1
|
Moir M, Yepuri N, Marshall D, Blanksby S, Darwish T. Synthesis of Perdeuterated Linoleic Acid‐d31 and Chain Deuterated 1‐Palmitoyl‐2‐linoleoyl‐sn‐glycero‐3‐phosphocholine‐d62. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael Moir
- Australian Nuclear Science and Technology Organisation AUSTRALIA
| | - Nageshwar Yepuri
- Australian Nuclear Science and Technology Organisation AUSTRALIA
| | | | | | - Tamim Darwish
- Australian Nuclear Science and Technology Organisation AUSTRALIA
| |
Collapse
|
2
|
He SD, Guo XQ, Li J, Zhang YC, Chen LM, Kang TR. Base‐Promoted Reaction of Phenols with Spirocylic λ3‐iodanes: Access to both 2‐Iodovinyl Aryl Ethers and Diaryl Ethers. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shun-Dong He
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu CHINA
| | - Xiao-Qiang Guo
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Jun Li
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Yu-Cheng Zhang
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Lian-Mei Chen
- Chengdu University School of Food and Biological Engineering CHINA
| | - Tai-Ran Kang
- Chengdu University School of Food and Biological Engineering No 1, SHIDA ROAD 610106 Chengdu CHINA
| |
Collapse
|
3
|
Allouche EMD, Grinhagena E, Waser J. Hypervalent Iodine-Mediated Late-Stage Peptide and Protein Functionalization. Angew Chem Int Ed Engl 2022; 61:e202112287. [PMID: 34674359 PMCID: PMC9299824 DOI: 10.1002/anie.202112287] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Hypervalent iodine compounds are powerful reagents for the development of novel transformations. As they exhibit low toxicity, high functional group tolerance, and stability in biocompatible media, they have been used for the functionalization of biomolecules. Herein, we report recent advances up to June 2021 in peptide and protein modification using hypervalent iodine reagents. Their use as group transfer or oxidizing reagents is discussed in this Minireview, including methods targeting polar, aromatic, or aliphatic amino acids and peptide termini.
Collapse
Affiliation(s)
- Emmanuelle M. D. Allouche
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 14021015LausanneSwitzerland
| | - Elija Grinhagena
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 14021015LausanneSwitzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 14021015LausanneSwitzerland
| |
Collapse
|
4
|
Allouche EMD, Grinhagena E, Waser J. Hypervalent Iodine‐Mediated Late‐Stage Peptide and Protein Functionalization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emmanuelle M. D. Allouche
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 1402 1015 Lausanne Switzerland
| | - Elija Grinhagena
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 1402 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 1402 1015 Lausanne Switzerland
| |
Collapse
|
5
|
Amos SGE, Cavalli D, Le Vaillant F, Waser J. Direct Photoexcitation of Ethynylbenziodoxolones: An Alternative to Photocatalysis for Alkynylation Reactions**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Stephanie G. E. Amos
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research (NCCR) Catalysis Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Diana Cavalli
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research (NCCR) Catalysis Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Franck Le Vaillant
- Max-Planck-Institut für Kohlenforschung Mülheim an der Ruhr 45470 Germany
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research (NCCR) Catalysis Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| |
Collapse
|
6
|
Amos SGE, Cavalli D, Le Vaillant F, Waser J. Direct Photoexcitation of Ethynylbenziodoxolones: An Alternative to Photocatalysis for Alkynylation Reactions*. Angew Chem Int Ed Engl 2021; 60:23827-23834. [PMID: 34403571 PMCID: PMC8596672 DOI: 10.1002/anie.202110257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 11/23/2022]
Abstract
Ethynylbenziodoxolones (EBXs) are commonly used as radical traps in photocatalytic alkynylations. Herein, we report that aryl-substituted EBX reagents can be directly activated by visible light irradiation. They act as both oxidants and radical traps, alleviating the need for a photocatalyst in several reported EBX-mediated processes, including decarboxylative and deboronative alkynylations, the oxyalkynylation of enamides and the C-H alkynylation of THF. Furthermore, the method could be applied to the synthesis of alkynylated quaternary centers from tertiary alcohols via stable oxalate salts and from tertiary amines via aryl imines. A photocatalytic process using 4CzIPN as an organic dye was also developed for the deoxyalkynylation of oxalates.
