1
|
Kothavale S, Konidena RK, Lee H, Lee JY. Leveraging quinoxaline functionalization for the design of efficient orange/red thermally activated delayed fluorescence emitters. Chem Commun (Camb) 2025; 61:556-559. [PMID: 39655833 DOI: 10.1039/d4cc05610h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
A novel functionalization approach of quinoxaline has been unveiled to develop orange/red thermally activated delayed fluorescence (TADF) emitters by modifying the core with three carbazole donors and one or three cyano acceptors. The resulting functionalized TADF emitters demonstrated orange and red emission with promising TADF properties. An organic light-emitting diode fabricated using the orange emitter demonstrated high external quantum efficiency of 18.4%.
Collapse
Affiliation(s)
- Shantaram Kothavale
- School of Chemical Engineering, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Korea.
| | - Rajendra Kumar Konidena
- Department of Chemistry, Indian Institute of Technology-Patna, Bihta Kanpa Rd, Patna, Dayalpur Daulatpur, Bihar 801106, India
| | - Hyunjung Lee
- School of Chemical Engineering, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Korea.
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Korea.
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
2
|
Mageswari GV, Chitose Y, Tsuchiya Y, Lin JH, Adachi C. Rational Molecular Design for Balanced Locally Excited and Charge- Transfer Nature for Two-Photon Absorption Phenomenon and Highly Efficient TADF-Based OLEDs. Angew Chem Int Ed Engl 2024:e202420417. [PMID: 39587453 DOI: 10.1002/anie.202420417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
The pursuit of highly efficient thermally activated delayed fluorescence (TADF) emitters with two-photon absorption (2PA) character is hampered by the concurrent achievement of a small singlet-triplet energy gap (ΔEST) and high photoluminescence quantum yield (ΦPL). Here, by introducing a terephthalonitrile unit into a sterically crowded donor-π-donor structure, inducing a hybrid electronic excitation character, we designed unique TADF emitters possessing 2PA ability. This rational molecular design was achieved through a main π-conjugated donor-acceptor-donor backbone in line with locally excited feature renders a large oscillator strength and transition dipole moment, maintaining a high 2PA cross-section value. The ancillary N-donor-acceptor-donor with charge transfer character highly balances the TADF phenomenon by minimizing ΔEST. A near-unity ΦPL value with a large radiative decay rate over an order of magnitude higher than the intersystem crossing rate and a high horizontal orientation ratio of 0.95 were simultaneously attained for TPCz2NP. The organic light-emitting diodes fabricated with this material exhibit a high maximum external quantum efficiency of 25.4 % with an elevated 2PA cross-section (σ2) value up to 143 GM at 850 nm. These findings offer a venue for designing high-performance TADF emitters with exceptional performance inclusive of 2PA properties, expanding for future functional material design.
Collapse
Affiliation(s)
- Gomathi Vinayakam Mageswari
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Youhei Chitose
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Ja-Hon Lin
- Department of Electro-Optical Engineering, Advanced Nanophotonics Technology Laboratory, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
3
|
Mao YH, Hung MK, Chung ST, Sharma S, Tsai KW, Chen SA. Interacting Emission Species among Donor and Acceptor Moieties in a Donor-Grafted Polymer Host/TADF-Guest System and Their Effects on Photoluminescence and Electroluminescence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60715-60731. [PMID: 39444357 PMCID: PMC11551908 DOI: 10.1021/acsami.4c15933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Thermally activated delayed fluorescence (TADF)-based electroluminescence (EL) devices adopting a host/guest strategy in their emitting layer (EML) are capable of realizing high efficiency. However, TADF emitters composed of donor and acceptor moieties as guests dispersed in organic host materials containing a donor and/or an acceptor are subject to donor-acceptor (D-A) interactions. In addition, electron delocalization between neighboring emitter molecules could form different species of aggregates. Here, we investigate the effects of intermolecular interacting emission species on the optoelectronic properties of sky-blue/green/red (sB/G/R) TADF emitters as guests using poly(biphenyl-Si/Ge) grafted with various donor moieties as hosts. We found the presence of guest/guest exciplex (Dg/Ag)*, host/guest exciplexes (Dh/Ag)*, and aggregates through the exploration of interactions between neighboring TADF guest molecules and between host and TADF-guest molecules. The nonradiative 3(Dh/Ag)* (ΔEST ≈ 0.5 eV) could increase the internal conversion rate (kIC) and reduce delayed luminescence, and both of them could cause a decrease in PLQY. The luminescence of 3(Dh/Ag)* may have a positive or negative effect on PLQY depending on its triplet energy. As the singlet and triplet energies of (aggregate)* are lower than those of (ICT)*, energy transfer from (ICT)* to (aggregate)* could occur. The low PLQY nature of (aggregate)* means that it is more likely to cause quenching in device emission. The emissions from (Dh/Ag)* and (aggregate)* are found to have increased full width at half-maximum and lead to lower emission color purity. Such intermolecular interactions should also occur in host/guest (TADF) systems and nondoped TADF emitter systems and thus are important factors for the molecular design of the TADF emitter and/or its accompanying host for high device efficiency and emission color purity.
Collapse
Affiliation(s)
| | | | | | - Sunil Sharma
- Department of Chemical Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Kuen-Wei Tsai
- Department of Chemical Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Show-An Chen
- Department of Chemical Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China
| |
Collapse
|
4
|
Ma B, Ding Z, Liu D, Zhou Z, Zhang K, Dang D, Zhang S, Su SJ, Zhu W, Liu Y. A Feasible Strategy for a Highly Efficient Thermally Activated Delayed Fluorescence Emitter Over 900 nm Based on Phenalenone Derivatives. Chemistry 2023; 29:e202301197. [PMID: 37154226 DOI: 10.1002/chem.202301197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
Near-infrared (NIR) organic light-emitting diodes (OLEDs) suffer from the low external electroluminescence (EL) quantum efficiency (EQE), which is a critical obstacle for potential applications. Herein, 1-oxo-1-phenalene-2,3-dicarbonitrile (OPDC) is employed as an electron-withdrawing aromatic ring, and by incorporating with triphenylamine (TPA) and biphenylphenylamine (BBPA) donors, two novel NIR emitters with thermally activated delayed fluorescence (TADF) characteristics, namely OPDC-DTPA and OPDC-DBBPA, are first developed and compared in parallel. Intense NIR emission peaks at 962 and 1003 nm are observed in their pure films, respectively. Contributed by the local excited (LE) characteristics in the triplet (T1 ) state in synergy with the charge transfer (CT) characteristics for the singlet (S1 ) state to activate TADF emission, the solution processable doped NIR OLEDs based on OPDC-DTPA and OPDC-DBBPA yield EL peaks at 834 and 906 nm, accompanied with maximum EQEs of 0.457 and 0.103 %, respectively, representing the state-of-the-art EL performances in the TADF emitter-based NIR-OLEDs in the similar EL emission regions so far. This work manifests a simple and effective strategy for the development of NIR TADF emitters with long wavelength and efficiency synchronously.
