1
|
Ofori Atta L, Zhou Z, Roelfes G. In Vivo Biocatalytic Cascades Featuring an Artificial-Enzyme-Catalysed New-to-Nature Reaction. Angew Chem Int Ed Engl 2023; 62:e202214191. [PMID: 36342952 PMCID: PMC10100225 DOI: 10.1002/anie.202214191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Artificial enzymes utilizing the genetically encoded non-proteinogenic amino acid p-aminophenylalanine (pAF) as a catalytic residue are able to react with carbonyl compounds through an iminium ion mechanism to promote reactions that have no equivalent in nature. Herein, we report an in vivo biocatalytic cascade that is augmented with such an artificial enzyme-catalysed new-to-nature reaction. The artificial enzyme in this study is a pAF-containing evolved variant of the lactococcal multidrug-resistance regulator, designated LmrR_V15pAF_RMH, which efficiently converts benzaldehyde derivatives produced in vivo into the corresponding hydrazone products inside E. coli cells. These in vivo biocatalytic cascades comprising an artificial-enzyme-catalysed reaction are an important step towards achieving a hybrid metabolism.
Collapse
Affiliation(s)
- Linda Ofori Atta
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Zhi Zhou
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands.,Current address: School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| |
Collapse
|
2
|
Dennis JA, Sadler JC, Wallace S. Tyramine Derivatives Catalyze the Aldol Dimerization of Butyraldehyde in the Presence of Escherichia coli. Chembiochem 2022; 23:e202200238. [PMID: 35687270 PMCID: PMC9540883 DOI: 10.1002/cbic.202200238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Biogenic amine organocatalysts have transformed the field of synthetic organic chemistry. Yet despite their use in synthesis and to label biomolecules in vitro, amine organocatalysis in vivo has received comparatively little attention - despite the potential of such reactions to be interfaced with living cells and to modify cellular metabolites. Herein we report that biogenic amines derived from L-tyrosine catalyze the self-aldol condensation of butanal to 2-ethylhexenal - a key intermediate in the production of the bulk chemical 2-ethylhexanol - in the presence of living Escherichia coli and outperform many amine organocatalysts currently used in synthetic organic chemistry. Furthermore, we demonstrate that cell lysate from E. coli and the prolific amine overproducer Corynebacterium glutamicum ATCC 13032 catalyze this reaction in vitro, demonstrating the potential for microbial metabolism to be used as a source of organocatalysts for biocompatible reactions in cells.
Collapse
Affiliation(s)
- Jonathan A. Dennis
- Institute of Quantitative BiologyBiochemistry and BiotechnologySchool of Biological SciencesUniversity of EdinburghKing's Buildings, Alexander Crum Brown RoadEdinburghEH9 3FFUK
- EaStCHEM School of ChemistryUniversity of Edinburgh, King's BuildingsDavid Brewster RoadEdinburghEH9 3FJ
| | - Joanna C. Sadler
- Institute of Quantitative BiologyBiochemistry and BiotechnologySchool of Biological SciencesUniversity of EdinburghKing's Buildings, Alexander Crum Brown RoadEdinburghEH9 3FFUK
| | - Stephen Wallace
- Institute of Quantitative BiologyBiochemistry and BiotechnologySchool of Biological SciencesUniversity of EdinburghKing's Buildings, Alexander Crum Brown RoadEdinburghEH9 3FFUK
| |
Collapse
|
3
|
Gutiérrez S, Tomás‐Gamasa M, Mascareñas JL. Exporting Metal‐Carbene Chemistry to Live Mammalian Cells: Copper‐Catalyzed Intracellular Synthesis of Quinoxalines Enabled by N−H Carbene Insertions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara Gutiérrez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| | - María Tomás‐Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| |
Collapse
|
4
|
Gutiérrez S, Tomás‐Gamasa M, Mascareñas JL. Exporting Metal-Carbene Chemistry to Live Mammalian Cells: Copper-Catalyzed Intracellular Synthesis of Quinoxalines Enabled by N-H Carbene Insertions. Angew Chem Int Ed Engl 2021; 60:22017-22025. [PMID: 34390304 PMCID: PMC8518842 DOI: 10.1002/anie.202108899] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 12/17/2022]
Abstract
Implementing catalytic organometallic transformations in living settings can offer unprecedented opportunities in chemical biology and medicine. Unfortunately, the number of biocompatible reactions so far discovered is very limited, and essentially restricted to uncaging processes. Here, we demonstrate the viability of performing metal carbene transfer reactions in live mammalian cells. In particular, we show that copper (II) catalysts can promote the intracellular annulation of alpha-keto diazocarbenes with ortho-amino arylamines, in a process that is initiated by an N-H carbene insertion. The potential of this transformation is underscored by the in cellulo synthesis of a product that alters mitochondrial functions, and by demonstrating cell selective biological responses using targeted copper catalysts. Considering the wide reactivity spectrum of metal carbenes, this work opens the door to significantly expanding the repertoire of life-compatible abiotic reactions.