Collapse
Affiliation(s)
- Stephanie G. E. Amos
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research (NCCR) CatalysisInstitut des Sciences et Ingénierie ChimiqueEcole Polytechnique Fédérale de LausanneCH-1015LausanneSwitzerland
| | - Diana Cavalli
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research (NCCR) CatalysisInstitut des Sciences et Ingénierie ChimiqueEcole Polytechnique Fédérale de LausanneCH-1015LausanneSwitzerland
| | | | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research (NCCR) CatalysisInstitut des Sciences et Ingénierie ChimiqueEcole Polytechnique Fédérale de LausanneCH-1015LausanneSwitzerland
| |
Collapse
|
7
|
Le Du E, Duhail T, Wodrich MD, Scopelliti R, Fadaei‐Tirani F, Anselmi E, Magnier E, Waser J. Structure and Reactivity of N-Heterocyclic Alkynyl Hypervalent Iodine Reagents. Chemistry 2021; 27:10979-10986. [PMID: 33978974 PMCID: PMC8361724 DOI: 10.1002/chem.202101475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 12/23/2022]
Abstract
Ethynylbenziodoxol(on)e (EBX) cyclic hypervalent iodine reagents have become popular reagents for the alkynylation of radicals and nucleophiles, but only offer limited possibilities for further structure and reactivity fine-tuning. Herein, the synthesis of new N-heterocyclic hypervalent iodine reagents with increased structural flexibility based on amide, amidine and sulfoximine scaffolds is reported. Solid-state structures of the reagents are reported and the analysis of the I-Calkyne bond lengths allowed assessing the trans-effect of the different substituents. Molecular electrostatic potential (MEP) maps of the reagents, derived from DFT computations, revealed less pronounced σ-hole regions for sulfonamide-based compounds. Most reagents reacted well in the alkynylation of β-ketoesters. The alkynylation of thiols afforded more variable yields, with compounds with a stronger σ-hole reacting better. In metal-mediated transformations, the N-heterocyclic hypervalent iodine reagents gave inferior results when compared to the O-based EBX reagents.
Collapse
Affiliation(s)
- Eliott Le Du
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Thibaut Duhail
- Institut Lavoisier de VersaillesUniversité Paris-Saclay, UVSQ, CNRS, UMR 81807800VersaillesFrance
| | - Matthew D. Wodrich
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Rosario Scopelliti
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL SB ISIC GE, BCH 2111, 1015 LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Farzaneh Fadaei‐Tirani
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL SB ISIC GE, BCH 2111, 1015 LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Elsa Anselmi
- Institut Lavoisier de VersaillesUniversité Paris-Saclay, UVSQ, CNRS, UMR 81807800VersaillesFrance
- Université de ToursFaculté des Sciences et Techniques37200ToursFrance
| | - Emmanuel Magnier
- Institut Lavoisier de VersaillesUniversité Paris-Saclay, UVSQ, CNRS, UMR 81807800VersaillesFrance
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| |
Collapse
|
8
|
Karmakar S, Silamkoti A, Meanwell NA, Mathur A, Gupta AK. Utilization of C(
sp
3
)‐Carboxylic Acids and Their Redox‐Active Esters in Decarboxylative Carbon−Carbon Bond Formation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100314] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sukhen Karmakar
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| | - Arundutt Silamkoti
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| | - Nicholas A. Meanwell
- Small Molecule Drug Discovery Research and Early Development Bristol Myers Squibb P.O. Box 4000 Princeton New Jersey 08543-4000 USA
| | - Arvind Mathur
- Small Molecule Drug Discovery Research and Early Development Bristol Myers Squibb P.O. Box 4000 Princeton New Jersey 08543-4000 USA
| | - Arun Kumar Gupta
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| |
Collapse
|
9
|
Sun X, Ritter T. Decarboxylative Polyfluoroarylation of Alkylcarboxylic Acids. Angew Chem Int Ed Engl 2021; 60:10557-10562. [PMID: 33481305 PMCID: PMC8252513 DOI: 10.1002/anie.202015596] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/17/2022]
Abstract
Polyfluoroarenes are useful building blocks in several areas such as drug discovery, materials, and crop protection. Herein, we report the first polyfluoroarylation of aliphatic carboxylic acids via photoredox decarboxylation. The method proceeds with broad substrate scope and high functional group tolerance. Moreover, small complex molecules such as natural products and drugs can be modified by late-stage modification.
Collapse
Affiliation(s)
- Xiang Sun
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Tobias Ritter
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
10
|
Sun X, Ritter T. Decarboxylative Polyfluoroarylation of Alkylcarboxylic Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiang Sun
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
11
|
Sun X, Guo XQ, Chen LM, Kang TR. Synthesis, Characterization of Spirocyclic λ 3 -Iodanes and Their Application to Prepare 4,1-Benzoxazepine-2,5-diones and 1,3-Diynes. Chemistry 2021; 27:4312-4316. [PMID: 33326645 DOI: 10.1002/chem.202005124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Indexed: 11/10/2022]
Abstract
Herein, a [3+2] cycloaddition of aza-oxyallylic cations with ethynylbenziodoxolones for synthesis of new λ3 -iodanes containing spirocyclic 4-oxazolidinone has been developed. This cyclic λ3 -iodanes display stability in air and excellent solubility in organic solvent. Using them as substrate, both the 4,1-benzoxazepine-2,5-diones and symmetrical 1,3-diynes derivatives were afforded in high yield under copper(I)-catalyzed conditions.