Collapse
Affiliation(s)
- Bin Ma
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhenming Ding
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhongxin Zhou
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Kai Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Dongfeng Dang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shiyue Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yu Liu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
5
|
He S, Du J, Liang W, Zhang B, Liang G, Wu K. Thermally Activated Delayed Near-Infrared Photoluminescence from Functionalized Lead-Free Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202217287. [PMID: 36517417 DOI: 10.1002/anie.202217287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
As an analogue to thermally activated delayed fluorescence (TADF) of organic molecules, thermally activated delayed photoluminescence (TADPL) observed in molecule-functionalized semiconductor nanocrystals represents an exotic mechanism to harvest energy from dark molecular triplets and to obtain controllable, long-lived PL from nanocrystals. The reported TADPL systems have successfully covered the visible spectrum. However, TADF molecules already emit very efficiently in the visible, diminishing the technological impact of the less-efficient nanocrystal-molecule TADPL. Here we report bright, near-infrared TADPL in lead-free CuInSe2 nanocrystals functionalized with carboxylated tetracene ligands, which results from efficient triplet energy transfer from photoexcited nanocrystals to ligands, followed with thermally activated reverse energy transfer from ligand triplets back to nanocrystals. This strategy prolonged the nanocrystal exciton lifetime from 100 ns to 60 μs at room temperature.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jun Du
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wenfei Liang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Boyu Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
6
|
He X, Lou J, Li B, Wang H, Peng X, Li G, Liu L, Huang Y, Zheng N, Xing L, Huo Y, Yang D, Ma D, Zhao Z, Wang Z, Tang BZ. An Ultraviolet Fluorophore with Narrowed Emission via Coplanar Molecular Strategy. Angew Chem Int Ed Engl 2022; 61:e202209425. [DOI: 10.1002/anie.202209425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Xin He
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Jingli Lou
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Baoxi Li
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Han Wang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Ganggang Li
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Lu Liu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Yu Huang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Nan Zheng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Longjiang Xing
- School of Chemical Engineering & Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Yanping Huo
- School of Chemical Engineering & Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong, Shenzhen Shenzhen 518172 China
| |
Collapse
|
7
|
Liu S, Qin M, Liu S, Gao Y, Li B, Lin L, Wang CK, Fan J, Song Y. Theoretical perspective for the relationship between molecular structures and circularly polarised thermally activated delayed fluorescence properties. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2127381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Shulei Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Ming Qin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Songsong Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Yang Gao
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Bihe Li
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| |
Collapse
|
8
|
Zhao M, Li M, Li W, Du S, Chen Z, Luo M, Qiu Y, Lu X, Yang S, Wang Z, Zhang J, Su S, Ge Z. Highly Efficient Near‐Infrared Thermally Activated Delayed Fluorescent Emitters in Non‐Doped Electroluminescent Devices. Angew Chem Int Ed Engl 2022; 61:e202210687. [DOI: 10.1002/anie.202210687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mengyu Zhao
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 P. R. China
| | - Mengke Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640, Guangdong Province P. R. China
| | - Wei Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Songyu Du
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Zhenyu Chen
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Ming Luo
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Yi Qiu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Xumin Lu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Shengyi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - Zhichuan Wang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Jiashen Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Shi‐Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640, Guangdong Province P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| |
Collapse
|
9
|
Highly Efficient Near‐Infrared Thermally Activated Delayed Fluorescent Emitters in Non‐Doped Electroluminescent Devices. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Ma T, Bian M, Lin X, Yang Z, Yang X, Duan J, Zhu N, Liu C, Fang Z, Guo K. Visible light‐promoted intramolecular annulation of 2‐alkynylbiphenyls to synthesize 9‐sulfenylphenanthrenes under metal‐free and additives‐free conditions. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tao Ma
- Nanjing Tech University College of Biotechnology and Pharmaceutical Engineering CHINA
| | - Mixue Bian
- Nanjing Tech University College of Biotechnology and Pharmaceutical Engineering CHINA
| | - Xinxin Lin
- Nanjing Tech University College of Biotechnology and Pharmaceutical Engineering CHINA
| | - Zhao Yang
- China Pharmaceutical University College of Engineering CHINA
| | - Xiaobing Yang
- Industrial Technology Research Institute Biology and Medicine Department CHINA
| | - Jindian Duan
- Nanjing Tech University College of Biotechnology and Pharmaceutical Engineering CHINA
| | - Ning Zhu
- Nanjing Tech University College of Biotechnology and Pharmaceutical Engineering CHINA
| | - Chengkou Liu
- Nanjing Tech University College of Biotechnology and Pharmaceutical Engineering CHINA
| | - Zheng Fang
- Nanjing Tech University College of Biotechnology and Pharmaceutical Engineering CHINA
| | - Kai Guo
- Nanjing Tech University State Key Laboratory of Materials-Oriented Chemical Engineering 30 Puzhu Road South 211800 Nanjing CHINA
| |
Collapse
|
11
|
Mori T, Sekine K, Kawashima K, Mori T, Kuninobu Y. Near‐Infrared and Dual Emissions of Diphenylamino Group‐Substituted Malachite Green Derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Toshiaki Mori
- Kyushu University: Kyushu Daigaku Interdisciplinary Graduate School of Engineering Sciences JAPAN
| | - Kohei Sekine
- Kyushu University: Kyushu Daigaku Institute for Materials Chemistry and Engineering JAPAN
| | - Kyohei Kawashima
- Kyushu University: Kyushu Daigaku Institute for Materials Chemistry and Engineering JAPAN
| | - Toshifumi Mori
- Kyushu University: Kyushu Daigaku Institute for Materials Chemistry and Engineering JAPAN
| | - Yoichiro Kuninobu
- Kyushu University Institute for Materials Chemistry and Engineering 6-1 Kasugakoen, Kasuga-shi 816-8580 Fukuoka JAPAN
| |
Collapse
|
12
|
Yu Y, Xing H, Liu D, Zhao M, Sung HH, Williams ID, Lam JWY, Xie G, Zhao Z, Tang BZ. Solution‐processed AIEgen NIR OLEDs with EQE Approaching 15 %. Angew Chem Int Ed Engl 2022; 61:e202204279. [DOI: 10.1002/anie.202204279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Yu
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Hao Xing
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Dan Liu
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Mengying Zhao
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Herman H.‐Y. Sung
- The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Ian D. Williams
- The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Jacky W. Y. Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Department of Chemistry Wuhan University Wuhan 430072 P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology) China
| | - Zheng Zhao
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| |
Collapse
|
13
|
Ulukan P, Bas EE, Ozek RB, Dal Kaynak C, Monari A, Aviyente V, Catak S. Computational descriptor analysis on excited state behaviours of a series of TADF and non-TADF compounds. Phys Chem Chem Phys 2022; 24:16167-16182. [PMID: 35748918 DOI: 10.1039/d2cp01323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermally activated delayed fluorescence (TADF) behaviours of seventeen organic TADF emitters and two non-TADF chromophores bearing various donor and acceptor moieties were investigated, focusing on their torsion angles, singlet-triplet gap (ΔEST), spin orbit couplings (SOC) and topological ΦS index. Electronic structure calculations were performed in the framework of the Tamm-Dancoff approximation (TDA) allowing the possible reverse intersystem crossing (RISC) pathways to be characterized. The electronic density reorganization of the excited states was checked also with respect to the different exchange-correlation functional and absorption spectra were obtained by considering vibrational and dynamical effects through Wigner sampling of the ground state equilibrium regions. Examining all the parameters obtained in our computational study, we rationalized the influence of electron-donating and electron-accepting groups and the effects of geometrical factors, especially torsion angles, on a wide class of diverse compounds ultimately providing an easy and computationally effective protocol to assess TADF efficiencies.
