1
|
Nath S, Yadav E, Raghuvanshi A, Singh AK. Ru(II) Complexes with Protic- and Anionic-Naked-NHC Ligands for Cooperative Activation of Small Molecules. Chemistry 2023; 29:e202301971. [PMID: 37377294 DOI: 10.1002/chem.202301971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
A set of ruthenium(II)-protic-N-heterocyclic carbene complexes, [Ru(NNCH )(PPh3 )2 (X)]Cl (1, X=Cl and 2, X=H) and their deprotonated forms [Ru(NNC)(PPh3 )2 (X)] (1', X=Cl and 2', X=H), in which NNC is a new unsymmetrical pincer ligand, are reported. The four complexes are interconvertible by simple acid-base chemistry. The combined theoretical and spectroscopic investigations indicate charge segregation in anionic-NHC complexes (1' and 2') and can be described from a Lewis pair perspective. The chemical reactivity of deprotonated complex 1' shows cooperative small molecule activation. Complex 1' activates H-H bond of hydrogen, C(sp3 )-I bond of iodomethane, and C(sp)-H bond of phenylacetylene. The activation of CO2 using anionic NHC complex 1' at moderate temperature and ambient pressure and subsequent conversion to formate is also described. All the new compounds have been characterized using ESI-MS, 1 H, 13 C, and 31 P NMR spectroscopy. Molecular structures of 1, 2, and 2' have also been determined with single-crystal X-ray diffraction. The cooperative small molecule activation perspective broadens the scope of potential applications of anionic-NHC complexes in small molecule activation, including the conversion of carbon dioxide to formate, a much sought after reaction in the renewable energy and sustainable development domains.
Collapse
Affiliation(s)
- Shambhu Nath
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Ekta Yadav
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Abhinav Raghuvanshi
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Amrendra K Singh
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| |
Collapse
|
2
|
Zhang Y, Chen S, Al-Enizi AM, Nafady A, Tang Z, Ma S. Chiral Frustrated Lewis Pair@Metal-Organic Framework as a New Platform for Heterogeneous Asymmetric Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202213399. [PMID: 36347776 DOI: 10.1002/anie.202213399] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Indexed: 11/11/2022]
Abstract
Asymmetric hydrogenation, a seminal strategy for the synthesis of chiral molecules, remains largely unmet in terms of activation by non-metal sites of heterogeneous catalysts. Herein, as demonstrated by combined computational and experimental studies, we present a general strategy for integrating rationally designed molecular chiral frustrated Lewis pair (CFLP) with porous metal-organic framework (MOF) to construct the catalyst CFLP@MOF that can efficiently promote the asymmetric hydrogenation in a heterogeneous manner, which for the first time extends the concept of chiral frustrated Lewis pair from homogeneous system to heterogeneous catalysis. Significantly, the developed CFLP@MOF, inherits the merits of both homogeneous and heterogeneous catalysts, with high activity/enantio-selectivity and excellent recyclability/regenerability. Our work not only advances CFLP@MOF as a new platform for heterogeneous asymmetric hydrogenation, but also opens a new avenue for the design and preparation of advanced catalysts for asymmetric catalysis.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Songbo Chen
- School of Physical Science and Technology, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, P.R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zhiyong Tang
- National Center for Nanoscience and Nanotechnology, No.11 ZhongGuanCun BeiYiTiao, 100190, Beijing, P.R. China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| |
Collapse
|
3
|
Sultana M, Bhattacharjee I, Bhunya S, Paul A. Uncovering the Synchronous Role of Bis‐borane with Nucleophilic Solvent as Frustrated Lewis pair in Metal‐free Catalytic Dehydrogenation of Ammonia‐borane. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Munia Sultana
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Ishita Bhattacharjee
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Sourav Bhunya
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Ankan Paul
- Indian Association for the Cultivation of Science Raman Centre for Atomic, Molecular and Optical Sciences 2A and 2B, Raja S. C. Mullick RoadJadavpur 700032 Kolkata INDIA
| |
Collapse
|
4
|
Heshmat M. Lewis Acidity of Carbon in Activated Carbonyl Group vs. B(C 6 F 5 ) 3 for Metal-Free Catalysis of Hydrogenation of Carbonyl Compounds. Chemphyschem 2021; 22:1535-1542. [PMID: 33655637 DOI: 10.1002/cphc.202100003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/21/2021] [Indexed: 01/19/2023]
Abstract
In this work, using DFT calculations, we investigated Lewis acidities of carbon (in activated carbonyl group) in comparison to the B(C6 F5 )3 in combination with dioxane as the Lewis base (LB) for metal-free catalysis of heterolytic H2 splitting and hydrogenation of carbonyl compounds. We found that in case of carbon as the Lewis acid (LA) the reaction is controlled by frontier molecular orbital interactions between the H2 and LA-LB fragments at shorter distances. The steric effects can be reduced by electrophilic substitutions on the carbonyl carbon. Synergic combination between stronger orbital interactions and reduced steric effects can lower the barrier of the H2 splitting below 10 kcal/mol. With the B(C6 F5 )3 , the H2 splitting is controlled by electrostatic interactions, which cause to form an early transition state. An advantage of employing Lewis acidity of the activated carbonyl carbon for hydrogenation is that the hydride-type attack and hydrogenation of the C=O bond occur in a single step throughout H2 splitting. Hence, stronger Lewis acidity of the C(C=O) reinforces hydrogenation without prohibition of the hydride delivery.