Collapse
Affiliation(s)
- Xu Sun
- School of Food and Biological Engineering, Chengdu University, Chengdu City, 610106, P. R. China.,Collaborative Innovation Center of Tissue Repair Material of, Sichuan Province, College of Chemistry & Chemical Engineering, China West Normal University, Nanchong City, Sichuan, 637002, P. R. China
| | - Xiao-Qiang Guo
- School of Food and Biological Engineering, Chengdu University, Chengdu City, 610106, P. R. China
| | - Lian-Mei Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu City, 610106, P. R. China
| | - Tai-Ran Kang
- School of Food and Biological Engineering, Chengdu University, Chengdu City, 610106, P. R. China.,Collaborative Innovation Center of Tissue Repair Material of, Sichuan Province, College of Chemistry & Chemical Engineering, China West Normal University, Nanchong City, Sichuan, 637002, P. R. China
| |
Collapse
|
12
|
Adak T, Hoffmann M, Witzel S, Rudolph M, Dreuw A, Hashmi ASK. Visible Light-Enabled sp 3 -C-H Functionalization with Chloro- and Bromoalkynes: Chemoselective Route to Vinylchlorides or Alkynes. Chemistry 2020; 26:15573-15580. [PMID: 32472581 PMCID: PMC7756539 DOI: 10.1002/chem.202001259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/26/2020] [Indexed: 12/21/2022]
Abstract
An unprecedented direct atom-economic chemo- and regioselective hydroalkylation of chloroalkynes and an sp3 -C-H alkynylation of bromoalkynes was achieved. The reaction partners are unfunctionalized ethers, alcohols, amides, and even non-activated hydrocarbons. We found that a household fluorescent bulb was able to excite a diaryl ketone, which then selectively abstracts a H-atom from an sp3 -C-H bond. The product of a formal alkyne insertion into the sp3 -C-H bond was obtained with chloroalkynes, providing valuable vinyl chlorides. The photo-organocatalytic hydrogen atom transfer strategy gives rise to a broad range of diversely functionalized olefins. When bromoalkynes are applied in the presence of a base, a chemoselectivity switch to an alkynylation is observed. This reaction can even be performed for the alkynylation of unactivated sp3 -C-H bonds, in this case with a preference of the more substituted carbon. Accompanying quantum chemical calculations indicate a vinyl radical intermediate with pronounced linear coordination of the carbon radical center, thus enabling the formation of both diastereoisomers after H-atom abstraction, suggesting that the (Z)-diastereoisomer is preferred, which supports the experimentally observed (E/Z)-distribution.
Collapse
Affiliation(s)
- Tapas Adak
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Marvin Hoffmann
- Theoretical and Computational ChemistryInterdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityIm Neuenheimer Feld 205A69120HeidelbergGermany
| | - Sina Witzel
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Matthias Rudolph
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Andreas Dreuw
- Theoretical and Computational ChemistryInterdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityIm Neuenheimer Feld 205A69120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
13
|
Voutyritsa E, Garreau M, Kokotou MG, Triandafillidi I, Waser J, Kokotos CG. Photochemical Functionalization of Heterocycles with EBX Reagents: C−H Alkynylation versus Deconstructive Ring Cleavage**. Chemistry 2020; 26:14453-14460. [DOI: 10.1002/chem.202002868] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/11/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Errika Voutyritsa
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Marion Garreau
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Maroula G. Kokotou
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Ierasia Triandafillidi
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
14
|
Takeuchi H, Inuki S, Nakagawa K, Kawabe T, Ichimura A, Oishi S, Ohno H. Total Synthesis of Zephycarinatines via Photocatalytic Reductive Radical ipso-Cyclization. Angew Chem Int Ed Engl 2020; 59:21210-21215. [PMID: 32770565 DOI: 10.1002/anie.202009399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/13/2022]
Abstract
We report herein a nonbiomimetic strategy for the total synthesis of the plicamine-type alkaloids zephycarinatines C and D. The key feature of the synthesis is a stereoselective reductive radical ipso-cyclization using visible-light-mediated photoredox catalysis. This cyclization enabled the construction of a 6,6-spirocyclic core structure through the addition of a carbon-centered radical onto the aromatic ring. Biological evaluation of zephycarinatines and their derivatives revealed that the synthetic derivative with a keto group displays moderate inhibitory activity against LPS-induced NO production. This approach could offer future opportunities to expand the chemical diversity of plicamine-type alkaloids as well as providing useful intermediates for their syntheses.