Collapse
Affiliation(s)
- Pelin Ulukan
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey.
| | - Ekin Esme Bas
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey.
| | - Rengin Busra Ozek
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey.
| | - Cansul Dal Kaynak
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey.
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.,Université de Paris and CNRS, Itodys, F-75006 Paris, France
| | - Viktorya Aviyente
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey.
| | - Saron Catak
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey.
| |
Collapse
|
14
|
Yu Y, Xing H, Liu D, Zhao M, Sung HHY, Williams ID, Lam JWY, Xie G, Zhao Z, Tang BZ. Solution‐processed AIEgen NIR OLEDs with EQE Approaching 15%. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ying Yu
- CUHKS: The Chinese University of Hong Kong - Shenzhen Science and Engineering CHINA
| | - Hao Xing
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Dan Liu
- CUHKS: The Chinese University of Hong Kong - Shenzhen School of Science and Engineering CHINA
| | - Mengying Zhao
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Herman H.-Y. Sung
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Ian D. Williams
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Jacky W. Y. Lam
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | | | - Zheng Zhao
- CUHKS: The Chinese University of Hong Kong - Shenzhen School of Science and Engineering CHINA
| | - Ben Zhong Tang
- The Chinese University of Hong Kong, Shenzhen School of Science and Engineering 2001 Longxiang Boulevard, Longgang District 518172 Shenzhen CHINA
| |
Collapse
|
15
|
Nishida JI, Matsuno K, Kawase T. Synthesis and photophysical and electrochemical study of 1,3,6,8‐tetraarylsubstituted X‐shaped phenanthrene derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jun-ichi Nishida
- University of Hyogo Department of Materials Science and Chemistry 2167 Shosha 671-2280 Himeji JAPAN
| | - Kouhei Matsuno
- University of Hyogo: Hyogo Kenritsu Daigaku Department of Applied Chemistry JAPAN
| | - Takeshi Kawase
- University of Hyogo: Hyogo Kenritsu Daigaku Department of Applied Chemistry 2167 Shosha 671-2280 Himeji JAPAN
| |
Collapse
|
16
|
Jousselin-Oba T, Mamada M, Wright K, Marrot J, Adachi C, Yassar A, Frigoli M. Synthesis, Aromaticity, and Application of peri-Pentacenopentacene: Localized Representation of Benzenoid Aromatic Compounds. Angew Chem Int Ed Engl 2022; 61:e202112794. [PMID: 34727416 DOI: 10.1002/anie.202112794] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 11/09/2022]
Abstract
We report the synthesis and optoelectronic properties of TIPS-peri-pentacenopentacene (TIPS-PPP), a vertical extension of TIPS-pentacene (TIPS-PEN) and a low-band-gap material with remarkable stability. We found the synthetic conditions to avoid the competition between 1,2- and 1,4-addition of lithium acetylide on the large aromatic dione. The high stability of TIPS-PPP is due to the peri-fusion which increases the aromaticity by generating two localized aromatic sextets that are flanked with 2 diene fragments, similar to two fused-anthracenes. Like TIPS-PEN, TIPS-PPP shows the archetypal 2D brickwall motif in crystals with a larger transfer integral and smaller reorganization energy. The high mobility of up to 1 cm2 V-1 s-1 was obtained in an organic field-effect transistor fabricated by a wet process. Also, TIPS-PPP was used as a near-infrared (NIR) emitter for NIR organic-light-emitting-diode devices resulting in a high external quantum efficiency at 800 nm.
Collapse
Affiliation(s)
- Tanguy Jousselin-Oba
- Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles Cedex, France
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi, Fukuoka, 819-0395, Japan
| | - Karen Wright
- Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles Cedex, France
| | - Jérome Marrot
- Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles Cedex, France
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi, Fukuoka, 819-0395, Japan.,International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka, 819-0395, Japan
| | - Abderrahim Yassar
- LPICM, UMR CNRS 7647, Ecole Polytechnique, 91128, Palaiseau Cedex, France
| | - Michel Frigoli
- Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles Cedex, France
| |
Collapse
|
17
|
Jousselin‐Oba T, Mamada M, Wright K, Marrot J, Adachi C, Yassar A, Frigoli M. Synthesis, Aromaticity, and Application of
peri
‐Pentacenopentacene: Localized Representation of Benzenoid Aromatic Compounds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tanguy Jousselin‐Oba
- Institut Lavoisier de Versailles UMR CNRS 8180 University Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles Cedex France
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University Nishi Fukuoka 819-0395 Japan
| | - Karen Wright
- Institut Lavoisier de Versailles UMR CNRS 8180 University Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles Cedex France
| | - Jérome Marrot
- Institut Lavoisier de Versailles UMR CNRS 8180 University Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles Cedex France
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) Kyushu University Nishi Fukuoka 819-0395 Japan
| | - Abderrahim Yassar
- LPICM, UMR CNRS 7647 Ecole Polytechnique 91128 Palaiseau Cedex France
| | - Michel Frigoli
- Institut Lavoisier de Versailles UMR CNRS 8180 University Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles Cedex France
| |
Collapse
|
18
|
Feng X, Zhou N, Zhou H, Song F, Fu S, Zhang W, Liu X, Xu D. Achieving tricolor luminescence switching from a stimuli-responsive luminophore based on a bisarylic methanone derivative. NEW J CHEM 2022. [DOI: 10.1039/d2nj02532a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new, D–A type bisarylic methanone π-architecture DBF-BZ-TPA with highly distorted molecular conformations exhibits a unique ICT effect, intense solid-state fluorescence, and high-contrast and tricolor luminescence switching.
Collapse
Affiliation(s)
- Xiucun Feng
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Ningning Zhou
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Hongke Zhou
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Fuhua Song
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Shengjie Fu
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Weidong Zhang
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Xingliang Liu
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Defang Xu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
| |
Collapse
|
19
|
Wang GD, Liu ZX, Qiu BB, Zhang ZG, Wang R, Wang XY, Ma J, Li YF, Xiao M, Zhang CF. Ultrafast electron transfer in all-small-molecule photovoltaic blends promoted by intermolecular interactions in cyanided donors. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2109179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Guo-dong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhi-xing Liu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Bei-bei Qiu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi-guo Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- State key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiao-yong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yong-fang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Chun-feng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
20
|
Eskandarian P, Fallah H, Hajimahmoodzadeh M, Zabolian H. Computational Search to Find Efficient Red/Near‐Infrared Emitting Organic Molecules Based on Thermally Activated Delayed Fluorescence for Organic Light‐Emitting Diodes. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Parvin Eskandarian
- Department of Physics University of Isfahan Azadi Square Isfahan 81746‐73441 Iran
| | - Hamidreza Fallah
- Department of Physics University of Isfahan Azadi Square Isfahan 81746‐73441 Iran
- Quantum Optic Research Group University of Isfahan Azadi Square Isfahan 81746‐73441 Iran
| | - Morteza Hajimahmoodzadeh
- Department of Physics University of Isfahan Azadi Square Isfahan 81746‐73441 Iran
- Quantum Optic Research Group University of Isfahan Azadi Square Isfahan 81746‐73441 Iran
| | - Hossein Zabolian
- Department of Physics University of Isfahan Azadi Square Isfahan 81746‐73441 Iran
| |
Collapse
|
21
|
Cai Z, Wu X, Liu H, Guo J, Yang D, Ma D, Zhao Z, Tang BZ. Realizing Record-High Electroluminescence Efficiency of 31.5 % for Red Thermally Activated Delayed Fluorescence Molecules. Angew Chem Int Ed Engl 2021; 60:23635-23640. [PMID: 34459540 DOI: 10.1002/anie.202111172] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/17/2022]
Abstract
Tailor-made red thermally activated delayed fluorescence (TADF) molecules comprised of an electron-withdrawing pyrazino[2,3-f][1,10]phenanthroline-2,3-dicarbonitrile core and various electron-donating triarylamines are developed. They can form intramolecular hydrogen-bonding, which is conducive to improving emission efficiency and promoting horizontal orientation and show near infrared (NIR) emissions (692-710 nm) in neat films and red delayed fluorescence (606-630 nm) with high photoluminescence quantum yields (73-90%) in doped films. They prefer horizontal orientation with large horizontal dipole ratios in films, rendering high optical out-coupling factors (0.39-0.41). Their non-doped OLEDs exhibit NIR lights (716-748 nm) with maximum external quantum efficiencies (ηext,max ) of 1.0-1.9%. And their doped OLEDs radiate red lights (606-648 nm) and achieve record-beating ηext,max of up to 31.5%. These new red TADF materials should have great potentials in display and lighting devices.