Collapse
Affiliation(s)
- Mojgan Heshmat
- Van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| |
Collapse
|
5
|
Friedrich A, Eyselein J, Elsen H, Langer J, Pahl J, Wiesinger M, Harder S. Cationic Aluminium Complexes as Catalysts for Imine Hydrogenation. Chemistry 2021; 27:7756-7763. [PMID: 33780071 PMCID: PMC8252007 DOI: 10.1002/chem.202100641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Strongly Lewis acidic cationic aluminium complexes, stabilized by β–diketiminate (BDI) ligands and free of Lewis bases, have been prepared as their B(C6F5)4− salts and were investigated for catalytic activity in imine hydrogenation. The backbone (R1) and N (R2) substituents on the R1,R2BDI ligand (R1,R2BDI=HC[C(R1)N(R2)]2) influence sterics and Lewis acidity. Ligand bulk increases along the row Me,DIPPBDI<Me,DIPePBDI≈tBu,DIPPBDI<tBu,DIPePBDI; DIPP=2,6‐C(H)Me2‐phenyl, DIPeP=2,6‐C(H)Et2‐phenyl. The Gutmann‐Beckett test showed acceptor numbers of: (tBu,DIPPBDI)AlMe+ 85.6, (tBu,DIPePBDI)AlMe+ 85.9, (Me,DIPPBDI)AlMe+ 89.7, (Me,DIPePBDI)AlMe+ 90.8, (Me,DIPPBDI)AlH+ 95.3. Steric and electronic factors need to be balanced for catalytic activity in imine hydrogenation. Open, highly Lewis acidic, cations strongly coordinate imine rendering it inactive as a Frustrated Lewis Pair (FLP). The bulkiest cations do not coordinate imine but its combination is also not an active catalyst. The cation (tBu,DIPPBDI)AlMe+ shows the best catalytic activity for various imines and is also an active catalyst for the Tishchenko reaction of benzaldehyde to benzylbenzoate. DFT calculations on the mechanism of imine hydrogenation catalysed by cationic Al complexes reveal two interconnected catalytic cycles operating in concert. Hydrogen is activated either by FLP reactivity of an Al⋅⋅⋅imine couple or, after formation of significant quantities of amine, by reaction with an Al⋅⋅⋅amine couple. The latter autocatalytic Al⋅⋅⋅amine cycle is energetically favoured.
