1
|
Wohlgemuth R. Selective Biocatalytic Defunctionalization of Raw Materials. CHEMSUSCHEM 2022; 15:e202200402. [PMID: 35388636 DOI: 10.1002/cssc.202200402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Biobased raw materials, such as carbohydrates, amino acids, nucleotides, or lipids contain valuable functional groups with oxygen and nitrogen atoms. An abundance of many functional groups of the same type, such as primary or secondary hydroxy groups in carbohydrates, however, limits the synthetic usefulness if similar reactivities cannot be differentiated. Therefore, selective defunctionalization of highly functionalized biobased starting materials to differentially functionalized compounds can provide a sustainable access to chiral synthons, even in case of products with fewer functional groups. Selective defunctionalization reactions, without affecting other functional groups of the same type, are of fundamental interest for biocatalytic reactions. Controlled biocatalytic defunctionalizations of biobased raw materials are attractive for obtaining valuable platform chemicals and building blocks. The biocatalytic removal of functional groups, an important feature of natural metabolic pathways, can also be utilized in a systemic strategy for sustainable metabolite synthesis.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology Łódź, 90-537, Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8002, Zurich, Switzerland
| |
Collapse
|
2
|
Jiang Y, Peng W, Li Z, You C, Zhao Y, Tang D, Wang B, Li S. Unexpected Reactions of α,β‐Unsaturated Fatty Acids Provide Insight into the Mechanisms of CYP152 Peroxygenases. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences No. 189 Songling Road Qingdao Shandong 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhong Li
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences No. 189 Songling Road Qingdao Shandong 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Cai You
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
| | - Yue Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shengying Li
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao Shandong 266237 China
| |
Collapse
|
3
|
Jiang Y, Peng W, Li Z, You C, Zhao Y, Tang D, Wang B, Li S. Unexpected Reactions of α,β-Unsaturated Fatty Acids Provide Insight into the Mechanisms of CYP152 Peroxygenases. Angew Chem Int Ed Engl 2021; 60:24694-24701. [PMID: 34523786 DOI: 10.1002/anie.202111163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Indexed: 11/08/2022]
Abstract
CYP152 peroxygenases catalyze decarboxylation and hydroxylation of fatty acids using H2 O2 as cofactor. To understand the molecular basis for the chemo- and regioselectivity of these unique P450 enzymes, we analyze the activities of three CYP152 peroxygenases (OleTJE , P450SPα , P450BSβ ) towards cis- and trans-dodecenoic acids as substrate probes. The unexpected 6S-hydroxylation of the trans-isomer and 4R-hydroxylation of the cis-isomer by OleTJE , and molecular docking results suggest that the unprecedented selectivity is due to OleTJE 's preference of C2-C3 cis-configuration. In addition to the common epoxide products, undecanal is the unexpected major product of P450SPα and P450BSβ regardless of the cis/trans-configuration of substrates. The combined H2 18 O2 tracing experiments, MD simulations, and QM/MM calculations unravel an unusual mechanism for Compound I-mediated aldehyde formation in which the active site water derived from H2 O2 activation is involved in the generation of a four-membered ring lactone intermediate. These findings provide new insights into the unusual mechanisms of CYP152 peroxygenases.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.,Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.,Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cai You
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Yue Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| |
Collapse
|
4
|
Biermann U, Bornscheuer UT, Feussner I, Meier MAR, Metzger JO. Fatty Acids and their Derivatives as Renewable Platform Molecules for the Chemical Industry. Angew Chem Int Ed Engl 2021; 60:20144-20165. [PMID: 33617111 PMCID: PMC8453566 DOI: 10.1002/anie.202100778] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 12/13/2022]
Abstract
Oils and fats of vegetable and animal origin remain an important renewable feedstock for the chemical industry. Their industrial use has increased during the last 10 years from 31 to 51 million tonnes annually. Remarkable achievements made in the field of oleochemistry in this timeframe are summarized herein, including the reduction of fatty esters to ethers, the selective oxidation and oxidative cleavage of C-C double bonds, the synthesis of alkyl-branched fatty compounds, the isomerizing hydroformylation and alkoxycarbonylation, and olefin metathesis. The use of oleochemicals for the synthesis of a great variety of polymeric materials has increased tremendously, too. In addition to lipases and phospholipases, other enzymes have found their way into biocatalytic oleochemistry. Important achievements have also generated new oil qualities in existing crop plants or by using microorganisms optimized by metabolic engineering.