Collapse
Affiliation(s)
- Sara Gutiérrez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiagode CompostelaSpain
| | - María Tomás‐Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiagode CompostelaSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiagode CompostelaSpain
| |
Collapse
|
5
|
Maaskant RV, Chordia S, Roelfes G. Merging Whole‐cell Biosynthesis of Styrene and Transition‐metal Catalyzed Derivatization Reactions. ChemCatChem 2021. [DOI: 10.1002/cctc.202001896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruben V. Maaskant
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Shreyans Chordia
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
6
|
Kaur P, Tyagi V. Recent Advances in Iron‐Catalyzed Chemical and Enzymatic Carbene‐Transfer Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Parmjeet Kaur
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| | - Vikas Tyagi
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| |
Collapse
|
7
|
Stewart KN, Domaille DW. Enhancing Biosynthesis and Manipulating Flux in Whole Cells with Abiotic Catalysis. Chembiochem 2020; 22:469-477. [PMID: 32851745 DOI: 10.1002/cbic.202000458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/20/2020] [Indexed: 01/08/2023]
Abstract
Metabolic engineering uses genetic strategies to drive flux through desired pathways. Recent work with electrochemical, photochemical, and chemocatalytic setups has revealed that these systems can also expand metabolic pathways and manipulate flux in whole cells. Electrochemical systems add or remove electrons from metabolic pathways to direct flux to more- or less-reduced products. Photochemical systems act as synthetic light-harvesting complexes and yield artificial photosynthetic organisms. Biocompatible chemocatalysis increases product scope, streamlines syntheses, and yields single-flask processes to deliver products that would be challenging to synthesize through biosynthetic means alone. Here, we exclusively highlight systems that combine abiotic systems with living whole cells, taking particular note of strategies that enable the merger of these typically disparate systems.
Collapse
Affiliation(s)
- Kelsey N Stewart
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80403, USA
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80403, USA
| |
Collapse
|
8
|
Brewster RC, Suitor JT, Bennett AW, Wallace S. Transition Metal‐Free Reduction of Activated Alkenes Using a Living Microorganism. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Richard C. Brewster
- Institute for Quantitative Biology, Biochemistry and BiotechnologySchool of Biological SciencesUniversity of Edinburgh, King's Buildings Alexander Crum Brown Road Edinburgh EH9 3FF UK
| | - Jack T. Suitor
- Institute for Quantitative Biology, Biochemistry and BiotechnologySchool of Biological SciencesUniversity of Edinburgh, King's Buildings Alexander Crum Brown Road Edinburgh EH9 3FF UK
| | - Adam W. Bennett
- School of ChemistryUniversity of EdinburghJoseph Black Building David Brewster Road, King's Buildings Edinburgh EH9 3FJ UK
| | - Stephen Wallace
- Institute for Quantitative Biology, Biochemistry and BiotechnologySchool of Biological SciencesUniversity of Edinburgh, King's Buildings Alexander Crum Brown Road Edinburgh EH9 3FF UK
| |
Collapse
|
9
|
Brewster RC, Suitor JT, Bennett AW, Wallace S. Transition Metal-Free Reduction of Activated Alkenes Using a Living Microorganism. Angew Chem Int Ed Engl 2019; 58:12409-12414. [PMID: 31286626 DOI: 10.1002/anie.201903973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/26/2019] [Indexed: 01/07/2023]
Abstract
Microorganisms can be programmed to perform chemical synthesis via metabolic engineering. However, despite an increasing interest in the use of de novo metabolic pathways and designer whole-cells for small molecule synthesis, the inherent synthetic capabilities of native microorganisms remain underexplored. Herein, we report the use of unmodified E. coli BL21(DE3) cells for the reduction of keto-acrylic compounds and apply this whole-cell biotransformation to the synthesis of aminolevulinic acid from a lignin-derived feedstock. The reduction reaction is rapid, chemo-, and enantioselective, occurs under mild conditions (37 °C, aqueous media), and requires no toxic transition metals or external reductants. This study demonstrates the remarkable promiscuity of central metabolism in bacterial cells and how these processes can be leveraged for synthetic chemistry without the need for genetic manipulation.