Collapse
Affiliation(s)
- Alexander Friedrich
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Jonathan Eyselein
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Holger Elsen
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Jürgen Pahl
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Michael Wiesinger
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| |
Collapse
|
6
|
Manankandayalage C, Unruh DK, Krempner C. Small Molecule Activation with Intramolecular "Inverse" Frustrated Lewis Pairs. Chemistry 2021; 27:6263-6273. [PMID: 33567143 DOI: 10.1002/chem.202005143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/29/2021] [Indexed: 12/25/2022]
Abstract
The intramolecular "inverse" frustrated Lewis pairs (FLPs) of general formula 1-BR2 -2-[(Me2 N)2 C=N]-C6 H4 (3-6) [BR2 =BMes2 (3), BC12 H8 , (4), BBN (5), BBNO (6)] were synthesized and structurally characterized by multinuclear NMR spectroscopy and X-ray analysis. These novel types of pre-organized FLPs, featuring strongly basic guanidino units rigidly linked to weakly Lewis acidic boryl moieties via an ortho-phenylene linker, are capable of activating H-H, C-H, N-H, O-H, Si-H, B-H and C=O bonds. 4 and 5 deprotonated terminal alkynes and acetylene to form the zwitterionic borates 1-(RC≡C-BR2 )-2-[(Me2 N)2 C=NH]-C6 H4 (R=Ph, H) and reacted with ammonia, BnNH2 and pyrrolidine, to generate the FLP adducts 1-(R2 HN→BR2 )-2-[(Me2 N)2 C=NH]-C6 H4 , where the N-H functionality is activated by intramolecular H-bond interactions. In addition, 5 was found to rapidly add across the double bond of H2 CO, PhCHO and PhNCO to form cyclic zwitterionic guanidinium borates in excellent yields. Likewise, 5 is capable of cleaving H2 , HBPin and PhSiH3 to form various amino boranes. Collectively, the results demonstrate that these new types of intramolecular FLPs featuring weakly Lewis acidic boryl and strongly basic guanidino moieties are as potent as conventional intramolecular FLPs with strongly Lewis acidic units in activating small molecules.
Collapse
Affiliation(s)
| | - Daniel K Unruh
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Clemens Krempner
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
7
|
Sultana M, Paul A, Roy L. Computational Investigation of the Mechanism of FLP Catalyzed H
2
Activation and Lewis Base Assisted Proton Transfer. ChemistrySelect 2020. [DOI: 10.1002/slct.202003794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Munia Sultana
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Ankan Paul
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai Bhubaneswar IIT Kharagpur Extension Centre IOC Odisha Campus Bhubaneswar 751013 India
| |
Collapse
|
8
|
Leitl J, Jupp AR, Habraken ERM, Streitferdt V, Coburger P, Scott DJ, Gschwind RM, Müller C, Slootweg JC, Wolf R. A Phosphinine-Derived 1-Phospha-7-Bora-Norbornadiene: Frustrated Lewis Pair Type Activation of Triple Bonds. Chemistry 2020; 26:7788-7800. [PMID: 32052879 PMCID: PMC7383905 DOI: 10.1002/chem.202000266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Salt metathesis of 1-methyl-2,4,6-triphenylphosphacyclohexadienyl lithium and chlorobis(pentafluorophenyl)borane affords a 1-phospha-7-bora-norbornadiene derivative 2. The C≡N triple bonds of nitriles insert into the P-B bond of 2 with concomitant C-B bond cleavage, whereas the C≡C bonds of phenylacetylenes react with 2 to form λ4 -phosphabarrelenes. Even though 2 must formally be regarded as a classical Lewis adduct, the C≡N and C≡C activation processes observed (and the mild conditions under which they occur) are reminiscent of the reactivity of frustrated Lewis pairs. Indeed, NMR and computational studies give insight into the mechanism of the reactions and reveal the labile nature of the phosphorus-boron bond in 2, which is also suggested by detailed NMR spectroscopic studies on this compound. Nitrile insertion is thus preceded by ring opening of the bicycle of 2 through P-B bond splitting with a low energy barrier. By contrast, the reaction with alkynes involves formation of a reactive zwitterionic methylphosphininium borate intermediate, which readily undergoes alkyne 1,4-addition.
Collapse
Affiliation(s)
- Julia Leitl
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Andrew R. Jupp
- van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904, PO Box 941571090 GDAmsterdamThe Netherlands
| | - Evi R. M. Habraken
- van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904, PO Box 941571090 GDAmsterdamThe Netherlands
| | - Verena Streitferdt
- Institute of Organic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Peter Coburger
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Daniel J. Scott
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Ruth M. Gschwind
- Institute of Organic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Christian Müller
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| | - J. Chris Slootweg
- van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904, PO Box 941571090 GDAmsterdamThe Netherlands
| | - Robert Wolf
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| |
Collapse
|
9
|
Bennett EL, Lawrence EJ, Blagg RJ, Mullen AS, MacMillan F, Ehlers AW, Scott DJ, Sapsford JS, Ashley AE, Wildgoose GG, Slootweg JC. A New Mode of Chemical Reactivity for Metal-Free Hydrogen Activation by Lewis Acidic Boranes. Angew Chem Int Ed Engl 2019; 58:8362-8366. [PMID: 30968535 PMCID: PMC6594078 DOI: 10.1002/anie.201900861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/09/2019] [Indexed: 12/13/2022]
Abstract
We herein explore whether tris(aryl)borane Lewis acids are capable of cleaving H2 outside of the usual Lewis acid/base chemistry described by the concept of frustrated Lewis pairs (FLPs). Instead of a Lewis base we use a chemical reductant to generate stable radical anions of two highly hindered boranes: tris(3,5-dinitromesityl)borane and tris(mesityl)borane. NMR spectroscopic characterization reveals that the corresponding borane radical anions activate (cleave) dihydrogen, whilst EPR spectroscopic characterization, supported by computational analysis, reveals the intermediates along the hydrogen activation pathway. This radical-based, redox pathway involves the homolytic cleavage of H2 , in contrast to conventional models of FLP chemistry, which invoke a heterolytic cleavage pathway. This represents a new mode of chemical reactivity for hydrogen activation by borane Lewis acids.