Collapse
Affiliation(s)
- Ursula Biermann
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
- abiosuse.V.Bloherfelder Straße 23926129OldenburgGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Ivo Feussner
- University of GoettingenAlbrecht-von-Haller Institute for Plant SciencesInternational Center for Advanced Studies of Energy Conversion (ICASEC) and Goettingen Center of Molecular Biosciences (GZMB)Dept. of Plant BiochemistryJustus-von-Liebig-Weg 1137077GoettingenGermany
| | - Michael A. R. Meier
- Laboratory of Applied ChemistryInstitute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Straße am Forum 776131KarlsruheGermany
- Laboratory of Applied ChemistryInstitute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Jürgen O. Metzger
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
- abiosuse.V.Bloherfelder Straße 23926129OldenburgGermany
| |
Collapse
|
5
|
Biermann U, Bornscheuer UT, Feussner I, Meier MAR, Metzger JO. Fettsäuren und Fettsäurederivate als nachwachsende Plattformmoleküle für die chemische Industrie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ursula Biermann
- Institut für Chemie Universität Oldenburg 26111 Oldenburg Deutschland
- abiosuse.V. Bloherfelder Straße 239 26129 Oldenburg Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Ivo Feussner
- Universität Göttingen Albrecht-von-Haller Institut für Pflanzenwissenschaften International Center for Advanced Studies of Energy Conversion (ICASEC) und Göttinger Zentrum für Molekulare Biowissenschaften (GZMB) Abt. für die Biochemie der Pflanze Justus-von-Liebig-Weg 11 37077 Göttingen Deutschland
| | - Michael A. R. Meier
- Labor für Angewandte Chemie Institut für Organische Chemie (IOC) Karlsruher Institut für Technology (KIT) Straße am Forum 7 76131 Karlsruhe Deutschland
- Labor für Angewandte Chemie Institut für biologische und chemische Systeme –, Funktionale Molekülsysteme (IBCS-FMS) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Jürgen O. Metzger
- Institut für Chemie Universität Oldenburg 26111 Oldenburg Deutschland
- abiosuse.V. Bloherfelder Straße 239 26129 Oldenburg Deutschland
| |
Collapse
|
6
|
Zhang L, Ma D, Yin Y, Wang Q. Using Small Molecules to Enhance P450 OleT Enzyme Activity in Situ. Chemistry 2021; 27:8940-8945. [PMID: 33860584 DOI: 10.1002/chem.202100680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/09/2022]
Abstract
Cytochrome P450 OleT is a fatty acid decarboxylase that catalyzes the production of olefins with biofuel and synthetic applications. However, the relatively sluggish catalytic efficiency of the enzyme limits its applications. Here, we report the application of a novel class of benzene containing small molecules to improve the OleT activity. The UV-Vis spectroscopy study and molecular docking results confirmed the high proximity of the small molecules to the heme group of OleT. Up to 6-fold increase of product yield has been achieved in the small molecule-modulated enzymatic reactions. Our work thus sheds the light to the application of small molecules to increase the OleT catalytic efficiency, which could be potentially used for future olefin productions.
Collapse
Affiliation(s)
- Libo Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, 29205, Columbia, SC, USA
| | - Dumei Ma
- Department of Chemical and Biochemical Engineering, Xiamen University, Siming South Load 422, 361005, Xiamen, Fujian, P. R. China
| | - Yingwu Yin
- Department of Chemical and Biochemical Engineering, Xiamen University, Siming South Load 422, 361005, Xiamen, Fujian, P. R. China
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, 29205, Columbia, SC, USA
| |
Collapse
|
7
|
Scherer M, Fleishman SJ, Jones PR, Dandekar T, Bencurova E. Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals. Front Bioeng Biotechnol 2021; 9:673005. [PMID: 34211966 PMCID: PMC8239229 DOI: 10.3389/fbioe.2021.673005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways.