Collapse
Affiliation(s)
- Richard C Brewster
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Jack T Suitor
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Adam W Bennett
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Stephen Wallace
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| |
Collapse
|
10
|
Ngo AH, Bose S, Do LH. Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems. Chemistry 2018; 24:10584-10594. [DOI: 10.1002/chem.201800504] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Anh H. Ngo
- Department of Chemistry; University of Houston; 4800 Calhoun Road Houston TX 77004 USA
| | - Sohini Bose
- Department of Chemistry; University of Houston; 4800 Calhoun Road Houston TX 77004 USA
| | - Loi H. Do
- Department of Chemistry; University of Houston; 4800 Calhoun Road Houston TX 77004 USA
| |
Collapse
|
11
|
Rioz-Martínez A, Oelerich J, Ségaud N, Roelfes G. DNA-Accelerated Catalysis of Carbene-Transfer Reactions by a DNA/Cationic Iron Porphyrin Hybrid. Angew Chem Int Ed Engl 2016; 55:14136-14140. [PMID: 27730731 PMCID: PMC5113691 DOI: 10.1002/anie.201608121] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 11/16/2022]
Abstract
A novel DNA-based hybrid catalyst comprised of salmon testes DNA and an iron(III) complex of a cationic meso-tetrakis(N-alkylpyridyl)porphyrin was developed. When the N-methyl substituents were placed at the ortho position with respect to the porphyrin ring, high reactivity in catalytic carbene-transfer reactions was observed under mild conditions, as demonstrated in the catalytic enantioselective cyclopropanation of styrene derivatives with ethyl diazoacetate (EDA) as the carbene precursor. A remarkable feature of this catalytic system is the large DNA-induced rate acceleration observed in this reaction and the related dimerization of EDA. It is proposed that high effective molarity of all components of the reaction in or near the DNA is one of the key contributors to this unique reactivity. This study demonstrates that the concept of DNA-based asymmetric catalysis can be expanded into the realm of organometallic chemistry.
Collapse
Affiliation(s)
- Ana Rioz-Martínez
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jens Oelerich
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nathalie Ségaud
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
12
|
Rioz-Martínez A, Oelerich J, Ségaud N, Roelfes G. DNA-Accelerated Catalysis of Carbene-Transfer Reactions by a DNA/Cationic Iron Porphyrin Hybrid. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ana Rioz-Martínez
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jens Oelerich
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Nathalie Ségaud
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
13
|
Britton J, Meneghini LM, Raston CL, Weiss GA. Accelerating Enzymatic Catalysis Using Vortex Fluidics. Angew Chem Int Ed Engl 2016; 55:11387-91. [PMID: 27493015 PMCID: PMC5524626 DOI: 10.1002/anie.201604014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 11/09/2022]
Abstract
Enzymes catalyze chemical transformations with outstanding stereo- and regio-specificities, but many enzymes are limited by their long reaction times. A general method to accelerate enzymes using pressure waves contained within thin films is described. Each enzyme responds best to specific frequencies of pressure waves, and an acceleration landscape for each protein is reported. A vortex fluidic device introduces pressure waves that drive increased rate constants (kcat ) and enzymatic efficiency (kcat /Km ). Four enzymes displayed an average seven-fold acceleration, with deoxyribose-5-phosphate aldolase (DERA) achieving an average 15-fold enhancement using this approach. In solving a common problem in enzyme catalysis, a powerful, generalizable tool for enzyme acceleration has been uncovered. This research provides new insights into previously uncontrolled factors affecting enzyme function.