Collapse
Affiliation(s)
- Haruka Takeuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kohei Nakagawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takaaki Kawabe
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
15
|
Takeuchi H, Inuki S, Nakagawa K, Kawabe T, Ichimura A, Oishi S, Ohno H. Total Synthesis of Zephycarinatines via Photocatalytic Reductive Radical
ipso
‐Cyclization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Haruka Takeuchi
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Kohei Nakagawa
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Takaaki Kawabe
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
16
|
Guo J, Wang Y, Li Y, Lu K, Liu S, Wang W, Zhang Y. Graphitic Carbon Nitride Polymer as a Recyclable Photoredox Catalyst for Decarboxylative Alkynylation of Carboxylic Acids. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiaqi Guo
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of New Drug Design and School of Pharmacy East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Yating Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Yuhang Li
- Key Laboratory for Ultrafine Materials of Ministry of Education Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Kailin Lu
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of New Drug Design and School of Pharmacy East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Shihui Liu
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of New Drug Design and School of Pharmacy East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of New Drug Design and School of Pharmacy East China University of Science and Technology Shanghai 200237 People's Republic of China
- Department of Pharmacology and Toxicology and BIO5 Institute University of Arizona Tucson AZ 85721–0207 USA
| | - Yongqiang Zhang
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of New Drug Design and School of Pharmacy East China University of Science and Technology Shanghai 200237 People's Republic of China
| |
Collapse
|
17
|
Liu B, Alegre-Requena JV, Paton RS, Miyake GM. Unconventional Reactivity of Ethynylbenziodoxolone Reagents and Thiols: Scope and Mechanism. Chemistry 2020; 26:2386-2394. [PMID: 31657063 PMCID: PMC7044075 DOI: 10.1002/chem.201904520] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 12/12/2022]
Abstract
1,2-Dithio-1-alkenes are biologically active compounds widely implemented throughout organic synthesis, functional materials, coordination chemistry, and pharmaceuticals. Traditional methods for accessing 1,2-dithio-1-alkenes often demand transition metal catalysts, specialized or air-sensitive ligands, high temperatures, and disulfides (R2 S2 ). Herein, a general and efficient strategy utilizing ethynylbenziodoxolone (EBX) reagents and thiols is presented that results in the formation of 1,2-dithio-1-alkenes with excellent regioselectivity and stereoselectivity through unprecedented reactivity between the EBX and the thiol. This operationally simple procedure utilizes mild conditions, which result in a broad substrate scope and high functional-group tolerance. The observed unexpected reactivity has been rationalized through both experimental results and DFT calculations.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Juan V Alegre-Requena
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
18
|
Patel SB, Vasava DV. Synthesis and Characterization of Ag@g−C
3
N
4
and Its Photocatalytic Evolution in Visible Light Driven Synthesis Of Ynone. ChemCatChem 2019. [DOI: 10.1002/cctc.201901802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sunil B. Patel
- School of Sciences Department of chemistryGujarat University Navrangpura Ahmedabad- 380009 India
| | - Dilip V. Vasava
- School of Sciences Department of chemistryGujarat University Navrangpura Ahmedabad- 380009 India
| |
Collapse
|
19
|
Yang L, Li H, Du Y, Cheng K, Qi C. Visible Light‐Catalyzed Decarboxylative Alkynylation of Arenediazonium Salts with Alkynyl Carboxylic Acids: Direct Access to Aryl Alkynes by Organic Photoredox Catalysis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Liangfeng Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing University 312000 Shaoxing People's Republic of China
| | - Haifeng Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing University 312000 Shaoxing People's Republic of China
| | - Yijun Du
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing University 312000 Shaoxing People's Republic of China
| | - Kai Cheng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing University 312000 Shaoxing People's Republic of China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing University 312000 Shaoxing People's Republic of China
| |
Collapse
|
20
|
Hari DP, Schouwey L, Barber V, Scopelliti R, Fadaei‐Tirani F, Waser J. Ethynylbenziodazolones (EBZ) as Electrophilic Alkynylation Reagents for the Highly Enantioselective Copper‐Catalyzed Oxyalkynylation of Diazo Compounds. Chemistry 2019; 25:9522-9528. [DOI: 10.1002/chem.201900950] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/06/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Durga Prasad Hari
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Lionel Schouwey
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Verity Barber
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC GE, BCH 2111 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC GE, BCH 2111 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
21
|
Garreau M, Le Vaillant F, Waser J. C‐Terminal Bioconjugation of Peptides through Photoredox Catalyzed Decarboxylative Alkynylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901922] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marion Garreau
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Franck Le Vaillant
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
22
|
Garreau M, Le Vaillant F, Waser J. C‐Terminal Bioconjugation of Peptides through Photoredox Catalyzed Decarboxylative Alkynylation. Angew Chem Int Ed Engl 2019; 58:8182-8186. [DOI: 10.1002/anie.201901922] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Marion Garreau
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Franck Le Vaillant
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
23
|
Rahman M, Mukherjee A, Kovalev IS, Kopchuk DS, Zyryanov GV, Tsurkan MV, Majee A, Ranu BC, Charushin VN, Chupakhin ON, Santra S. Recent Advances on Diverse Decarboxylative Reactions of Amino Acids. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801331] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Matiur Rahman
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| | - Anindita Mukherjee
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| | - Igor S. Kovalev
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| | - Dmitry S. Kopchuk
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Grigory V. Zyryanov
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Mikhail V. Tsurkan
- Max Bergmann Center of BiomaterialsLeibniz Institute of Polymer Research Hohe Strasse 6 01069 Dresden Germany
| | - Adinath Majee
- Department of ChemistryVisva-Bharati (A Central University) Santiniketan 731235 India
| | - Brindaban C. Ranu
- Department of Organic ChemistryIndian Association for the Cultivation of Science, Jadavpur Kolkata 700032 India
| | - Valery N. Charushin
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Oleg N. Chupakhin
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Sougata Santra
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| |
Collapse
|
24
|
Jiang H, Studer A. Transition-Metal-Free Three-Component Radical 1,2-Amidoalkynylation of Unactivated Alkenes. Chemistry 2018; 25:516-520. [PMID: 30403422 DOI: 10.1002/chem.201805490] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Indexed: 11/10/2022]
Abstract
A transition-metal-free radical 1,2-amidoalkynylation of unactivated alkenes is presented. α-Amido-oxy acids were used as amidyl radical precursors, which were oxidized by an organic photoredox catalyst (4CzlPN). The electrophilic N-radicals chemoselectively reacted with various aliphatic alkenes and the adduct radicals were then trapped by ethynylbenziodoxolone (EBX) reagents to eventually provide the amidoalkynylation products. These transformations, which were conducted under practical and mild conditions, showed high functional group tolerance and broad substrate scope. Mechanistic studies supported the radical nature of these cascades.