Collapse
Affiliation(s)
- Marc Scherer
- Department of Bioinformatics, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Thomas Dandekar
- Department of Bioinformatics, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Elena Bencurova
- Department of Bioinformatics, Julius-Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Markel U, Lanvers P, Sauer DF, Wittwer M, Dhoke GV, Davari MD, Schiffels J, Schwaneberg U. A Photoclick-Based High-Throughput Screening for the Directed Evolution of Decarboxylase OleT. Chemistry 2021; 27:954-958. [PMID: 32955127 PMCID: PMC7839715 DOI: 10.1002/chem.202003637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/15/2020] [Indexed: 11/30/2022]
Abstract
Enzymatic oxidative decarboxylation is an up-and-coming reaction yet lacking efficient screening methods for the directed evolution of decarboxylases. Here, we describe a simple photoclick assay for the detection of decarboxylation products and its application in a proof-of-principle directed evolution study on the decarboxylase OleT. The assay was compatible with two frequently used OleT operation modes (directly using hydrogen peroxide as the enzyme's co-substrate or using a reductase partner) and the screening of saturation mutagenesis libraries identified two enzyme variants shifting the enzyme's substrate preference from long chain fatty acids toward styrene derivatives. Overall, this photoclick assay holds promise to speed-up the directed evolution of OleT and other decarboxylases.
Collapse
Affiliation(s)
- Ulrich Markel
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Pia Lanvers
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Daniel F. Sauer
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Malte Wittwer
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Gaurao V. Dhoke
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Johannes Schiffels
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| |
Collapse
|
9
|
Armbruster J, Steinmassl M, Müller Bogotá CA, Berg G, Nidetzky B, Dennig A. P450 Jα : A New, Robust and α-Selective Fatty Acid Hydroxylase Displaying Unexpected 1-Alkene Formation. Chemistry 2020; 26:15910-15921. [PMID: 32449211 DOI: 10.1002/chem.201905511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Oxyfunctionalization of fatty acids (FAs) is a key step in the design of novel synthetic pathways for biobased/biodegradable polymers, surfactants and fuels. Here, we show the isolation and characterization of a robust FA α-hydroxylase (P450Jα ) which catalyses the selective conversion of a broad range of FAs (C6:0-C16:0) and oleic acid (C18:1) with H2 O2 as oxidant. Under optimized reaction conditions P450Jα yields α-hydroxy acids all with >95 % regioselectivity, high specific activity (up to 15.2 U mg-1 ) and efficient coupling of oxidant to product (up to 85 %). Lauric acid (C12:0) turned out to be an excellent substrate with respect to productivity (TON=394 min-1 ). On preparative scale, conversion of C12:0 reached 83 % (0.9 g L-1 ) when supplementing H2 O2 in fed-batch mode. Under similar conditions P450Jα allowed further the first biocatalytic α-hydroxylation of oleic acid (88 % conversion on 100 mL scale) at high selectivity and in good yields (1.1 g L-1 ; 79 % isolated yield). Unexpectedly, P450Jα displayed also 1-alkene formation from shorter chain FAs (≤C10:0) showing that oxidative decarboxylation is more widely distributed across this enzyme family than reported previously.
Collapse
Affiliation(s)
- Julia Armbruster
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Mathilde Steinmassl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Christina A Müller Bogotá
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, 8010, Graz, Austria.,Institute of Environmental Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Gabriele Berg
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, 8010, Graz, Austria.,Institute of Environmental Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria.,Institute of Environmental Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria.,Institute of Environmental Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| |
Collapse
|
10
|
Mao Z, Liu L, Zhang Y, Yuan J. Efficient Synthesis of Phenylacetate and 2-Phenylethanol by Modular Cascade Biocatalysis. Chembiochem 2020; 21:2676-2679. [PMID: 32291886 DOI: 10.1002/cbic.202000182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/13/2020] [Indexed: 11/12/2022]
Abstract
The green and sustainable synthesis of chemicals from renewable feedstocks by a biotransformation approach has gained increasing attention in recent years. In this work, we developed enzymatic cascades to efficiently convert l-phenylalanine into 2-phenylethanol (2-PE) and phenylacetic acid (PAA), l-tyrosine into tyrosol (p-hydroxyphenylethanol, p-HPE) and p-hydroxyphenylacetic acid (p-HPAA). The enzymatic cascade was cast into an aromatic aldehyde formation module, followed by an aldehyde reduction module, or aldehyde oxidation module, to achieve one-pot biotransformation by using recombinant Escherichia coli. Biotransformation of 50 mM l-Phe produced 6.76 g/L PAA with more than 99 % conversion and 5.95 g/L of 2-PE with 97 % conversion. The bioconversion efficiencies of p-HPAA and p-HPE from l-Tyr reached to 88 and 94 %, respectively. In addition, m-fluoro-phenylalanine was further employed as an unnatural aromatic amino acid substrate to obtain m-fluoro-phenylacetic acid; >96 % conversion was achieved. Our results thus demonstrated high-yielding and potential industrial synthesis of above aromatic compounds by one-pot cascade biocatalysis.