Collapse
Affiliation(s)
- Joshua Britton
- Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide, 5001, Australia
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Luz M Meneghini
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Colin L Raston
- Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide, 5001, Australia.
| | - Gregory A Weiss
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA.
| |
Collapse
|
14
|
Designing ‘Totem’C2-Symmetrical Iron Porphyrin Catalysts for Stereoselective Cyclopropanations. Chemistry 2016; 22:13599-612. [DOI: 10.1002/chem.201602289] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 11/07/2022]
|
15
|
Britton J, Meneghini LM, Raston CL, Weiss GA. Accelerating Enzymatic Catalysis Using Vortex Fluidics. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Joshua Britton
- Chemical and Physical Sciences Flinders University Bedford Park Adelaide 5001 Australia
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Luz M. Meneghini
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Colin L. Raston
- Chemical and Physical Sciences Flinders University Bedford Park Adelaide 5001 Australia
| | - Gregory A. Weiss
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-2025 USA
| |
Collapse
|
16
|
Wallace S, Balskus EP. Designer Micelles Accelerate Flux Through Engineered Metabolism in E. coli and Support Biocompatible Chemistry. Angew Chem Int Ed Engl 2016; 55:6023-7. [PMID: 27061024 PMCID: PMC4973394 DOI: 10.1002/anie.201600966] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/17/2016] [Indexed: 01/04/2023]
Abstract
Synthetic biology has enabled the production of many value-added chemicals via microbial fermentation. However, the problem of low product titers from recombinant pathways has limited the utility of this approach. Methods to increase metabolic flux are therefore critical to the success of metabolic engineering. Here we demonstrate that vitamin E-derived designer micelles, originally developed for use in synthetic chemistry, are biocompatible and accelerate flux through a styrene production pathway in Escherichia coli. We show that these micelles associate non-covalently with the bacterial outer-membrane and that this interaction increases membrane permeability. In addition, these micelles also accommodate both heterogeneous and organic-soluble transition metal catalysts and accelerate biocompatible cyclopropanation in vivo. Overall, this work demonstrates that these surfactants hold great promise for further application in the field of synthetic biotechnology, and for expanding the types of molecules that can be readily accessed from renewable resources via the combination of microbial fermentation and biocompatible chemistry.
Collapse
Affiliation(s)
- Stephen Wallace
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.
| |
Collapse
|
17
|
Wallace S, Balskus EP. Designer Micelles Accelerate Flux Through Engineered Metabolism in
E. coli
and Support Biocompatible Chemistry. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600966] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stephen Wallace
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| |
Collapse
|
18
|
Hyster TK, Ward TR. Genetische Optimierung von Metalloenzymen: Weiterentwicklung von Enzymen für nichtnatürliche Reaktionen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201508816] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Todd K. Hyster
- Department of Chemistry; Princeton University; Princeton NJ 08544 USA
| | - Thomas R. Ward
- Departement Chemie; Universität Basel; Spitalstrasse 51 CH-4056 Basel Schweiz
| |
Collapse
|
19
|
Hyster TK, Ward TR. Genetic Optimization of Metalloenzymes: Enhancing Enzymes for Non-Natural Reactions. Angew Chem Int Ed Engl 2016; 55:7344-57. [PMID: 26971363 DOI: 10.1002/anie.201508816] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Indexed: 12/30/2022]
Abstract
Artificial metalloenzymes have received increasing attention over the last decade as a possible solution to unaddressed challenges in synthetic organic chemistry. Whereas traditional transition-metal catalysts typically only take advantage of the first coordination sphere to control reactivity and selectivity, artificial metalloenzymes can modulate both the first and second coordination spheres. This difference can manifest itself in reactivity profiles that can be truly unique to artificial metalloenzymes. This Review summarizes attempts to modulate the second coordination sphere of artificial metalloenzymes by using genetic modifications of the protein sequence. In doing so, successful attempts and creative solutions to address the challenges encountered are highlighted.
Collapse
Affiliation(s)
- Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056, Basel, Switzerland.
| |
Collapse
|
20
|
Busto E, Simon RC, Kroutil W. Vinylation of Unprotected Phenols Using a Biocatalytic System. Angew Chem Int Ed Engl 2015; 54:10899-902. [DOI: 10.1002/anie.201505696] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 11/10/2022]
|
21
|
Busto E, Simon RC, Kroutil W. Vinylation of Unprotected Phenols Using a Biocatalytic System. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Dreyfus Prize: K. Matyjaszewski / Camille Dreyfus Teacher-Scholar Awards: E. P. Balskus, W. Min, D. A. Nicewicz, and J. A. Prescher. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/anie.201505249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Dreyfus-Preis: K. Matyjaszewski / Camille Dreyfus Teacher-Scholar Awards: E. P. Balskus, W. Min, D. A. Nicewicz und J. A. Prescher. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|