Collapse
Affiliation(s)
- Zheyi Cai
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Xing Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.,Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.,AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| |
Collapse
|
22
|
Cai Z, Wu X, Liu H, Guo J, Yang D, Ma D, Zhao Z, Tang BZ. Realizing Record‐High Electroluminescence Efficiency of 31.5 % for Red Thermally Activated Delayed Fluorescence Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zheyi Cai
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Xing Wu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- AIE Institute Guangzhou Development District, Huangpu Guangzhou 510530 China
| |
Collapse
|
23
|
Zhang Y, Zhang D, Huang T, Gillett AJ, Liu Y, Hu D, Cui L, Bin Z, Li G, Wei J, Duan L. Multi-Resonance Deep-Red Emitters with Shallow Potential-Energy Surfaces to Surpass Energy-Gap Law*. Angew Chem Int Ed Engl 2021; 60:20498-20503. [PMID: 34319641 DOI: 10.1002/anie.202107848] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 12/24/2022]
Abstract
Efficient organic emitters in the deep-red region are rare due to the "energy gap law". Herein, multiple boron (B)- and nitrogen (N)-atoms embedded polycyclic heteroaromatics featuring hybridized π-bonding/ non-bonding molecular orbitals are constructed, providing a way to overcome the above luminescent boundary. The introduction of B-phenyl-B and N-phenyl-N structures enhances the electronic coupling of those para-positioned atoms, forming restricted π-bonds on the phenyl-core for delocalized excited states and thus a narrow energy gap. The mutually ortho-positioned B- and N-atoms also induce a multi-resonance effect on the peripheral skeleton for the non-bonding orbitals, creating shallow potential energy surfaces to eliminate the high-frequency vibrational quenching. The corresponding deep-red emitters with peaks at 662 and 692 nm exhibit narrow full-width at half-maximums of 38 nm, high radiative decay rates of ca. 108 s-1 , ≈100 % photo-luminescence quantum yields and record-high maximum external quantum efficiencies of ca. 28 % in a normal planar organic light-emitting diode structure, simultaneously.
Collapse
Affiliation(s)
- Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianyu Huang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Alexander J Gillett
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Yang Liu
- Key Lab of Green Chemistry and Technology of Ministry of Education, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Deping Hu
- School of Environment, South China Normal University, Guangzhou, 510006, P. R. China
| | - Linsong Cui
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Zhengyang Bin
- Key Lab of Green Chemistry and Technology of Ministry of Education, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jinbei Wei
- Beijing National Larboratory for molecular Sciences, Insititute of Chemeistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
24
|
Zhang Y, Zhang D, Huang T, Gillett AJ, Liu Y, Hu D, Cui L, Bin Z, Li G, Wei J, Duan L. Multi‐Resonance Deep‐Red Emitters with Shallow Potential‐Energy Surfaces to Surpass Energy‐Gap Law**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107848] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Tianyu Huang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Alexander J. Gillett
- Cavendish Laboratory University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Yang Liu
- Key Lab of Green Chemistry and Technology of Ministry of Education Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Deping Hu
- School of Environment South China Normal University Guangzhou 510006 P. R. China
| | - Linsong Cui
- Cavendish Laboratory University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Zhengyang Bin
- Key Lab of Green Chemistry and Technology of Ministry of Education Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Jinbei Wei
- Beijing National Larboratory for molecular Sciences Insititute of Chemeistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
25
|
Li Z, Yang D, Han C, Zhao B, Wang H, Man Y, Ma P, Chang P, Ma D, Xu H. Optimizing Charge Transfer and Out-Coupling of A Quasi-Planar Deep-Red TADF Emitter: towards Rec.2020 Gamut and External Quantum Efficiency beyond 30 . Angew Chem Int Ed Engl 2021; 60:14846-14851. [PMID: 33871909 DOI: 10.1002/anie.202103070] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Indexed: 11/11/2022]
Abstract
Herein, we report a deep-red TADF emitter pCNQ-TPA, composed of quinoxaline-5,8-dicarbonitrile (pCNQ) acceptor and triphenylamine (TPA) donor. pCNQ-TPA supported its OLED with desired CIE coordinates of (0.69, 0.31) and the record maximum external quantum efficiency of 30.3 %, which is the best red TADF diode with Rec.2020 gamut for UHDTV. It is showed that through tuning pCNQ-TPA doping concentration, intra- and inter-molecular charge transfer are balanced to synchronously improve emission color saturation and TADF radiation, and remedy aggregation-induced quenching, rendering photoluminescence quantum yield (PLQY) reaching 90 % for deep-red emission peaked at ≈690 nm. Quasi-planar structure further endows pCNQ-TPA with an improved horizontal ratio of emitting dipole orientation, which increases light out-coupling ratio to 0.34 for achieving the state-of-the-art device efficiencies.
Collapse
Affiliation(s)
- Zhe Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Bingjie Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Huiqin Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Peng Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Peng Chang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
26
|
Li Z, Yang D, Han C, Zhao B, Wang H, Man Y, Ma P, Chang P, Ma D, Xu H. Optimizing Charge Transfer and Out‐Coupling of A Quasi‐Planar Deep‐Red TADF Emitter: towards Rec.2020 Gamut and External Quantum Efficiency beyond 30 %. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhe Li
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| | - Bingjie Zhao
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| | - Huiqin Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| | - Peng Ma
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| | - Peng Chang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| |
Collapse
|
27
|
Kage Y, Kang S, Mori S, Mamada M, Adachi C, Kim D, Furuta H, Shimizu S. An Electron-Accepting aza-BODIPY-Based Donor-Acceptor-Donor Architecture for Bright NIR Emission. Chemistry 2021; 27:5259-5267. [PMID: 33442895 DOI: 10.1002/chem.202005360] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Indexed: 11/11/2022]
Abstract
A bright near-infrared (NIR) fluorescent molecule was developed based on the donor-acceptor-donor (D-A-D) approach using an aza-BODIPY analog called pyrrolopyrrole aza-BODIPY (PPAB) as an electron-accepting chromophore. Directly introducing electron-donating triphenylamine (TPA) to develop a D-A-D structure caused redshifts of absorption and emission of PPAB into the NIR region with an enhanced fluorescence brightness of up to 5.2×104 m-1 cm-1 , whereas inserting a phenylene linker between the TPA donor and the PPAB acceptor induced solvatochromic behavior in emission. Transient absorption spectra and theoretical calculations revealed the presence of a highly emissive hybridized locally excited and charge-transfer state in the former case and the contribution of the dark charge-separated state to the excited state in the latter case. The bright D-A-D PPAB as a novel emitter resulted in a NIR electroluminescence with a high external quantum efficiency of 3.7 % and a low amplified spontaneous emission threshold of ca. 80 μJ cm-2 , indicating the high potential for NIR optoelectronic applications.