Collapse
Affiliation(s)
- Elliot L. Bennett
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Elliot J. Lawrence
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Robin J. Blagg
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Anna S. Mullen
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Fraser MacMillan
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Andreas W. Ehlers
- Van 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904, PO Box 941571090 GDAmsterdamThe Netherlands
- Department of Chemistry, Science FacultyUniversity of JohannesburgPO Box 254, Auckland ParkJohannesburgSouth Africa
| | - Daniel J. Scott
- Molecular Sciences Research HubImperial College White City Campus80 Wood LaneLondonW12 0BZUK
| | - Joshua S. Sapsford
- Molecular Sciences Research HubImperial College White City Campus80 Wood LaneLondonW12 0BZUK
| | - Andrew E. Ashley
- Molecular Sciences Research HubImperial College White City Campus80 Wood LaneLondonW12 0BZUK
| | - Gregory G. Wildgoose
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - J. Chris Slootweg
- Van 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904, PO Box 941571090 GDAmsterdamThe Netherlands
| |
Collapse
|
10
|
Bennett EL, Lawrence EJ, Blagg RJ, Mullen AS, MacMillan F, Ehlers AW, Scott DJ, Sapsford JS, Ashley AE, Wildgoose GG, Slootweg JC. A New Mode of Chemical Reactivity for Metal‐Free Hydrogen Activation by Lewis Acidic Boranes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elliot L. Bennett
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Elliot J. Lawrence
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Robin J. Blagg
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Anna S. Mullen
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Fraser MacMillan
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Andreas W. Ehlers
- Van 't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904, PO Box 94157 1090 GD Amsterdam The Netherlands
- Department of Chemistry, Science FacultyUniversity of Johannesburg PO Box 254, Auckland Park Johannesburg South Africa
| | - Daniel J. Scott
- Molecular Sciences Research HubImperial College White City Campus 80 Wood Lane London W12 0BZ UK
| | - Joshua S. Sapsford
- Molecular Sciences Research HubImperial College White City Campus 80 Wood Lane London W12 0BZ UK
| | - Andrew E. Ashley
- Molecular Sciences Research HubImperial College White City Campus 80 Wood Lane London W12 0BZ UK
| | - Gregory G. Wildgoose
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - J. Chris Slootweg
- Van 't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904, PO Box 94157 1090 GD Amsterdam The Netherlands
| |
Collapse
|
11
|
Zwettler N, Mösch-Zanetti NC. Interaction of Metal Oxido Compounds with B(C 6 F 5 ) 3. Chemistry 2019; 25:6064-6076. [PMID: 30707470 DOI: 10.1002/chem.201805148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 11/07/2022]
Abstract
Lewis acid-base pair chemistry has been placed on a new level with the discovery that adduct formation between an electron donor (Lewis base) and acceptor (Lewis acid) can be inhibited by the introduction of steric demand, thus preserving the reactivity of both Lewis centers, resulting in highly unusual chemistry. Some of these highly versatile frustrated Lewis pairs (FLP) are capable of splitting a variety of small molecules, such as dihydrogen, in a heterolytic and even catalytic manner. This is in sharp contrast to classical reactions where the inert substrate must be activated by a metal-based catalyst. Very recently, research has emerged combining the two concepts, namely the formation of FLPs in which a metal compound represents the Lewis base, allowing for novel chemistry by using the heterolytic splitting power of both together with the redox reactivity of the metal. Such reactivity is not restricted to the metal center itself being a Lewis acid or base, also ancillary ligands can be used as part of the Lewis pair, still with the benefit of the redox-active metal center nearby. This Minireview is designed to highlight the novel reactions arising from the combination of metal oxido transition-metal or rare-earth-metal compounds with the Lewis acid B(C6 F5 )3 . It covers a wide area of chemistry including small molecule activation, hydrogenation and hydrosilylation catalysis, and olefin metathesis, substantiating the broad influence of the novel concept. Future goals of this young and exciting area are briefly discussed.