Collapse
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraß 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraß 40, 48149, Münster, Germany
| |
Collapse
|
25
|
Morcillo SP, Dauncey EM, Kim JH, Douglas JJ, Sheikh NS, Leonori D. Photoinduced Remote Functionalization of Amides and Amines Using Electrophilic Nitrogen Radicals. Angew Chem Int Ed Engl 2018; 57:12945-12949. [PMID: 30074300 PMCID: PMC6221136 DOI: 10.1002/anie.201807941] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 01/29/2023]
Abstract
The selective functionalization of C(sp3 )-H bonds at distal positions to functional groups is a challenging task in synthetic chemistry. Reported here is a photoinduced radical cascade strategy for the divergent functionalization of amides and protected amines. The process is based on the oxidative generation of electrophilic amidyl radicals and their subsequent transposition by 1,5-H-atom transfer, resulting in remote fluorination, chlorination and, for the first time, thioetherification, cyanation, and alkynylation. The process is tolerant of most common functional groups and delivers useful building blocks that can be further elaborated. The utility of this strategy is demonstrated through the late-stage functionalization of amino acids and a dipeptide.
Collapse
Affiliation(s)
- Sara P. Morcillo
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | | - Ji Hye Kim
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - James J. Douglas
- Early Chemical DevelopmentPharmaceutical SciencesIMED Biotech UnitAstraZenecaMacclesfieldSK10 2NAUK
| | - Nadeem S. Sheikh
- Department of ChemistryFaculty of ScienceKing Faisal UniversityP.O. Box 380Al-Ahsa31982Saudi Arabia
| | - Daniele Leonori
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
26
|
Morcillo SP, Dauncey EM, Kim JH, Douglas JJ, Sheikh NS, Leonori D. Photoinduced Remote Functionalization of Amides and Amines Using Electrophilic Nitrogen Radicals. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807941] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sara P. Morcillo
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Elizabeth M. Dauncey
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Ji Hye Kim
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - James J. Douglas
- Early Chemical Development; Pharmaceutical Sciences; IMED Biotech Unit; AstraZeneca; Macclesfield SK10 2NA UK
| | - Nadeem S. Sheikh
- Department of Chemistry; Faculty of Science; King Faisal University; P.O. Box 380 Al-Ahsa 31982 Saudi Arabia
| | - Daniele Leonori
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
27
|
Sakakibara Y, Cooper P, Murakami K, Itami K. Photoredox-Catalyzed Decarboxylative Oxidation of Arylacetic Acids. Chem Asian J 2018; 13:2410-2413. [DOI: 10.1002/asia.201800529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yota Sakakibara
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
| | - Phillippa Cooper
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
- JST-ERATO, Itami Molecular Nanocarbon Project; Nagoya University; Chikusa Nagoya 464-8602 Japan
| |
Collapse
|
28
|
Hazra A, Lee MT, Chiu JF, Lalic G. Photoinduced Copper-Catalyzed Coupling of Terminal Alkynes and Alkyl Iodides. Angew Chem Int Ed Engl 2018; 57:5492-5496. [PMID: 29575686 DOI: 10.1002/anie.201801085] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Indexed: 12/15/2022]
Abstract
We have developed a photoinduced copper-catalyzed alkylation of terminal alkynes with primary, secondary, or tertiary alkyl iodides as electrophiles. The reaction has a broad substrate scope and can be successfully performed in the presence of ester, nitrile, aryl halide, ketone, sulfonamide, epoxide, alcohol, and amide functional groups. The alkylation is promoted by blue light (λ≈450 nm) and proceeds at room temperature in the absence of any additional metal catalysts. The use of a terpyridine ligand is essential for the success of the reaction and is shown to prevent photoinduced copper-catalyzed polymerization of the starting materials.