Collapse
Affiliation(s)
- Yuto Kage
- Department of Chemistry and Biochemistry, Graduate School of, Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Seongsoo Kang
- Spectroscopy Laboratory for Functional π-Electronic Systems, Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Shigeki Mori
- Advanced Research Support Center (ADRES), Ehime University, Matsuyama, 790-8577, Japan
| | - Masashi Mamada
- Department of Chemistry and Biochemistry, Graduate School of, Engineering, Kyushu University, Fukuoka, 819-0395, Japan.,Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, 819-0395, Japan
| | - Chihaya Adachi
- Department of Chemistry and Biochemistry, Graduate School of, Engineering, Kyushu University, Fukuoka, 819-0395, Japan.,Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, 819-0395, Japan.,International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems, Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of, Engineering, Kyushu University, Fukuoka, 819-0395, Japan.,Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Soji Shimizu
- Department of Chemistry and Biochemistry, Graduate School of, Engineering, Kyushu University, Fukuoka, 819-0395, Japan.,Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
28
|
Balijapalli U, Nagata R, Yamada N, Nakanotani H, Tanaka M, D'Aléo A, Placide V, Mamada M, Tsuchiya Y, Adachi C. Highly Efficient Near‐Infrared Electrofluorescence from a Thermally Activated Delayed Fluorescence Molecule. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Umamahesh Balijapalli
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| | - Ryo Nagata
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| | - Nishiki Yamada
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research, (WPI-I2CNER) Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| | - Masaki Tanaka
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| | - Anthony D'Aléo
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| | - Virginie Placide
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research, (WPI-I2CNER) Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| |
Collapse
|
29
|
Balijapalli U, Nagata R, Yamada N, Nakanotani H, Tanaka M, D'Aléo A, Placide V, Mamada M, Tsuchiya Y, Adachi C. Highly Efficient Near-Infrared Electrofluorescence from a Thermally Activated Delayed Fluorescence Molecule. Angew Chem Int Ed Engl 2021; 60:8477-8482. [PMID: 33432637 DOI: 10.1002/anie.202016089] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Indexed: 12/31/2022]
Abstract
Near-IR organic light-emitting diodes (NIR-OLEDs) are potential light-sources for various sensing applications as OLEDs have unique features such as ultra-flexibility and low-cost fabrication. However, the low external electroluminescence (EL) quantum efficiency (EQE) of NIR-OLEDs is a critical obstacle for potential applications. Here, we demonstrate a highly efficient NIR emitter with thermally activated delayed fluorescence (TADF) and its application to NIR-OLEDs. The NIR-TADF emitter, TPA-PZTCN, has a high photoluminescence quantum yield of over 40 % with a peak wavelength at 729 nm even in a highly doped co-deposited film. The EL peak wavelength of the NIR-OLED is 734 nm with an EQE of 13.4 %, unprecedented among rare-metal-free NIR-OLEDs in this spectral range. TPA-PZTCN can sensitize a deeper NIR fluorophore to achieve a peak wavelength of approximately 900 nm, resulting in an EQE of over 1 % in a TADF-sensitized NIR-OLED with high operational device durability (LT95 >600 h.).
Collapse
Affiliation(s)
- Umamahesh Balijapalli
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Ryo Nagata
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Nishiki Yamada
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,International Institute for Carbon Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Masaki Tanaka
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Anthony D'Aléo
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Virginie Placide
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,International Institute for Carbon Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
30
|
Pauk K, Luňák S, Růžička A, Marková A, Mausová A, Kratochvíl M, Melánová K, Weiter M, Imramovský A, Vala M. Green-, Red-, and Infrared-Emitting Polymorphs of Sterically Hindered Push-Pull Substituted Stilbenes. Chemistry 2021; 27:4341-4348. [PMID: 33119919 DOI: 10.1002/chem.202004419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/23/2020] [Indexed: 11/07/2022]
Abstract
The synthesis, XRD single-crystal structure, powder XRD, and solid-state fluorescence of two new DPA-DPS-EWG derivatives (DPA=diphenylamino, DPS=2,5-diphenyl-stilbene, EWG=electron-withdrawing group, that is, carbaldehyde or dicyanovinylene, DCV) are described. Absorption and fluorescence maxima in solvents of various polarity show bathochromic shifts with respect to the parent DPA-stilbene-EWGs. The electronic coupling in dimers and potential twist elasticity of monomers were studied by density functional theory. Both polymorphs of the CHO derivative emit green fluorescence (527 and 550 nm) of moderate intensity (10 % and 5 %) in polycrystalline powder form. Moderate (5 %) red (672 nm) monomer-like emission was also observed for the first polymorph of the DCV derivative, whereas more intense (32 %) infrared (733 nm) emission of the second polymorph was ascribed to the excimer fluorescence.
Collapse
Affiliation(s)
- Karel Pauk
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 53009, Pardubice, Czech Republic
| | - Stanislav Luňák
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200, Brno, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Aneta Marková
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200, Brno, Czech Republic
| | - Anna Mausová
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 53009, Pardubice, Czech Republic
| | - Matouš Kratochvíl
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200, Brno, Czech Republic
| | - Klára Melánová
- Joint Laboratory of Solid-State Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 84, 53210, Pardubice, Czech Republic
| | - Martin Weiter
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200, Brno, Czech Republic
| | - Aleš Imramovský
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 53009, Pardubice, Czech Republic
| | - Martin Vala
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200, Brno, Czech Republic
| |
Collapse
|
31
|
Zhang K, Yang F, Zhang Y, Ma Y, Fan J, Fan J, Wang CK, Lin L. Highly Efficient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning: Theoretical Molecular Design and Experimental Verification. J Phys Chem Lett 2021; 12:1893-1903. [PMID: 33587848 DOI: 10.1021/acs.jpclett.0c03805] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Near-infrared (NIR) thermally activated delayed fluorescence (TADF) materials have shown great application potential in organic light-emitting diodes, photovoltaics, sensors, and biomedicine. However, their fluorescence efficiency (ΦF) is still highly inferior to those of conventional NIR fluorescent dyes, seriously hindering their applications. This study aims to provide theoretical guidance and experimental verification for highly efficient NIR-TADF molecular design. First, the light-emitting mechanism of two deep-red TADF molecules is revealed using first-principles calculation and the thermal vibration correlation function (TVCF) method. Then several acceptors are theoretically designed by changing the position of the cyano group or by introducing the phenanthroline into CNBPz, and 44 molecules are designed and studied theoretically. The photophysical properties of DA-3 in toluene and the amorphous state are simulated using a multiscale method combined with the TVCF method. The NIR-TADF property for DA-3 is predicted both in toluene and in the amorphous state. Experimental measurement further confirms that the TADF emission wavelength of DA-3 is 730 nm and ΦF is as high as 20%. It is the highest fluorescence efficiency reported for TADF molecules with emission wavelengths larger than 700 nm in toluene. Our work provides an effective molecular design strategy, and a good candidate for highly efficient NIR-TADF emitters is also predicted.