Collapse
Affiliation(s)
- Niklas Zwettler
- Institute of Chemistry/Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| | - Nadia C Mösch-Zanetti
- Institute of Chemistry/Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| |
Collapse
|
12
|
Niu Z, Zhang W, Lan PC, Aguila B, Ma S. Promoting Frustrated Lewis Pairs for Heterogeneous Chemoselective Hydrogenation via the Tailored Pore Environment within Metal–Organic Frameworks. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zheng Niu
- Department Department of Chemistry University of South Florida 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Weijie Zhang
- Department Department of Chemistry University of South Florida 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Pui Ching Lan
- Department Department of Chemistry University of South Florida 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Briana Aguila
- Department Department of Chemistry University of South Florida 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Shengqian Ma
- Department Department of Chemistry University of South Florida 4202 E. Fowler Avenue Tampa FL 33620 USA
| |
Collapse
|
13
|
Niu Z, Zhang W, Lan PC, Aguila B, Ma S. Promoting Frustrated Lewis Pairs for Heterogeneous Chemoselective Hydrogenation via the Tailored Pore Environment within Metal–Organic Frameworks. Angew Chem Int Ed Engl 2019; 58:7420-7424. [DOI: 10.1002/anie.201903763] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Zheng Niu
- Department Department of Chemistry University of South Florida 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Weijie Zhang
- Department Department of Chemistry University of South Florida 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Pui Ching Lan
- Department Department of Chemistry University of South Florida 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Briana Aguila
- Department Department of Chemistry University of South Florida 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Shengqian Ma
- Department Department of Chemistry University of South Florida 4202 E. Fowler Avenue Tampa FL 33620 USA
| |
Collapse
|
14
|
Zhao T, Hu X, Wu Y, Zhang Z. Hydrogenation of CO2
to Formate with H2
: Transition Metal Free Catalyst Based on a Lewis Pair. Angew Chem Int Ed Engl 2018; 58:722-726. [DOI: 10.1002/anie.201809634] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/04/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Tianxiang Zhao
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Xingbang Hu
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Youting Wu
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Zhibing Zhang
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| |
Collapse
|
15
|
Zhao T, Hu X, Wu Y, Zhang Z. Hydrogenation of CO2
to Formate with H2
: Transition Metal Free Catalyst Based on a Lewis Pair. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tianxiang Zhao
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Xingbang Hu
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Youting Wu
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Zhibing Zhang
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| |
Collapse
|
16
|
Zwettler N, Walg SP, Belaj F, Mösch‐Zanetti NC. Heterolytic Si-H Bond Cleavage at a Molybdenum-Oxido-Based Lewis Pair. Chemistry 2018; 24:7149-7160. [PMID: 29521459 PMCID: PMC6001527 DOI: 10.1002/chem.201800226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Indexed: 12/15/2022]
Abstract
The reaction of a molybdenum(VI) oxido imido complex with the strong Lewis acid B(C6 F5 )3 gave access to the Lewis adduct [Mo{OB(C6 F5 )3 }(NtBu)L2 ] featuring reversible B-O bonding in solution. The resulting frustrated Lewis pair (FLP)-like reactivity is reflected by the compound's ability to heterolytically cleave Si-H bonds, leading to a clean formation of the novel cationic MoVI species 3 a (R=Et) and 3 b (R=Ph) of the general formula [Mo(OSiR3 )(NtBu)L2 ][HB(C6 F5 )3 ]. These compounds possess properties highly unusual for molybdenum d0 species such as an intensive, charge-transfer-based color as well as a reversible redox couple at very low potentials, both dependent on the silane used. Single-crystal X-ray diffraction analyses of 2 and 4 b, a derivative of 3 b featuring the [FB(C6 F5 )3 ]- anion, picture the stepwise elongation of the Mo=O bond, leading to a large increase in the electrophilicity of the metal center. The reaction of 3 a and 3 b with benzaldehyde allowed for the regeneration of compound 2 by hydrosilylation of the benzaldehyde. NMR spectroscopy suggested an unusual mechanism for the transformation, involving a substrate insertion in the B-H bond of the borohydride anion.
