1
|
Adak AK, Huang KT, Liao CY, Lee YJ, Kuo WH, Huo YR, Li PJ, Chen YJ, Chen BS, Chen YJ, Chu Hwang K, Wayne Chang WS, Lin CC. Investigating a Boronate-Affinity-Guided Acylation Reaction for Labelling Native Antibodies. Chemistry 2022; 28:e202104178. [PMID: 35143090 DOI: 10.1002/chem.202104178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 12/12/2022]
Abstract
The excellent molecular recognition capabilities of monoclonal antibodies (mAbs) have opened up exciting opportunities for biotherapeutic discovery. Taking advantage of the full potential of this tool necessitates affinity ligands capable of conjugating directly with small molecules to a defined degree of biorthogonality, especially when modifying natural Abs. Herein, a bioorthogonal boronate-affinity-based Ab ligand featuring a 4-(dimethylamino)pyridine and an S-aryl thioester to label full-length Abs is reported. The photoactivatable linker in the acyl donor facilitated purification of azide-labelled Ab (N3 -Ab) was quantitatively cleaved upon brief exposure to UV light while retaining the original Ab activity. Click reactions enabled the precise addition of biotin, a fluorophore, and a pharmacological agent to the purified N3 -Abs. The resulting immunoconjugate showed selectivity against targeted cells. Bioorthogonal traceless design and reagentless purification allow this strategy to be a powerful tool to engineer native antibodies amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Avijit K Adak
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Kuan-Ting Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chien-Yu Liao
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Yuan-Jung Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Wen-Hua Kuo
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yi-Ren Huo
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Pei-Jhen Li
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Bo-Shiun Chen
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Wun-Shang Wayne Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| |
Collapse
|
2
|
Schwach J, Kolobynina K, Brandstetter K, Gerlach M, Ochtrop P, Helma J, Hackenberger CPR, Harz H, Cardoso MC, Leonhardt H, Stengl A. Site-Specific Antibody Fragment Conjugates for Reversible Staining in Fluorescence Microscopy. Chembiochem 2021; 22:1205-1209. [PMID: 33207032 PMCID: PMC8048457 DOI: 10.1002/cbic.202000727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/17/2020] [Indexed: 12/16/2022]
Abstract
Antibody conjugates have taken a great leap forward as tools in basic and applied molecular life sciences that was enabled by the development of chemoselective reactions for the site-specific modification of proteins. Antibody-oligonucleotide conjugates combine the antibody's target specificity with the reversible, sequence-encoded binding properties of oligonucleotides like DNAs or peptide nucleic acids (PNAs), allowing sequential imaging of large numbers of targets in a single specimen. In this report, we use the Tub-tag® technology in combination with Cu-catalyzed azide-alkyne cycloaddition for the site-specific conjugation of single DNA and PNA strands to an eGFP-binding nanobody. We show binding of the conjugate to recombinant eGFP and subsequent sequence-specific annealing of fluorescently labelled imager strands. Furthermore, we reversibly stain eGFP-tagged proteins in human cells, thus demonstrating the suitability of our conjugation strategy to generate antibody-oligonucleotides for reversible immunofluorescence imaging.
Collapse
Affiliation(s)
- Jonathan Schwach
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| | - Ksenia Kolobynina
- Technical University of DarmstadtDepartment of Biology, Cell Biology and EpigeneticsSchnittspahnstr. 1064287DarmstadtGermany
| | - Katharina Brandstetter
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| | - Marcus Gerlach
- Tubulis GmbH, BioSysMButenandtstrasse 181377MunichGermany
| | - Philipp Ochtrop
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Department Chemical BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Jonas Helma
- Tubulis GmbH, BioSysMButenandtstrasse 181377MunichGermany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Department Chemical BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Humboldt Universität zu BerlinDepartment of ChemistryBrook-Taylor-Strasse 212489BerlinGermany
| | - Hartmann Harz
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| | - M. Cristina Cardoso
- Technical University of DarmstadtDepartment of Biology, Cell Biology and EpigeneticsSchnittspahnstr. 1064287DarmstadtGermany
| | - Heinrich Leonhardt
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| | - Andreas Stengl
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| |
Collapse
|
3
|
Janson N, Krüger T, Karsten L, Boschanski M, Dierks T, Müller KM, Sewald N. Bifunctional Reagents for Formylglycine Conjugation: Pitfalls and Breakthroughs. Chembiochem 2020; 21:3580-3593. [PMID: 32767537 PMCID: PMC7756428 DOI: 10.1002/cbic.202000416] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Indexed: 12/28/2022]
Abstract
Formylglycine-generating enzymes specifically oxidize cysteine within the consensus sequence CxPxR to Cα -formylglycine (FGly). This noncanonical electrophilic amino acid can subsequently be addressed selectively by bioorthogonal hydrazino-iso-Pictet-Spengler (HIPS) or Knoevenagel ligation to attach payloads like fluorophores or drugs to proteins to obtain a defined payload-to-protein ratio. However, the disadvantages of these conjugation techniques include the need for a large excess of conjugation building block, comparably low reaction rates and limited stability of FGly-containing proteins. Therefore, functionalized clickable HIPS and tandem Knoevenagel building blocks were synthesized, conjugated to small proteins (DARPins) and subsequently linked to strained alkyne-containing payloads for protein labeling. This procedure allowed the selective bioconjugation of one or two DBCO-carrying payloads with nearly stoichiometric amounts at low concentrations. Furthermore, an azide-modified tandem Knoevenagel building block enabled the synthesis of branched PEG linkers and the conjugation of two fluorophores, resulting in an improved signal-to-noise ratio in live-cell fluorescence-imaging experiments targeting the EGF receptor.