Collapse
Affiliation(s)
- Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Fei Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuchen Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuying Ma
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jian Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
32
|
Muriel B, Waser J. Azide Radical Initiated Ring Opening of Cyclopropenes Leading to Alkenyl Nitriles and Polycyclic Aromatic Compounds. Angew Chem Int Ed Engl 2021; 60:4075-4079. [PMID: 33205851 DOI: 10.1002/anie.202013516] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/04/2020] [Indexed: 01/05/2023]
Abstract
We report herein a radical-mediated amination of cyclopropenes. The transformation proceeds through a cleavage of the three-membered ring after the addition of an azide radical on the strained double bond and leads to tetrasubstituted alkenyl nitrile derivatives upon loss of N2 . With 1,2-diaryl substituted cyclopropenes, this methodology could be extended to a one-pot synthesis of highly functionalized polycyclic aromatic compounds (PACs). This transformation allows the synthesis of nitrile-substituted alkenes and aromatic compounds from rapidly accessed cyclopropenes using only commercially available reagents.
Collapse
Affiliation(s)
- Bastian Muriel
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| |
Collapse
|
33
|
Mei R, Yang C, Xiong F, Mao M, Li H, Sun J, Zou L, Ma W, Ackermann L. Access to 10‐Phenanthrenols
via
Electrochemical C−H/C−H Arylation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ruhuai Mei
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610052 People's Republic of China
| | - Chenrui Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Feng Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Meihua Mao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Hongmei Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Junmei Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610052 People's Republic of China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
34
|
Muriel B, Waser J. Azide Radical Initiated Ring Opening of Cyclopropenes Leading to Alkenyl Nitriles and Polycyclic Aromatic Compounds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bastian Muriel
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
35
|
Yu Y, Hu Y, Yang S, Luo W, Yuan Y, Peng C, Liu J, Khan A, Jiang Z, Liao L. Near‐Infrared Electroluminescence beyond 800 nm with High Efficiency and Radiance from Anthracene Cored Emitters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- You‐Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yun Hu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Sheng‐Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Wei Luo
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yi Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Chen‐Chen Peng
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jin‐Feng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Aziz Khan
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Zuo‐Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Institute of Organic Optoelectronics Jiangsu Industrial Technology Research Institute (JITRI) Wujiang Suzhou Jiangsu 215211 P. R. China
| |
Collapse
|
36
|
Yu YJ, Hu Y, Yang SY, Luo W, Yuan Y, Peng CC, Liu JF, Khan A, Jiang ZQ, Liao LS. Near-Infrared Electroluminescence beyond 800 nm with High Efficiency and Radiance from Anthracene Cored Emitters. Angew Chem Int Ed Engl 2020; 59:21578-21584. [PMID: 32767734 DOI: 10.1002/anie.202006197] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/28/2020] [Indexed: 01/05/2023]
Abstract
Derivatives based on anthryleno[1,2-b]pyrazine-2,3-dicarbonitrile (DCPA) are used as luminescent materials, to realize near-infrared (NIR) electroluminescence. By functionalizing DCPA with aromatic amine donors, two emitters named DCPA-TPA and DCPA-BBPA are designed and synthesized. Both molecules have large dipole moments owing to the strong intramolecular charge transfer interactions between the amine donors and the DCPA acceptor. Thus, compared with doped films, the emission of neat films of DCPA-TPA and DCPA-BBPA can fully fall into the NIR region (>700 nm) with increasing surrounding polarity by increasing doping ratio. Moreover, the non-doped devices based on DCPA-TPA and DCPA-BBPA provide NIR emission with peaks at 838 and 916 nm, respectively. A maximum radiance of 20707 mW Sr-1 m-2 was realized for the further optimized device based on DCPA-TPA. This work provides a simple and efficient strategy of molecular design for developing NIR emitting materials.
Collapse
Affiliation(s)
- You-Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yun Hu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Sheng-Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wei Luo
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yi Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Chen-Chen Peng
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jin-Feng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Aziz Khan
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.,Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), Wujiang, Suzhou, Jiangsu, 215211, P. R. China
| |
Collapse
|
37
|
Zhang K, Zhang Y, Ma Y, Fan J, Wang CK, Lin L. Solid-State Effect Induced Thermally Activated Delayed Fluorescence with Tunable Emission: A Multiscale Study. J Phys Chem A 2020; 124:8540-8550. [PMID: 32966069 DOI: 10.1021/acs.jpca.0c07152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thermally activated delayed fluorescence (TADF) molecules with tunable solid-state luminescence have shown great application potential in organic light-emitting diodes. However, theoretical studies on luminescence properties of organic emitters with consideration of solid-state effect are limited. In this work, the photophysical properties of a difluoroboron β-diketonate-based molecule (M1) in liquid, crystal, and amorphous states are studied using multiscale methods combined with the thermal vibration correlation function theory. Our results indicate that the geometric structures of M1 in liquid with toluene and crystal state are all in straight-chain form. However, M1 in amorphous state is subjected to form bending deformation at the triphenylamine unit under collaboration between intramolecular π-hydrogen bond and disordered intermolecular interactions. Moreover, in the amorphous state, the energy gap between the first singlet excited state (S1) and the first triplet excited state (T1) (ΔEST) of M1 is significantly reduced, and the spin-orbit coupling constant is remarkably increased in comparison with those of M1 in liquid with toluene and crystal state. As a result, the up-conversion of T1 → S1 in the amorphous state is favored, and remarkable TADF is thus observed. Besides, M1 in the solid state gives fluorescence in red shift emission compared to that in liquid with toluene. On the basis of the results above, we further theoretically design a new molecule noted as M2 which emits fluorescence in the near-infrared region in the solid state. Our theoretical results help in understanding the light-emitting mechanism induced by the solid-state effect and provide information for designing new-type TADF emitters with tunable solid-state emission.
Collapse
Affiliation(s)
- Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Yuchen Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Yuying Ma
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| |
Collapse
|
38
|
Birudula S, Prabhu DD, Ghosh T, B A, Das S, Vijayaraghavan RK. Directed Self-Organization Ensured Enhancement of Charge Carrier Mobilities in a Star-Shaped Organic Semiconductor. Chemistry 2020; 26:11135-11140. [PMID: 32428357 DOI: 10.1002/chem.202001615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/02/2020] [Indexed: 12/25/2022]
Abstract
Controlled self-organization of organic semiconductor molecules into specifically desired architectures on substrates of interest is one of the most imperative challenges faced in the fabrication of high-performance organic electronic devices. Herein, we report the self-organization of a star-shaped molecule FDT-8 into a highly favored structure, namely, a vertical stack. Thermal annealing of films of FDT-8 deposited on PEDOT: PSS coated ITO substrates was observed to assist the organization of the molecules into columnar stacks. A significant enhancement in the hole (≈50-fold) and the electron (≈13-fold) carrier mobility was observed in single-carrier devices upon thermal annealing that could be attributed to the aforementioned self-organization. The ability of these molecules to spontaneously self-organize was utilized to fabricate bilayer light-emitting devices.