Collapse
Affiliation(s)
- Avijit Hazra
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Mitchell T Lee
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Justin F Chiu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Gojko Lalic
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
29
|
Hazra A, Lee MT, Chiu JF, Lalic G. Photoinduced Copper‐Catalyzed Coupling of Terminal Alkynes and Alkyl Iodides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Avijit Hazra
- Department of Chemistry University of Washington Seattle WA 98195 USA
| | - Mitchell T. Lee
- Department of Chemistry University of Washington Seattle WA 98195 USA
| | - Justin F. Chiu
- Department of Chemistry University of Washington Seattle WA 98195 USA
| | - Gojko Lalic
- Department of Chemistry University of Washington Seattle WA 98195 USA
| |
Collapse
|
30
|
Jiang H, Studer A. α-Aminoxy-Acid-Auxiliary-Enabled Intermolecular Radical γ-C(sp3
)−H Functionalization of Ketones. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712066] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstrasse 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
31
|
Jiang H, Studer A. α-Aminoxy-Acid-Auxiliary-Enabled Intermolecular Radical γ-C(sp3
)−H Functionalization of Ketones. Angew Chem Int Ed Engl 2018; 57:1692-1696. [DOI: 10.1002/anie.201712066] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstrasse 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
32
|
Davies J, Sheikh NS, Leonori D. Photoredox Imino Functionalizations of Olefins. Angew Chem Int Ed Engl 2017; 56:13361-13365. [PMID: 28857386 PMCID: PMC5656829 DOI: 10.1002/anie.201708497] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/05/2023]
Abstract
Shown herein is that polyfunctionalized nitrogen heterocycles can be easily prepared by a visible-light-mediated radical cascade process. This divergent strategy features the oxidative generation of iminyl radicals and subsequent cyclization/radical trapping, which allows the effective construction of highly functionalized heterocycles. The reactions proceed efficiently at room temperature, utilize an organic photocatalyst, use simple and readily available materials, and generate, in a single step, valuable building blocks that would be difficult to prepare by other methods.
Collapse
Affiliation(s)
- Jacob Davies
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Nadeem S. Sheikh
- Department of ChemistryFaculty of ScienceKing Faisal UniversityP.O. Box 380Al-Ahsa31982Saudi Arabia
| | - Daniele Leonori
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
33
|
Mukherjee S, Garza-Sanchez RA, Tlahuext-Aca A, Glorius F. Alkinylierung von Csp2
(O)-H-Bindungen durch Photoredox-vermittelten Wasserstoffatomtransfer. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satobhisha Mukherjee
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Deutschland
| | - R. Aleyda Garza-Sanchez
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Deutschland
| | - Adrian Tlahuext-Aca
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
34
|
Mukherjee S, Garza-Sanchez RA, Tlahuext-Aca A, Glorius F. Alkynylation of Csp2 (O)-H Bonds Enabled by Photoredox-Mediated Hydrogen-Atom Transfer. Angew Chem Int Ed Engl 2017; 56:14723-14726. [PMID: 28929553 DOI: 10.1002/anie.201708037] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Indexed: 11/08/2022]
Abstract
The development of new hydrogen-atom transfer (HAT) strategies within the framework of photoredox catalysis is highly appealing for its power to activate a desired C-H bond in the substrate leading to its selective functionalization. Reported here is the first photoredox-mediated hydrogen-atom transfer method for the efficient synthesis of ynones, ynamides, and ynoates with high regio- and chemoselectivity by direct functionalization of Csp2 (O)-H bonds. The broad synthetic application of this method has been demonstrated by the selective functionalization of C(O)-H bonds within complex molecular scaffolds.
Collapse
Affiliation(s)
- Satobhisha Mukherjee
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - R Aleyda Garza-Sanchez
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Adrian Tlahuext-Aca
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
35
|
Davies J, Sheikh NS, Leonori D. Photoredox Imino Functionalizations of Olefins. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708497] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jacob Davies
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Nadeem S. Sheikh
- Department of Chemistry; Faculty of Science; King Faisal University; P.O. Box 380 Al-Ahsa 31982 Saudi Arabia
| | - Daniele Leonori
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
36
|
Smith JM, Qin T, Merchant RR, Edwards JT, Malins LR, Liu Z, Che G, Shen Z, Shaw SA, Eastgate MD, Baran PS. Decarboxylative Alkynylation. Angew Chem Int Ed Engl 2017; 56:11906-11910. [PMID: 28636185 PMCID: PMC5792189 DOI: 10.1002/anie.201705107] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/06/2017] [Indexed: 12/17/2022]
Abstract
The development of a new decarboxylative cross-coupling method that affords terminal and substituted alkynes from various carboxylic acids is described using both nickel- and iron-based catalysts. The use of N-hydroxytetrachlorophthalimide (TCNHPI) esters is crucial to the success of the transformation, and the reaction is amenable to in situ carboxylic acid activation. Additionally, an inexpensive, commercially available alkyne source is employed in this formal homologation process that serves as a surrogate for other well-established alkyne syntheses. The reaction is operationally simple and broad in scope while providing succinct and scalable avenues to previously reported synthetic intermediates.
