
- Hoon Hyun
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, SL436A, Boston, MA 02215 (USA).,Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501-746 (South Korea)
| | - Eric A Owens
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Hideyuki Wada
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, SL436A, Boston, MA 02215 (USA)
| | - Andrew Levitz
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 (USA)
| | - GwangLi Park
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, SL436A, Boston, MA 02215 (USA)
| | - Min Ho Park
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, SL436A, Boston, MA 02215 (USA).,Department of Surgery, Chonnam National University Medical School, Gwangju 501-746 (South Korea)
| | - John V Frangioni
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, SL436A, Boston, MA 02215 (USA).,Curadel, LLC, 377 Plantation Street, Worcester, MA 01605 (USA)
| | - Maged Henary
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 (USA).
| | - Hak Soo Choi
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, SL436A, Boston, MA 02215 (USA). .,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (South Korea).
| |
Collapse
|