Collapse
Affiliation(s)
- Zuoxi Mao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| | - Lijun Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| |
Collapse
|
11
|
Visser SP. Second‐Coordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry 2020; 26:5308-5327. [DOI: 10.1002/chem.201905119] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sam P. Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
12
|
Lin Y, Stańczak A, Manchev Y, Straganz GD, Visser SP. Can a Mononuclear Iron(III)‐Superoxo Active Site Catalyze the Decarboxylation of Dodecanoic Acid in UndA to Produce Biofuels? Chemistry 2019; 26:2233-2242. [DOI: 10.1002/chem.201903783] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/24/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yen‐Ting Lin
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Agnieszka Stańczak
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
- Faculty of ChemistrySilesian University of Technology ks. Marcina Strzody 9 44-100 Gliwice Poland
- Tunneling Group, Biotechnology CentreSilesian University of Technology ul. Krzywoustego 8 44–100 Gliwice Poland
| | - Yulian Manchev
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Grit D. Straganz
- Graz University of TechnologyInstitute of Biochemistry Petergasse 12 8010 Graz Austria
| | - Sam P. Visser
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
13
|
Hammerer L, Friess M, Cerne J, Fuchs M, Steinkellner G, Gruber K, Vanhessche K, Plocek T, Winkler CK, Kroutil W. Controlling the Regioselectivity of Fatty Acid Hydroxylation (C10) at α‐ and β‐Position by CYP152A1 (P450Bsβ) Variants. ChemCatChem 2019. [DOI: 10.1002/cctc.201901679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lucas Hammerer
- Austrian Centre of Industrial Biotechnologyc/o University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Michael Friess
- Institute of ChemistryUniversity of Graz NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Jeyson Cerne
- Institute of ChemistryUniversity of Graz NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Michael Fuchs
- Institute of ChemistryUniversity of Graz NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Georg Steinkellner
- Austrian Centre of Industrial Biotechnologyc/o University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Karl Gruber
- Austrian Centre of Industrial Biotechnologyc/o University of Graz Heinrichstrasse 28 8010 Graz Austria
- Institute of Molecular BiosciencesUniversity of Graz Humboldtstrasse 50 8010 Graz Austria
| | - Koenraad Vanhessche
- Aroma Chemical Services International S.A Route de St-Julien 184 CH-1228 Plan-les-Ouates Switzerland
| | - Thomas Plocek
- Aroma Chemical Services International S.A Route de St-Julien 184 CH-1228 Plan-les-Ouates Switzerland
| | - Christoph K. Winkler
- Austrian Centre of Industrial Biotechnologyc/o University of Graz Heinrichstrasse 28 8010 Graz Austria
- Institute of ChemistryUniversity of Graz NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Wolfgang Kroutil
- Austrian Centre of Industrial Biotechnologyc/o University of Graz Heinrichstrasse 28 8010 Graz Austria
- Institute of ChemistryUniversity of Graz NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
14
|
Huijbers MME, Zhang W, Tonin F, Hollmann F. Lichtgetriebene enzymatische Decarboxylierung von Fettsäuren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mieke M. E. Huijbers
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft Niederlande
| | - Wuyuan Zhang
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft Niederlande
| | - Fabio Tonin
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft Niederlande
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
15
|
Huijbers MME, Zhang W, Tonin F, Hollmann F. Light-Driven Enzymatic Decarboxylation of Fatty Acids. Angew Chem Int Ed Engl 2018; 57:13648-13651. [PMID: 30106504 PMCID: PMC6197046 DOI: 10.1002/anie.201807119] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Indexed: 11/10/2022]
Abstract
The photoenzymatic decarboxylation of fatty acids to alkanes is proposed as an alternative approach for the synthesis of biodiesel. By using a recently discovered photodecarboxylase from Chlorella variabilis NC64A (CvFAP) we demonstrate the irreversible preparation of alkanes from fatty acids and triglycerides. Several fatty acids and their triglycerides are converted by CvFAP in near‐quantitative yield and exclusive selectivity upon illumination with blue light. Very promising turnover numbers of up to 8000 were achieved in this proof‐of‐concept study.