Collapse
Affiliation(s)
- Joel M Smith
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Tian Qin
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Rohan R Merchant
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jacob T Edwards
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Lara R Malins
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhiqing Liu
- Asymchem Laboratories (Tianjin) Co., Ltd., TEDA, Tianjin, 300457, P.R. China
| | - Guanda Che
- Asymchem Laboratories (Tianjin) Co., Ltd., TEDA, Tianjin, 300457, P.R. China
| | - Zichao Shen
- Asymchem Laboratories (Tianjin) Co., Ltd., TEDA, Tianjin, 300457, P.R. China
| | - Scott A Shaw
- Discovery Chemistry, Bristol-Myers Squibb, 350 Carter Road, Hopewell, NJ, 08540, USA
| | - Martin D Eastgate
- Chemical Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Phil S Baran
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
37
|
Huang L, Olivares AM, Weix DJ. Reductive Decarboxylative Alkynylation of N-Hydroxyphthalimide Esters with Bromoalkynes. Angew Chem Int Ed Engl 2017; 56:11901-11905. [PMID: 28782860 PMCID: PMC5836783 DOI: 10.1002/anie.201706781] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 12/16/2022]
Abstract
A new method for the synthesis of terminal and internal alkynes from the nickel-catalyzed decarboxylative coupling of N-hydroxyphthalimide esters and bromoalkynes is presented. This reductive cross-electrophile coupling is the first to use a C(sp)-X electrophile, and appears to proceed via an alkynylnickel intermediate. The internal alkyne products are obtained in yields of 41-95 % without the need for a photocatalyst, light, or a strong oxidant. The reaction displays a broad scope of carboxylic acid and alkyne coupling partners, and can tolerate an array of functional groups, including carbamate NH, halogen, nitrile, olefin, ketone, and ester moieties. Mechanistic studies suggest that this process does not involve an alkynylmanganese reagent and instead proceeds through nickel-mediated bond formation.
Collapse
Affiliation(s)
- Liangbin Huang
- Department of Chemistry, University of Rochester, Rochester, New York, 14627-0216, USA
| | - Astrid M Olivares
- Department of Chemistry, University of Rochester, Rochester, New York, 14627-0216, USA
| | - Daniel J Weix
- Department of Chemistry, University of Rochester, Rochester, New York, 14627-0216, USA
| |
Collapse
|
38
|
Iminyl-Radicals by Oxidation of α-Imino-oxy Acids: Photoredox-Neutral Alkene Carboimination for the Synthesis of Pyrrolines. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706270] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Jiang H, Studer A. Iminyl-Radicals by Oxidation of α-Imino-oxy Acids: Photoredox-Neutral Alkene Carboimination for the Synthesis of Pyrrolines. Angew Chem Int Ed Engl 2017; 56:12273-12276. [DOI: 10.1002/anie.201706270] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
40
|
Huang L, Olivares AM, Weix DJ. Reductive Decarboxylative Alkynylation of
N
‐Hydroxyphthalimide Esters with Bromoalkynes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706781] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liangbin Huang
- Department of Chemistry University of Rochester Rochester New York 14627-0216 USA
| | - Astrid M. Olivares
- Department of Chemistry University of Rochester Rochester New York 14627-0216 USA
| | - Daniel J. Weix
- Department of Chemistry University of Rochester Rochester New York 14627-0216 USA
| |
Collapse
|
41
|
Smith JM, Qin T, Merchant RR, Edwards JT, Malins LR, Liu Z, Che G, Shen Z, Shaw SA, Eastgate MD, Baran PS. Decarboxylative Alkynylation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705107] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Joel M. Smith
- The Scripps Research Institute (TSRI); North Torrey Pines Road La Jolla CA 92037 USA
| | - Tian Qin
- The Scripps Research Institute (TSRI); North Torrey Pines Road La Jolla CA 92037 USA
| | - Rohan R. Merchant
- The Scripps Research Institute (TSRI); North Torrey Pines Road La Jolla CA 92037 USA
| | - Jacob T. Edwards
- The Scripps Research Institute (TSRI); North Torrey Pines Road La Jolla CA 92037 USA
| | - Lara R. Malins
- The Scripps Research Institute (TSRI); North Torrey Pines Road La Jolla CA 92037 USA
| | - Zhiqing Liu
- Asymchem Laboratories (Tianjin) Co., Ltd.; TEDA; Tianjin 300457 P.R. China
| | - Guanda Che
- Asymchem Laboratories (Tianjin) Co., Ltd.; TEDA; Tianjin 300457 P.R. China
| | - Zichao Shen
- Asymchem Laboratories (Tianjin) Co., Ltd.; TEDA; Tianjin 300457 P.R. China
| | - Scott A. Shaw
- Discovery Chemistry; Bristol-Myers Squibb; 350 Carter Road Hopewell NJ 08540 USA
| | - Martin D. Eastgate
- Chemical Development; Bristol-Myers Squibb; One Squibb Drive New Brunswick NJ 08903 USA
| | - Phil S. Baran
- The Scripps Research Institute (TSRI); North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
42
|
Zhang JJ, Yang JC, Guo LN, Duan XH. Visible-Light-Mediated Dual Decarboxylative Coupling of Redox-Active Esters with α,β-Unsaturated Carboxylic Acids. Chemistry 2017. [PMID: 28631846 DOI: 10.1002/chem.201702200] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An efficient visible-light-induced decarboxylative coupling between α,β-unsaturated carboxylic acids and alkyl N-hydroxyphthalimide esters has been developed. A wide range of redox-active esters derived from aliphatic carboxylic acids (1°, 2° and 3°) proved viable in this dual decarboxylation process, affording a broad scope of substituted alkenes in moderate to excellent yields with good E/Z selectivities. This redox-neutral procedure was highlighted by its mild conditions, operational simplicity, easy accessibility of carboxylic acids, and excellent functional-group tolerance.