Collapse
Affiliation(s)
- Srikanth Birudula
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Deepak D Prabhu
- Photosciences and Photonics, Chemical Science and Technology Division, NIIST (CSIR), Trivandrum, 695019, India
| | - Tapan Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Adara B
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Suresh Das
- Photosciences and Photonics, Chemical Science and Technology Division, NIIST (CSIR), Trivandrum, 695019, India.,School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Ratheesh K Vijayaraghavan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
39
|
Zhao B, Wang H, Han C, Ma P, Li Z, Chang P, Xu H. Highly Efficient Deep‐Red Non‐Doped Diodes Based on a T‐Shape Thermally Activated Delayed Fluorescence Emitter. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bingjie Zhao
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin Heilongjiang 150080 China
| | - Huiqin Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin Heilongjiang 150080 China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin Heilongjiang 150080 China
| | - Peng Ma
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin Heilongjiang 150080 China
| | - Zhe Li
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin Heilongjiang 150080 China
| | - Peng Chang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin Heilongjiang 150080 China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin Heilongjiang 150080 China
| |
Collapse
|
40
|
Zhao B, Wang H, Han C, Ma P, Li Z, Chang P, Xu H. Highly Efficient Deep-Red Non-Doped Diodes Based on a T-Shape Thermally Activated Delayed Fluorescence Emitter. Angew Chem Int Ed Engl 2020; 59:19042-19047. [PMID: 32697873 DOI: 10.1002/anie.202008885] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 12/21/2022]
Abstract
Device simplification is of practical significance for organic light emitting diodes (OLEDs), and remains the great challenge for deep-red emitters. Herein, a deep-red thermally activated delayed fluorescence molecule (pTPA-DPPZ) is reported which features a T shaped structure containing two triphenylamine (TPA) donors, one either side of a planar dipyridophenazine (DPPZ) acceptor. The rational spatial arrangement of the functional groups leads to limited but sufficient molecular packing for effective carrier transport. The neat pTPA-DPPZ film achieves an around 90-fold improved radiation rate constant of 107 s-1 and the nearly unitary reverse intersystem crossing (RISC) efficiency, as well as accelerated emission decays for quenching suppression. The high radiation and RISC result in a photoluminescence quantum yield of 87 %. The bilayer OLED based on the pTPA-DPPZ emissive layer achieved the record external quantum efficiencies of 12.3 % for maximum and 10.4 % at 1000 nits, accompanied by the deep-red electroluminescence with the excellent color purity.
Collapse
Affiliation(s)
- Bingjie Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Huiqin Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Peng Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Zhe Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Peng Chang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| |
Collapse
|
41
|
Gayen K, Basu K, Nandi N, Sundar Das K, Hermida-Merino D, Hamley IW, Banerjee A. A Self-Assembled Peptide-Appended Naphthalene Diimide: A Fluorescent Switch for Sensing Acid and Base Vapors. Chempluschem 2020; 84:1673-1680. [PMID: 31943879 DOI: 10.1002/cplu.201900577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/17/2019] [Indexed: 01/30/2023]
Abstract
A histidine-containing bola-amphiphilic molecule (NDIP) containing a peptide-appended naphthalenediimide (NDI) forms fluorescent hydrogels in phosphate buffer and organogels with benzenoid solvents. These gels were characterized by several spectroscopic and microscopic techniques including FT-IR, HR-TEM, powder X-ray diffraction and small-angle X-ray scattering, UV-Vis and fluorescence studies. The gelator molecule exhibits no significant fluorescence in the xerogel state, while it shows a significant fluorescence (bright cyan) in the presence of volatile organic/inorganic acid vapors; this cyan color vanishes in presence of base (ammonia vapors). A reusable paper-strip-based method based on this self-assembled fluorescent material can be used to easily detect hazardous volatile acid and base vapors with the naked eye.
Collapse
Affiliation(s)
- Kousik Gayen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 7000032, India
| | - Kingshuk Basu
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 7000032, India
| | - Nibedita Nandi
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 7000032, India
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 7000032, India
| | | | - Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 7000032, India
| |
Collapse
|
42
|
Liang B, Yu Z, Zhuang X, Wang J, Wei J, Ye K, Zhang Z, Liu Y, Wang Y. Achieving High-Performance Pure-Red Electrophosphorescent Iridium(III) Complexes Based on Optimizing Ancillary Ligands. Chemistry 2020; 26:4410-4418. [PMID: 32017269 DOI: 10.1002/chem.201905690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/02/2020] [Indexed: 11/07/2022]
Abstract
Two new iridium(III) complexes were synthesized by introducing two trifluoromethyl groups into an ancillary ligand to develop pure-red emitters for organic light-emitting diodes (OLEDs). The electron-donating ability of the ancillary ligands is suppressed, owing to the electron-withdrawing nature of trifluoromethyl groups, which can reduce the HOMO energy levels compared with those of compounds without trifluoromethyl groups. However, the introduction of trifluoromethyl groups into the ancillary ligand has little impact on the LUMO energy levels. Therefore, a well-tuned, pure-red, excited-state energy was achieved by regulating the relative energy level between the HOMO and LUMO. OLEDs with these complexes as emitters showed high external quantum efficiencies (EQEs) of 26 % and realized high EQEs of about 25 % and fairly low driving voltages of 3.3-3.6 V for practical luminance of 1000 cd m-2 , as well as excellent Commission Internationale de L'Eclairage (CIE) coordinates of (0.66, 0.33) and (0.67, 0.33); thus, this demonstrates the successful molecular design strategy by modifying the electron-donating ability of ancillary ligand.
Collapse
Affiliation(s)
- Baoyan Liang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P.R. China
| | - Zhanshuang Yu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P.R. China
| | - Xuming Zhuang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P.R. China
| | - Jiaxuan Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P.R. China
| | - Jinbei Wei
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P.R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P.R. China
| | - Zuolun Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P.R. China
| | - Yu Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P.R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|
43
|
Jin P, Han Y, Tian F, Wang L, Zhao X, Zhang C, Xiao J. Electron‐Rich Twistacene‐Modified Arylboron Donor–Acceptor Systems: Synthesis, Photophysics, and Electroluminescence with Hot Exciton Response. Chemistry 2020; 26:3113-3118. [DOI: 10.1002/chem.201904590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Pengcheng Jin
- College of Chemistry and Environmental ScienceKey Laboratory of Chemical Biology of Hebei ProvinceKey Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of EducationHebei University Baoding 071002 P.R. China
| | - Yanbing Han
- Department of PhysicsHarbin Institute of Technology Harbin 150001 P.R. China
| | - Feng Tian
- Institution National–Local Joint Engineering Laboratory of, New Energy Photovoltaic DevicesCollege of Physics Science and TechnologyHebei University Baoding 071002 P.R. China
| | - Lijiao Wang
- College of Chemistry and Environmental ScienceKey Laboratory of Chemical Biology of Hebei ProvinceKey Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of EducationHebei University Baoding 071002 P.R. China
| | - Xiaohui Zhao
- Institution National–Local Joint Engineering Laboratory of, New Energy Photovoltaic DevicesCollege of Physics Science and TechnologyHebei University Baoding 071002 P.R. China
| | - Chunfang Zhang
- College of Chemistry and Environmental ScienceKey Laboratory of Chemical Biology of Hebei ProvinceKey Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of EducationHebei University Baoding 071002 P.R. China
| | - Jinchong Xiao
- College of Chemistry and Environmental ScienceKey Laboratory of Chemical Biology of Hebei ProvinceKey Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of EducationHebei University Baoding 071002 P.R. China
| |
Collapse
|
44
|
Li J, Hou C, Huang C, Xu S, Peng X, Qi Q, Lai WY, Huang W. Boosting Circularly Polarized Luminescence of Organic Conjugated Systems via Twisted Intramolecular Charge Transfer. RESEARCH (WASHINGTON, D.C.) 2020; 2020:3839160. [PMID: 32395717 PMCID: PMC7193308 DOI: 10.34133/2020/3839160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/22/2020] [Indexed: 04/11/2023]
Abstract
Realizing a high luminescence dissymmetry factor (g lum) is a paramount yet challenging issue in the research field of circularly polarized luminescence (CPL). Here, we reported a novel set of organic conjugated systems with twisted intramolecular charge transfer (TICT) characteristics based on conjugated o-carborane-binaphthyl dyads composing of binaphthyl units as chiral electron donors and o-carborane units as achiral electron acceptors, demonstrating intense CPL with large g lum values. Interestingly, single-crystalline o-1 exhibited a high-level brightness and a large g lum factor as high as +0.13, whereas single-crystalline o-2 processed a relatively low brightness with a decreased g lum value to -0.04. The significant diversity of CPL-active properties was triggered by the selective introduction of o-carborane units onto the binaphthyl units. Benefiting from the large magnetic dipole transition moments in TICT states, the CPL activity of TICT o-carborane-based materials exhibited amplified circular polarization. This study provides an efficient molecular engineering strategy for the rational design and development of highly efficient CPL-active materials.