Collapse
Affiliation(s)
- Niklas Zwettler
- Institute of Chemistry, Inorganic ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Simon P. Walg
- Institute of Chemistry, Inorganic ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Nadia C. Mösch‐Zanetti
- Institute of Chemistry, Inorganic ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| |
Collapse
|
17
|
Shang M, Cao M, Wang Q, Wasa M. Enantioselective Direct Mannich-Type Reactions Catalyzed by Frustrated Lewis Acid/Brønsted Base Complexes. Angew Chem Int Ed Engl 2017; 56:13338-13341. [DOI: 10.1002/anie.201708103] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/31/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Ming Shang
- Department of Chemistry; Merkert Chemistry Center; Boston College; Chestnut Hill MA 02467 USA
| | - Min Cao
- Department of Chemistry; Merkert Chemistry Center; Boston College; Chestnut Hill MA 02467 USA
| | - Qifan Wang
- Department of Chemistry; Merkert Chemistry Center; Boston College; Chestnut Hill MA 02467 USA
| | - Masayuki Wasa
- Department of Chemistry; Merkert Chemistry Center; Boston College; Chestnut Hill MA 02467 USA
| |
Collapse
|
18
|
Shang M, Cao M, Wang Q, Wasa M. Enantioselective Direct Mannich-Type Reactions Catalyzed by Frustrated Lewis Acid/Brønsted Base Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ming Shang
- Department of Chemistry; Merkert Chemistry Center; Boston College; Chestnut Hill MA 02467 USA
| | - Min Cao
- Department of Chemistry; Merkert Chemistry Center; Boston College; Chestnut Hill MA 02467 USA
| | - Qifan Wang
- Department of Chemistry; Merkert Chemistry Center; Boston College; Chestnut Hill MA 02467 USA
| | - Masayuki Wasa
- Department of Chemistry; Merkert Chemistry Center; Boston College; Chestnut Hill MA 02467 USA
| |
Collapse
|
19
|
Heshmat M, Privalov T. Computational Elucidation of a Role That Brønsted Acidification of the Lewis Acid-Bound Water Might Play in the Hydrogenation of Carbonyl Compounds with H 2 in Lewis Basic Solvents. Chemistry 2017; 23:11489-11493. [PMID: 28677868 DOI: 10.1002/chem.201700937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 11/08/2022]
Abstract
Brønsted acidification of water by Lewis acid (LA) complexation is one of the fundamental principles in chemistry. Using transition-state calculations (TS), herein we investigate the role that Brønsted acidification of the LA-bound water might play in the mechanism of the hydrogenation of carbonyl compounds in Lewis basic solvents under non-anhydrous conditions. The potential energy scans and TS calculations were carried out with a series of eight borane LAs as well as the commonly known strong LA AlCl3 in 1,4-dioxane or THF as Lewis basic solvents. Our molecular model consists of the dative LA-water adduct with hydrogen bonds to acetone and a solvent molecule plus one additional solvent molecule that participates is the TS structure describing the cleavage of H2 at acetone's carbonyl carbon atom. In all the molecular models applied here, acetone (O=CMe2 ) is the archetypical carbonyl substrate. We demonstrate that Brønsted acidification of the LA-bound water can indeed lower the barrier height of the solvent-involving H2 -cleavage at the acetone's carbonyl carbon atom. This is significant because at present it is believed that the mechanism of the herein considered reaction is described by the same mechanism regardless of whether the reaction conditions are strictly anhydrous or non-anhydrous. Our results offer an alternative to this belief that warrants consideration and further study.