Collapse
Affiliation(s)
- Nils Janson
- Faculty of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Tobias Krüger
- Faculty of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Lennard Karsten
- Cellular and Molecular BiotechnologyBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Mareile Boschanski
- Faculty of ChemistryBiochemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Thomas Dierks
- Faculty of ChemistryBiochemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Kristian M. Müller
- Cellular and Molecular BiotechnologyBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Faculty of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
4
|
Ochtrop P, Ernst S, Itzen A, Hedberg C. Exploring the Substrate Scope of the Bacterial Phosphocholine Transferase AnkX for Versatile Protein Functionalization. Chembiochem 2019; 20:2336-2340. [PMID: 31054261 DOI: 10.1002/cbic.201900200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 11/06/2022]
Abstract
Site-specific protein functionalization has become an indispensable tool in modern life sciences. Here, tag-based enzymatic protein functionalization techniques are among the most versatilely applicable approaches. However, many chemo-enzymatic functionalization strategies suffer from low substrate scopes of the enzymes utilized for functional labeling probes. We report on the wide substrate scope of the bacterial enzyme AnkX towards derivatized CDP-choline analogues and demonstrate that AnkX-catalyzed phosphocholination can be used for site-specific one- and two-step protein labeling with a broad array of different functionalities, displaying fast second-order transfer rates of 5×102 to 1.8×104 m-1 s-1 . Furthermore, we also present a strategy for the site-specific dual labeling of proteins of interest, based on the exploitation of AnkX and the delabeling function of the enzyme Lem3. Our results contribute to the wide field of protein functionalization, offering an attractive chemo-enzymatic tag-based modification strategy for in vitro labeling.
Collapse
Affiliation(s)
- Philipp Ochtrop
- Chemical Biology Center (KBC), Department of Chemistry, Umeå University, Linnaeus väg 10, 90187, Umeå, Sweden
| | - Stefan Ernst
- Department of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246, Hamburg, Germany
| | - Aymelt Itzen
- Department of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246, Hamburg, Germany
| | - Christian Hedberg
- Chemical Biology Center (KBC), Department of Chemistry, Umeå University, Linnaeus väg 10, 90187, Umeå, Sweden
| |
Collapse
|
5
|
Ebenig A, Juettner NE, Deweid L, Avrutina O, Fuchsbauer H, Kolmar H. Efficient Site‐Specific Antibody–Drug Conjugation by Engineering a Nature‐Derived Recognition Tag for Microbial Transglutaminase. Chembiochem 2019; 20:2411-2419. [DOI: 10.1002/cbic.201900101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/28/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Aileen Ebenig
- Institute for Organic Chemistry and BiochemistryTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Norbert Egon Juettner
- Department of Chemical Engineering and BiotechnologyUniversity of Applied Sciences Darmstadt Stephanstrasse 7 64295 Darmstadt Germany
- Department of BiologyTechnische Universität Darmstadt Schnittspahnstrasse 10 64287 Darmstadt Germany
| | - Lukas Deweid
- Institute for Organic Chemistry and BiochemistryTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and BiochemistryTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Hans‐Lothar Fuchsbauer
- Department of Chemical Engineering and BiotechnologyUniversity of Applied Sciences Darmstadt Stephanstrasse 7 64295 Darmstadt Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and BiochemistryTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| |
Collapse
|
6
|
Schneider H, Deweid L, Pirzer T, Yanakieva D, Englert S, Becker B, Avrutina O, Kolmar H. Dextramabs: A Novel Format of Antibody-Drug Conjugates Featuring a Multivalent Polysaccharide Scaffold. ChemistryOpen 2019; 8:354-357. [PMID: 30976476 PMCID: PMC6437811 DOI: 10.1002/open.201900066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 11/09/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are multicomponent biomolecules that have emerged as a powerful tool for targeted tumor therapy. Combining specific binding of an immunoglobulin with toxic properties of a payload, they however often suffer from poor hydrophilicity when loaded with a high amount of toxins. To address these issues simultaneously, we developed dextramabs, a novel class of hybrid antibody-drug conjugates. In these architectures, the therapeutic antibody trastuzumab is equipped with a multivalent dextran polysaccharide that enables efficient loading with a potent toxin in a controllable fashion. Our modular chemoenzymatic approach provides an access to synthetic dextramabs bearing monomethyl auristatin as releasable cytotoxic cargo. They possess high drug-to-antibody ratios, remarkable hydrophilicity, and high toxicity in vitro.