Collapse
Affiliation(s)
- Mieke M E Huijbers
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Wuyuan Zhang
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Fabio Tonin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
16
|
Aleku GA, Prause C, Bradshaw‐Allen RT, Plasch K, Glueck SM, Bailey SS, Payne KAP, Parker DA, Faber K, Leys D. Terminal Alkenes from Acrylic Acid Derivatives via Non-Oxidative Enzymatic Decarboxylation by Ferulic Acid Decarboxylases. ChemCatChem 2018; 10:3736-3745. [PMID: 30333895 PMCID: PMC6175315 DOI: 10.1002/cctc.201800643] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Indexed: 11/26/2022]
Abstract
Fungal ferulic acid decarboxylases (FDCs) belong to the UbiD-family of enzymes and catalyse the reversible (de)carboxylation of cinnamic acid derivatives through the use of a prenylated flavin cofactor. The latter is synthesised by the flavin prenyltransferase UbiX. Herein, we demonstrate the applicability of FDC/UbiX expressing cells for both isolated enzyme and whole-cell biocatalysis. FDCs exhibit high activity with total turnover numbers (TTN) of up to 55000 and turnover frequency (TOF) of up to 370 min-1. Co-solvent compatibility studies revealed FDC's tolerance to some organic solvents up 20 % v/v. Using the in-vitro (de)carboxylase activity of holo-FDC as well as whole-cell biocatalysts, we performed a substrate profiling study of three FDCs, providing insights into structural determinants of activity. FDCs display broad substrate tolerance towards a wide range of acrylic acid derivatives bearing (hetero)cyclic or olefinic substituents at C3 affording conversions of up to >99 %. The synthetic utility of FDCs was demonstrated by a preparative-scale decarboxylation.
Collapse
Affiliation(s)
- Godwin A. Aleku
- Manchester Institute of BiotechnologySchool of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Christoph Prause
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria).
| | - Ruth T. Bradshaw‐Allen
- Manchester Institute of BiotechnologySchool of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Katharina Plasch
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria).
| | - Silvia M. Glueck
- Austrian Centre of Industrial Biotechnology (ACIB)8010GrazAustria) c/o
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria).
| | - Samuel S. Bailey
- Manchester Institute of BiotechnologySchool of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Karl A. P. Payne
- Manchester Institute of BiotechnologySchool of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - David A. Parker
- Innovation/BiodomainShell International Exploration and Production Inc.Westhollow Technology CenterHoustonUSA
| | - Kurt Faber
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria).
| | - David Leys
- Manchester Institute of BiotechnologySchool of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| |
Collapse
|
17
|
Dong J, Fernández‐Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biocatalytic Oxidation Reactions: A Chemist's Perspective. Angew Chem Int Ed Engl 2018; 57:9238-9261. [PMID: 29573076 PMCID: PMC6099261 DOI: 10.1002/anie.201800343] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/25/2023]
Abstract
Oxidation chemistry using enzymes is approaching maturity and practical applicability in organic synthesis. Oxidoreductases (enzymes catalysing redox reactions) enable chemists to perform highly selective and efficient transformations ranging from simple alcohol oxidations to stereoselective halogenations of non-activated C-H bonds. For many of these reactions, no "classical" chemical counterpart is known. Hence oxidoreductases open up shorter synthesis routes based on a more direct access to the target products. The generally very mild reaction conditions may also reduce the environmental impact of biocatalytic reactions compared to classical counterparts. In this Review, we critically summarise the most important recent developments in the field of biocatalytic oxidation chemistry and identify the most pressing bottlenecks as well as promising solutions.