Collapse
Affiliation(s)
- Mojgan Heshmat
- Department of Organic Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Timofei Privalov
- Department of Organic Chemistry, Stockholm University, Stockholm, 10691, Sweden
| |
Collapse
|
20
|
Elmer LM, Kehr G, Daniliuc CG, Siedow M, Eckert H, Tesch M, Studer A, Williams K, Warren TH, Erker G. The Chemistry of a Non-Interacting Vicinal Frustrated Phosphane/Borane Lewis Pair. Chemistry 2016; 23:6056-6068. [PMID: 27925311 DOI: 10.1002/chem.201603954] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/23/2016] [Indexed: 12/14/2022]
Abstract
The dimesitylphosphinocyclopentene/HB(C6 F5 )2 -derived vicinal trans-1,2-P/B frustrated Lewis pair (FLP) 4 shows no direct phosphane-borane interaction. Toward some reagents it behaves similar to an intermolecular FLP; it cleaves dihydrogen, deprotonates terminal alkynes, and adds to organic carbonyl compounds including CO2 . It shows typical intramolecular FLP reaction modes (cooperative 1,1-additions) to mesityl azide, to carbon monoxide, and to NO. The latter reaction yields a persistent P/B FLPNO nitroxide radical, which undergoes H-atom abstraction reactions. The FLP 4 serves as a template for the CO reduction by [HB(C6 F5 )2 ] to generate a FLP-η2 -formylborane. The formylborane moiety is removed from the FLP template by reaction with pyridine to yield a genuine pyridine stabilized formylborane that undergoes characteristic borane carbaldehyde reactions (Wittig olefination, imine formation). Most new products were characterized by X-ray diffraction.
Collapse
Affiliation(s)
- Lisa-Maria Elmer
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Melanie Siedow
- Institut für Physikalische Chemie, Universutät Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Hellmut Eckert
- Institut für Physikalische Chemie, Universutät Münster, Corrensstraße 28/30, 48149, Münster, Germany.,Instituto de Física Sao Carlos, Universidade de Sao Paulo, CP 369, 13560-970, Sao Carlos, SP, Brasil
| | - Matthias Tesch
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Kamille Williams
- Georgetown University, Department of Chemistry, Box 571227, Washington DC, 20057-1227, USA
| | - Timothy H Warren
- Georgetown University, Department of Chemistry, Box 571227, Washington DC, 20057-1227, USA
| | - Gerhard Erker
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
21
|
Kojima M, Kanai M. Tris(pentafluorophenyl)borane‐Catalyzed Acceptorless Dehydrogenation of N‐Heterocycles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606177] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Masahiro Kojima
- Graduate School of Pharmaceutical Sciences The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Japan Science and Technology Agency, ERATO Kanai Life Science Catalysis Project Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
22
|
Kojima M, Kanai M. Tris(pentafluorophenyl)borane-Catalyzed Acceptorless Dehydrogenation of N-Heterocycles. Angew Chem Int Ed Engl 2016; 55:12224-7. [DOI: 10.1002/anie.201606177] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 07/24/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Masahiro Kojima
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Japan Science and Technology Agency, ERATO; Kanai Life Science Catalysis Project; Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
23
|
Tao X, Kehr G, Wang X, Daniliuc CG, Grimme S, Erker G. Rapid Dihydrogen Cleavage by Persistent Nitroxide Radicals under Frustrated Lewis Pair Conditions. Chemistry 2016; 22:9504-7. [DOI: 10.1002/chem.201602058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Tao
- Organisch-Chemisches Institut; Westfälische Wilhelm-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut; Westfälische Wilhelm-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Xiaowu Wang
- Organisch-Chemisches Institut; Westfälische Wilhelm-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut; Westfälische Wilhelm-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie; Universität Bonn; Beringstraße 4 53115 Bonn Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut; Westfälische Wilhelm-Universität Münster; Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
24
|
Mohr J, Porwal D, Chatterjee I, Oestreich M. Extending the Scope of the B(C6F5)3-Catalyzed CN Bond Reduction: Hydrogenation of Oxime Ethers and Hydrazones. Chemistry 2015; 21:17583-6. [DOI: 10.1002/chem.201503509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 11/11/2022]
|
25
|
Chatterjee I, Qu ZW, Grimme S, Oestreich M. B(C6F5)3-katalysierter Diwasserstofftransfer von einem ungesättigten Kohlenwasserstoff auf einen anderen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504941] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Chatterjee I, Qu ZW, Grimme S, Oestreich M. B(C6F5)3-Catalyzed Transfer of Dihydrogen from One Unsaturated Hydrocarbon to Another. Angew Chem Int Ed Engl 2015; 54:12158-62. [DOI: 10.1002/anie.201504941] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 11/07/2022]
|
27
|
BASF Catalysis Award: A. E. Ashley / Hellmuth Fischer Medal: M. Arenz / Mattauch-Herzog Prize: K. Koszinowski / OMCOS Prize: M. S. Sanford. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/anie.201506023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Katalysepreis der BASF: A. E. Ashley / Hellmuth-Fischer-Medaille: M. Arenz / Mattauch-Herzog-Preis: K. Koszinowski / OMCOS-Preis: M. S. Sanford. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|