Collapse
Affiliation(s)
- Hendrik Schneider
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Lukas Deweid
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Thomas Pirzer
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Desislava Yanakieva
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Simon Englert
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Bastian Becker
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Olga Avrutina
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| |
Collapse
|
7
|
Deweid L, Neureiter L, Englert S, Schneider H, Deweid J, Yanakieva D, Sturm J, Bitsch S, Christmann A, Avrutina O, Fuchsbauer HL, Kolmar H. Directed Evolution of a Bond-Forming Enzyme: Ultrahigh-Throughput Screening of Microbial Transglutaminase Using Yeast Surface Display. Chemistry 2018; 24:15195-15200. [PMID: 30047596 DOI: 10.1002/chem.201803485] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 12/12/2022]
Abstract
Microbial transglutaminase from Streptomyces mobaraensis (mTG) has emerged as a useful biotechnological tool due to its ability to crosslink a side chain of glutamine and primary amines. To date, the substrate specificity of mTG is not fully understood, which poses an obvious challenge when mTG is used to address novel targets. To that end, a viable strategy providing an access to tailor-made transglutaminases is required. This work reports an ultrahigh-throughput screening approach based on yeast surface display and fluorescence-activated cell sorting (FACS) that enabled the evolution of microbial transglutaminase towards enhanced activity. Five rounds of FACS screening followed by recombinant expression of the most potent variants in E. coli yielded variants that possessed, compared to the wild type enzyme, improved enzymatic performance and labeling behavior upon conjugation with an engineered therapeutic anti-HER2 antibody. This robust and generally applicable platform enables tailoring of the catalytic efficiency of mTG.
Collapse
Affiliation(s)
- Lukas Deweid
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Lara Neureiter
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Simon Englert
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Hendrik Schneider
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Jakob Deweid
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Desislava Yanakieva
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Janna Sturm
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Sebastian Bitsch
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Andreas Christmann
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Olga Avrutina
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Hans-Lothar Fuchsbauer
- Fachbereich Chemie- und Biotechnologie, Hochschule Darmstadt, Stephanstraße 7, 64295, Darmstadt, Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
8
|
Krüger T, Weiland S, Falck G, Gerlach M, Boschanski M, Alam S, Müller KM, Dierks T, Sewald N. Zweifach-bioorthogonale Derivatisierung durch verschiedene Formylglycin-generierende Enzyme. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tobias Krüger
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Stefanie Weiland
- Biochemie I; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Georg Falck
- Zelluläre und Molekulare Biotechnologie, Technische Fakultät; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Marcus Gerlach
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Mareile Boschanski
- Biochemie I; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Sarfaraz Alam
- Biochemie I; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Kristian M. Müller
- Zelluläre und Molekulare Biotechnologie, Technische Fakultät; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Thomas Dierks
- Biochemie I; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Norbert Sewald
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Deutschland
| |
Collapse
|
9
|
Krüger T, Weiland S, Falck G, Gerlach M, Boschanski M, Alam S, Müller KM, Dierks T, Sewald N. Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes. Angew Chem Int Ed Engl 2018; 57:7245-7249. [DOI: 10.1002/anie.201803183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Tobias Krüger
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| | - Stefanie Weiland
- Biochemie I; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| | - Georg Falck
- Zelluläre und Molekulare Biotechnologie, Technische Fakultät; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| | - Marcus Gerlach
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| | - Mareile Boschanski
- Biochemie I; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| | - Sarfaraz Alam
- Biochemie I; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| | - Kristian M. Müller
- Zelluläre und Molekulare Biotechnologie, Technische Fakultät; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| | - Thomas Dierks
- Biochemie I; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| | - Norbert Sewald
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
10
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Angew Chem Int Ed Engl 2018; 57:2314-2333. [PMID: 28913971 PMCID: PMC5838514 DOI: 10.1002/anie.201708459] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 01/12/2023]
Abstract
Nanobodies can be seen as next-generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site-specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens.
Collapse
Affiliation(s)
- Dominik Schumacher
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Jonas Helma
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Anselm F. L. Schneider
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
| | - Heinrich Leonhardt
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | | |
Collapse
|
11
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodys: Strategien zur chemischen Funktionalisierung und intrazelluläre Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201708459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dominik Schumacher
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Jonas Helma
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Anselm F. L. Schneider
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| | - Heinrich Leonhardt
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Christian P. R. Hackenberger
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| |
Collapse
|