Collapse
Affiliation(s)
- JiaJia Dong
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Elena Fernández‐Fueyo
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Milja Pesic
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Sandy Schmidt
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Yonghua Wang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Sabry Younes
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Wuyuan Zhang
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|
18
|
Dong J, Fernández-Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biokatalytische Oxidationsreaktionen - aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800343] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- JiaJia Dong
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Elena Fernández-Fueyo
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Caroline E. Paul
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Milja Pesic
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Sandy Schmidt
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Yonghua Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 P. R. China
| | - Sabry Younes
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Wuyuan Zhang
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| |
Collapse
|
19
|
Bojarra S, Reichert D, Grote M, Baraibar ÁG, Dennig A, Nidetzky B, Mügge C, Kourist R. Bio-based α,ω-Functionalized Hydrocarbons from Multi-step Reaction Sequences with Bio- and Metallo-catalysts Based on the Fatty Acid Decarboxylase OleTJE. ChemCatChem 2018. [DOI: 10.1002/cctc.201701804] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Samiro Bojarra
- Junior Research Group for Microbial Biotechnology; Ruhr-Universität Bochum; Universitätsstraße 150 44780 Bochum Germany
| | - Dennis Reichert
- Junior Research Group for Microbial Biotechnology; Ruhr-Universität Bochum; Universitätsstraße 150 44780 Bochum Germany
- Current address: Institute for Biochemistry; Westfälische Wilhelms-Universität Münster; Wilhelm-Klemm-Strasse 2 48149 Münster Germany
| | - Marius Grote
- Junior Research Group for Microbial Biotechnology; Ruhr-Universität Bochum; Universitätsstraße 150 44780 Bochum Germany
| | - Álvaro Gómez Baraibar
- Junior Research Group for Microbial Biotechnology; Ruhr-Universität Bochum; Universitätsstraße 150 44780 Bochum Germany
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology; Petersgasse 12 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology; Petersgasse 12 8010 Graz Austria
| | - Carolin Mügge
- Junior Research Group for Microbial Biotechnology; Ruhr-Universität Bochum; Universitätsstraße 150 44780 Bochum Germany
| | - Robert Kourist
- Junior Research Group for Microbial Biotechnology; Ruhr-Universität Bochum; Universitätsstraße 150 44780 Bochum Germany
- Permanent address: Institute of Molecular Biotechnology; Graz University of Technology; Petersgasse 14 8010 Graz Austria
| |
Collapse
|
20
|
Gandomkar S, Dennig A, Dordic A, Hammerer L, Pickl M, Haas T, Hall M, Faber K. Biocatalytic Oxidative Cascade for the Conversion of Fatty Acids into α-Ketoacids via Internal H 2 O 2 Recycling. Angew Chem Int Ed Engl 2018; 57:427-430. [PMID: 29125663 PMCID: PMC5768024 DOI: 10.1002/anie.201710227] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 11/18/2022]
Abstract
The functionalization of bio-based chemicals is essential to allow valorization of natural carbon sources. An atom-efficient biocatalytic oxidative cascade was developed for the conversion of saturated fatty acids to α-ketoacids. Employment of P450 monooxygenase in the peroxygenase mode for regioselective α-hydroxylation of fatty acids combined with enantioselective oxidation by α-hydroxyacid oxidase(s) resulted in internal recycling of the oxidant H2 O2 , thus minimizing degradation of ketoacid product and maximizing biocatalyst lifetime. The O2 -dependent cascade relies on catalytic amounts of H2 O2 and releases water as sole by-product. Octanoic acid was converted under mild conditions in aqueous buffer to 2-oxooctanoic acid in a simultaneous one-pot two-step cascade in up to >99 % conversion without accumulation of hydroxyacid intermediate. Scale-up allowed isolation of final product in 91 % yield and the cascade was applied to fatty acids of various chain lengths (C6:0 to C10:0).