Collapse
Affiliation(s)
- Junfeng Li
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chenxi Hou
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chao Huang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shanqi Xu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xuelei Peng
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qi Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072 Shaanxi, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072 Shaanxi, China
| |
Collapse
|
45
|
Chen J, Tao W, Chen W, Xiao Y, Wang K, Cao C, Yu J, Li S, Geng F, Adachi C, Lee C, Zhang X. Red/Near‐Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906575] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia‐Xiong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Wen‐Wen Tao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Wen‐Cheng Chen
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Ya‐Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Feng‐Xia Geng
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Chihaya Adachi
- Department of Applied Chemistry Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Chun‐Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Xiao‐Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
46
|
Chen JX, Tao WW, Chen WC, Xiao YF, Wang K, Cao C, Yu J, Li S, Geng FX, Adachi C, Lee CS, Zhang XH. Red/Near-Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angew Chem Int Ed Engl 2019; 58:14660-14665. [PMID: 31313424 DOI: 10.1002/anie.201906575] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 12/17/2022]
Abstract
Developing red thermally activated delayed fluorescence (TADF) emitters, attainable for both high-efficient red organic light-emitting diodes (OLEDs) and non-doped deep red/near-infrared (NIR) OLEDs, is challenging. Now, two red emitters, BPPZ-PXZ and mDPBPZ-PXZ, with twisted donor-acceptor structures were designed and synthesized to study molecular design strategies of high-efficiency red TADF emitters. BPPZ-PXZ employs the strictest molecular restrictions to suppress energy loss and realizes red emission with a photoluminescence quantum yield (ΦPL ) of 100±0.8 % and external quantum efficiency (EQE) of 25.2 % in a doped OLED. Its non-doped OLED has an EQE of 2.5 % owing to unavoidable intermolecular π-π interactions. mDPBPZ-PXZ releases two pyridine substituents from its fused acceptor moiety. Although mDPBPZ-PXZ realizes a lower EQE of 21.7 % in the doped OLED, its non-doped device shows a superior EQE of 5.2 % with a deep red/NIR emission at peak of 680 nm.
Collapse
Affiliation(s)
- Jia-Xiong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.,Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Wen-Wen Tao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wen-Cheng Chen
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Ya-Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Feng-Xia Geng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Chihaya Adachi
- Department of Applied Chemistry, Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
47
|
Affiliation(s)
- Hao Liu
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science & Technology Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
48
|
Chi W, Qiao Q, Lee R, Liu W, Teo YS, Gu D, Lang MJ, Chang Y, Xu Z, Liu X. A Photoexcitation‐Induced Twisted Intramolecular Charge Shuttle. Angew Chem Int Ed Engl 2019; 58:7073-7077. [DOI: 10.1002/anie.201902766] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Weijie Chi
- Science and Math ClusterSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Richmond Lee
- Science and Math ClusterSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yock Siong Teo
- Singapore-MIT Alliance for Research and Technology (SMART) 1 CREATE Way Singapore 138602 Singapore
| | - Danning Gu
- Singapore-MIT Alliance for Research and Technology (SMART) 1 CREATE Way Singapore 138602 Singapore
| | - Matthew John Lang
- Singapore-MIT Alliance for Research and Technology (SMART) 1 CREATE Way Singapore 138602 Singapore
- Department of Chemical and Biomolecular Engineering and Department of Molecular Physiology and BiophysicsVanderbilt University Nashville TN 37235 USA
| | - Young‐Tae Chang
- Center for Self-Assembly and ComplexityInstitute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xiaogang Liu
- Science and Math ClusterSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| |
Collapse
|
49
|
Chi W, Qiao Q, Lee R, Liu W, Teo YS, Gu D, Lang MJ, Chang Y, Xu Z, Liu X. A Photoexcitation‐Induced Twisted Intramolecular Charge Shuttle. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902766] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Weijie Chi
- Science and Math ClusterSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Richmond Lee
- Science and Math ClusterSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yock Siong Teo
- Singapore-MIT Alliance for Research and Technology (SMART) 1 CREATE Way Singapore 138602 Singapore
| | - Danning Gu
- Singapore-MIT Alliance for Research and Technology (SMART) 1 CREATE Way Singapore 138602 Singapore
| | - Matthew John Lang
- Singapore-MIT Alliance for Research and Technology (SMART) 1 CREATE Way Singapore 138602 Singapore
- Department of Chemical and Biomolecular Engineering and Department of Molecular Physiology and BiophysicsVanderbilt University Nashville TN 37235 USA
| | - Young‐Tae Chang
- Center for Self-Assembly and ComplexityInstitute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xiaogang Liu
- Science and Math ClusterSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| |
Collapse
|
50
|
Liang X, Tu ZL, Zheng YX. Thermally Activated Delayed Fluorescence Materials: Towards Realization of High Efficiency through Strategic Small Molecular Design. Chemistry 2019; 25:5623-5642. [PMID: 30648301 DOI: 10.1002/chem.201805952] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 12/22/2022]
Abstract
Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly-efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electroluminescent processes, consequently achieving 100 % of internal quantum efficiency. Since the report of the first efficient OLED based on a TADF small molecule in 2012 by Adachi et al., the quest for optimal TADF materials for OLED application has never stopped. Various TADF molecules bearing different design concepts and strategies have been designed and produced, with the aim to boost the overall performances of corresponding OLEDs. In this minireview, the general principles of TADF molecular design based on three basic categories of TADF species: twisted intramolecular charge transfer (TICT), through-space charge transfer (TSCT) and multi-resonance induced TADF (MR-TADF) are discussed in detail. Several key aspects with respect to each category, as well as some effective methods to enhance the efficiency of TADF materials and corresponding OLEDs from the molecular engineering perspectives, are summarized and discussed to exhibit a general landscape of TADF molecular design to a wide variety of scientific researchers within this particular disciplinary area.
Collapse
Affiliation(s)
- Xiao Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Zhen-Long Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|