Collapse
Affiliation(s)
- Jin-Jiang Zhang
- Department of Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China
| | - Jun-Cheng Yang
- Department of Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China
| | - Li-Na Guo
- Department of Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China
| |
Collapse
|
43
|
Jiang YH, Sun J, Sun Q, Yan CG. Construction of Spiro[indene-2,1′-pyrrolo[2,1-a]isoquinoline]s through a Visible-Light-Catalyzed Oxidative [3+2] Cycloaddition Reaction. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yan-Hong Jiang
- College of Chemistry&Chemical Engineering; Yangzhou University; Yangzhou 225002 P. R. China
| | - Jing Sun
- College of Chemistry&Chemical Engineering; Yangzhou University; Yangzhou 225002 P. R. China
| | - Qiu Sun
- College of Chemistry&Chemical Engineering; Yangzhou University; Yangzhou 225002 P. R. China
| | - Chao-Guo Yan
- College of Chemistry&Chemical Engineering; Yangzhou University; Yangzhou 225002 P. R. China
| |
Collapse
|
44
|
Chen ZM, Nervig CS, DeLuca RJ, Sigman MS. Palladium-Catalyzed Enantioselective Redox-Relay Heck Alkynylation of Alkenols To Access Propargylic Stereocenters. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhi-Min Chen
- Department of Chemistry; University of Utah; 315 South 1400 East Salt Lake City UT 84112 USA
| | - Christine S. Nervig
- Department of Chemistry; University of Utah; 315 South 1400 East Salt Lake City UT 84112 USA
| | - Ryan J. DeLuca
- Department of Chemistry; University of Utah; 315 South 1400 East Salt Lake City UT 84112 USA
| | - Matthew S. Sigman
- Department of Chemistry; University of Utah; 315 South 1400 East Salt Lake City UT 84112 USA
| |
Collapse
|
45
|
Chen ZM, Nervig CS, DeLuca RJ, Sigman MS. Palladium-Catalyzed Enantioselective Redox-Relay Heck Alkynylation of Alkenols To Access Propargylic Stereocenters. Angew Chem Int Ed Engl 2017; 56:6651-6654. [PMID: 28467031 DOI: 10.1002/anie.201703089] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 11/09/2022]
Abstract
An enantioselective redox-relay Heck alkynylation of di- and trisubstituted alkenols to construct propargylic stereocenters is disclosed using a new pyridine oxazoline ligand. This strategy allows direct access to chiral β-alkynyl carbonyl compounds employing allylic alcohol substrates in contrast to more traditional conjugate addition methods.
Collapse
Affiliation(s)
- Zhi-Min Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Christine S Nervig
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Ryan J DeLuca
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| |
Collapse
|
46
|
Schwarz J, König B. Decarboxylative Alkynylation of Biomass-Derived Compounds by Metal-Free Visible Light Photocatalysis. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Johanna Schwarz
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry; University of Regensburg; Universitätsstraße 31 93053 Regensburg Germany
| | - Burkhard König
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry; University of Regensburg; Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
47
|
Tlahuext‐Aca A, Garza‐Sanchez RA, Glorius F. Mehrkomponenten‐Oxyalkylierung von Styrolen durch Wasserstoffbrücken‐unterstützten photoinduzierten Elektronentransfer. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700049] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Adrian Tlahuext‐Aca
- NRW Graduate School of Chemistry Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - R. Aleyda Garza‐Sanchez
- NRW Graduate School of Chemistry Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- NRW Graduate School of Chemistry Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
48
|
Tlahuext‐Aca A, Garza‐Sanchez RA, Glorius F. Multicomponent Oxyalkylation of Styrenes Enabled by Hydrogen‐Bond‐Assisted Photoinduced Electron Transfer. Angew Chem Int Ed Engl 2017; 56:3708-3711. [DOI: 10.1002/anie.201700049] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Adrian Tlahuext‐Aca
- NRW Graduate School of Chemistry Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstrasse 40 48149 Münster Germany
| | - R. Aleyda Garza‐Sanchez
- NRW Graduate School of Chemistry Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstrasse 40 48149 Münster Germany
| | - Frank Glorius
- NRW Graduate School of Chemistry Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstrasse 40 48149 Münster Germany
| |
Collapse
|
49
|
Roslin S, Odell LR. Visible-Light Photocatalysis as an Enabling Tool for the Functionalization of Unactivated C(sp3
)-Substrates. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601479] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sara Roslin
- Organic Pharmaceutical Chemistry; Department of Medicinal Chemistry, Uppsala Biomedical Center; Uppsala University; P. O. Box 574 75123 Uppsala Sweden
| | - Luke R. Odell
- Organic Pharmaceutical Chemistry; Department of Medicinal Chemistry, Uppsala Biomedical Center; Uppsala University; P. O. Box 574 75123 Uppsala Sweden
| |
Collapse
|
50
|
Affiliation(s)
- Yunhe Jin
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua University Beijing 100084 China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|