Collapse
Affiliation(s)
- Somayyeh Gandomkar
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Alexander Dennig
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Andela Dordic
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
- Austrian Center of Industrial Biotechnology c/oDepartment of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Lucas Hammerer
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
- Austrian Center of Industrial Biotechnology c/oDepartment of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Mathias Pickl
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Thomas Haas
- CreavisEvonik Industries, Bau 1420Paul Baumann Strasse 145772MarlGermany
| | - Mélanie Hall
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Kurt Faber
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
21
|
Gandomkar S, Dennig A, Dordic A, Hammerer L, Pickl M, Haas T, Hall M, Faber K. Eine biokatalytische oxidative Kaskade für die Umsetzung von Fettsäuren zu α-Ketosäuren mit interner H2
O2
-Regeneration. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Somayyeh Gandomkar
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Alexander Dennig
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Andela Dordic
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
- Austrian Center of Industrial Biotechnology c/o; Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Lucas Hammerer
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
- Austrian Center of Industrial Biotechnology c/o; Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Mathias Pickl
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Thomas Haas
- Creavis; Evonik Industries, Bau 1420; Paul Baumann Straße 1 45772 Marl Deutschland
| | - Mélanie Hall
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Kurt Faber
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| |
Collapse
|
22
|
Olmedo A, del Río JC, Kiebist J, Ullrich R, Hofrichter M, Scheibner K, Martínez AT, Gutiérrez A. Fatty Acid Chain Shortening by a Fungal Peroxygenase. Chemistry 2017; 23:16985-16989. [PMID: 29083064 PMCID: PMC5725704 DOI: 10.1002/chem.201704773] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 11/08/2022]
Abstract
A recently discovered peroxygenase from the fungus Marasmius rotula (MroUPO) is able to catalyze the progressive one-carbon shortening of medium and long-chain mono- and dicarboxylic acids by itself alone, in the presence of H2 O2 . The mechanism, analyzed using H218 O2 , starts with an α-oxidation catalyzed by MroUPO generating an α-hydroxy acid, which is further oxidized by the enzyme to a reactive α-keto intermediate whose decarboxylation yields the one-carbon shorter fatty acid. Compared with the previously characterized peroxygenase of Agrocybe aegerita, a wider heme access channel, enabling fatty acid positioning with the carboxylic end near the heme cofactor (as seen in one of the crystal structures available) could be at the origin of the unique ability of MroUPO shortening carboxylic acid chains.
Collapse
Affiliation(s)
- Andrés Olmedo
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSICReina Mercedes 1041012SevilleSpain
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSICReina Mercedes 1041012SevilleSpain
| | - Jan Kiebist
- JenaBios GmbHLöbstedter Str. 8007749JenaGermany
| | | | | | | | - Angel T. Martínez
- Centro de Investigaciones Biológicas, CSICRamiro de Maeztu 928040MadridSpain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSICReina Mercedes 1041012SevilleSpain
| |
Collapse
|
23
|
Tan CY, Hirakawa H, Suzuki R, Haga T, Iwata F, Nagamune T. Immobilization of a Bacterial Cytochrome P450 Monooxygenase System on a Solid Support. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cheau Yuaan Tan
- Department of Bioengineering; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hidehiko Hirakawa
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Risa Suzuki
- Department of Bioengineering; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Biotechnology; Graduate School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya, Aichi 464-8603 Japan
| | - Tomoaki Haga
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Fumiya Iwata
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Teruyuki Nagamune
- Department of Bioengineering; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
24
|
Tan CY, Hirakawa H, Suzuki R, Haga T, Iwata F, Nagamune T. Immobilization of a Bacterial Cytochrome P450 Monooxygenase System on a Solid Support. Angew Chem Int Ed Engl 2016; 55:15002-15006. [PMID: 27781345 DOI: 10.1002/anie.201608033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/16/2016] [Indexed: 01/12/2023]
Abstract
Bacterial cytochrome P450s (P450s), which catalyze regio- and stereoselective oxidations of hydrocarbons with high turnover rates, are attractive biocatalysts for fine chemical production. Enzyme immobilization is needed for cost-effective industrial manufacturing. However, immobilization of P450s is difficult because electron-transfer proteins are involved in catalysis and anchoring these can prevent them from functioning as shuttle molecules for carrying electrons. We studied a heterotrimeric protein-mediated co-immobilization of a bacterial P450, and its electron-transfer protein and reductase. Fusion with subunits of a heterotrimeric Sulfolobus solfataricus proliferating cell nuclear antigen (PCNA) enabled immobilization of the three proteins on a solid support. The co-immobilized enzymes catalyzed monooxygenation because the electron-transfer protein fused to PCNA via a single peptide linker retained its electron-transport function.
Collapse
Affiliation(s)
- Cheau Yuaan Tan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hidehiko Hirakawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Risa Suzuki
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Tomoaki Haga
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Fumiya Iwata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Teruyuki Nagamune
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
25
|
Zhou Y, Wu S, Li Z. Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobased l-Phenylalanine to High-Value Chiral Chemicals. Angew Chem Int Ed Engl 2016; 55:11647-50. [PMID: 27512928 DOI: 10.1002/anie.201606235] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 11/08/2022]
Abstract
Sustainable synthesis of useful and valuable chiral fine chemicals from renewable feedstocks is highly desirable but remains challenging. Reported herein is a designed and engineered set of unique non-natural biocatalytic cascades to achieve the asymmetric synthesis of chiral epoxide, diols, hydroxy acid, and amino acid in high yield and with excellent ee values from the easily available biobased l-phenylalanine. Each of the cascades was efficiently performed in one pot by using the cells of a single recombinant strain over-expressing 4-10 different enzymes. The cascade biocatalysis approach is promising for upgrading biobased bulk chemicals to high-value chiral chemicals. In addition, combining the non-natural enzyme cascades with the natural metabolic pathway of the host strain enabled the fermentative production of the chiral fine chemicals from glucose.
Collapse
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Shuke Wu
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhi Li
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
26
|
Zhou Y, Wu S, Li Z. Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobasedl-Phenylalanine to High-Value Chiral Chemicals. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606235] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456 Singapore
| | - Shuke Wu
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456 Singapore
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Zhi Li
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456 Singapore
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
27
|
Dennig A, Kurakin S, Kuhn M, Dordic A, Hall M, Faber K. Enzymatic Oxidative Tandem Decarboxylation of Dioic Acids to Terminal Dienes. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600358] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander Dennig
- Austrian Centre of Industrial Biotechnology (ACIB); c/o Department of Chemistry; Organic & Bioorganic Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Sara Kurakin
- Department of Chemistry; Organic & Bioorganic Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Miriam Kuhn
- Department of Chemistry; Organic & Bioorganic Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Andela Dordic
- Austrian Centre of Industrial Biotechnology (ACIB); c/o Department of Chemistry; Organic & Bioorganic Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Mélanie Hall
- Department of Chemistry; Organic & Bioorganic Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Kurt Faber
- Department of Chemistry; Organic & Bioorganic Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
28
|
Faponle AS, Quesne MG, de Visser SP. Origin of the Regioselective Fatty-Acid Hydroxylation versus Decarboxylation by a Cytochrome P450 Peroxygenase: What Drives the Reaction to Biofuel Production? Chemistry 2016; 22:5478-83. [PMID: 26918676 DOI: 10.1002/chem.201600739] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 11/11/2022]
Abstract
The cytochromes P450 are heme-based mono-oxygenases or peroxygenases involved in vital reaction processes for human health. A recently described P450 per-oxygenase, OleTJE , converts long-chain fatty acids to terminal olefins and as such may have biotechnological relevance in biodiesel production. However, the reaction produces significant amounts of α- and β-hydroxylation by-products, and their origin are poorly understood. Herein, we elucidate through a QM/MM study on the bifurcation pathways how the three possible products are generated and show how the enzyme can be further engineered for optimum desaturase activity. The studies showed that the polarity and the solvent accessibility of the substrate in the binding pocket destabilize the OH-rebound pathways and kinetically enable a thermodynamically otherwise unfavorable decarboxylation reaction. The origins of the bifurcation pathways are analyzed with valence-bond models that highlight the differences in reaction mechanism.
Collapse
Affiliation(s)
- Abayomi S Faponle
- Manchester Institute of Biotechnology and, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Matthew G Quesne
- Manchester Institute of Biotechnology and, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology and, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|